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Abstract

There have been many theoretical studies and numerical investigations of nonlocal dif-
fusion (ND) problems in recent years. In this paper, we propose and analyze a new dis-
continuous Galerkin method for solving one-dimensional steady-state and time-dependent
ND problems, based on a formulation that directly penalizes the jumps across the element
interfaces in the nonlocal sense. We show that the proposed discontinuous Galerkin scheme
is stable and convergent. Moreover, the local limit of such DG scheme recovers classical
DG scheme for the corresponding local diffusion problem, which is a distinct feature of the
new formulation and assures the asymptotic compatibility of the discretization. Numerical
tests are also presented to demonstrate the effectiveness and the robustness of the proposed
method.
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1 Introduction

Recent development of nonlocal modeling has attracted much attention in many appli-
cation fields, ranging from solid mechanics and anomalous diffusion to imaging analy-
sis and machine learning [12, 13, 20, 21, 28-32]. One of major differences between
the nonlocal models and the local models is that the nonlocal models are integral-type
equations, while the classical local models are often involved with differential opera-
tors. As an example, the peridynamic model was firstly introduced in [29] to study crack
and fracture of materials, since the classical continuum models may not be effective
when discontinuities occur. Nonlocal models can also be used to develop and study
numerical schemes for local problems [17]. Indeed, nonlocal modeling can provide a
new approach to describe both continuous and discontinuous phenomena in a unified
mathematical model; it also offers a tool and bridge to understand and connect existing
models.

As generalizations of classical PDE-based models, many nonlocal models like the peri-
dynamics and nonlocal diffusion (ND) models are characterized by a horizon parameter 6,
such that the nonlocal models would converge to the corresponding classical ones if the
latter make sense as 6 goes to zero. To introduce the nonlocal model under consideration in
this paper, we recall that the ND operator L represented as follows:

Lsu(x) := =2 /N-(u(y) —u@)7;(x,»)dy, VxeQ,
o)

where Q C R” ~is a bounded, open domain (note that we focus on the case n = 1 in later
sections), and Q = Q U Q; with Q; C R" being of a nonzero volume that is not necessarily
located near or at the boundary of Q. The kernel function

7s(e,y) AxQ - R
is nonnegative and symmetric, i.e., ?5(x, y) =575(y,x) > 0. To connect with its local
limit, we may make some extra assumptions (see [13, 26, 33]) that ¥ are radial (i.e.,
75(x,3) = 75(Jx — y|)) and compactly supported in a ball B;(0) with bounded second-order
moments defined by

(C(S)ij = / Va(g)giéjdf, iLj=1,...,n
B;(0)

Then, we have L; - V - (C- V) as 6§ - 0, where C = }sm(l) C; is a second-order tensor. To

preserve such mathematical property on the local limit in the discrete sense, a number of
studies have been carried out to obtain the so-called asymptotically compatible schemes for
solving nonlocal problems [33, 34]. In [33], Tian and Du pointed out that the solutions
based on some numerical schemes would converge to the wrong local limits as the horizon
goes to zero. They also showed numerical schemes that avoid such mishaps. Then, they
further established in [34] an abstract mathematical framework to analyze a class of asymp-
totically compatible schemes for conforming Galerkin approximations of some parameter-
ized linear nonlocal problems. Meanwhile, some numerical methods such as finite differ-
ence, finite element, Fourier spectral, and discontinuous Galerkin (DG) approaches have
been designed and studied to satisfy the asymptotic compatibility (see, e.g., [14, 16, 18, 33,
35]). When the kernel function y, is chosen such that the solution of the nonlocal diffusion
problem contains spatial discontinuities, the DG method could be an advantageous choice
for its discretization in space.
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Since the major development in the 1990s [6—10], the DG methods have been widely
used in many areas such as aero-acoustics, viscoelastic flows, electromagnetism, gas
dynamics, and oceanography for their robustness and capability of handling discontinui-
ties. Particularly, there exist various DG approximations for the classical elliptic problems
(see, e.g., [1, 5, 24]). For the nonlocal diffusion and nonlocal mechanical models, differ-
ent conforming and nonconforming Galerkin approximations using discontinuous elements
have been considered in [4, 19, 25, 27, 35]. The DG scheme recently proposed in [14] for
solving the ND equation is motivated by the local discontinuous Galerkin (LDG) method
[11] and relies on the introduction of auxiliary variables. In this paper, we propose a DG
method with penalty technique for solving one-dimensional ND problems without intro-
ducing auxiliary variables. The method is applied to both steady-state and time-dependent
ND problems. We prove the Poincaré’s inequality at the discrete level and derive the stabil-
ity, boundedness, a priori error estimates, and asymptotic compatibility of the proposed
scheme. In fact, the local limit of the proposed DG scheme (as the horizon goes to zero) is
shown to be identical to the one proposed by Babuska and Zlamal in [3] for the classical
diffusion problems. In numerical experiments for the time-dependent ND problem, we use
the singly diagonal implicit Runge—Kutta method (SDIRK) for time stepping, which is of
strong stability based on the analysis done in [15].

The paper is organized as follows. In Sect. 2, we briefly introduce the one-dimensional
ND problem, including the steady-state and time-dependent ones. In Sect. 3, we present
semi-discrete DG schemes for the ND problems, which directly penalize the jumps across
element interfaces in the nonlocal sense. In Sect. 4, we first prove a Poincaré’s inequality
at the discrete level and then, we derive the stability, boundedness, and a priori error esti-
mates of the DG scheme for steady-state ND problems. The error estimates imply that the
DG scheme is asymptotically compatible. We also obtain the L-stability and a priori error
estimates of the DG scheme for the time-dependent ND problems. In Sect. 5, numerical
examples are given to demonstrate the effectiveness and the robustness of the proposed DG
method. Some concluding remarks are finally given in Sect. 6.

2 The Model Problem

Let us consider a one-dimensional steady-state nonlocal diffusion problem with nonlocal
volume constraints given as follows:

{ Lsu =[5, x€eQ=(a,b),

u=0, x€Qs;=[a—-6,alU[b,b+4], M

where § > 0 is the horizon and f; € L*(Q), Q=Qu ;. The corresponding time-depend-
ent problem of (1) is given by

u, + Lsu = fs (x,1) € Qx(0,T],
— x€Qx (1=0}, 2)
u=0, (x,1) € Q; X [0, T].

