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Abstract. Building upon the technique that we developed earlier for per-

turbed sweeping processes with convex moving constraints and monotone vec-
tor fields (Kamenskii et al, Nonlinear Anal. Hybrid Syst. 30, 2018), the present

paper establishes the conditions for global asymptotic stability of global and

periodic solutions to perturbed sweeping processes with prox-regular moving
constraints. Our conclusion can be formulated as follows: closer the constraint

to a convex one, weaker monotonicity is required to keep the sweeping pro-

cess globally asymptotically stable. We explain why the proposed technique
is not capable to prove global asymptotic stability of a periodic regime in a

crowd motion model (Cao-Mordukhovich, DCDS-B 22, 2017). We introduce
and analyze a toy model which clarifies the extent of applicability of our result.

1. Introduction. Let t 7→ C(t) be a set valued map which takes nonempty closed3

values and f : R× Rn → Rn. Then the corresponding perturbed Moreau sweeping4

process is given as5

−ẋ ∈ N (C(t), x) + f(t, x) (1)

where N(C(t), ·) is the proximal normal cone to the set C(t), given by

N(C, x) = {v ∈ Rn : x ∈ proj(x+ αv,C) for some α > 0}
and proj(x,C) is the set of points of C closest to the point x.6

We say an absolutely continuous function x is a solution of the sweeping process7

(1) on an interval I ⊂ R if x(t) ∈ C(t) for each t and ẋ(t) satisfy (1) for a.e. t ∈ I.8

Due to challenges from crowd motion modeling (Maury-Venel [21]), the existence9

and uniqueness of a solution to nonconvex sweeping processes have being intensively10

studied. The main problem of weakening the convexity of the set is the lack of11

continuity of the map x 7→ proj(x,C) in general. Therefore, the concept of prox-12

regularity came to the study of sweeping processes. A set C ⊂ Rn is called η-13

prox-regular if, for any x ∈ C and any v ∈ N(C, x) such that ‖v‖ < 1, one has14

x = proj(x+ηv, C). We note that, for η-prox-regular sets, the proximal normal cone15

coincides (see Edmond-Thibault [12], Rockafellar-Wets [24]) with both the limiting16
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normal cone (also known as Mordukhovich normal cone, see [12]) and Clarke normal17

cone.1

There has been a significant interest in developing the qualitative theory and con-2

trol methods for sweeping processes with prox-regular constraints lately. Colombo-3

Goncharov [9], Benabdellah [3], Colombo and Monteiro Marques [10], and Thibault4

[27] studied the existence and uniqueness of solutions to non-perturbed sweeping5

processes with nonconvex prox-regular sets. Existence and uniqueness for perturbed6

sweeping processes is considered in Edmond-Thibault [11], [12]. A sweeping process7

with prox-regular set values appeared in the context of crowd motion modeling in8

Maury-Venel [21] along with numerical simulations. Cao-Mordukhovich [6] illustrate9

their result for nonconvex sweeping process using crowd motion model of traffic flow10

in a corridor. Edmond-Thibault [12], Cao-Mordukhovich [7] studied optimal con-11

trol problems related to a nonconvex perturbed sweeping process. Optimal control12

problem of convex sweeping process which is coupled with a differential equation13

was studied in Adam-Outrata [1] and the possibility of weakening the convexity to14

prox-regularity is mentioned there.15

The problem of the existence of periodic solutions in sweeping processes with con-16

vex constraint was of interest lately, see e.g. Krejci [16, Theorem 3.14], Castaing17

and Monteiro Marques [8, Theorem 5.3], Kunze [17], Kamenskii-Makarenkov [15],18

Kamenskii et al [14], and references therein. When the sweeping process comes19

as a model of an elastoplastic material (see e.g. Bastein et al [2]), the periodi-20

cally changing constraint corresponds to the cyclic loading applied to the material21

(see Frederick-Armstrong [13], Polizzotto [23]). Much less is known for sweeping22

processes with nonconvex constraints (often termed nonconvex sweeping processes).23

In this paper we investigate stability of both arbitrary global solution and a periodic24

solution of the sweeping process (1) with prox-regular set-valued function C(t). The25

existence of globally exponentially stable global and periodic solutions to (1) when26

C(t) is convex-valued has been recently established in Kamenskii et al [14]. The27

central setting of [14] is the strong monotonicity of f in the sense that28

〈f(t, x1)− f(t, x2), x1 − x2〉 ≥ α‖x1 − x2‖2, for all t ∈ R, x1, x2 ∈ Rn, (2)

for some fixed α > 0. A similar framework has been earlier used by Heemels-29

Brogliato [5], Brogliato [4] and Leine-van de Wouw [18] to prove incremental sta-30

bility of the sweeping process (1) with time-independent convex constraint. An31

important breakthrough in establishing asymptotic stability of sweeping process32

