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Abstract
There have been many theoretical studies and numerical investigations of nonlocal dif-
fusion (ND) problems in recent years. In this paper, we propose and analyze a new dis-
continuous Galerkin method for solving one-dimensional steady-state and time-dependent 
ND problems, based on a formulation that directly penalizes the jumps across the element 
interfaces in the nonlocal sense. We show that the proposed discontinuous Galerkin scheme 
is stable and convergent. Moreover, the local limit of such DG scheme recovers classical 
DG scheme for the corresponding local diffusion problem, which is a distinct feature of the 
new formulation and assures the asymptotic compatibility of the discretization. Numerical 
tests are also presented to demonstrate the effectiveness and the robustness of the proposed 
method.
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1  Introduction

Recent development of nonlocal modeling has attracted much attention in many appli-
cation fields, ranging from solid mechanics and anomalous diffusion to imaging analy-
sis and machine learning [12, 13, 20, 21, 28–32]. One of major differences between 
the nonlocal models and the local models is that the nonlocal models are integral-type 
equations, while the classical local models are often involved with differential opera-
tors. As an example, the peridynamic model was firstly introduced in [29] to study crack 
and fracture of materials, since the classical continuum models may not be effective 
when discontinuities occur. Nonlocal models can also be used to develop and study 
numerical schemes for local problems [17]. Indeed, nonlocal modeling can provide a 
new approach to describe both continuous and discontinuous phenomena in a unified 
mathematical model; it also offers a tool and bridge to understand and connect existing 
models.

As generalizations of classical PDE-based models, many nonlocal models like the peri-
dynamics and nonlocal diffusion (ND) models are characterized by a horizon parameter � , 
such that the nonlocal models would converge to the corresponding classical ones if the 
latter make sense as � goes to zero. To introduce the nonlocal model under consideration in 
this paper, we recall that the ND operator � represented as follows:

where Ω ⊆ ℝ
n is a bounded, open domain (note that we focus on the case n = 1 in later 

sections), and Ω̃ = Ω ∪ Ω� with Ω𝛿 ⊆ ℝ
n being of a nonzero volume that is not necessarily 

located near or at the boundary of Ω . The kernel function

is nonnegative and symmetric, i.e., �̂�(x, y) = �̂�(y, x) ≥ 0 . To connect with its local 
limit, we may make some extra assumptions (see [13, 26, 33]) that �̃� are radial (i.e., 
�̂�(x, y) = ��(|x − y|) ) and compactly supported in a ball B�(0) with bounded second-order 
moments defined by

Then, we have � → ∇ ⋅ (C ⋅ ∇) as � → 0 , where C = lim
�→0

C� is a second-order tensor. To 
preserve such mathematical property on the local limit in the discrete sense, a number of 
studies have been carried out to obtain the so-called asymptotically compatible schemes for 
solving nonlocal problems [33, 34]. In [33], Tian and Du pointed out that the solutions 
based on some numerical schemes would converge to the wrong local limits as the horizon 
goes to zero. They also showed numerical schemes that avoid such mishaps. Then, they 
further established in [34] an abstract mathematical framework to analyze a class of asymp-
totically compatible schemes for conforming Galerkin approximations of some parameter-
ized linear nonlocal problems. Meanwhile, some numerical methods such as finite differ-
ence, finite element, Fourier spectral, and discontinuous Galerkin (DG) approaches have 
been designed and studied to satisfy the asymptotic compatibility (see, e.g., [14, 16, 18, 33, 
35]). When the kernel function �� is chosen such that the solution of the nonlocal diffusion 
problem contains spatial discontinuities, the DG method could be an advantageous choice 
for its discretization in space.

�u(x) ∶= −2�Ω̃

(u(y) − u(x))�̂�(x, y) dy, ∀ x ∈ Ω,

�̂�(x, y) ∶ Ω̃ × Ω̃ → ℝ

(C�)ij = ∫B� (0)

��(�)�i�jd�, i, j = 1,… , n.
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Since the major development in the 1990s [6–10], the DG methods have been widely 
used in many areas such as aero-acoustics, viscoelastic flows, electromagnetism, gas 
dynamics, and oceanography for their robustness and capability of handling discontinui-
ties. Particularly, there exist various DG approximations for the classical elliptic problems 
(see, e.g., [1, 5, 24]). For the nonlocal diffusion and nonlocal mechanical models, differ-
ent conforming and nonconforming Galerkin approximations using discontinuous elements 
have been considered in [4, 19, 25, 27, 35]. The DG scheme recently proposed in [14] for 
solving the ND equation is motivated by the local discontinuous Galerkin (LDG) method 
[11] and relies on the introduction of auxiliary variables. In this paper, we propose a DG 
method with penalty technique for solving one-dimensional ND problems without intro-
ducing auxiliary variables. The method is applied to both steady-state and time-dependent 
ND problems. We prove the Poincaré’s inequality at the discrete level and derive the stabil-
ity, boundedness, a priori error estimates, and asymptotic compatibility of the proposed 
scheme. In fact, the local limit of the proposed DG scheme (as the horizon goes to zero) is 
shown to be identical to the one proposed by Babuška and Zlámal in [3] for the classical 
diffusion problems. In numerical experiments for the time-dependent ND problem, we use 
the singly diagonal implicit Runge–Kutta method (SDIRK) for time stepping, which is of 
strong stability based on the analysis done in [15].

The paper is organized as follows. In Sect. 2, we briefly introduce the one-dimensional 
ND problem, including the steady-state and time-dependent ones. In Sect. 3, we present 
semi-discrete DG schemes for the ND problems, which directly penalize the jumps across 
element interfaces in the nonlocal sense. In Sect. 4, we first prove a Poincaré’s inequality 
at the discrete level and then, we derive the stability, boundedness, and a priori error esti-
mates of the DG scheme for steady-state ND problems. The error estimates imply that the 
DG scheme is asymptotically compatible. We also obtain the L2-stability and a priori error 
estimates of the DG scheme for the time-dependent ND problems. In Sect. 5, numerical 
examples are given to demonstrate the effectiveness and the robustness of the proposed DG 
method. Some concluding remarks are finally given in Sect. 6.

2 � The Model Problem

Let us consider a one-dimensional steady-state nonlocal diffusion problem with nonlocal 
volume constraints given as follows:

where 𝛿 > 0 is the horizon and f� ∈ L2(Ω) , Ω̃ = Ω ∪ Ω� . The corresponding time-depend-
ent problem of (1) is given by

The nonlocal diffusion operator � is defined as

(1)
{ �u = f� , x ∈ Ω = (a, b),

u = 0, x ∈ Ω� = [a − �, a] ∪ [b, b + �],

(2)

⎧⎪⎨⎪⎩

ut + �u = f� , (x, t) ∈ Ω × (0,T],

u = u0, x ∈ Ω × {t = 0},

u = 0, (x, t) ∈ Ω� × [0,T].
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for a kernel function �̂�(x, y) . For simplicity, we take the kernel function to be the form of 
𝛾̂𝛿(x, y) = 𝛾𝛿(|x − y|) = 𝛾𝛿(s) and assume it has a finite second moment, i.e.,

The solution space associated with (1) is

where the energy norm ‖u‖ is defined as

with E+
s
u = u(x + s) − u(x) . Note that the definition of this energy norm requires the values 

of u outside Ω̃ ; hence, we make the extension of u such that u = 0 on Ω2� . The energy norm 
‖ ⋅ ‖ is in fact a norm on  (see, e.g., [26] for more details). With change of variables, the 
variational formulations of the steady-state problem (1) and the time-dependent problem 
(2) are, respectively, defined by

and

where (⋅, ⋅) is the L2 inner product and

Since s2��(s) ∈ L1
loc
(ℝ) , we have

To connect with the local limit, without loss of generality, it is assumed that

which can always be achieved by a rescaling of ��(s).
Thus, when � → 0 , the nonlocal diffusion operator becomes the classical (local) diffu-

sion operator, which implies that (1) and (2) converge to the Poisson’s equation and heat 
equation, respectively (see [13, 33] for more details).