The nonlocal diffusion operator L is defined as
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x+6
Lsu(x) 1= -2 / () = u(x))75(x,y) dy
x—6

for a kernel function 75(x, y). For simplicity, we take the kernel function to be the form of
75(x,y) = 75(|x = y|) = 75(s) and assume it has a finite second moment, i.e.,
¥s = 75(s) is nonnegative and symmetric, with szy(s(s) (S LIIOC(R). 3)

The solution space associated with (1) is
S= {u e 2@) : flulls < oo and ulg, = 0},

where the energy norm ||u|| ¢ is defined as

1)
lluel| =2/ yé(s)/N(E:u)zdxds
0 Q

with E;fu = u(x + 5) — u(x). Note that the definition of this energy norm requires the values
of u outside ; hence, we make the extension of u such that u = 0 on Q,;. The energy norm
| - |l g 1is in fact a norm on S (see, e.g., [26] for more details). With change of variables, the
variational formulations of the steady-state problem (1) and the time-dependent problem
(2) are, respectively, defined by

find u € Ssuchthat B(u,v) = (fs,v), Vv eES, 4)
and

find u(-,t) € Ssuchthat (u,,v)+ Bu,v) = (f;,v), VveES, 3)
where (-, -) is the L? inner product and

5
B(u,v) = 2/ /Nyé(s)E;’uE;'vdxds, Yu,veS. (6)
o Ja

Since s2y5(s) e L' (R), we have

loc
s
Cs = 2/ s%y5(s)ds < 0.
0

To connect with the local limit, without loss of generality, it is assumed that
Cs=1,
which can always be achieved by a rescaling of y;(s).
Thus, when 6 — 0, the nonlocal diffusion operator becomes the classical (local) diffu-

sion operator, which implies that (1) and (2) converge to the Poisson’s equation and heat
equation, respectively (see [13, 33] for more details).

3 Discontinuous Galerkin Approximations with Penalty
In this section, we propose a new DG method which directly imposes penalties on the

jumps across element interfaces instead of introducing auxiliary variables as done in [14]
for discretizing the problems (1) and (2).
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First, we take the partition of the domain Qas T, = { (xj_l L Y +”"n + with
2

=b, x 1 <a—-6<x

m—s = —m+%’ xN+m—% <b+é SxN+m+%'

—x
J+ J=3
there exists a constant v > 0, independent of 4 as 7 — 0, such that

Let 7 = max hj, p= mmh h =x, 1. We assume the partition 7}, is regular, i.e.,
J J

vh < p.

Now, we define a finite element space V), as

V,=VE= {veLZ(Q) LVl € P, j =1, Novlg, =0}, )

where P,(I;) is the space of polynomials on /; whose degrees are at most k.
Let us rewrite the bilinear form B(u, v) in (6) as follows:

B(u,v) = B;(u,v) + B,(u,v) + B;(u,v), Vu,v€S, (8)

where, for i = min{p, §}, we have that

B,(u,v) = 2/ ;/5(5)2/ E+uE+vdxds
0 X

I
il

3 By(u,v) =2 / yg(s)z / EuE?v dxds, 9)
0 |—v

By(u,v) =2 / yﬁ(s)z / EfuE*v dxds.
h i 7

We are interested in modifying B(u, v) so that it may be defined in the discrete spaces. For
u;, and v, in V;,, one can see first that B, (u,,, v;,) and B;(uy,, v;,) in the RHS of (8) can be well
defined but B, (u,, v,) could become problematic if u,, and v, are discontinuous at the ele-
ment interfaces. In fact, if we fix hj, we have formally that

i
/ yé(s)z / EfuwEfv, duds ~ 2 / 575(5)ds D [yl s 1,1, asé =0,
0 0 S JT2 ST

where I[w]] 1= =w(xt el ) — w(x~ L ) denotes the jump of w at Xy e For a general kernel y5(s)
J

with a bounded second moment (3) but an unbounded first moment, s75(s) may not be in
LIIOC(IR), thus causing problems in the local limit. The remedy that we propose here is to
introduce an extra penalty term and replace, in the problematic term, E¥w, and E}v, by
Eru, — (A ! and Etv), — vl L respectively. Such a modification would make the pre-
viously identified problematic term well defined in the local limit. Hence, we obtain a new
bilinear form in the following:
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il x+l—s
B, (uy,v;,) = 2 Z / yé(s)/ ' Efw,Elv, dxds
j 70 = ‘ ‘
+ +

+2 2 /0 75(5) / - (E = Loyl ) (E v = Dl ) dxds

J ity

5

+2 Z/ 75(8) /E;ruhE;’vh dxds

7 Jh u

h
+ / s%y5(s)ds 2 ,uj[[uh]]ﬂ% [[vh]]],r%,
0 j

(10)

where the penalty parameters {4; > 0} are expected to be sufficiently large for deriving the
error estimates later on. In particular, with ; = O(h~%-1), we are able to recover the DG
scheme designed by BabuSka and Zlamal [3] in the local zero horizon limit.

To see the local limit more clearly, let us fix hj. As 6 — 0, we have

22/ V&(S)/ E+uhE+vh dxds — /(uh) ), dx,
0 X
h =
J+2 + .
2 ;/0 75(S)L ]_S (ES uy — |Iuh]]j+%>(Es v, — [[Vh]]ﬂ_%)dxds =0,
5 o
2 Z/ ¥5(8) /Efuthvh dxds — 0,

h
/ s y(s(s)dsZ/t,[[uh]]ﬁ (A Zu,lluh]]J+ NIV
0

N\

which correspond to the original DG scheme proposed in [3]. It is known in the literature
that this superpenalty procedure makes the DG method behave like a standard conforming
method and increases the condition number of the stiffness matrix significantly [1].
‘We now present the new DG scheme with penalty for the problem (1) as follows:
find u, € V), such that B, (uy,,vy) = (f5,vy), Vv, €V, (11)
The corresponding semi-discrete DG scheme for solving the time-dependent problem (2)
is given by:
find u;,(-,1) € V;, suchthat  ((u,),,v;) + B, (wy,v,) = (f5.vy), Vv, €V (12)
where the initial u,(x, 0) € V, is taken as the standard L? projection of i, onto V.
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4 Stability, Boundedness, and a Priori Error Estimates

In this section, we first present the discrete Poincaré’s inequality and then study the bound-
edness and stability results of (11), which enable us to derive a priori error estimates. Next,
we prove the L?-stability and a priori error estimates of the semi-discrete DG scheme (12).
Throughout this section, we let C > 0 represent a generic positive constant independent of %
and 6 with possibly different values if not noted otherwise. Let us define the semi-norms for
v € V,, as follows:

h X, 1=S )
vl5, =2 Z / yé(s)/ P (Efv)? dxds +2 Z/ 75(5) /(E:V)Z dxds
i 70 N1 i Jh 5
j 5 5
+22/ yg(s)/ (E;v— [[v]]j+1> dxds, 13)
j 0 x X 2

i
2 _ 2 2
vl = /0 s7ys(s)ds Z ;4_,-|[v]]j+%.

J

By the definition of the bilinear form (10) and the semi-norms (13), we immediately have

2 2
B,(v,v) = |V|57h + |V|*
Then, we define the semi-norm

V12 = B,(v,»), Vv eV,

4.1 Discrete Poincaré’s Inequality

To ensure that ||| - ||| is @a norm on V,, we need to derive some Poincaré’s inequalities at
the discrete level. First, let us present the result when the kernel y; is bounded on [0, ].
Lemma 4.1 For a bounded y it holds that

villz < Cllvalll, Vv, €V, (14)
where the constant C > 0 is independent of 6 and h.
Proof Following [2], we consider the problem L;¢ = v, for any v, € V,, with a bounded

kernel y;. Then, the energy space S is indeed the L? space and it is implied by the nonlocal
Poincaré’s inequality ([26]) that the following energy inequality holds:

llls < Clvyllzes

where C > 0 is a constant independent of 6. For the DG scheme (11) and by the Cauchy—
Schwarz inequality, we have

@ Springer



38 Communications on Applied Mathematics and Computation (2020) 2:31-55

Vo vp) = (Lsdh,vy)

/A1 X, 1 =S
=2 " ErgE*y, dad:
Z/() 75(5)/x] s‘f)th J
+22/ 7/5(5)/ : E+vh [[vh]]_,-+%>dxds a1s)

+2) / 75(5) / EY$E!v, dxds — C(¢,v)
i Jh 5

< lls Hvalll + 1€, vyl
S Clvglizz 1vgll + 1€, vyl

where C(¢, v, is given as

Clp.vy) = =2 ) vyl / }’5(5)/ E[ ¢ dxds. (16)
j *Jo 1
We then apply the following inequality (to be shown in Lemma 4.2 later in the section):

[C(@, vl < C Il Ivallp2, (17)
and plug (17) into (15) to get the discrete Poincaré’s inequality (14).