(1) with a prox-regular constraint C(t) has been made in Tanwani et al [26] for33

f(t, x) = −Ax under the assumption that ẋ = Ax admits a quadratic Lyapunov34

function. Our assumption (2) can be viewed as an analogue of the assumption of35

[26]. Indeed, the assumption (2) implies that the differential equation −ẋ = f(t, x)36

admits a Lyapunov function V (x) = ‖x‖2 with V̇ (x) ≤ −2αV (x).37

The paper is organized as follows. The next section is devoted to the proof of38

the main result (Theorem 2.4), which gives conditions for the global asymptotic39

stability of a periodic solution to (1). The structure of the proof is motivated by40

the method of our paper [14]. Indeed, the existence of a global solution to (1) is41

justified by following the lines of the proof of Theorem 2.1 in [14] since the proof is42

independent of the convexity of the set (the proof of Theorem 2.2 is still given in43

Appendix for completeness). At the same time, additional assumptions, compared44
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to [14] are still required. First of all, in order to use the hypomonotonicity of the45

proximal normal cone, we need f(·, x) to be globally bounded for each x ∈
⋃
t∈R

C(t),1

additionally to the assumptions of Theorem 2.2 in [14]. Furthermore, to obtain2

contraction of solutions to sweeping process (1), a lower bound of constant α in (2)3

depending on prox-regularity constant of the set C(t) is required (Theorem 2.3).4

Section 3 is devoted to a toy model that illustrate the main result. Though global5

stability of the sweeping process of crowd motion model of Maury-Venel [21] has6

been the main driving force behind this paper, it still remains an open question as7

we discuss in the Appendix.8

2. The main result. Let C : R ⇒ Rn be a nonempty closed η-prox-regular set-9

valued function with Lipschitz continuity10

dH(C(t1), C(t2)) ≤ LC |t1 − t2|, for all t1, t2 ∈ R, and for some LC ≥ 0, (3)

where dH(C1, C2) is the Hausdorff distance between two closed sets C1, C2 ⊂ Rn11

given by12

dH(C1, C2) = max

{
sup
x∈C2

dist(x,C1), sup
x∈C1

dist(x,C2)

}
(4)

with dist(x,C) = inf {|x− c| : c ∈ C} . And let f : R × Rn → Rn be such that for13

some Lf > 014

‖f(t1, x1)− f(t2, x2)‖ ≤ Lf‖t1 − t2‖+ Lf‖x1 − x2‖, (5)

for all t1, t2 ∈ R, x1, x2 ∈ Rn.15

Here we will be using the hypomonotonicity of the proximal normal cone to η-prox-
regular sets. A set-valued mapping Φ : Rn ⇒ Rn is called hypomonotone on O ⊂ Rn
(Rockafellar-Wets [24, §12.28]), if there exists σ > 0 such that the mapping Φ + σI
is monotone on Rn, i.e.

〈v − v′, x− x′〉 ≥ −σ‖x− x′‖, v ∈ Φ(x), v′ ∈ Φ(x′), x, x′ ∈ O,

see also Mordukhovich [20, §5.1.1]. Define the truncated proximal normal cone
Nη(C, x) as

Nη(C, x) =

{
N(C, x) ∩Bη(0), if x ∈ C,
∅, if x 6∈ C.

As established in Poliquin et al [22], if C ⊂ Rn is η-prox-regular, then the truncated16

mapping x⇒ Nη(C, x) is hypomonotone on C and, therefore,17

〈v − v′, x− x′〉 ≥ −‖x− x′‖2 (6)

for v ∈ N(C, x), v′ ∈ N(C, x′) such that ‖v‖, ‖v′‖ ≤ η.18

We will be using the following version of Gronwall-Bellman lemma Trubnikov-Perov19

[28, Lemma 1.1.1.5] (see also Kamenskii et al [14, lemma 6.1]) in our proofs.1

Lemma 2.1. (Gronwall-Bellman) Let an absolutely continuous function a :
[τ, T ]→ R satisfy

ȧ(t) ≤ λa(t) + b(t), for a.e. t ∈ [τ, T ],
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where τ ≤ T and λ ∈ R are constants, and b : [τ, T ]→ R is an integrable function.
Then

a(t) ≤ eλta(τ) +

t∫
τ

eλ(t−s)b(s)ds, for all t ∈ [τ, T ].