3 � Discontinuous Galerkin Approximations with Penalty

In this section, we propose a new DG method which directly imposes penalties on the 
jumps across element interfaces instead of introducing auxiliary variables as done in [14] 
for discretizing the problems (1) and (2).

�u(x) ∶= −2�
x+�

x−�

(u(y) − u(x))�̂�(x, y) dy

(3)�� = ��(s) is nonnegative and symmetric, with s2��(s) ∈ L1
loc
(ℝ).

 =
�
u ∈ L2(�Ω) ∶ ‖u‖ < ∞ and u�Ω𝛿

= 0
�
,

‖u‖2 = 2�
�

0

��(s)�Ω̃

(E+
s
u)2 dxds

(4)find u ∈  such that B(u, v) = (f� , v), ∀v ∈  ,

(5)find u(⋅, t) ∈  such that (ut, v) + B(u, v) = (f� , v), ∀v ∈  ,

(6)B(u, v) = 2�
�

0 �Ω̃

��(s)E
+
s
uE+

s
v dxds, ∀ u, v ∈  .

C𝛿 = 2∫
𝛿

0

s2𝛾𝛿(s)ds < ∞.

C� = 1,
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First, we take the partition of the domain Ω̃ as h = {Ij = (x
j−

1

2

, x
j+

1

2

)}N+m
j=−m+1

 with

Let h = max
j

hj, � = min
j

hj, hj = x
j+

1

2

− x
j−

1

2

. We assume the partition h is regular, i.e., 
there exists a constant 𝜈 > 0 , independent of h as h → 0 , such that

Now, we define a finite element space Vh as

where k(Ij) is the space of polynomials on Ij whose degrees are at most k.
Let us rewrite the bilinear form B(u, v) in (6) as follows:

where, for ĥ = min{𝜌, 𝛿} , we have that

We are interested in modifying B(u, v) so that it may be defined in the discrete spaces. For 
uh and vh in Vh , one can see first that B1(uh, vh) and B3(uh, vh) in the RHS of (8) can be well 
defined but B2(uh, vh) could become problematic if uh and vh are discontinuous at the ele-
ment interfaces. In fact, if we fix hj , we have formally that

where [[w]]
j+

1

2

= w(x+
j+

1

2

) − w(x−
j+

1

2

) denotes the jump of w at x
j+

1

2

 . For a general kernel ��(s) 

with a bounded second moment (3) but an unbounded first moment, s��(s) may not be in 
L1
loc
(ℝ) , thus causing problems in the local limit. The remedy that we propose here is to 

introduce an extra penalty term and replace, in the problematic term, E+
s
uh and E+

s
vh by 

E+
s
uh − [[uh]]j+ 1

2

 and E+
s
vh − [[vh]]j+ 1

2

, respectively. Such a modification would make the pre-
viously identified problematic term well defined in the local limit. Hence, we obtain a new 
bilinear form in the following:

x 1

2

= a, x
N+

1

2

= b, x−m− 1

2

≤ a − 𝛿 < x−m+ 1

2

, x
N+m−

1

2

< b + 𝛿 ≤ x
N+m+

1

2

.

�h ≤ �.

(7)Vh = Vk
h
=
{
v ∈ L2(Ω) ∶ v|Ij ∈ k(Ij), j = 1,… ,N, v|Ω�

= 0
}
,

(8)B(u, v) = B1(u, v) + B2(u, v) + B3(u, v), ∀ u, v ∈  ,

(9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(u, v) = 2∫
ĥ

0

𝛾𝛿(s)
�
j
∫

x
j+

1
2

−s

x
j−

1
2

E+
s
uE+

s
v dxds,

B2(u, v) = 2∫
ĥ

0

𝛾𝛿(s)
�
j
∫

x
j+

1
2

x
j+

1
2

−s

E+
s
uE+

s
v dxds,

B3(u, v) = 2∫
𝛿

ĥ

𝛾𝛿(s)
�
j
∫Ij

E+
s
uE+

s
v dxds.

2∫
ĥ

0

𝛾𝛿(s)
∑
j
∫

x
j+

1
2

x
j+

1
2

−s

E+
s
uhE

+
s
vh dxds ∼ 2∫

ĥ

0

s𝛾𝛿(s)ds
∑
j

[[uh]]j+ 1

2

[[vh]]j+ 1

2

, as 𝛿 → 0,
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where the penalty parameters {𝜇j > 0} are expected to be sufficiently large for deriving the 
error estimates later on. In particular, with �j = O(h−2k−1) , we are able to recover the DG 
scheme designed by Babuška and Zlámal [3] in the local zero horizon limit.

To see the local limit more clearly, let us fix hj . As � → 0 , we have

which correspond to the original DG scheme proposed in [3]. It is known in the literature 
that this superpenalty procedure makes the DG method behave like a standard conforming 
method and increases the condition number of the stiffness matrix significantly [1].

We now present the new DG scheme with penalty for the problem (1) as follows:

The corresponding semi-discrete DG scheme for solving the time-dependent problem (2) 
is given by:

where the initial uh(x, 0) ∈ Vh is taken as the standard L2 projection of u0 onto Vh.

(10)

Bh(uh, vh) = 2
∑
j
∫

ĥ

0

𝛾𝛿(s)∫
x
j+

1
2

−s

x
j−

1
2

E+
s
uhE

+
s
vh dxds

+ 2
∑
j
∫

ĥ

0

𝛾𝛿(s)∫
x
j+

1
2

x
j+

1
2

−s

(
E+
s
uh − [[uh]]j+ 1

2

)(
E+
s
vh − [[vh]]j+ 1

2

)
dxds

+ 2
∑
j
∫

𝛿

ĥ

𝛾𝛿(s)∫Ij

E+
s
uhE

+
s
vh dxds

+ ∫
ĥ

0

s2𝛾𝛿(s)ds
∑
j

𝜇j[[uh]]j+ 1

2

[[vh]]j+ 1

2

,

2
∑
j
∫

ĥ

0

𝛾𝛿(s)∫
x
j+

1
2

−s

x
j−

1
2

E+
s
uhE

+
s
vh dxds → ∫Ij

(uh)x(vh)x dx,

2
∑
j
∫

ĥ

0

𝛾𝛿(s)∫
x
j+

1
2

x
j+

1
2

−s

(
E+
s
uh − [[uh]]j+ 1

2

)(
E+
s
vh − [[vh]]j+ 1

2

)
dxds → 0,

2
∑
j
∫

𝛿

ĥ

𝛾𝛿(s)∫Ij

E+
s
uhE

+
s
vh dxds → 0,

∫
ĥ

0

s2𝛾𝛿(s)ds
∑
j

𝜇j[[uh]]j+ 1

2

[[vh]]j+ 1

2

→

1

2

∑
j

𝜇j[[uh]]j+ 1

2

[[vh]]j+ 1

2

,

(11)find uh ∈ Vh such that Bh(uh, vh) = (f� , vh), ∀ vh ∈ Vh.

(12)find uh(⋅, t) ∈ Vh such that ((uh)t, vh) + Bh(uh, vh) = (f� , vh), ∀ vh ∈ Vh,
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4 � Stability, Boundedness, and a Priori Error Estimates

In this section, we first present the discrete Poincaré’s inequality and then study the bound-
edness and stability results of (11), which enable us to derive a priori error estimates. Next, 
we prove the L2-stability and a priori error estimates of the semi-discrete DG scheme (12). 
Throughout this section, we let C > 0 represent a generic positive constant independent of h 
and � with possibly different values if not noted otherwise. Let us define the semi-norms for 
v ∈ Vh as follows:

By the definition of the bilinear form (10) and the semi-norms (13), we immediately have

Then, we define the semi-norm

4.1 � Discrete Poincaré’s Inequality

To ensure that ||| ⋅ ||| is a norm on Vh , we need to derive some Poincaré’s inequalities at 
the discrete level. First, let us present the result when the kernel �� is bounded on [0, �].