Before proving the inequality (17) used in the proof above, we first explain the idea
behind the proof. Let us think about the local limit, namely for 6 small, the term

/ 75(8) / E! ¢pdxds

is essentially bounded by ||@/|| 0., Since we have

£ =sPEIZ00 g,

By the Sobolev embedding theorem (or trace inequality), we have

1Pllcor < Cligllpare - (18)
The elliptic regularity can then be applied to conclude that ||| 432 < C||v,||;> thus com-
pleting the proof, as argued in [2]. For the situation considered here, a difficulty is to obtain
(17) with a uniform constant C. Indeed, for each finite § > 0, there is not enough elliptic
regularity to make the argument in general. We thus have to avoid relying on the type of
inequality as (18). Hence, we find another way to show the results in 1d that is analogous to
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the PDE counterpart in [2]. We use the fundamental theorem of calculus; we could rewrite

@' (x) as
)= () + / ¢" (2)dz, (19)
y

which is true for all y. Also, notice that in the local limit ¢ satisfies the problem
—¢"(z) = v,(2). Now, we integrate y on some interval I and obtain

116/l < / & Oldy + / / va(ldz < Cylblig + Callvylliz
1 1Jy

Here, we can bound |¢/(x)| by the H' norm of ¢ and the L? norm of ||v, ||, and finally, we
can use an energy inequality to bound |¢|; by ||v,]|,2- In the following lemma, equality
(21) can be understood as an analog of (19).

Lemma 4.2 Assume that ¢ € S solves the problem L3¢ = v,,, then we have, for some con-
stant C > 0, independent of 6 and h,

IC(, vl < CHIvilll Ivpllg2 s (20)
where C(¢, v,) is defined in (16).

Proof Firstly, with E-¢(y) = ¢(y) — ¢(y — ), we can write

X1 X1 x
/ Ef$dy = / T ENG) dy + / ES () dy
Tyt * Gep

= / " by + ) — () dy — / " (60) - p — 5) dy
X X+ (21)

X+s x.+%
= / ECo(y) dy + / (@0 +9) = 200) + by — ) dy

X

_ / E*¢(y)dy + / " EES¢() dy.

X

Integrating (21) over (0O, fz) X1 with the weight function y4(s), we obtain

]:l X, 1 ]A1 X
w [ e [ Eewwas= [ e [ [ Eem g
0 x,+%—s 0 I,. x—s

h (22)
+/ Ys(s) // " E:Es_d)(y) dydxds =1+ 11.
0 I Jx

By changing the order of the integration in /, we have
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x/l y+s 1 1 1 y+s
I = / ¥5(5) : / : / : / : / E+¢(y)dxdyds
0 x1 —sJx_ 1 x 1

-

5
5

/777 ()’+s—xj %)E+¢(,V)dy+/ : (xj+% —y)Efp(y)dy

f’i T*3

(23)

=2

i X1
< / 575(5) / *ET ()] dyds.
0 X 1-—

Similarly, by changing the order of the integration in /I, we have

X1 h
I = / / ! / 75()ET EZ(y) dsdydx
5 Jx 0
Xj+% )
:/ / (mon- / Va()ESE; ¢ly)ds )dyde
LJx h
Xj+l 6 X1 X 1S
Z// vy () dy — / 75(5)/</' 2 _/ 3 )E:Qb(y)dydxds
b h 5 X X—5

h. o
<ty [l [T [1Ew010+ [ B0
2 I I—s

(24)

ol

where [—s= (xj I e s) Plugging (23) and (24) into (22), we get

I / 5(5) / E* () dyds

< / srats) [ IEF S dyds + / )] dy 25)

xls
J-

o / 575(9) |E* ()] dyds.
h Ji 1U(l,—s)

Therefore, with (25) we have

@ Springer



Communications on Applied Mathematics and Computation (2020) 2:31-55 41

, / 5(5) / EF 90 dyds)’
- Z ’ / 75(5) / E+¢<y>dyds)
0
< Zhl( / $75(5) / " ES ()] dyds + / V)l dy
T 0 xk%—s J;

B0 5 (26)
v [ [ iEewlaw)
h Jh Lu(l—s)
h x
1 i : :
s32<h—( [ om0 [ iEewias) n( [mols)
j 'j 0 )&7%—5 I;
hj 3 2
w2 ( [ [ Eramlas) )
W2\ Ji Lu—s)
By the Cauchy—Schwarz inequality, we then have
1 +
- %(S) IE; Pl dyds)’
h.i 0
1 h 5 xﬁ% h .
<o | 15 tdvds ([ 7,09 CE GO dyds ) @7
J 0 xif% 0 xj 1-
hi_y+h [h
<= / s75(s)ds / 75(5) |E+¢(y>|2dyds)
j 0 X/ 1—s
and
2 2 2
( / vl dy) <03 / v, )dy, 28)
I/» I/
and
h; 4 2
Z( [ [ iEreols)
W2\ Jj LU{—s)
h; B h
<2 [ono [ taw( [ [ Eeeras) e
h* Ji LU(—s) 0 Lul-s)

2hj? s 8
<= [enous( [ ne [ Ere0R o).
h* Ji h LU,—s)

@ Springer



42 Communications on Applied Mathematics and Computation (2020) 2:31-55

Plugging (27)—(29) into (26), we then obtain

I / 75(5) / E+¢(y>dyds)
0

]
6h h h Xj+l
<% / o 3 / 1 [ IO s + 3

xls

- (0)
. / s 3 / 7505) / | ¢ dyds

<cC I|<i>||2 + 317|117,

< C ”vhlley

where C depends only on v, a positive constant given in the assumption on the regularity
of the mesh partition. Therefore, by the Cauchy—Schwarz inequality again, we finally get

1 ) % . 2\ 2
@)l sz(;;jﬂvh]}ﬂ;) ( Iy / ,;(s>/ E () dyds) )
< ClvalllHvallzzs
which completes the proof.

Proposition 4.1 For the general kernels y; satisfying (3), it holds that for some constant
C > O uniformly in 6 and h,

Vallze < ClHIalll, - Vv, € V) 31
Proof Consider a cutoff of y; as follows:

~ (s) = { 75(S)s 75(5) <M,
G M, ys(s)> M.

