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Abstract Networks of elastoplastic springs (elasto-
plastic systems) have been linked to differential equa-

tions with polyhedral constraints in the pioneering pa-
per by Moreau (1974). Periodic loading of an elasto-
plastic system, therefore, corresponds to a periodic mo-

tion of the polyhedral constraint. According to Krejci
(1996), every solution of a sweeping process with a pe-
riodically moving constraint asymptotically converges
to a periodic orbit. Understanding whether such an

asymptotic periodic orbit is unique or there can be an
entire family of asymptotic periodic orbits (that form
a periodic attractor) has been an open problem since

then. Since suitable small perturbation of a polyhe-
dral constraint seems to be always capable to destroy
a potential family of periodic orbits, it is expected that

none of potential periodic attractor is structurally sta-
ble. In the present paper we give a simple example to
prove that even though the periodic attractor (of non-
stationary periodic solutions) can be destroyed by a lit-

tle perturbation of the moving constraint, the periodic
attractor resists perturbations of the physical parame-
ters of the mechanical model (i.e. the parameters of the
network of elastoplastic springs).
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1 Introduction

Networks of elastoplastic springs are increasingly used
in the modeling of the distribution of stresses in

elastopastic media [4,5], swarming of mobile router net-
works [2,14], and other physical phenomena. According
to Moreau [12], the stresses of springs of such a network
can be described by a differential inclusion (Moreau

sweeping process)

−y′(t) ∈ NC(t)(y(t)), y(t) ∈ Rm, (1)

where C(t) ⊂ Rm is a closed polyhedron that plays the
role of a constraint,

NC(x) =

{
{ζ ∈ Rn : 〈ζ, c− x〉 6 0, c ∈ C} , if x ∈ C,
∅, if x 6∈ C,

and the dimension m equals or smaller than the number
of springs in the network.

Periodicity of the constraint C(t) corresponds to pe-

riodicity of the external loading applied to the given
network of springs. The fundamental result by Kre-
jci [10, Theorem 3.14] says that for C(t) of the form
C(t) = C + c(t), where C is a convex closed bounded
set and t 7→ c(t) is a T -periodic vector-function, any
solution of sweeping process (1) converges to some T -
periodic regime. For a class of continuum elastoplastic

media subjected to a T -periodic loading the unique-
ness of T -periodic response is established in Frederick-
Armstrong [7, p. 159]. Sufficient conditions for the
uniqueness of the response in sweeping processes can
be drawn based on Adly et al [1]. The non-uniqueness
of the response for sweeping processes can of course be
easily designed, see Fig. 1a, where one gets a family of
periodic solutions by moving a rectangle back and forth
orthogonal to its sides. However, as shown at Fig. 1b,
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small perturbation of such a rectangle destroys the at-
tracting family of orbits of Fig. 1a leaving only a single
attracting solution.

 

(a) (b) 

Fig. 1 Sample trajectories (solid curves) of Moreau sweep-
ing process with a moving constraint (dashed rectangle) that
moves back and forth. The bold points are the initial condi-
tions of sample trajectories. The figure illustrates the type of
attractor (solid black curves) when (a) the moving constraint
is just a rectangle, (b) the moving constraint is a pentagon
with a corner that accumulates all the trajectories.

That is why a natural question arises:

whether or not any network of elastoplastic springs
can always be slightly perturbed in a way that de-
stroys any potential family of periodic orbits in the
respective sweeping process (1)?

  
Fig. 2 A one-dimensional network of 5 springs on 5 nodes
with one displacement-controlled loading. The circled digits
stand for indexes of nodes. The regular digits are the indexes
of springs. The thick bar is the displacement-controlled load-
ing l1(t). The stress-controlled loadings f1(t), ..., f5(t) are ap-
plied at nodes.

As uniqueness of the response lies in the core of re-
liability of modeling prediction (see e.g. [3,15]), the
above-stated question is not of merely academic value.
We introduce a simple example that answers this ques-
tion negatively. Specifically, we show that the cyclically
loaded network of elastoplastic springs of Fig. 2 leads to
a sweeping process with a family of attracting periodic
orbits that persists under perturbations of the physical
parameters of the network.