Lemma 4.1  For a bounded ��, it holds that

where the constant C > 0 is independent of � and h.

Proof  Following [2], we consider the problem �� = vh for any vh ∈ Vh with a bounded 
kernel �� . Then, the energy space  is indeed the L2 space and it is implied by the nonlocal 
Poincaré’s inequality ([26]) that the following energy inequality holds:

where C > 0 is a constant independent of � . For the DG scheme (11) and by the Cauchy–
Schwarz inequality, we have

(13)

|v|2 ,h = 2
∑
j
�

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

−s

x
j−

1
2

(E+
s
v)2 dxds + 2

∑
j
�

𝛿

ĥ

𝛾𝛿(s)�Ij

(E+
s
v)2 dxds

+ 2
∑
j
�

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j+

1
2

−s

(
E+
s
v − [[v]]

j+
1

2

)2

dxds,

|v|2
∗
= �

ĥ

0

s2𝛾𝛿(s)ds
∑
j

𝜇j[[v]]
2

j+
1

2

.

Bh(v, v) = |v|2 ,h + |v|2
∗
.

|||v|||2 ∶= Bh(v, v), ∀ v ∈ Vh.

(14)‖vh‖L2 ≤ C ���vh���, ∀ vh ∈ Vh,

‖�‖ ≤ C ‖vh‖L2 ,
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where (�, vh) is given as

We then apply the following inequality (to be shown in Lemma 4.2 later in the section):

and plug (17) into (15) to get the discrete Poincaré’s inequality (14).

Before proving the inequality (17) used in the proof above, we first explain the idea 
behind the proof. Let us think about the local limit, namely for � small, the term

is essentially bounded by ‖�‖C0,1 , since we have

By the Sobolev embedding theorem (or trace inequality), we have

The elliptic regularity can then be applied to conclude that ‖�‖H3∕2 ≤ C‖vh‖L2 thus com-
pleting the proof, as argued in [2]. For the situation considered here, a difficulty is to obtain 
(17) with a uniform constant C. Indeed, for each finite 𝛿 > 0 , there is not enough elliptic 
regularity to make the argument in general. We thus have to avoid relying on the type of 
inequality as (18). Hence, we find another way to show the results in 1d that is analogous to 

(15)

(vh, vh) = (𝛿𝜙, vh)

= 2
�
j
�

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

−s

x
j−

1
2

E+
s
𝜙E+

s
vh dxds

+ 2
�
j
�

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j+

1
2

−s

E+
s
𝜙
�
E+
s
vh − [[vh]]j+ 1

2

�
dxds

+ 2
�
j
�

𝛿

ĥ

𝛾𝛿(s)�Ij

E+
s
𝜙E+

s
vh dxds − (𝜙, vh)

≤ ‖𝜙‖ ���vh��� + �(𝜙, vh)�
≤ C ‖vh‖L2 ���vh��� + �(𝜙, vh)�,

(16)(𝜙, vh) = −2
∑
j

[[vh]]j+ 1

2 �
ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j+

1
2

−s

E+
s
𝜙 dxds.

(17)�(�, vh)� ≤ C ���vh��� ‖vh‖L2 ,

∫
ĥ

0

𝛾𝛿(s)∫
x
j+

1
2

x
j+

1
2

−s

E+
s
𝜙dxds

E+
s
� = s

�(x + s) − �(x)

s
≤ s‖�‖C0,1 .

(18)‖�‖C0,1 ≤ C‖�‖H3∕2 .
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the PDE counterpart in [2]. We use the fundamental theorem of calculus; we could rewrite 
��(x) as

which is true for all y. Also, notice that in the local limit � satisfies the problem 
−���(z) = vh(z) . Now, we integrate y on some interval I and obtain

Here, we can bound |��(x)| by the H1 norm of � and the L2 norm of ‖vh‖L2 and finally, we 
can use an energy inequality to bound |�|H1 by ‖vh‖L2 . In the following lemma, equality 
(21) can be understood as an analog of (19).

Lemma 4.2  Assume that � ∈  solves the problem �� = vh , then we have, for some con-
stant C > 0 , independent of � and h,

where (�, vh) is defined in (16).

Proof  Firstly, with E−
s
�(y) = �(y) − �(y − s) , we can write

Integrating (21) over (0, ĥ) × Ij with the weight function ��(s) , we obtain

By changing the order of the integration in I, we have

(19)��(x) = ��(y) + ∫
x

y

���(z)dz,

�I����(x)� ≤ �I

���(y)�dy + �I �
x

y

�vh(z)�dz ≤ C1���H1 + C2‖vh‖L2 .

(20)�(�, vh)� ≤ C ���vh��� ‖vh‖L2 ,

(21)

∫
x
j+

1
2

x
j+

1
2

−s

E+
s
�(y) dy = ∫

x
j+

1
2

x

E+
s
�(y) dy + ∫

x

x
j+

1
2

−s

E+
s
�(y) dy

= ∫
x
j+

1
2

x

(�(y + s) − �(y)) dy − ∫
x
j+

1
2

x+s

(�(y) − �(y − s)) dy

= ∫
x+s

x

E−
s
�(y) dy + ∫

x
j+

1
2

x

(�(y + s) − 2�(y) + �(y − s)) dy

= ∫
x

x−s

E+
s
�(y) dy + ∫

x
j+

1
2

x

E+
s
E−
s
�(y) dy.

(22)

hj ∫
ĥ

0

𝛾𝛿(s)∫
x
j+

1
2

x
j+

1
2

−s

E+
s
𝜙(y) dyds = ∫

ĥ

0

𝛾𝛿(s)∫Ij
∫

x

x−s

E+
s
𝜙(y) dydxds

+ ∫
ĥ

0

𝛾𝛿(s)∫Ij
∫

x
j+

1
2

x

E+
s
E−
s
𝜙(y) dydxds = I + II.
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Similarly, by changing the order of the integration in II, we have

where Ij − s =
(
x
j−

1

2

− s, x
j+

1

2

− s
)
. Plugging (23) and (24) into (22), we get

Therefore, with (25) we have

(23)

I = �
ĥ

0

𝛾𝛿(s)
(
�

x
j−

1
2

x
j−

1
2

−s �
y+s

x
j−

1
2

+�
x
j+

1
2

x
j+

1
2

−s �
x
j+

1
2

y

+�
x
j+

1
2

−s

x
j−

1
2

�
y+s

y

)
E+
s
𝜙(y) dxdyds

= �
ĥ

0

𝛾𝛿(s)
(
�

x
j−

1
2

x
j−

1
2

−s

(
y + s − x

j−
1

2

)
E+
s
𝜙(y) dy + �

x
j+

1
2

x
j+

1
2

−s

(
x
j+

1

2

− y
)
E+
s
𝜙(y) dy

+ s�
x
j+

1
2

−s

x
j−

1
2

E+
s
𝜙(y) dy

)
ds

≤ �
ĥ

0

s𝛾𝛿(s)�
x
j+

1
2

x
j−

1
2

−s

|E+
s
𝜙(y)| dyds.