Take M > O sufficiently large such that

s
Cs;=2 / §275(s)ds > Ly
0 4

For the modified kernel 7;/ 5; we assume the corresponding energy norm is||| - ||| 3; then

by Lemma 4.1, we have
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Valle < Cllvilllg,  vi € V)

Since 7;(s) < y5(s) and E; > i, we have

1
[Hvplllz < —_ HIvlll £ 2H1vu Ml Vv, € V.
Cs

Then, we obtain the desired inequality (31).

4.2 Boundedness, Stability, and a Priori Error Estimates for the DG Scheme (11)

From the definition of B,,(-,-), it is straightforward to obtain the boundedness and stability
results represented in the following:

B, (v,w) < (VW] Yv,w €V, (32)

2
By(vy, vi) = ([ ll15 Vv, €V, (33)
Note that (32) also holds for v,w € S. Now, let us take the continuous interpolant u; € V,
of the exact solution u such that u —u; € S and the jumps of u — u; are zero at the ele-
ment interfaces. Note that this can be easily achieved when the exact solution u is smooth

enough and k > 1 where £ is the degree of the polynomials in V,. Then, we have the follow-
ing approximation property:

lu—ull,2 < CH ™ ul e and  ||]u — uy]]| < CHE 1) e (34)
where C > 0 is independent of 4 and 6.

Corollary 4.1 Let 6 be fixed. Then, it holds that when the kernel ys(s) € LIIOC(R) (i.e., inte-
grable kernel),

1w = u ] < C@E) R,
and sys(s) € Llloc([R) (i.e., finite first moment),

= w11l < C@) A3,

To derive the error estimates, we first need the following lemma.
Lemma 4.3 For the solution u is smooth enough, we have that B(u,v;,) in (8) is well
defined. Moreover,
B(u,v,) = (f5,v;,), VYv,€V,.

Proof Recall the construction in (9) given by B(u,v) = B,(u,v) + B,(u,v) + B;(u,v). We
consider the terms separately with v = v,. By the Cauchy—Schwarz inequality, we have
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b pres
B, (u,v;) §2/ Z/j * |ys(OEFUEt v, | dxds
0 j X,

1
()

}Al X. 1 —§
i+ 5
<2 ”u”C‘“(Th)”vh“C‘)v‘(Th)/ Z }’5(S)S dxds
0 .
J

X. 1
=3
S C ”M”Co,l('rh)”lfhllco,l(rh) < 00,

where

”W”COI(Th) = mjax ||W||C01(,])

Meanwhile, we have

i %1
By <2 [ 3 [ inotuery o
0 j X, 1-S
i+ 5
by
<2 / D / s E u( Erv, = vy, )1 dxds
0 J X,‘+1_s -
T2
i -
2 [ B ] [ e as
0 J xj+%—s
1
- 2
< Clullcosiry vl + € il cosny ™ Z[[Vh]';%)

J
< C”””COJ(T,,)”Vh”cl).l(rh) + C||u||co,1(77])|||vh||| < 0o,

h = min hj, then we have

with p; = nh~! and 7 is sufficiently large. For B;(u,v,,), if h =6, then B;(u,v,) = 0. When
J

6
By(u,v,) <2 / > / 175(EFuE v, | dxds
YA s UE,

B
£l
$4||u||co,1(7h)||vh||Lz/ sys(9)ds < 2 ||ull2]lvpll2h™ < .
h

Thus, B(u, v,) is well defined.

In the following, we show that B(u,v,) = (Lsu,v,) = (f,v,) for any v, € V, when u is
smooth enough. Indeed,
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é
B(u,v;) =2/ y5(s)Z/E;ruE;rvh dxds
0 i i
= / 75(s) Z / F(ux + ) — u(x))vy(x + 5) dx
0

X1
=

_ Z / (u(x + 5) — u(x))v, (x) dx)

-

-2 / 75(5) Z / 1 ) = = )y ) dx
0 j x 1+s
_ Z / (u(x + 5) — u(x))v,(x) dx)dv

=-2 Z / /yé(s)(u(x +5) — 2u(x) + u(x — 5))v,(x) dxds
i oI
5
= —22/ /yﬁ(s)th:_ru dxds
i =8
5
-y /[ ( _2/5 TaOE uds vy, dx = (Lgtt,v,) = (f5, ).
i -

N\

.

(35)

As we can see, even when the solution u is smooth enough, the DG approximation of
B(u, v) is generically not consistent, i.e.,
B,(u,v,) = B(u,v,) + C(u,v,), Vv, €V,

where C(u, v;,) is the inconsistent term given in (16). Since the DG scheme (11) is not con-
sistent, to derive the error estimates, we then need to estimate the inconsistent errors. The
so-called superpenalty technique is adopted to control the inconsistent term C(u, v;,). We
present the error estimates of the DG scheme (11) in the following theorem.

Theorem 4.1 For the DG scheme (11) with the finite element space V), defined in (7) with
k> 1land p; = O(h7%=1), there exists a unique approximate solution u;, € V,,. Assume that
the exact solution u of the problem (1) is smooth enough, then we have the following a
priori error estimate:

k
[ — up]II < CR™ ||l s

Proof We firstly consider the estimate of C(u,v,). With the Cauchy—Schwarz inequality
and Sobolev’s inequality, we obtain

Cluvy) <2l / Pry(s)ds 2 TV
0
. h
<p(h, 5)< / S75(s)ds u,»[[uh]];,)
0 j 2

<P, 8) vl

ol

2 (36)
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h 1
p(h,5) = C||u||Hz( /0 s2r5<s)ds2u,f‘)2. 37
J

Therefore, we have

2
|||u1 - ”h”' = Bj,(u; — uy,, uy — uy)

= By, (u; — u,uy —uy,) + By (u — uy, up — uy,)

38
< 11ty = ll1 1y = w11+ CCatty = 1) o9
< oy = wll] 1wy = w11+ B )y = wy 1].
In (38), we have used the relation in Lemma 4.3 that
B(u,v,) = (f5.v) = B,(u,,v,), Vv, €V,
Then, by (38) and the triangle inequality, we obtain
o= up |11 < {1e = w11+ 1wy — w,]
(39)

< 2|[luy = ulll + p(h. 5).
As y; = O(hj‘”“l), then it implies f(h, 8) < Ch* ||u]| ;-. This completes the proof.

From (37), it is easy to find that different y; will lead to different estimates for ﬂ(fz, ).
We state it in the following corollary.

Corollary 4.2 Under the conditions in Theorem 4.1, if the kernel y5(s) € LILOC(IR) and 6 be
fixed, we have

B(h,6) < CEIM,
and consequently plugging it into (39) gives

[l = uy|[] < C@ER.
If sy;(s) € L. (R), we have

loc

B(h, 5) < C(G)H3,

which then gives

lu = uyll] < C@OH2,

The asymptotic compatibility is a nice property to have, since the solutions of some
numerical methods may converge to the wrong limits if one let ;,6 — 0 [33]. For the
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scheme that is asymptotically compatible, the numerical solution will converge to the
exact solution of the local problem when hj, 6 — 0 simultaneously, i.e.,

“uh - uloc”L2 - 0, as hj, 6 — 0,

where u,,. is the exact solution to the local counterpart of the problem (1). For more details,
one may refer to, e.g., [34]. To obtain the asymptotic compatibility of the DG scheme (11),
we need a known result (e.g., see [13]) that

llu — el = 0, asé — 0. (40)

Meanwhile, we further assume that there exists C; > 0 is a constant such that

331_1)1(1) [[u]| g+1 exists and }sl_r)l(l) ]| grerr < C. (41)

Corollary 4.3 Assume (41) holds. Under the conditions in Theorem 4.1, the scheme (11) is
asymptotically compatible.