The paper is organized as follows. In the next section
we define a network of elastoplastic springs formally.
In section 3 we derive a sweeping process (1) that gov-
erns the quasi-static evolution of such a network. Sec-
tion 4 establishes a condition for periodic loading that

rules out the existence of stationary solutions (i.e. solu-
tions that are constant in time). Section 5 is based on
Moreau [12] and Gudoshnikov-Makarenkov [9]. It com-
piles a guide for closed-form computation of the quan-
tities required for construction of a sweeping process of
a given network of elastoplastic springs. This guide is
then used in Section 6 to construct the sweeping pro-
cess of the network of elastoplastic springs of Fig. 2. We
rigorously prove (Proposition 2 and Corollary 1) that
such a sweeping process admits a family of periodic or-
bits that persists under perturbations of the mechanical
parameters of the network.

2 A concise definition of a general network of
elastoplastic springs

We consider a network of m elastoplastic springs on n
nodes that are connected according to a directed graph
given by the n × m incidence matrix −DT . In other
words, the (i, j)-element of matrix DT is 1 or -1 ac-
cording to whether node i is the right end of spring j

or the left end. If none of these two cases takes place,
then the (i, j)-element of matrix DT is 0. The Hooke’s
coefficients a1, ..., am of the springs are arranged into an

m×m-matrix A = diag {a1, ..., am} . The elastic limits
[c−i , c

+
i ] of springs are used to introduce a parallelepiped

C ⊂ Rm as C = [c−1 , c
+
1 ] × ... × [c−m, c

+
m]. In addition

the network comes with a collection of stress-controlled
and displacement-controlled loadings {fi(t)}ni=1 and
{li(t)}qi=1 respectively. The stress-controlled loadings
are applied at the n nodes of the network and are sup-

posed to satisfy the equation of static balance

f1(t) + ...+ fn(t) = 0. (2)

With each displacement-controlled loading lk(t), k ∈
1, q, we associate a path of springs and nodes which
connects the left node Ik of the constraint k with its
right node Jk. In the simplest case, the coordinates
of the nodes in the path monotonically increase when
the path is followed from node Ik to node Jk, and

the length lj(t) is just the sum of the lengths of the
springs of the path (as it happens e.g. in Fig. 2). Such
a path can be described by a so-called incidence vec-
tor Rk ∈ Rm whose i-th component is 0 or 1 according
on whether spring i is a part of the path or not. For
example, the displacement-controlled loading l1(t) in
Fig. 2 admits a path of springs 1, 2, 3, 4 (whose inci-
dence vector is (1, 1, 1, 1, 0)T ) and a path of springs 1,
5, 4 (whose incidence vector is (1, 0, 0, 1, 1)T ) connect-
ing nodes ¬ and °. Displacement-controlled loadings

of more complex networks may admit a path where the
coordinates of the nodes do not increase monotonically
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(see e.g. [13, Fig. 2]). In general, if one follows a path
of a displacement-controlled loading lk(t) beginning its
left node Ik and heading towards its right node Jk, and
if ξ∗ and ξ∗∗ are two successive nodes on this way con-
nected through spring i, then i-th component of the
incident vector Rk equals −1 or 1 according to whether
ξ∗ > ξ∗∗ or ξ∗ < ξ∗∗, see Fig. 3.

  
Fig. 3 Illustration of the signs of the components of the in-
cidence vector Rk ∈ Rm. The dotted contour stays for the
chain of the springs associated with the vector Rk.

We assume that the displacement-controlled loadings
{li(t)}mi=1 are independent in the sense that

rank
(
DTR

)
= q. (3)

Mechanically, condition (3) ensures that the
displacement-controlled loadings don’t contradict
one another. For example, (3) rules out the situation
where two different displacement-controlled loadings

connect same pair of nodes.