Theorem 2.2. Let C : R ⇒ Rn be a Lipschitz continuous function with constant2

LC and let C(t) be nonempty, closed and η-prox-regular for each t ∈ R. Let f :3

R×Rn → Rn satisfy Lipschitz condition (5). Then the sweeping process (1) has at4

least one solution defined on the entire R.5

The proof follows same steps as in the proofs of Theorem 2.1 and Theorem 2.2 of6

[14]. But we include the proof in the Appendix for completeness of the paper.7

Theorem 2.3. Let the conditions of Theorem 2.2 hold and LC ≥ 0 is as given by8

Theorem 2.2. Let9

‖f(t, x)‖ ≤Mf , for all t ∈ R, x ∈
⋃
t∈R

C(t), (7)

where Mf ≥ 0 is a fixed constant. Assume that f satisfies the strong monotonicity10

assumption (2) with11

α >
LC +Mf

η
. (8)

Then the sweeping process (1) has a unique solution t 7→ x(t), defined on R. Fur-12

thermore the global solution 7→ x(t) is globally exponentially stable.13

A similar to (8) condition has been earlier offered in Tanwani et al [26, Formula (3.5)]14

for the case f(t, x) = −Ax. It says that closer η to ∞ (closer the η-prox-regular15

set to a convex set) larger the interval of eligible α is. In particular, the case16

η =∞ recovers the convex case, where it is sufficient to assume that α > 0 (see [14,17

Theorem 2.2]).18

Proof. We note that by Edmond-Thibault [12, Proposition 1] for a solution x of (1)
with the initial condition x(τ) = x0,

‖ẋ(t) + f(t, x(t)‖ ≤ ‖f(t, x(t)‖+ LC , for t > τ.

Then with uniform boundedness of f we have1

‖ẋ(t) + f(t, x(t)‖ ≤Mf + LC , for t > τ. (9)

Now let x1, x2 be two solutions of (1) with initial conditions x1(τ), x2(τ) ∈ C(τ).
Let t ≥ τ such that x1(t), x2(t) are defined on [t, τ ] and both ẋ1(t) and ẋ2(t) exist.
Since

−ẋ1(t)− f(t, x1(t)) ∈ N(C(t), (x1(t)), −ẋ2(t)− f(t, x2(t)) ∈ N(C(t), (x2(t)),

by hypomonotonicity condition (6) of the normal cone and by (9) we have〈
−η

Mf + LC
(ẋ1(t) + f(t, x1(t)))− −η

Mf + LC
(ẋ2(t) + f(t, x2(t))), x1(t)− x2(t)

〉
≥ −‖x1(t)− x2(t)‖2.

Then

‖x1(t)− x2(t)‖2− η

Mf + LC
〈f(t, x1(t))− f(t, x2(t)), x1(t)− x2(t)〉

≥ η

Mf + LC
〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉,
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and by (2),
η

Mf + LC
〈ẋ1(t)−ẋ2(t), x1(t)−x2(t)〉 ≤ ‖x1(t)−x2(t)‖2− ηα

Mf + LC
‖x1(t)−x2(t)‖2.

Thus we have

〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉 ≤
(
Mf + LC

η
− α

)
‖x1(t)− x2(t)‖2,

i.e.
d

dt
‖x1(t)− x2(t)‖2≤

(
2(Mf + LC)

η
− 2α

)
‖x1(t)− x2(t)‖2.

Let ᾱ = 1
η (Mf + LC − ηα). Then by Gronwall-Bellman lemma (2.1), for t > τ ,

‖x1(t)− x2(t)‖2≤ e2ᾱ(t−τ)‖x1(τ)− x2(τ)‖2,
and so2

‖x1(t)− x2(t)‖≤ eᾱ(t−τ)‖x1(τ)− x2(τ)‖, for t > τ. (10)

Let x(t) be a global solution of (1) which exists by Theorem 2.2. Then (8) guarantees3

that ᾱ < 0 and that x(t) is exponentially stable. It remains to observe that x(t) is4

the only global solution. Indeed, let x̄(t) be another global solution. Then, for each5

t ∈ R we can pass to the limit as τ → −∞ in (10), obtaining ‖x(t)− x̄(t)‖ ≤ 0, so6

x = x̄.7

Now we give a theorem about periodicity of the unique global solution established8

in Theorem 2.3. The proof follows the lines of Castaing and Monteiro Marques [8,9

Theorem 5.3], but we include such a proof for completeness.10

Theorem 2.4. The unique global solution x0 which comes from Theorem 2.3 is11

T-periodic, if both maps t 7→ C(t) and t 7→ f(t, x) are T-periodic.12

Proof. Note that a 7→ xa(T ) is a contraction mapping from C(0) to C(T ) = C(0),
where xa is the solution of (1) on [0, T ] with initial condition xa(0) = a ∈ C(0).
Indeed, by (10), for a, b ∈ C(0),