Proof From (38), we have

[y = w11 < ety = ull] + plh, 8) < CH Jlull e,

where the constant C is independent of 6 and A. By the discrete Poincaré’s inequality (31),
we have ||u; —uy |2 < Clllu; — uy||| < CHF ||u]|gen. Together with the approximation
property (34), we have

k
o = wpll 2 < Now =gl 2 + 1wy = 1| < CR® |laell g

Together with (40) and (41), we then obtain the desired result.

Remark 4.1 In the local case, to obtain the error estimates in the L2 norm, we need to uti-
lize the dual problem in the derivation. However, since the nonlocal problem does not have
the elliptic regularity theory as in the local case, any extra regularity of the exact solution
in (1) is not expected; thus the duality argument may not work for general nonlocal diffu-
sion problems. On the other hand, when 6 is fixed and y;(s) is integrable, the energy norm
[I| - |||is equivalent to the L? norm, which leads to the error estimates in the L? norm.

4.3 L%-Stability and a Priori Error Estimates for the Semi-discrete DG Scheme (12)

Without loss of generality, let us set f; = 0 in (12). By taking v, = u;, in (12) and using (31),
we then obtain
((uh)t’ uh) = _Bh(uh’ uh) = _| | Iuh(" t)l I |2 < _C”uh(" t)lliz’

which implies

G DI, < el 02, YT > 0.

Therefore, the numerical solution #, — 0 when the final time 7' — oo.
Next, we study a priori error estimates under the assumption that u is smooth enough. For
simplicity, we use the notations as follows:

e,=e,te, e, =u—u, €, =u—u,
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where u; € V), is an approximation to the exact solution u. With (5) and (12), we get the
following error equation:

@) vy) + By(ey,,vy) + Cu,vy) =0, Vv, €V, (42)
where C(u, v;,) is the inconsistent term given in (16).
By taking v, = ¢, in (42), we have
((ep)rs€y) + Bi(ey. e,) = —(())rs €4) — By (g5 €,) — Cu, e,). (43)
Letu; € V, be a suitable interpolant of the exact solution u so that the approximation prop-

erty (34) holds. By the Cauchy—Schwarz inequality and approximation property, we then
have

((en)-en) < ez Nlepllz2s 44
By, (ep,ep) < lleglll el (45)

By plugging (36), (44), and (45) into (43) and using the Cauchy—Schwarz inequality and
(31), we can obtain

d

5 .
2dtlle;,lle < =By (ep. ep) + (eIl lenllz + el Henl I + BCh, 6) |1y ]

< =Clle,lI2, + CIE, 12, + el 1 + B, ).

Thus, we obtain by applying Gronwall’s inequality with (46)

k
llenlle < CH [l g

By the triangle inequality, finally we have

5 k
lenllzz < Nenllz + lleglls < Ch™ flull -

Table 1 L2 errors and convergence orders produced by the DG scheme (11) when k = 1in Example 1

N 6=10"2z7 6=nu/5 6=h s=1/h
L? error Order L2 error Order L2 error Order L2 error Order
a=1/2 8 7.03E-02 - 2.53E-02 - 7.88E—-02 - 2.54E-02 -

16 1.74E-02  2.01 3.22E-03 297 1.98E-02 1.99 391E-03 2.70
32 434E-03  2.00 7.32E-04 2.13 4.97E-03  2.00 7.76E-04 233
64 1.08E-03  2.00 1.80E-04  2.02 1.24E-03  2.00 1.82E-04  2.09
128 2.71E-04  2.00 4.50E-05 2.00 3.11E-04  2.00 4.50E-05 2.02
256  6.78E-05  2.00 1.12E-05  2.00 7.77E-05  2.00 1.12E-05  2.00
512 1.69E-05 2.00 2.81E-06  2.00 1.94E-05 2.00 2.81E-06  2.00
a=5/2 8 7.03E-02 - 5.83E-02 - 7T48E-02 - 5.84E-02 -
16 1.74E-02  2.01 1.06E-02  2.46 1.86E-02  2.01 1.25E-02 223
32 434E-03  2.00 1.96E-03 2.44 4.64E-03  2.00 2.66E-03 223
64 1.08E-03  2.00 3.70E-04 241 1.16E-03  2.00 5.68E-04 223
128 2.71E-04  2.00 7.28E-05 235 2.90E-04  2.00 1.22E-04 222
256  6.78E-05  2.00 1.51IE-05 227 7.24E-05  2.00 2.63E-05 221
512 1.69E-05 2.00 3.33E-06 2.18 1.81E-05  2.00 5.74E-06  2.20
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Table 2 17 errors and convergence orders produced by the DG scheme (11) when k = 2 in Example 1
N 6=10""2z7 s§=nx/5 6=h 5=\/7l
L? error Order L2 error Order L2 error Order L2 error Order
a=1/2 8 1.28E-02 - 4.83E-03 - 1.23E-02 - 4.85E-03 -
16 8.27E-04 3.96 3.03E-04 3.99 7.90E-04  3.96 3.13E-04 395
32 5.95E-05 3.80 351E-05 3.11 5.73E-05 3.79 3.52E-05 3.15
64 5.26E-06  3.50 4.32E-06 3.02 5.16E-06  3.47 4.32E-06 3.02
128 5.70E-07 3.21 5.38E-07 3.01 5.66E-07  3.19 5.38E-07 3.01
256  6.83E-08 3.06 6.72E-08  3.00 6.81E-08  3.06 6.72E-08  3.00
512 843E-09 3.02 8.40E—09  3.00 8.43E—09 3.01 8.40E—-09  3.00
a=5/2 8 1.28E-02 - 6.67E-03 - 1.23E-02 - 6.69E-03 -
16 8.27E-04 3.96 3.26E-04 436 7.93E-04 3.96 3.66E-04 4.19
32 5.95E-05 3.80 3.52E-05 3.21 5.75E-05 3.78 3.59E-05 3.35
64 5.26E-06  3.50 4.32E-06 3.03 5.17E-06  3.48 4.33E-06 3.05
128 5.70E-07 3.21 5.38E-07 3.01 5.67E-07  3.19 5.38E-07 3.01
256  6.83E-08 3.06 6.72E-08  3.00 6.81E-08  3.06 6.72E-08  3.00
512 843E-09 3.02 8.40E—09  3.00 8.43E—09 3.01 8.40E—09  3.00
Table 3 Errors and convergence orders of |||u; — u,||| produced by the DG scheme (11) when k=1 in
Example 1
N 6=10"z s§=n/5 5=h s=h
[Hey —uplll - Order [|lu; —uylll  Order |[lu; —uyl|l  Order |[|lu; —u,||| Order
a=1/2 8 4.84E-02 - 5.03E-02 - 7.39E-02 - 5.04E-02 -
16 1.20E-02  2.02 1.1SE-02 297 1.93E-02 194 1.I9E-02  2.08
32 298E-03 2.00 2.85E-03 2.13 4.87E-03 198  290E-03 2.04
64  745E-04 2.00 7.11E-04  2.02 1.22E-03  2.00 7.17E-04  2.02
128 1.86E-04  2.00 1.78E-04  2.00  3.05E-04  2.00 1.78E-04  2.01
256 4.65E-05 2.00 445E-05 2.00 7.64E—05 2.00 445E-05 2.00
512 1.16E-05  2.00 1.11IE-05  2.00 1.91E-05  2.00 1.11IE-05  2.00
a=5/2 8 4.84E-02 - 552E-02 - 6.10E-02 - 5.53E-02 -
16 1.20E-02  2.02 1.29E-02  2.10 1.56E-02  1.97 1.35E-02  2.04
32 298E-03 2.00 3.08E-03  2.07 3.91E-03 1.99 326E-03  2.05
64  745E-04 200 746E-04 2.04 9.779E-04 2.00 7.90E-04 2.04
128 1.86E-04  2.00 1.83E-04  2.03 2.45E-04  2.00 1.93E-04  2.03
256 4.65E-05 2.00 4.53E-05 2.02 6.12E-05 2.00 4.74E-05 2.03
512 1.16E-05  2.00 1.12E-05  2.01 1.53E-05  2.00 1.17E-05  2.02