(24)

II = �Ij
�

x
j+

1
2

x �
ĥ

0

𝛾𝛿(s)E
+
s
E−
s
𝜙(y) dsdydx

= �Ij
�

x
j+

1
2

x

(
vh(y) − �

𝛿

ĥ

𝛾𝛿(s)E
+
s
E−
s
𝜙(y)ds

)
dydx

= �Ij
�

x
j+

1
2

x

vh(y) dy − �
𝛿

ĥ

𝛾𝛿(s)�Ij

(
�

x
j+

1
2

x

−�
x
j+

1
2

−s

x−s

)
E+
s
𝜙(y) dydxds

≤ hj �Ij

|vh(y)| dy +
hj

ĥ �
𝛿

ĥ

s𝛾𝛿(s)
(
�Ij

|E+
s
𝜙(y)| dy + �Ij−s

|E+
s
𝜙(y)| dy

)
ds,

(25)

hj �
ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j+

1
2

−s

E+
s
𝜙(y) dyds

≤ �
ĥ

0

s𝛾𝛿(s)�
x
j+

1
2

x
j−

1
2

−s

|E+
s
𝜙(y)| dyds + hj �Ij

|vh(y)| dy

+
hj

ĥ �
𝛿

ĥ

s𝛾𝛿(s)�Ij∪(Ij−s)

|E+
s
𝜙(y)| dyds.
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By the Cauchy–Schwarz inequality, we then have

and

and

(26)

∑
j

hj

(
�

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j+

1
2

−s

E+
s
𝜙(y) dyds

)2

=
∑
j

1

hj

(
hj �

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j+

1
2

−s

E+
s
𝜙(y) dyds

)2

≤ ∑
j

1

hj

(
�

ĥ

0

s𝛾𝛿(s)�
x
j+

1
2

x
j−

1
2

−s

|E+
s
𝜙(y)| dyds + hj �Ij

|vh(y)| dy

+
hj

ĥ �
𝛿

ĥ

s𝛾𝛿(s)�Ij∪(Ij−s)

|E+
s
𝜙(y)| dyds

)2

≤ 3
∑
j

(
1

hj

(
�

ĥ

0

s𝛾𝛿(s)�
x
j+

1
2

x
j−

1
2

−s

|E+
s
𝜙(y)| dyds

)2

+ hj

(
�Ij

|vh(y)| dy
)2

+
hj

ĥ2

(
�

𝛿

ĥ

s𝛾𝛿(s)�Ij∪(Ij−s)

|E+
s
𝜙(y)| dyds

)2
)
.

(27)

1

hj

(
�

ĥ

0

s𝛾𝛿(s)�
x
j+

1
2

x
j−

1
2

−s

|E+
s
𝜙(y)| dyds

)2

≤ 1

hj �
ĥ

0

s2𝛾𝛿(s)�
x
j+

1
2

x
j−

1
2

−s

1 dyds
(
�

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j−

1
2

−s

|E+
s
𝜙(y)|2 dyds

)

≤ hj−1 + hj

hj �
ĥ

0

s2𝛾𝛿(s)ds
(
�

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j−

1
2

−s

|E+
s
𝜙(y)|2 dyds

)
,

(28)hj

(
�Ij

|vh(y)| dy
)2 ≤ h2

j �Ij

vh(y)
2dy,

(29)

hj

ĥ2

(
�

𝛿

ĥ

s𝛾𝛿(s)�Ij∪(Ij−s)

|E+
s
𝜙(y)| dyds

)2

≤ hj

ĥ2 �
𝛿

ĥ

s2𝛾𝛿(s)�Ij∪(Ij−s)

1 dyds
(
�

ĥ

0

𝛾𝛿(s)�Ij∪(Ij−s)

|E+
s
𝜙(y)|2 dyds

)

≤ 2h2
j

ĥ2 �
𝛿

ĥ

s2𝛾𝛿(s)ds
(
�

𝛿

ĥ

𝛾𝛿(s)�Ij∪(Ij−s)

|E+
s
𝜙(y)|2 dyds

)
.
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Plugging (27)–(29) into (26), we then obtain

where C depends only on � , a positive constant given in the assumption on the regularity 
of the mesh partition. Therefore, by the Cauchy–Schwarz inequality again, we finally get

which completes the proof.

Proposition 4.1  For the general kernels �� satisfying (3), it holds that for some constant 
C > 0 uniformly in � and h,

Proof  Consider a cutoff of �� as follows:

Take M > 0 sufficiently large such that

For the modified kernel �̃�∕C̃� , we assume the corresponding energy norm is ||| ⋅ |||̃  ; then 
by Lemma 4.1, we have

(30)

�
j

hj

�
�

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j+

1
2

−s

E+
s
𝜙(y) dyds

�2

≤ 6h

𝜌 �
ĥ

0

s2𝛾𝛿(s)ds
�
j
�

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j−

1
2

−s

�E+
s
𝜙(y)�2 dyds + 3h2‖vh‖2L2

+
6h2

𝜌2 �
𝛿

ĥ

s2𝛾𝛿(s)ds
�
j
�

𝛿

ĥ

𝛾𝛿(s)�Ij∪(Ij−s)

�E+
s
𝜙(y)�2 dyds

≤ C ‖𝜙‖2 + 3h2‖vh‖2L2
≤ C ‖vh‖2L2 ,

�(𝜙, vh)� ≤ 2
��

j

1

hj
[[vh]]

2

j+
1

2

� 1

2

��
j

hj

�
�

ĥ

0

𝛾𝛿(s)�
x
j+

1
2

x
j+

1
2

−s

E+
s
𝜙(y) dyds

�2
� 1

2

≤ C ���vh��� ‖vh‖L2 ,

(31)‖vh‖L2 ≤ C ���vh���, ∀ vh ∈ Vh.

�𝛾𝛿(s) =

{
𝛾𝛿(s), 𝛾𝛿(s) ≤ M,

M, 𝛾𝛿(s) > M.

C̃� = 2�
�

0

s2�̃�(s)ds ≥ 1

4
.
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Since �̃�(s) ≤ ��(s) and C̃� ≥ 1

4
 , we have

Then, we obtain the desired inequality (31).

4.2 � Boundedness, Stability, and a Priori Error Estimates for the DG Scheme (11)

From the definition of Bh(⋅, ⋅) , it is straightforward to obtain the boundedness and stability 
results represented in the following:

Note that (32) also holds for v,w ∈  . Now, let us take the continuous interpolant uI ∈ Vh 
of the exact solution u such that u − uI ∈  and the jumps of u − uI are zero at the ele-
ment interfaces. Note that this can be easily achieved when the exact solution u is smooth 
enough and k ≥ 1 where k is the degree of the polynomials in Vh . Then, we have the follow-
ing approximation property:

where C > 0 is independent of h and �.

Corollary 4.1  Let � be fixed. Then, it holds that when the kernel ��(s) ∈ L1
loc
(ℝ) (i.e., inte-

grable kernel),

and s��(s) ∈ L1
loc
(ℝ) (i.e., finite first moment),

To derive the error estimates, we first need the following lemma.

Lemma 4.3  For the solution u is smooth enough, we have that B(u, vh) in (8) is well 
defined. Moreover,

Proof  Recall the construction in (9) given by B(u, v) = B1(u, v) + B2(u, v) + B3(u, v) . We 
consider the terms separately with v = vh . By the Cauchy–Schwarz inequality, we have

‖vh‖L2 ≤ C ���vh���̃ , vh ∈ Vh.

|||vh|||̃ ≤ 1√
C̃�

|||vh||| ≤ 2 |||vh|||, ∀ vh ∈ Vh.

(32)Bh(v,w) ≤ |||v||| |||w|||, ∀v,w ∈ Vh.

(33)Bh(vh, vh) = |||vh|||2, ∀vh ∈ Vh.

(34)‖u − uI‖L2 ≤ Chk+1 �u�Hk+1 and ���u − uI��� ≤ Chk �u�Hk+1 ,

|||u − uI||| ≤ C(�) hk+1,

|||u − uI||| ≤ C(�) hk+
1

2 .

B(u, vh) = (f� , vh), ∀ vh ∈ Vh.
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where

Meanwhile, we have

with �j = �h−1 and � is sufficiently large. For B3(u, vh) , if ĥ = 𝛿, then B3(u, vh) = 0 . When 
ĥ = min

j
hj , then we have

Thus, B(u, vh) is well defined.
In the following, we show that B(u, vh) = (�u, vh) = (f , vh) for any vh ∈ Vh when u is 

smooth enough. Indeed,

B1(u, vh) ≤ 2�
ĥ

0

�
j
�

x
j+

1
2

−s

x
j−

1
2

�𝛾𝛿(s)E+
s
uE+

s
vh� dxds

≤ 2 ‖u‖C0,1(h)‖vh‖C0,1(h) �
ĥ

0

�
j
�

x
j+

1
2

−s

x
j−

1
2

𝛾𝛿(s)s
2dxds

≤ C ‖u‖C0,1(h)‖vh‖C0,1(h) < ∞,

‖w‖C0,1(h) = max
j

‖w‖C0,1(Ij)
.