‖xa(T )− xb(T )‖≤ eᾱT ‖a− b‖
where ᾱ < 0.13

Then, since a 7→ xa(T ) is continuous on C(0) (see Edmond-Thibault [12, Proposi-14

tion 2]), by the contraction mapping principle on C(0) (see Rudin [25, p.220]), there15

exists x̄ : [0, T ]→ C(0) such that x̄(0) = x̄(T ) and satisfies (1) on [0, T ]. Since both16

t 7→ C(t) and t 7→ f(t, x) are T -periodic, we can extend x̄ to a T -periodic solution17

defined on R by T -periodicity.18

Since the global solution x0 given by Theorem 2.3 is unique, we have the result.19

3. A toy model. In this section we consider an example where an r-prox-regular20

set is obtained as the complement of an ellipse to a circle, and where the strongly21

monotone vector field is just linear. We believe we introduce the simplest situation22

where the r-prox-regular set under consideration approaches a convex set when a23

parameter reaches certain critical value (being the height of the ellipse in our case).24

We call our example a toy model, because it seems to be of a benchmark value.25

Let the vector field f : R× R2 → R2 be given by1

f(t, x) := αx, t ∈ R, x ∈ R2, (11)
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where α > 0 is a fixed constant. We define the moving set C(t) using a function2

b ∈ C1(R,R) which is bounded below by β ≥ 1 and admits a global Lipschitz3

constant Lb, i.e.4

|b(t1)− b(t2)| ≤ Lb|t1 − t2|, for all t1, t2 ∈ R. (12)

Define5

C(t) := B̄1

⋂
S(t), S(t) =

{
x ∈ R2 : x2

1 +
x2

2

b(t)2
≥ 1

}
. (13)

where B̄1 is the closed ball of radius 1 and centered at (−1.5, 0).

 

 

1.5 1.0 2.5 1.0 2.0 0 

x2 

x1 

b(t) 

= C (t) 

(p(t),q(t)) 
b(s) 

(p(s),q(s)) 

1.5 1.0 1.0 2.0 0 

x2 

x1 

(p0,q0) 
1.0 

2.5 

Figure 1. Illustrations of the notations of the example. The
closed ball centered at (−1.5, 0) is B̄1 and the white ellipses are
the graphs of S(t) for different values of the argument. The arrows
is the vector field of ẋ = −αx.

6

In order to apply Theorem 2.3, we will now analyze: i) strong monotonicity and7

uniform boundedness of f(t, x), ii) Lipschitz continuity of C(t), iii) prox-regularity8

of C(t).9

i) The monotonicity and boundedness of f(t, x). Since 〈f(t, x) − f(t, y), x − y〉 =10

〈αx−αy, x− y〉 = α‖x− y‖2, f is strongly monotone with constant α and bounded11

on B̄1 ⊃ C(t) by Mf = 2.5α.12

13

ii) Lipschitz continuity of C(t). The boundary ∂B̄1 of B̄1 intersects the boundary
∂S(t) of S(t) at a unique point (p(t), q(t)) with q(t) ≥ 0. Since

dH(C(t), C(s)) ≤ ‖(p(t), q(t))− (p(s), q(s))‖
(see Fig. 1), we now aim at computing the Lipschitz constants of functions p and q.14

Since b ∈ C1(R, [1,∞)), the implicit function theorem (see e.g. Zorich [29, Sec. 8.5.4,15

Theorem 1]) ensures that p and q are differentiable on R. Therefore, by the mean-16

value theorem (see e.g. Rudin [25, Theorem 5.10]),1

dH(C(t), C(s)) ≤ ‖(p′(tp), q′(tq))‖ · |t− s|, (14)

where tp, tq are located between t and s. To compute (p′(tp), q
′(tq)), we use the for-

mula for the derivative of the implicit function (Zorich [29, Sec. 8.5.4, Theorem 1])

(p′(t), q′(t))T = −
(
F ′(p,q)

)−1

(p(t), q(t), t)F ′t (p(t), q(t), t),
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applied with

F (p, q, t) =

 (p+ 1.5)2 + q2 − 1

p2 +
q2

b(t)2
− 1

 .

Since

F ′(p,q)(p, q, t) = 2

(
p+ 1.5 q

p
q

b(t)2

)
, F ′t (p, q, t) =

(
0

−2b(t)−3b′(t)q2

)
,

we get the following formula for the derivatives p′ and q′(
p′(t)
q′(t)

)
= − 1

1

b(t)2
(p(t) + 1.5)q(t)− p(t)q(t)

(
q(t)

−(p(t) + 1.5)

)
1

b(t)3
q(t)2b′(t).