Theorem 4.2 Let u,(-, 1) € V), be the approximate solution generated from the semi-dis-
crete DG scheme (12), with the finite element space V) defined in (7) and k > 1. Then, we

have the following stability result:

Ny, D2 < €Tl (0l 2, VT > 0.
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Table 4 Errors and convergence orders of |||u; — u,||| produced by the DG scheme (11) when k=2 in
Example 1

N 6=10"z s§=n/5 s5=h s=h
I[l; — ||| Order [||lu; —u,||| Order ||lu; —u,l|| Order |[|lu; —u,||| Order
a=1/2 8 293E-03 - 127E-02 - 230E-02 - 127E-02 -

16  3.74E-04 297 1.19E-03  3.41 481E-03  2.26 1.69E-03  2.90
32 470E-05 299 747E-05 399 737E-04 271 1.73E-04  3.29
64 5.88E-06 3.00 4.73E-06 398 9.85E-05 2.90 1.27E-05  3.77
128 7.35E-07 3.00 2.70E-07 4.13 1.26E-05  2.97 1.12E-06  3.50
256  9.19E-08  3.00 1.69E-08  4.00 1.59E-06  2.99 1.25E-07  3.17
512 1.15E-08  3.00 9.74E-10 4.11 1.99E-07  3.01 942E-09  3.73
a=5/2 8 293E-03 - 1.12E-02 - 1.16E-02 - 1.12E-02 -
16  3.74E-04 297 1.51E-03  2.89 1.94E-03  2.58 1.63E-03  2.78
32 470E-05  2.99 1.72E-04  3.14 2.67E-04 286 2.04E-04  3.00
64  5.88E-06  3.00 1.86E-05  3.21 3.44E-05 296  239E-05  3.09
128 7.35E-07  3.00 197E-06 324  435E-06  2.99 2.78E-06  3.11
256 9.19E-08  3.00 2.08E-07  3.25 5.45E-07 299 3.20E-07  3.12
512 1.15E-08 3.00 2.19E-08  3.25 6.83E-08 3.00 3.68E-08  3.12

Moreover, assume that the exact solution u(:, 7) of the problem (2) is smooth enough, then
we have the following error estimate:

lluCs T) = w2 < CH [Jull o

Table 5 17 errors at the final time 7 = 1 and convergence orders produced by the semi-discrete DG scheme
(12) when k = 1in Example 2

N 5=10"z 5=x/5 s=h 5=vh
L? error Order L2 error Order L2 error Order L2 error Order
a=1/2 8 946E-03 - 5.07E-03 - 9.69E-03 - 5.086-03 -

16 247E-03 1.94 1.08E-03 2.23 251E-03 195 1.11IE-03 220
32 6.24E-04  1.99 2.65E-04 2.02 6.34E—04 198 2.67E-04  2.05
64 1.56E-04  2.00 6.61E-05 2.00 1.59E-04  1.99 6.62E-05 2.01
128 391E-05 2.00 1.65E-05  2.00 3.99E-05 2.00 1.65E-05  2.00
256  9.77E-06  2.00 4.13E-06  2.00 1.00E-05  2.00 4.13E-06  2.00
512 2.44E-06 2.00 1.03E-06  2.00 2.50E-06  2.00 1.03E-06  2.00
a=5/2 8 9.46E-03 - 7.59E-03 - 9.01E-03 - 7.60E-03 -
16 247E-03 1.94 1.54E-03  2.30 2.25E-03  2.00 1.69E-03  2.17
32 6.24E-04  1.99 3.30E-04 222 5.64E-04  2.00 3.83E-04 2.14
64 1.56E-04  2.00 7.46E-05 2.14 1.41E-04  2.00 8.81E-05 2.12
128  3.91E-05 2.00 1.76E-05  2.08 3.53E-05 2.00 2.06E-05 2.10
256  9.77E-06  2.00 4.27E-06  2.05 8.83E-06  2.00 4.87E-06  2.08
512 244E-06 2.00 1.0SE-06  2.02 221E-06  2.00 1.17E-06  2.06
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Table 6 17 errors at the final time 7 = 1 and convergence orders produced by the semi-discrete DG scheme
(12) when k = 2 in Example 2

N 5=10""2z 6=n/5 6=h 5:ﬁ
L2 error Order L2 error Order L2 error Order L2 error Order
a=1/2 8 1.64E-03 - 7.74E-04 - 1.46E-03 - 7. 74E-04 -

16 1.34E-04  3.61 9.82E-05 2.98 1.22E-04 3.58 9.82E-04 298
32 1.37E-05 3.29 1.27E-05 2.96 1.31E-05 3.22 1.27E-05 2.96
64 1.62E-06  3.09 1.60E-06  2.99 1.59E-06  3.05 1.60E-06  2.99
128 2.00E-07 3.01 2.00E-07  2.99 1.99E-07  3.00 2.00E-07  2.99
256  2.50E-08  3.00 2.51E-08  3.00 2.50E-08  2.99 2.51E-08  3.00
512 3.13E-09 3.00 3.14E-09  3.00 3.13E-09  3.00 3.14E-09  3.00
a=5/2 8 1.64E-03 - 127E-03 - 1.52E-03 - 1.27E-03 -
16 1.34E-04 3.61 1.07E-04 3.56 1.27E-04 3.58 1.11IE-04 352
32 1.37E-05 3.29 1.27E-05  3.08 1.34E-05 3.06 1.28E-05 3.12
64 1.62E-06  3.09 1.59E-06  3.00 1.60E-06  3.06 1.59E-06  3.01
128 2.00E-07 3.0l 2.00E-07  2.99 1.99E-07 3.01 2.00E-07  2.99
256  2.50E-08  3.00 2.50E-08  3.00 2.50E-08  3.00 2.50E-08  3.00
512 3.13E-09 3.00 3.13E-09  3.00 3.13E-09  3.00 3.12E-09  3.00

Corollary 4.4 Under the conditions in Theorem 4.2 and § is fixed, then it holds that when
the kernel ys(s) € L' (R),

loc
llu(-, T) = w, (-, Dl 2 < CB) K,
and when sys(s) € L (R),

loc

WG T) = (. Dl < COVH*.