B2(u, vh) ≤ 2�
ĥ

0

�
j
�

x
j+

1
2

x
j+

1
2

−s

�𝛾𝛿(s)E+
s
uE+

s
vh� dxds

≤ 2�
ĥ

0

�
j
�

x
j+

1
2

x
j+

1
2

−s

�𝛾𝛿(s)E+
s
u
�
E+
s
vh − [[vh]]j+ 1

2

�
� dxds

+ 2�
ĥ

0

�
j

���[[vh]]j+ 1

2

����
x
j+

1
2

x
j+

1
2

−s

�𝛾𝛿(s)E+
s
u� dxds

≤ C ‖u‖C0,1(h)‖vh‖C0,1(h) + C ‖u‖C0,1(h)h
−1
��

j

[[vh]]
2

j+
1

2

� 1

2

≤ C ‖u‖C0,1(h)‖vh‖C0,1(h) + C ‖u‖C0,1(h)���vh��� < ∞,

B3(u, vh) ≤ 2�
𝛿

ĥ

�
j
�Ij

�𝛾𝛿(s)E+
s
uE+

s
vh� dxds

≤ 4 ‖u‖C0,1(h)‖vh‖L2 �
𝛿

ĥ

s𝛾𝛿(s)ds ≤ 2 ‖u‖L2‖vh‖L2 ĥ−1 < ∞.
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As we can see, even when the solution u is smooth enough, the DG approximation of 
B(u, v) is generically not consistent, i.e.,

where (u, vh) is the inconsistent term given in (16). Since the DG scheme (11) is not con-
sistent, to derive the error estimates, we then need to estimate the inconsistent errors. The 
so-called superpenalty technique is adopted to control the inconsistent term (u, vh) . We 
present the error estimates of the DG scheme (11) in the following theorem.

Theorem 4.1  For the DG scheme (11) with the finite element space Vh defined in (7) with 
k ≥ 1 and �j = O(h−2k−1

j
) , there exists a unique approximate solution uh ∈ Vh . Assume that 

the exact solution u of the problem (1) is smooth enough, then we have the following a 
priori error estimate:

Proof  We firstly consider the estimate of (u, vh) . With the Cauchy–Schwarz inequality 
and Sobolev’s inequality, we obtain

(35)

B(u, vh) = 2�
�

0

��(s)
∑
j
�Ij

E+
s
uE+

s
vh dxds

= 2�
�

0

��(s)
(∑

j
�

x
j+

1
2

x
j−

1
2

(u(x + s) − u(x))vh(x + s) dx

−
∑
j
�

x
j+

1
2

x
j−

1
2

(u(x + s) − u(x))vh(x) dx
)
ds

= 2�
�

0

��(s)
(∑

j
�

x
j+

1
2

+s

x
j−

1
2

+s

(u(x) − u(x − s))vh(x) dx

−
∑
j
�

x
j+

1
2

x
j−

1
2

(u(x + s) − u(x))vh(x) dx
)
ds

= −2
∑
j
�

�

0 �Ij

��(s)(u(x + s) − 2u(x) + u(x − s))vh(x) dxds

= −2
∑
j
�

�

−� �Ij

��(s)vhE
+
s
u dxds

=
∑
j
�Ij

(
− 2�

�

−�

��(s)E
+
s
u ds

)
vh dx = (�u, vh) = (f� , vh).

Bh(u, vh) = B(u, vh) + (u, vh), ∀ vh ∈ Vh,

���u − uh��� ≤ Chk ‖u‖Hk+1 .

(36)

(u, vh) ≤ 2‖ux‖L∞ �
ĥ

0

s2𝛾𝛿(s)ds
�
j

1√
𝜇j

√
𝜇j
��[[vh]]j+ 1

2

��

≤ 𝛽(ĥ, 𝛿)

�
�

ĥ

0

s2𝛾𝛿(s)ds
�
j

𝜇j[[uh]]
2

j+
1

2

� 1

2

≤ 𝛽(ĥ, 𝛿) ���vh���,
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Therefore, we have

In (38), we have used the relation in Lemma 4.3 that

Then, by (38) and the triangle inequality, we obtain

As �j = O(h−2k−1
j

) , then it implies 𝛽(ĥ, 𝛿) ≤ Chk ‖u‖H2 . This completes the proof.

From (37), it is easy to find that different �j will lead to different estimates for 𝛽(ĥ, 𝛿) . 
We state it in the following corollary.

Corollary 4.2  Under the conditions in Theorem 4.1, if the kernel ��(s) ∈ L1
loc
(ℝ) and � be 

fixed, we have

and consequently plugging it into (39) gives

If s��(s) ∈ L1
loc
(ℝ) , we have

which then gives

The asymptotic compatibility is a nice property to have, since the solutions of some 
numerical methods may converge to the wrong limits if one let hj, � → 0 [33]. For the 

(37)𝛽(ĥ, 𝛿) = C ‖u‖H2

�
∫

ĥ

0

s2𝛾𝛿(s)ds
�
j

𝜇−1
j

� 1

2

.

(38)

|||uI − uh|||2 = Bh(uI − uh, uI − uh)

= Bh(uI − u, uI − uh) + Bh(u − uh, uI − uh)

≤ |||uI − u||| |||uI − uh||| + (u, uI − uh)

≤ |||uI − u||| |||uI − uh||| + 𝛽(ĥ, 𝛿)|||uI − uh|||.

B(u, vh) = (f� , vh) = Bh(uh, vh), ∀ vh ∈ Vh.

(39)
|||u − uh||| ≤ |||u − uI||| + |||uI − uh|||

≤ 2 |||uI − u||| + 𝛽(ĥ, 𝛿).

𝛽(ĥ, 𝛿) ≤ C(𝛿)hk+1,

|||u − uh||| ≤ C(�)hk+1.

𝛽(ĥ, 𝛿) ≤ C(𝛿)hk+
1

2 ,

|||u − uh||| ≤ C(�)hk+
1

2 .
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scheme that is asymptotically compatible, the numerical solution will converge to the 
exact solution of the local problem when hj, � → 0 simultaneously, i.e.,

where uloc is the exact solution to the local counterpart of the problem (1). For more details, 
one may refer to, e.g., [34]. To obtain the asymptotic compatibility of the DG scheme (11), 
we need a known result (e.g., see [13]) that

Meanwhile, we further assume that there exists C0 > 0 is a constant such that

Corollary 4.3  Assume (41) holds. Under the conditions in Theorem 4.1, the scheme (11) is 
asymptotically compatible.

Proof  From (38), we have

where the constant C is independent of � and h. By the discrete Poincaré’s inequality (31), 
we have ‖uI − uh‖L2 ≤ C ���uI − uh��� ≤ Chk ‖u‖Hk+1 . Together with the approximation 
property (34), we have

Together with (40) and (41), we then obtain the desired result.

Remark 4.1  In the local case, to obtain the error estimates in the L2 norm, we need to uti-
lize the dual problem in the derivation. However, since the nonlocal problem does not have 
the elliptic regularity theory as in the local case, any extra regularity of the exact solution 
in (1) is not expected; thus the duality argument may not work for general nonlocal diffu-
sion problems. On the other hand, when � is fixed and ��(s) is integrable, the energy norm 
||| ⋅ ||| is equivalent to the L2 norm, which leads to the error estimates in the L2 norm.