3 A concise formulation of the sweeping process
of a general network of elastoplastic springs

In this section we follow Moreau [12] (see also
Gudoshnikov-Makarenkov [9]). If condition (2) holds,
then there exists a function h̄ : R→ Rm, such that

f(t) = −DT h̄(t). (4)

Furthermore, condition (3) ensures the existence of an
n× q−matrix L, such that

RTDL = Iq×q. (5)

Introducing

U =
{
x ∈ DRn : RTx = 0

}
, V = A−1U⊥, (6)

where U⊥ = {y ∈ Rm : 〈x, y〉 = 0, x ∈ U} , the space
V becomes an orthogonal complement of the space U
in the sense of the scalar product

(u, v)A = 〈u,Av〉 . (7)

Therefore, any element x ∈ Rm can be uniquely decom-
posed as

x = PUx+ PV x,

where PU and PV are linear (orthogonal in sense of (7))
projection maps on U and V respectively. Define

g(t) = PVDLl(t), (8)

h(t) = PUA
−1h̄(t), (9)

NA
C (x) = (10)

=

{
{ξ ∈ Rm : 〈ξ, A(c− x)〉 ≤ 0, c ∈ C} , if x ∈ C,
∅, if x 6∈ C,

Π(t) = A−1C + h(t)− g(t), (11)

Assuming that both f : R → Rn and l : R → Rq
are Lipschitz continuous, we get that h(t) and g(t) are
Lipschitz continuous as well, so that the function

y(t) = A−1s(t) + h(t)− g(t)

is Lipschitz continuous for any Lipschitz continuous t 7→
s(t).

Theorem 1 [12] (see also [9]) Assume that the net-

work of elastoplastic springs (D,A,C,R, f(t), l(t)) of
section 2 satisfies conditions (2) and (3). Assume that
h : R → Rm and g : R → Rm given by (8)-(9) are

Lipschitz continuous. Assume that safe load condition

(C +Ah(t)) ∩ U⊥ 6= ∅ (12)

holds on some time interval [0, T ]. Then, the function
s(t) = (s1(t), ..., sm(t)) defines the evolution of stresses
of the network (D,A,C,R, f(t), l(t)) for t ∈ [0, T ] if
and only if the function

y(t) = A−1s(t) + h(t)− g(t)

satisfies the differential inclusion (called sweeping pro-
cess)

−ẏ ∈ NA
Π(t)∩V (y), for a.a. t ∈ [0, T ], (13)

y(0) ∈ Π(0) ∩ V. (14)

It remains to note that, for Lipschitz continuous h :
R→ Rm and g : R→ Rm, sweeping process (2)-(3) has
a unique Lipschitz-continuous solution for any initial
condition (see e.g. Kunze and Monteiro Marques [11,
sect. 3]).
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4 The shakedown condition

The following conditions will rule out the existence of
constant solutions.

Proposition 1 [9, Proposition 3] Assume that condi-
tions of Theorem 1 hold. If

‖A−1c− −A−1c+‖A < ‖g(t1)− g(t2)‖A , (15)

for some 0 ≤ t1 < t2, where

‖x‖A =
√
〈x,Ax〉,

c− = (c−1 , ..., c
−
m)T ,

c+ = (c+1 , ..., c
+
m)T .

then sweeping process (13) doesn’t have any solutions
that are constant on [t1, t2].

Proposition 1 is proved in Gudoshnikov-Makarenkov
[9], but since [9] has not been published yet, we include
a proof of Proposition 1 in the Appendix.

Remark 1 Note, the left-hand-side in inequality (15)

can be computed from

‖A−1c− −A−1c+‖2A =
〈
c− − c+, A−1(c− − c+)

〉
.

5 A step-by-step guide to compute the

quantities of the sweeping process from a
network of elastoplastic springs

In this section we again follow Moreau [12], but

use notations and additional properties as estab-
lished in Gudoshnikov-Makarenkov [9]. In particular,
[9, Lemma 1] and [9, formula (49)] say that

dimU = n− q − 1, (16)

dimV = m− n+ q + 1, (17)

provided that (3) is satisfied.