5 Numerical Experiments

In this section, we present some numerical experiments to verify the theoretical results.
The kernel function for all examples is chosen to be

3—a
283~«

75(s) = [s]|™*, O0<a<3,

which gives [_65 s%y5(s)ds = 1. For simplicity, we use uniform partitions for the problem
domains, i.e., h; = h, and h = h. The penalty parameter is taken to be y; = u = 3/h**+! if
not noted otherwise. For all examples, we consider four cases for §:

§=10"2z, 6=x/5, 6=h 6=h

The latter two cases are used to test the asymptotic compatibility of the proposed DG
schemes. We also test two different values for a: @ = 1/2 and @ = 5/2. It is easy to see
7s(s) € L! (R)whena = 1/2.

loc
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Table 7 17 errors and convergence orders produced by the DG scheme (11) when k = 1, W=Epu= 3h~lin
Example 3

N 5§=10""2z7 6=n/5 6=h 5:\/E
L2 error Order 2 error Order L2 error Order 2 error Order
a=1/2 8 1.63E-01 - 4.64E-02 - 1.72E-01 - 4.67E-02 —

16 1.71E-01 -0.07 1.16E-02 2.00 1.74E-01 -0.02 1.92E-02 1.28
32 1.74E-01 -0.02 4.37E-03 1.41 1.74E-01 —-0.00 7.99E-03 1.27
64 1.74E-01 —-0.00 1.83E-03 1.26 1.74E-01 —-0.00 3.36E-03 1.25
128 1.74E-01 —0.00 7.60E-04 1.27 1.74E-01 —-0.00 1.44E-03 1.22
256 1.74E-01 -0.00 3.07E-04 1.31 1.74E-01 —-0.00 6.23E-04 1.21
512 1.74E-01 -0.00 1.21E-04 1.35 1.74E-01 -0.00 2.71E-04 1.20
a=5/2 8 1.63E-01 - 1.26E-01 - 1.68E-01 - 1.26E-01 -
16 1.71E-01 -0.07 8.52E-02 0.56 1.73E-01 -0.04 1.04E-01 0.28
32 1.74E-01 —-0.02 5.77E-02 0.56 1.74E-01 -0.01 8.44E-02 0.30
64 1.74E-01 —-0.00 3.95E-02 0.55 1.74E-01 —-0.00 6.90E-02 0.29
128 1.74E-01 —-0.00 2.73E-02 0.53 1.74E-01 -0.00 5.67E-02 0.28
256 1.74E-01 —0.00 1.90E-02 0.52 1.74E-01 —0.00 4.68E-02 0.28
512 1.74E-01 -0.00 1.33E-02 0.52 1.74E-01 -0.00 3.88E-02 0.27

Table 8 L? errors and convergence orders produced by the DG scheme (11) when k = 2, W=p= 3h~'in
Example 1

N 6=10"z 5=r/5 5=h 5= /i
L? error Order L2 error Order L% error Order L% error Order
a=1/2 8 1.77E-01 - 477E-02 - 1.74E-01 - 4.80E-02 -

16 1.75E-01  0.02 1.16E-02  2.04 1.74E-01 -0.00 1.93E-02 1.31
32 1.74E-01  0.00 437E-03 141 1.74E-01 —-0.00 7.99E-03 1.27
64 1.74E-01  0.00 1.83E-03 1.26 1.74E-01 -0.00 3.36E-03 1.25
128 1.74E-01 0.00 7.59E-04 127 1.74E-01 -0.00 1.44E-03 1.22
256 1.74E-01 0.00 3.07E-04 1.31 1.74E-01 -0.00 6.23E-04 1.21
512 1.74E-01 0.00 1.21E-04 1.35 1.74E-01 -0.00 2.71E-04 1.20
a=5/2 8 1.77E-01 - 1.32E-01 - 1.76E-01 - 1.32E-01 -
16 1.75E-01  0.02 8.61E-02 0.61 1.75E-01  0.01 1.0SE-01  0.33
32 1.74E-01  0.00 5.78E-02  0.57 1.74E-01  0.00 8.46E-02 031
64 1.74E-01  0.00 3.95E-02 0.55 1.74E-01  0.00 6.90E-02 0.29
128 1.74E-01 0.00 2.73E-02 053 1.74E-01  0.00 5.67E-02 0.28
256 1.74E-01 0.00 1.90E-02  0.52 1.74E-01  0.00 4.68E-02  0.28
512 1.74E-01 0.00 1.33E-02  0.52 1.74E-01  0.00 3.88E-02 0.27

Example 1 For the steady-state problem (1), we take the source term as

s
f5(0) = —2/ Ys($)(gx +5) —g))ds, x e (0,7),

8

where g(x) is defined by
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o) = {sin4(x), x€ (0, ),

0, elsewhere.

Thus, the exact solution is u(x) = g(x).

Numerical results for Example 1 computed by the DG scheme (11) for the steady-state
problem are reported in Tables 1, 2, 3, and 4. It is observed that the DG scheme achieves
the optimal convergence of order k + 1 for the P*-element (k = 1,2) in the L? norm for all
cases, even though the kernel function y; is not integrable when a = 5/2. Besides, we also
compute |||u; — u,||| where u; is the continuous interpolation of the exact solution u and
report the errors and convergence orders in Tables 3 and 4. In particular, the results with
6=handé = \/Z verify that the DG scheme is asymptotically compatible.

Example 2 For the time-dependent problem (2), we set the initial condition to be
l/io(x) = g(x)7 X e (0, ”)a

and the source term f; to be

5
B0 =—e"gw =26 [ patcrs) - gws xe@mn 130
-5
where g(x) is defined in Example 1. Thus, the exact solution is u(x, r) = e~'g(x). We adopt
the third-order singly diagonal implicit Runge—Kutta (SDIRK) method with two stages as
the time-stepping method [22, 23]. We take the time step size 7 = h/x and the final time is
T=1

Numerical results for Example 2 computed by the semi-discrete DG scheme (12) for
the time-dependent problem are reported in Tables 5 and 6. We again observe the simi-
lar convergence behavior as that in Example 1.

Example 3 Our last example is to reconsider Example 1 with the penalty parameter
u; = O(h™"), instead of the y; = O(h~*~1),

Tables 7 and 8 report the numerical results produced by the DG scheme (11) with the
penalty parameter y; = O(h™"). From the results, we can see that the L? errors heavily
depend on the penalty terms and also depend on the choices of 6 and « in y5(s) given in
the beginning of this section. It can be explained by the estimates of B(h, 8) in (37) when
different y,(s) and y; are chosen. Therefore, although we have the stability of the DG
scheme (11) when y; > 0, the accuracy could degenerate if y; is not large enough.