4.3 � L2‑Stability and a Priori Error Estimates for the Semi‑discrete DG Scheme (12)

Without loss of generality, let us set f� = 0 in (12). By taking vh = uh in (12) and using (31), 
we then obtain

which implies

Therefore, the numerical solution uh → 0 when the final time T → ∞.
Next, we study a priori error estimates under the assumption that u is smooth enough. For 

simplicity, we use the notations as follows:

‖uh − uloc‖L2 → 0, as hj, � → 0,

(40)‖u − uloc‖L2 → 0, as � → 0.

(41)lim
�→0

‖u‖Hk+1 exists and lim
�→0

‖u‖Hk+1 ≤ C0.

���uI − uh��� ≤ ���uI − u��� + 𝛽(ĥ, 𝛿) ≤ Chk ‖u‖Hk+1 ,

‖u − uh‖L2 ≤ ‖u − uI‖L2 + ���uI − uh��� ≤ Chk ‖u‖Hk+1 .

((uh)t, uh) = −Bh(uh, uh) = −���uh(⋅, t)���2 ≤ −C‖uh(⋅, t)‖2L2 ,

‖uh(⋅, T)‖2L2 ≤ e−CT‖uh(⋅, 0)‖2L2 , ∀T > 0.

ēh = eh + 𝜀h, eh = uI − uh, 𝜀h = u − uI ,
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where uI ∈ Vh is an approximation to the exact solution u. With (5) and (12), we get the 
following error equation:

where (u, vh) is the inconsistent term given in (16).
By taking vh = eh in (42), we have

Let uI ∈ Vh be a suitable interpolant of the exact solution u so that the approximation prop-
erty (34) holds. By the Cauchy–Schwarz inequality and approximation property, we then 
have

By plugging (36), (44), and (45) into (43) and using the Cauchy–Schwarz inequality and 
(31), we can obtain

Thus, we obtain by applying Gronwall’s inequality with (46)

By the triangle inequality, finally we have

(42)((ēh)t, vh) + Bh(ēh, vh) + (u, vh) = 0, ∀vh ∈ Vh,

(43)((eh)t, eh) + Bh(eh, eh) = −((�h)t, eh) − Bh(�h, eh) − (u, eh).

(44)((�h)t, eh) ≤ ‖(�h)t‖L2 ‖eh‖L2 ,
(45)Bh(�h, eh) ≤ |||�h||| |||eh|||.

(46)
d

2dt
‖eh‖2L2 ≤ −Bh(eh, eh) + ‖(𝜀h)t‖L2 ‖eh‖L2 + ���𝜀h��� ���eh��� + 𝛽(ĥ, 𝛿) ���eh���

≤ −C‖eh‖2L2 + C(‖(𝜀h)t‖2L2 + ���𝜀h���2 + 𝛽(ĥ, 𝛿)2).

‖eh‖L2 ≤ Chk ‖u‖Hk+1 .

‖ēh‖L2 ≤ ‖𝜀h‖L2 + ‖eh‖L2 ≤ Chk ‖u‖Hk+1 .

Table 1   L2 errors and convergence orders produced by the DG scheme (11) when k = 1 in Example 1

N � = 10
−12� � = �∕5 � = h � =

√
h

L
2 error Order L

2 error Order L
2 error Order L

2 error Order

� = 1∕2 8 7.03E−02 – 2.53E−02 – 7.88E−02 – 2.54E−02 –
16 1.74E−02 2.01 3.22E−03 2.97 1.98E−02 1.99 3.91E−03 2.70
32 4.34E−03 2.00 7.32E−04 2.13 4.97E−03 2.00 7.76E−04 2.33
64 1.08E−03 2.00 1.80E−04 2.02 1.24E−03 2.00 1.82E−04 2.09
128 2.71E−04 2.00 4.50E−05 2.00 3.11E−04 2.00 4.50E−05 2.02
256 6.78E−05 2.00 1.12E−05 2.00 7.77E−05 2.00 1.12E−05 2.00
512 1.69E−05 2.00 2.81E−06 2.00 1.94E−05 2.00 2.81E−06 2.00

� = 5∕2 8 7.03E−02 – 5.83E−02 – 7.48E−02 – 5.84E−02 –
16 1.74E−02 2.01 1.06E−02 2.46 1.86E−02 2.01 1.25E−02 2.23
32 4.34E−03 2.00 1.96E−03 2.44 4.64E−03 2.00 2.66E−03 2.23
64 1.08E−03 2.00 3.70E−04 2.41 1.16E−03 2.00 5.68E−04 2.23
128 2.71E−04 2.00 7.28E−05 2.35 2.90E−04 2.00 1.22E−04 2.22
256 6.78E−05 2.00 1.51E−05 2.27 7.24E−05 2.00 2.63E−05 2.21
512 1.69E−05 2.00 3.33E−06 2.18 1.81E−05 2.00 5.74E−06 2.20
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Theorem  4.2  Let uh(⋅, t) ∈ Vh be the approximate solution generated from the semi-dis-
crete DG scheme (12), with the finite element space Vh defined in (7) and k ≥ 1 . Then, we 
have the following stability result:

‖uh(⋅, T)‖L2 ≤ e−CT‖uh(⋅, 0)‖L2 , ∀T ≥ 0.

Table 2   L2 errors and convergence orders produced by the DG scheme (11) when k = 2 in Example 1

N � = 10
−12� � = �∕5 � = h � =

√
h

L
2 error Order L

2 error Order L
2 error Order L

2 error Order

� = 1∕2 8 1.28E−02 – 4.83E−03 – 1.23E−02 – 4.85E−03 –
16 8.27E−04 3.96 3.03E−04 3.99 7.90E−04 3.96 3.13E−04 3.95
32 5.95E−05 3.80 3.51E−05 3.11 5.73E−05 3.79 3.52E−05 3.15
64 5.26E−06 3.50 4.32E−06 3.02 5.16E−06 3.47 4.32E−06 3.02
128 5.70E−07 3.21 5.38E−07 3.01 5.66E−07 3.19 5.38E−07 3.01
256 6.83E−08 3.06 6.72E−08 3.00 6.81E−08 3.06 6.72E−08 3.00
512 8.43E−09 3.02 8.40E−09 3.00 8.43E−09 3.01 8.40E−09 3.00

� = 5∕2 8 1.28E−02 – 6.67E−03 – 1.23E−02 – 6.69E−03 –
16 8.27E−04 3.96 3.26E−04 4.36 7.93E−04 3.96 3.66E−04 4.19
32 5.95E−05 3.80 3.52E−05 3.21 5.75E−05 3.78 3.59E−05 3.35
64 5.26E−06 3.50 4.32E−06 3.03 5.17E−06 3.48 4.33E−06 3.05
128 5.70E−07 3.21 5.38E−07 3.01 5.67E−07 3.19 5.38E−07 3.01
256 6.83E−08 3.06 6.72E−08 3.00 6.81E−08 3.06 6.72E−08 3.00
512 8.43E−09 3.02 8.40E−09 3.00 8.43E−09 3.01 8.40E−09 3.00

Table 3   Errors and convergence orders of |||uI − uh||| produced by the DG scheme (11) when k = 1 in 
Example 1

N � = 10
−12� � = �∕5 � = h � =

√
h

|||u
I
− u

h
||| Order |||u

I
− u

h
||| Order |||u

I
− u

h
||| Order |||u

I
− u

h
||| Order

� = 1∕2 8 4.84E−02 – 5.03E−02 – 7.39E−02 – 5.04E−02 –
16 1.20E−02 2.02 1.15E−02 2.97 1.93E−02 1.94 1.19E−02 2.08
32 2.98E−03 2.00 2.85E−03 2.13 4.87E−03 1.98 2.90E−03 2.04
64 7.45E−04 2.00 7.11E−04 2.02 1.22E−03 2.00 7.17E−04 2.02
128 1.86E−04 2.00 1.78E−04 2.00 3.05E−04 2.00 1.78E−04 2.01
256 4.65E−05 2.00 4.45E−05 2.00 7.64E−05 2.00 4.45E−05 2.00
512 1.16E−05 2.00 1.11E−05 2.00 1.91E−05 2.00 1.11E−05 2.00

� = 5∕2 8 4.84E−02 – 5.52E−02 – 6.10E−02 – 5.53E−02 –
16 1.20E−02 2.02 1.29E−02 2.10 1.56E−02 1.97 1.35E−02 2.04
32 2.98E−03 2.00 3.08E−03 2.07 3.91E−03 1.99 3.26E−03 2.05
64 7.45E−04 2.00 7.46E−04 2.04 9.79E−04 2.00 7.90E−04 2.04
128 1.86E−04 2.00 1.83E−04 2.03 2.45E−04 2.00 1.93E−04 2.03
256 4.65E−05 2.00 4.53E−05 2.02 6.12E−05 2.00 4.74E−05 2.03
512 1.16E−05 2.00 1.12E−05 2.01 1.53E−05 2.00 1.17E−05 2.02
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Moreover, assume that the exact solution u(⋅, t) of the problem (2) is smooth enough, then 
we have the following error estimate:

‖u(⋅, T) − uh(⋅, T)‖L2 ≤ Chk ‖u‖Hk+1 .