Step 1. The matrix M. According to (16), there
should exist an n× (n− q − 1)−matrix M such that

RTDM = 0 and rank(DM) = n− q − 1 (18)

which allows to introduce Ubasis as

Ubasis = DM. (19)

Step 2. The matrix Vbasis. According to (6), Vbasis
is an arbitrary matrix of m−n+q+1 = dimV linearly
independent columns that solves

(Ubasis)
TAVbasis = 0. (20)

Step 3. The matrix D⊥. Define D⊥ to be an m ×
(m−n+1)−matrix of full rank that solves the equation

(D⊥)TD = 0(m−n+1)×(m−n+1). (21)

Step 4. Other quantities. Using Steps 2 and 3, we
can define an (m− n+ q + 1)× q-matrix L̄ as

L̄ =

((
RT

(D⊥)T

)
Vbasis

)−1(
Iq×q

0(m−n+1)×q

)
. (22)

It turns out that formula (8) can now be rewritten in
closed-form as

g(t) = VbasisL̄l(t). (23)

To account for all possible functions h(t) from (9) we
will simply take h(t) as

h(t) = UbasisH(t), (24)

where H(t) is an arbitrary Lipschitz continuous control
input. It is possible to compute H(t) in terms of f(t),
but it is not of added value here.

Finally, for Π(t) ∩ V we have

Π(t) ∩ V =
m⋂
i=1

Vi(t), (25)

with

Vi(t) =
{
x ∈ V : c−i +aihi(t)≤
≤〈ni, Ax+Ag(t)〉≤ c+i +aihi(t)

}
,

(26)

where ni = PV ei, and ei ∈ Rm is the vector with 1
in the i-th component and zeros elsewhere (standard
basis vector in Rm). From ei = PV ei + PUej , one has
ei − ni ∈ U and since

x ∈ U if and only if

(
RT

(D⊥)T

)
x = 0,

the following property holds(
RT

(D⊥)T

)
ei =

(
RT

(D⊥)T

)
ni, i ∈ 1,m.

Therefore, ni, i ∈ 1,m, can be computed as

ni = Vbasisēi,

ēi =

((
RT

(D⊥)T

)
Vbasis

)−1(
RT

(D⊥)T

)
ei.

(27)
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6 The sweeping process of the network of
elastoplastic springs of Figure 2

The network of elastoplastic springs of Fig. 2 can be
described by

Dξ =


−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 −1 0 1 0



ξ1
ξ2
ξ3
ξ4
ξ5

 , R =


1
1
1
1
0

 , (28)

along with some 5 × 5 diagonal matrix A of Hooke’s
coefficients and some intervals [c−i , c

+
i ], i ∈ 1, 5, of elas-

ticity bounds.

Formulas (16) and (17) lead to

dimU = 5− 1− 1 = 3,
dimV = 5− 5 + 1 + 1 = 2.

Following Step 3 of section 5, we compute dimensions
of matrix D⊥ as 5× (5− 5 + 1) = 5× 1 and the 5× 1-

dimensional full rank solution of (21) is

D⊥ = (0, 1, 1, 0,−1)T . (29)

Using (22), (23), and (27) we get

g(t) = Vbasis

((
RT

(D⊥)T

)
Vbasis

)−1(
1
0

)
l(t), (30)

ni = Vbasis

((
RT

(D⊥)T

)
Vbasis

)−1(
1 1 1 1 0
0 1 1 0 −1

)
ei. (31)

Note, formulas (30) and (31) hold for any ai, i ∈ 1, 5,
and any c−i , c

+
i , i ∈ 1, 5. Therefore, we see from for-

mulas (30) and (31) that n1 ‖ g(t) and n4 ‖ g(t) for

any values of the physical parameters of the network of
Fig. 2 (the shortcut “‖” stays for “parallel”). However,
at this point we don’t know whether or not the nor-
mals n1 and n4 have anything to do with the sides of
the shape Π(t)∩V given by (25), as it may happen that
the constraints of (25) provided by n1 and n4 become

redundant for a particular h(t), see Fig. 4.

Proposition 2 There exist an open set of the param-
eters ai, c

−
i , c

+
i , i ∈ 1, 5, and an open set of Lipschitz-

continuous functions H : [0, T ] 7→ R3, for which the
vectors n1 and n4 are the normal vectors of the two op-
posite sides of the two-dimensional shape Π(t)∩V and

the shape Π(t) ∩ V is a trapezoid. In particular, this
open set of the parameters contains the point

c−i = −1, c+i = 1, ai = 1,

H(t) ≡ (−0.5,−0.8,−1)T .
(32)

Here [0, T ] is an arbitrary chosen domain of the func-
tions t 7→ H(t).