6 Concluding Remarks
In this paper, we propose and analyze a new discontinuous Galerkin (DG) method for one-

dimensional nonlocal diffusion problems. We firstly identify the term in the nonlocal inte-
gral that requires particular treatment. We then introduce a jump into this term to overcome
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the singularity of the kernel function. Since the resulting formulation is not consistent, we
add a penalty term in the proposed DG scheme to control the inconsistency error. Based
on the dual problem, we prove the Poincaré’s inequality at the discrete level for the pro-
posed scheme, which plays an important role in further stability and error analysis. For the
steady-state ND problem, we obtain the stability, boundedness, and a priori error estimates
of the DG scheme. In particular, the error estimates imply the DG scheme is asymptotically
compatible. For the time-dependent ND problem, we establish the L?-stability and a priori
error estimates of the semi-discrete DG scheme. Numerical experiments show that the pro-
posed DG schemes achieve the optimal order of convergence.

Considering the new contributions in the current work and studies in the past, we have
developed two types of DG schemes for the ND problems: one is to use auxiliary variables
[14] and the other is the one with penalty developed here. Since these two DG schemes
both have their respective limitations, it is desirable to develop a unified framework for the
DG schemes for the ND problem in the future work, as in [1] for local models. In addition,
the present work is focused on one-dimensional ND problems, and its extension to multidi-
mensional problems remains an interesting ongoing research work.

Acknowledgements Q. Du’s research is partially supported by US National Science Foundation Grant
DMS-1719699, US AFOSR MURI Center for Material Failure Prediction Through Peridynamics, and US
Army Research Office MURI Grant WO11NF-15-1-0562. L. Ju’s research is partially supported by US
National Science Foundation Grant DMS-1818438. J. Lu’s research is partially supported by Postdoctoral
Science Foundation of China Grant 2017M610749. X. Tian’s research is partially supported by US National
Science Foundation Grant DMS-1819233.

References

1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin meth-
ods for elliptic problems. SIAM J. Numer. Anal. 39, 1749-1779 (2002)

2. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer.
Anal. 19, 742-760 (1982)

3. Babuska, I., Zlamal, M.: Nonconforming elements in the finite element method with penalty. STAM J.
Numer. Anal. 10, 863-875 (1973)

4. Chen, X., Gunzburger, M.: Continuous and discontinuous finite element methods for a peridynamics
model of mechanics. Comput. Methods Appl. Mech. Eng. 200, 1237-1250 (2011)

5. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin,
mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47,
1319-1365 (2009)

6. Cockburn, B., Hou, S., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545-581
(1990)

7. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge—Kautta local projection discontinuous Galerkin finite
element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90-113
(1989)

8. Cockburn, B., Shu, C.-W.: The Runge—Kutta local projection Pl-discontinuous-Galerkin finite element
method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337-361 (1991)

9. Cockburn, B., Shu, C.-W.: TVB Runge—Kutta local projection discontinuous Galerkin finite element
method for scalar conservation laws II: general framework. Math. Comput. 52, 411-435 (1989)

10. Cockburn, B., Shu, C.-W.: The Runge—Kautta discontinuous Galerkin finite element method for conser-
vation laws V: multidimensional systems. J. Comput. Phys. 141, 199-224 (1998)

11. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection—
diffusion systems. SIAM J. Numer. Anal. 35, 2440-2463 (1998)

12. Du, Q.: Nonlocal modeling, analysis and computation. In: CBMS-NSF Regional Conference Series in
Applied Mathematics, vol. 94. SIAM (2019)

@ Springer



Communications on Applied Mathematics and Computation (2020) 2:31-55 55

13.

14.

15.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion
problems with volume constraints. SIAM Rev. 54, 667-696 (2012)

Du, Q., Ju, L., Lu, J.: A discontinuous Galerkin method for one-dimensional time-dependent nonlocal
diffusion problems. Math. Comput. 88, 123—-147 (2019)

Du, Q., Ju, L., Lu, J.: Analysis of fully discrete approximations for dissipative systems and application
to time-dependent nonlocal diffusion problems. J. Sci. Comput. 78(3), 1438—1466 (2019)

Du, Q., Ju, L., Li, X., Qiao, Z.: Stabilized linear semi-implicit schemes for the nonlocal Cahn—Hilliard
equation. J. Comput. Phys. 363, 39-54 (2018)

Du, Q., Tian, X.: Mathematics of Smoothed Particle Hydrodynamics, Part I: A Nonlocal Stokes Equa-
tion. arXiv:1805.08261 (2018)

Du, Q., Yang, J.: Asymptotically compatible Fourier spectral approximations of nonlocal Allen—Cahn
equations. SIAM J. Numer. Anal. 54, 1899-1919 (2016)

Du, Q., Yin, X.: A conforming DG method for linear nonlocal models with integrable kernels. Numer-
ical Analysis. https://arxiv.org/abs/1902.08965 (2019)

Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. Multiscale
Model. Simul. 6, 595-630 (2007)

Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model.
Simul. 7, 1005-1028 (2008)

Hairer, E., Ngrsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems.
Springer, New York (1993)

Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic
Problems. Springer, New York (1991)

Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J.
Numer. Anal. 47, 675-698 (2009)

Macek, R., Silling, S.: Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43, 1169—
1178 (2007)

Mengesha, T., Du, Q.: The bond-based peridynamic system with Dirichlet-type volume constraint.
Proc. R. Soc. Edinb. Sect. A Math. 144, 161-186 (2014)

Ren, B., Wu, C.T., Askari, E.: A 3D discontinuous Galerkin finite element method with the bond-
based peridynamics model for dynamic brittle failure analysis. Int. J. Impact Eng. 99, 14-25 (2017)
Rosasco, L., Belkin, M., Vito, E.D.: On learning with integral operators. J. Mach. Learn. Res. 11,
905-934 (2010)

Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech.
Phys. Solids 48, 175-209 (2000)

Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73-168
(2010)

Silling, S.A., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J.
Fract. 162, 219-227 (2010)

Tao, Y., Sun, Q., Du, Q., Liu, W.: Nonlocal neural networks, nonlocal diffusion and nonlocal mod-
eling. In: Advances in Neural Information Processing Systems 31 (NIPS 2018) (2018)

Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear
peridynamic equations. SIAM J. Numer. Anal. 51, 3458-3482 (2013)

Tian, X., Du, Q.: Asymptotically compatible schemes and applications to robust discretization of non-
local models. STAM J. Numer. Anal. 52, 1641-1665 (2014)

Tian, X., Du, Q.: Nonconforming discontinuous Galerkin methods for nonlocal variational problems.
SIAM J. Numer. Anal. 53, 762-781 (2015)

@ Springer


http://arxiv.org/abs/1805.08261
https://arxiv.org/abs/1902.08965

	A Discontinuous Galerkin Method with Penalty for One-Dimensional Nonlocal Diffusion Problems
	Abstract
	1 Introduction
	2 The Model Problem
	3 Discontinuous Galerkin Approximations with Penalty
	4 Stability, Boundedness, and a Priori Error Estimates
	4.1 Discrete Poincaré’s Inequality
	4.2 Boundedness, Stability, and a Priori Error Estimates for the DG Scheme (11)
	4.3 -Stability and a Priori Error Estimates for the Semi-discrete DG Scheme (12)

	5 Numerical Experiments
	6 Concluding Remarks
	Acknowledgements 
	References