Table 4   Errors and convergence orders of |||uI − uh||| produced by the DG scheme (11) when k = 2 in 
Example 1

N � = 10
−12� � = �∕5 � = h � =

√
h

|||u
I
− u

h
||| Order |||u

I
− u

h
||| Order |||u

I
− u

h
||| Order |||u

I
− u

h
||| Order

� = 1∕2 8 2.93E−03 – 1.27E−02 – 2.30E−02 – 1.27E−02 –
16 3.74E−04 2.97 1.19E−03 3.41 4.81E−03 2.26 1.69E−03 2.90
32 4.70E−05 2.99 7.47E−05 3.99 7.37E−04 2.71 1.73E−04 3.29
64 5.88E−06 3.00 4.73E−06 3.98 9.85E−05 2.90 1.27E−05 3.77
128 7.35E−07 3.00 2.70E−07 4.13 1.26E−05 2.97 1.12E−06 3.50
256 9.19E−08 3.00 1.69E−08 4.00 1.59E−06 2.99 1.25E−07 3.17
512 1.15E−08 3.00 9.74E−10 4.11 1.99E−07 3.01 9.42E−09 3.73

� = 5∕2 8 2.93E−03 – 1.12E−02 – 1.16E−02 – 1.12E−02 –
16 3.74E−04 2.97 1.51E−03 2.89 1.94E−03 2.58 1.63E−03 2.78
32 4.70E−05 2.99 1.72E−04 3.14 2.67E−04 2.86 2.04E−04 3.00
64 5.88E−06 3.00 1.86E−05 3.21 3.44E−05 2.96 2.39E−05 3.09
128 7.35E−07 3.00 1.97E−06 3.24 4.35E−06 2.99 2.78E−06 3.11
256 9.19E−08 3.00 2.08E−07 3.25 5.45E−07 2.99 3.20E−07 3.12
512 1.15E−08 3.00 2.19E−08 3.25 6.83E−08 3.00 3.68E−08 3.12

Table 5   L2 errors at the final time T = 1 and convergence orders produced by the semi-discrete DG scheme 
(12) when k = 1 in Example 2

N � = 10
−12� � = �∕5 � = h � =

√
h

L
2 error Order L

2 error Order L
2 error Order L

2 error Order

� = 1∕2 8 9.46E−03 – 5.07E−03 – 9.69E−03 – 5.08E−03 –
16 2.47E−03 1.94 1.08E−03 2.23 2.51E−03 1.95 1.11E−03 2.20
32 6.24E−04 1.99 2.65E−04 2.02 6.34E−04 1.98 2.67E−04 2.05
64 1.56E−04 2.00 6.61E−05 2.00 1.59E−04 1.99 6.62E−05 2.01
128 3.91E−05 2.00 1.65E−05 2.00 3.99E−05 2.00 1.65E−05 2.00
256 9.77E−06 2.00 4.13E−06 2.00 1.00E−05 2.00 4.13E−06 2.00
512 2.44E−06 2.00 1.03E−06 2.00 2.50E−06 2.00 1.03E−06 2.00

� = 5∕2 8 9.46E−03 – 7.59E−03 – 9.01E−03 – 7.60E−03 –
16 2.47E−03 1.94 1.54E−03 2.30 2.25E−03 2.00 1.69E−03 2.17
32 6.24E−04 1.99 3.30E−04 2.22 5.64E−04 2.00 3.83E−04 2.14
64 1.56E−04 2.00 7.46E−05 2.14 1.41E−04 2.00 8.81E−05 2.12
128 3.91E−05 2.00 1.76E−05 2.08 3.53E−05 2.00 2.06E−05 2.10
256 9.77E−06 2.00 4.27E−06 2.05 8.83E−06 2.00 4.87E−06 2.08
512 2.44E−06 2.00 1.05E−06 2.02 2.21E−06 2.00 1.17E−06 2.06
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Corollary 4.4  Under the conditions in Theorem 4.2 and � is fixed, then it holds that when 
the kernel ��(s) ∈ L1

loc
(ℝ),

and when s��(s) ∈ L1
loc
(ℝ),

5 � Numerical Experiments

In this section, we present some numerical experiments to verify the theoretical results. 
The kernel function for all examples is chosen to be

which gives ∫ �

−�
s2��(s)ds = 1 . For simplicity, we use uniform partitions for the problem 

domains, i.e., hj = h , and ĥ = h . The penalty parameter is taken to be �j ≡ � = 3∕h2k+1 if 
not noted otherwise. For all examples, we consider four cases for �:

The latter two cases are used to test the asymptotic compatibility of the proposed DG 
schemes. We also test two different values for � : � = 1∕2 and � = 5∕2 . It is easy to see 
��(s) ∈ L1

loc
(ℝ) when � = 1∕2.

‖u(⋅, T) − uh(⋅,T)‖L2 ≤ C(�) hk+1,

‖u(⋅,T) − uh(⋅,T)‖L2 ≤ C(�) hk+
1

2 .

𝛾𝛿(s) =
3 − 𝛼

2𝛿3−𝛼
|s|−𝛼 , 0 < 𝛼 < 3,

� = 10−12�, � = �∕5, � = h, � =
√
h.

Table 6   L2 errors at the final time T = 1 and convergence orders produced by the semi-discrete DG scheme 
(12) when k = 2 in Example 2

N � = 10
−12� � = �∕5 � = h � =

√
h

L
2 error Order L

2 error Order L
2 error Order L

2 error Order

� = 1∕2 8 1.64E−03 – 7.74E−04 – 1.46E−03 – 7.74E−04 –
16 1.34E−04 3.61 9.82E−05 2.98 1.22E−04 3.58 9.82E−04 2.98
32 1.37E−05 3.29 1.27E−05 2.96 1.31E−05 3.22 1.27E−05 2.96
64 1.62E−06 3.09 1.60E−06 2.99 1.59E−06 3.05 1.60E−06 2.99
128 2.00E−07 3.01 2.00E−07 2.99 1.99E−07 3.00 2.00E−07 2.99
256 2.50E−08 3.00 2.51E−08 3.00 2.50E−08 2.99 2.51E−08 3.00
512 3.13E−09 3.00 3.14E−09 3.00 3.13E−09 3.00 3.14E−09 3.00

� = 5∕2 8 1.64E−03 – 1.27E−03 – 1.52E−03 – 1.27E−03 –
16 1.34E−04 3.61 1.07E−04 3.56 1.27E−04 3.58 1.11E−04 3.52
32 1.37E−05 3.29 1.27E−05 3.08 1.34E−05 3.06 1.28E−05 3.12
64 1.62E−06 3.09 1.59E−06 3.00 1.60E−06 3.06 1.59E−06 3.01
128 2.00E−07 3.01 2.00E−07 2.99 1.99E−07 3.01 2.00E−07 2.99
256 2.50E−08 3.00 2.50E−08 3.00 2.50E−08 3.00 2.50E−08 3.00
512 3.13E−09 3.00 3.13E−09 3.00 3.13E−09 3.00 3.12E−09 3.00
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Example 1  For the steady-state problem (1), we take the source term as

where g(x) is defined by

f�(x) = −2∫
�

−�

��(s)(g(x + s) − g(x)) ds, x ∈ (0,�),

Table 7   L2 errors and convergence orders produced by the DG scheme (11) when k = 1 , �j ≡ � = 3h−1 in 
Example 3