n5 

n4 n4 

n1 n1 

n2 

 

n3 

n5 

n3 

n2 

Fig. 4 Possible 2-dimensional shape Π(t)∩V (shaded trian-
gle) as defined by (25)-(26) for the network of elastoplastic
springs given by (28). The vectors ni and −ni indicate the

half-planes
{
x ∈ V : 〈ni, Ax+Ag(t)〉 ≤ c+i + aih(t)

}
and{

x ∈ V : c−i + aih(t) ≤ 〈ni, Ax+Ag(t)〉
}

respectively. The

figure illustrate a hypothetic choice of h(t) for which nor-
mal vectors n1 and n4 are not normal vectors of any of the
sides of Π(t) ∩ V , even though n1 and n4 participate in the
formula (26).

Proof. Without loss of generality we can consider

g(t) ≡ 0. Indeed, since g(t) acts along V , g(t) sim-
ply translates Π(t) ∩ V within V , so that g(t) doesn’t
change the shape of Π(t) ∩ V .

The 5×3−matrix M that solves (18) and the respective
5× 3−matrix (19) are found as

M =


0 0 0
1 0 0

0 1 0
0 0 1
0 0 0

 , Ubasis =


1 0 0
−1 1 0
0 −1 1
0 0 −1
−1 0 1

 , (33)

so that (24) and (33) yield

h(t) ≡ (−0.5,−0.3,−0.2, 1,−0.5)T

for H(t) given by (32).

A simple basis Vbasis that solves (20) can be taken as

Vbasis =


1/a1 0
1/a2 −1/a2
1/a3 −1/a3
1/a4 0

0 1/a5

=


1 0
1 −1
1 −1
1 0
0 1

, (34)
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that we plug to (31) and obtain the following normal
vectors for the parameters (32)

n1 = n4 =
1

d
(−3,−1,−1,−3,−2)

T
,

n2 = n3 =
1

d
(−1,−3,−3,−1, 2)

T
,

n5 =
1

d
(−2, 2, 2,−2,−4)

T
,

d = −8.

(35)

Substituting our findings for h(t) and ni into formula
(25) we conclude that for x ∈ V one has x ∈ Π(t) ∩ V
if and only if
−1− 0.5 ≤ 〈n1, x〉 ≤ 1− 0.5,
−1− 0.3 ≤ 〈n2, x〉 ≤ 1− 0.3,
−1− 0.2 ≤ 〈n3, x〉 ≤ 1− 0.2,
−1 + 1 ≤ 〈n4, x〉 ≤ 1 + 1,
−1− 0.5 ≤ 〈n5, x〉 ≤ 1− 0.5.

(36)

In order to visualize the shape of the polyhedron
Π(t) ∩ V on the plane, we will make the changes of
the variables

x = Ṽbasisv, v ∈ R2 (37)

where Ṽbasis is an orthogonal basis in V. To come up

with an orthogonal basis Ṽbasis we will amend the first
column of basis Vbasis obtaining

Ṽbasis =


1/a1 0

a2a
2
3/(a

2
2a

2
3 + a22a

2
5 + a23a

2
5) −1/a2

a22a3/(a
2
2a

2
3 + a22a

2
5 + a23a

2
5) −1/a3

1/a4 0
a5(a22 + a23)/(a22a

2
3 + a22a

2
5 + a23a

2
5) 1/a5

,
that yields

Ṽbasis =


1 0

1/3 −1
1/3 −1
1 0

2/3 1

 , (38)

for parameters (32). Making the change of the variables
(37)-(38) in (36) and deleting redundant inequalities,
we get

normal n1 : −1.5 ≤ v1 ≤ 0.5

normal n2 : −1.3 ≤ (1/3)v1 − v2 ≤ 0.7
normal n3 : −1.2 ≤ (1/3)v1 − v2 ≤ 0.8,
normal n4 : 0 ≤ v1 ≤ 2,
normal n5 : −1.5 ≤ (2/3)v1 + v2 ≤ 0.5.

(39)

 

1 

v1 

v2 

1 

1 

1 2 

g(t) 

Fig. 5 The shaded region stays for the set of (v1, v2) given by
inequalities (39). The dotted lines denote the sets of (v1, v2)
where equalities of (39) are attained (the dotted line v1 = 0
coincides with the vertical axis). The subregion of the shaded
region that is textured in stripes is the family of T -periodic
solutions of sweeping process (13)-(14) (discussed in Corol-
lary 1).