N � = 10
−12� � = �∕5 � = h � =

√
h

L
2 error Order L

2 error Order L
2 error Order L

2 error Order

� = 1∕2 8 1.63E−01 – 4.64E−02 – 1.72E−01 – 4.67E−02 –
16 1.71E−01 − 0.07 1.16E−02 2.00 1.74E−01 − 0.02 1.92E−02 1.28
32 1.74E−01 − 0.02 4.37E−03 1.41 1.74E−01 − 0.00 7.99E−03 1.27
64 1.74E−01 − 0.00 1.83E−03 1.26 1.74E−01 − 0.00 3.36E−03 1.25
128 1.74E−01 − 0.00 7.60E−04 1.27 1.74E−01 − 0.00 1.44E−03 1.22
256 1.74E−01 − 0.00 3.07E−04 1.31 1.74E−01 − 0.00 6.23E−04 1.21
512 1.74E−01 − 0.00 1.21E−04 1.35 1.74E−01 − 0.00 2.71E−04 1.20

� = 5∕2 8 1.63E−01 – 1.26E−01 – 1.68E−01 – 1.26E−01 –
16 1.71E−01 − 0.07 8.52E−02 0.56 1.73E−01 − 0.04 1.04E−01 0.28
32 1.74E−01 − 0.02 5.77E−02 0.56 1.74E−01 − 0.01 8.44E−02 0.30
64 1.74E−01 − 0.00 3.95E−02 0.55 1.74E−01 − 0.00 6.90E−02 0.29
128 1.74E−01 − 0.00 2.73E−02 0.53 1.74E−01 − 0.00 5.67E−02 0.28
256 1.74E−01 − 0.00 1.90E−02 0.52 1.74E−01 − 0.00 4.68E−02 0.28
512 1.74E−01 − 0.00 1.33E−02 0.52 1.74E−01 − 0.00 3.88E−02 0.27

Table 8   L2 errors and convergence orders produced by the DG scheme (11) when k = 2 , �j ≡ � = 3h−1 in 
Example 1

N � = 10
−12� � = �∕5 � = h � =

√
h

L
2 error Order L

2 error Order L
2 error Order L

2 error Order

� = 1∕2 8 1.77E−01 – 4.77E−02 – 1.74E−01 – 4.80E−02 –
16 1.75E−01 0.02 1.16E−02 2.04 1.74E−01 − 0.00 1.93E−02 1.31
32 1.74E−01 0.00 4.37E−03 1.41 1.74E−01 − 0.00 7.99E−03 1.27
64 1.74E−01 0.00 1.83E−03 1.26 1.74E−01 − 0.00 3.36E−03 1.25
128 1.74E−01 0.00 7.59E−04 1.27 1.74E−01 − 0.00 1.44E−03 1.22
256 1.74E−01 0.00 3.07E−04 1.31 1.74E−01 − 0.00 6.23E−04 1.21
512 1.74E−01 0.00 1.21E−04 1.35 1.74E−01 − 0.00 2.71E−04 1.20

� = 5∕2 8 1.77E−01 – 1.32E−01 – 1.76E−01 – 1.32E−01 –
16 1.75E−01 0.02 8.61E−02 0.61 1.75E−01 0.01 1.05E−01 0.33
32 1.74E−01 0.00 5.78E−02 0.57 1.74E−01 0.00 8.46E−02 0.31
64 1.74E−01 0.00 3.95E−02 0.55 1.74E−01 0.00 6.90E−02 0.29
128 1.74E−01 0.00 2.73E−02 0.53 1.74E−01 0.00 5.67E−02 0.28
256 1.74E−01 0.00 1.90E−02 0.52 1.74E−01 0.00 4.68E−02 0.28
512 1.74E−01 0.00 1.33E−02 0.52 1.74E−01 0.00 3.88E−02 0.27
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Thus, the exact solution is u(x) = g(x).

Numerical results for Example 1 computed by the DG scheme (11) for the steady-state 
problem are reported in Tables 1, 2, 3, and 4. It is observed that the DG scheme achieves 
the optimal convergence of order k + 1 for the Pk-element ( k = 1, 2 ) in the L2 norm for all 
cases, even though the kernel function �� is not integrable when � = 5∕2 . Besides, we also 
compute |||uI − uh||| where uI is the continuous interpolation of the exact solution u and 
report the errors and convergence orders in Tables 3 and 4. In particular, the results with 
� = h and � =

√
h verify that the DG scheme is asymptotically compatible.   

Example 2  For the time-dependent problem (2), we set the initial condition to be

and the source term f� to be

where g(x) is defined in Example 1. Thus, the exact solution is u(x, t) = e−tg(x) . We adopt 
the third-order singly diagonal implicit Runge–Kutta (SDIRK) method with two stages as 
the time-stepping method [22, 23]. We take the time step size � = h∕� and the final time is 
T = 1.

Numerical results for Example 2 computed by the semi-discrete DG scheme (12) for 
the time-dependent problem are reported in Tables 5 and 6. We again observe the simi-
lar convergence behavior as that in Example 1.  

Example 3  Our last example is to reconsider Example 1 with the penalty parameter 
�j = O(h−1) , instead of the �j = O(h−2k−1).

Tables 7 and 8 report the numerical results produced by the DG scheme (11) with the 
penalty parameter �j = O(h−1) . From the results, we can see that the L2 errors heavily 
depend on the penalty terms and also depend on the choices of � and � in ��(s) given in 
the beginning of this section. It can be explained by the estimates of 𝛽(ĥ, 𝛿) in (37) when 
different ��(s) and �j are chosen. Therefore, although we have the stability of the DG 
scheme (11) when 𝜇j > 0 , the accuracy could degenerate if �j is not large enough. 

6 � Concluding Remarks

In this paper, we propose and analyze a new discontinuous Galerkin (DG) method for one-
dimensional nonlocal diffusion problems. We firstly identify the term in the nonlocal inte-
gral that requires particular treatment. We then introduce a jump into this term to overcome 

g(x) =

{
sin

4(x), x ∈ (0,�),

0, elsewhere.

u0(x) = g(x), x ∈ (0,�),

f𝛿(x, t) = −e−tg(x) − 2e−t ∫
𝛿

−𝛿

𝛾𝛿(s)(g(x + s) − g(x))ds, x ∈ (0,𝜋), t > 0,
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the singularity of the kernel function. Since the resulting formulation is not consistent, we 
add a penalty term in the proposed DG scheme to control the inconsistency error. Based 
on the dual problem, we prove the Poincaré’s inequality at the discrete level for the pro-
posed scheme, which plays an important role in further stability and error analysis. For the 
steady-state ND problem, we obtain the stability, boundedness, and a priori error estimates 
of the DG scheme. In particular, the error estimates imply the DG scheme is asymptotically 
compatible. For the time-dependent ND problem, we establish the L2-stability and a priori 
error estimates of the semi-discrete DG scheme. Numerical experiments show that the pro-
posed DG schemes achieve the optimal order of convergence.

Considering the new contributions in the current work and studies in the past, we have 
developed two types of DG schemes for the ND problems: one is to use auxiliary variables 
[14] and the other is the one with penalty developed here. Since these two DG schemes 
both have their respective limitations, it is desirable to develop a unified framework for the 
DG schemes for the ND problem in the future work, as in [1] for local models. In addition, 
the present work is focused on one-dimensional ND problems, and its extension to multidi-
mensional problems remains an interesting ongoing research work.
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