Fig. 5 and its formulas (39) illustrate that (i) the two

constraints from (25) corresponding to normal vec-
tors n1 and n4 constitute the opposite sides of shape
Π(t)∩ V , (ii) the shape Π(t)∩ V is a trapezoid. These
properties persist under small perturbations of the pa-

rameters (32) because same inequalities of (36) will stay
redundant. The proof of the proposition is complete.

ut

In order to obtain the existence of a structurally sta-
ble family of non-stationary periodic solutions it now
remains to apply the displacement-controlled loading

(30) of sufficiently large amplitude. We will use Proposi-
tion 1 to give an estimate for the required amplitude. In
the case of a 5-spring network, condition (15) of Propo-
sition 1 takes the form
5∑
i=1

1

ai

(
c+i − c

−
i

)2
<
∥∥VbasisL̄∥∥2A · (l(t1)− l(t2))

2
. (40)

And in the case of parameters (32), formula (40) further
reduces to

5∑
i=1

22 < ‖n1‖2 · (l(t1)− l(t2))
2
,

where n1 is given by (35), or simply

160

3
< (l(t1)− l(t2))

2
.

Since
√

160
3 ≈ 7.3, we introduce l(t) as follows

l(t) =

{
t, if t ∈ [0, 8],
−t+ 16, if t ∈ [8, 16],

(41)
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extended to [0,∞) by 16-periodicity.

Corollary 1 Consider the network of elastoplastic
springs of Fig. 2 with the parameters (32). Assume that
the displacement-controlled loading is given by (41), so
that T = 16. Then, for any parameters ai, c

−
i , c

+
i ,

i ∈ 1, 5, and any Lipschitz-continuous functions T -
periodic H : [0, T ] 7→ R3, that are close to those in (32),
and for any Lipschitz-continuous T -periodic l(t) that is
close to (41), the sweeping process (13)-(14) admits a
structurally stable family of non-stationary T -periodic
solutions (created by the parallel sides of Fig. 5 and
highlighted in Fig. 5 with a striped rectangle). Accord-
ingly, the mechanical model of Fig. 2 admits a struc-
turally stable family of co-existing stress distributions
that evolves T -periodically in time.

7 Conclusions

In this paper we showed that sweeping processes of net-
works of elastoplastic springs (elastoplastic systems) in-
herit a designated structure that restrict possible dy-
namic transitions. Specifically, we gave an example of

an elastoplastic system whose sweeping process admits
a structurally stable family of non-stationary periodic
solutions. Specifically, the structure given by the elasto-

plastic system locks the family of periodic solutions of
the associated sweeping process, so that it persists un-
der all such small perturbations of the sweeping process
that come from small perturbations of the physical pa-

rameters of the elastoplastic system.
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9 Appendix

The following proof is taken from Gudoshnikov-
Makarenkov [9] (see Proposition 3), which is not yet
published.

Proof of Proposition 1. The claim follows by showing

that
(Π(t1) ∩ V ) ∩ (Π(t2) ∩ V ) = ∅

Since h(t) ∈ U , then, for any t ∈ [t1, t2],

Π(t)∩V =
(
A−1C + h(t)− g(t)

)
∩V ⊂ PVA−1C−g(t),

and it is sufficient to prove that the sets

PVA
−1C−g(t1) and PVA

−1C−g(t2) don’t intersect.

The latter will hold, if the diameter of the set PVA
−1C

is smaller than the distance between g(t1) and g(t2),
which fact will now be established.

Since PV is the orthogonal projection in the sense of
the scalar product (x, y)A = 〈x,Ay〉 , we have (see e.g.
Conway [6, Theorem 2.7 b)])

‖PV x‖A ≤ ‖x‖A, x ∈ Rm.

Therefore, for any c1, c2 ∈ C,∥∥PV (A−1c1 −A−1c2)∥∥A ≤ ∥∥A−1c1 −A−1c2∥∥A ≤
≤ ‖A−1c− −A−1c+‖A < ‖g(t1)− g(t2)‖A .

The proof of the proposition is complete. ut
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