Noticing that the properties 1 + p(t) > 0 and −p(t)b(t)2 > 0 imply

1

b(t) · (p(t) + 1.5− p(t)b(t)2)
≤ 1

β · (−p(t)b(t)2)
≤ 1

β3|p0|
,

we conclude

|p′(t)| ≤ Lb
β3|p0|

, |q′(t)| ≤ Lb
β3|p0|

,

where p0 is such that p(t) ≤ p0 for all t ∈ R. Since b(t) ≥ 1, we can take p0 as the
abscissa of the intersection of ∂B̄1 with a unit circle centered at 0, i.e.

p0 = −0.75,

see Fig. 1. Substituting these achievements to (14), we conclude

dH(C(t), C(s)) ≤ 4Lb
3β3
|t− s|,

which gives LC =
4Lb
3β3

for the Lipschitz constant of t 7→ C(t).2

3

iii) The constant η in η-prox-regularity of C(t). We recall that C(t) is η-prox-regular4

if C(t) admits an external tangent ball with radius smaller than η at each x ∈ ∂C(t)5

(see Poliquin et al [22], Maury and Venel [21], Colombo and Monteiro Marques [10]).6

The points of ∂C(t)\∂S(t) admit an external tangent ball of any radius. Therefore,7

to find η, which determines η-prox-regularity of C(t), it is sufficient to focus on the8

points of ∂C(t) ∩ ∂S(t). That is why, for a fixed t ∈ R, we can choose η as the9

minimum of the radius of curvature through x ∈ ∂C(t) ∩ ∂S(t), see e.g. Lockwood10

[19, p. 193].11

Let us fix t ∈ R and use the parameterization P (φ) = (− cosφ, b(t) sinφ), φ ∈12 [
−π2 ,

π
2

]
, for the left-hand side of the ellipse x2 + y2

b(t)2 = 1. Then, the radius of13

curvature R(φ) of ∂C(t) ∩ ∂S(t) at P (φ) is (see Lockwood [19, p. xi, p. 21])14

R(φ) =
1

b(t)
(sin2 φ+ b(t)2 cos2 φ)

3
2 =

1

b(t)

(
b(t)2 + (1− b(t)2) sin2(φ)

) 3
2 .

Observe that R decreases when |φ| increases from 0 to
π

2
.1

Therefore, the minimum curvature of ∂C(t) ∩ ∂S(t) is attained at the point
(p(t), q(t)) as defined in ii). Let φ0 be such that P (φ0) = (p(t), q(t)) and let φ∗ > 0
be such that the second component P2(φ∗) of P (φ∗) equals 1, which exists because
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1.5 1.0 2.5 1.0 2.0 0 

x2 

x1 

1.0 

0 * 

Figure 2. The parameters φ0 and φ∗.

b(t) ≥ 1 (see Fig. 2). Since q(t) ≤ 1, we have φ0 ≤ φ∗, and since φ→ R(φ) decreases
as |φ| increases, we have

R(φ0) ≥ R(φ∗).

Since P2(φ∗) = 1 implies b(t) sinφ∗ = 1, we have sinφ∗ =
1

b(t)
and so2

R(φ0) ≥ 1

b(t)

(
1

b(t)2
+ b(t)2

(
1− 1

b(t)2

)) 3
2

=
1

b(t)
· (1 + b(t)4 − b(t)2)

3
2

b(t)3
=

=
(
b(t)−

8
3 + b(t)

4
3 − b(t)− 2

3

) 3
2 ≥

(
b(t)

4
3 − b(t)− 2

3

) 3
2

.

Noticing that the function b 7→
(
b

4
3 − b− 2

3

) 3
2

increases on [1,∞), we finally conclude

R(φ0) ≥
(
β

4
3 − β− 2

3

) 3
2

.

Therefore, C(t) is η-prox-regular with η =
(
β

4
3 − β− 2

3

) 3
2

.3

Substituting the values of Mf , LC , and η into formula (8), we get the following4

statement.5

Proposition 1. Let α > 0 be an arbitrary constant and b ∈ C1(R, [β,∞)) with
some β ≥ 1 and Lipschitz condition (12). If

α >

4Lb
3β3

+
5

2
α(

β
4
3 − β− 2

3

) 3
2

,

then, the global solution6

x(t) = (−1, 0), t ∈ R,
of the sweeping process (1) with C(t) and f(t, x) given by (13) and (11), is globally7

asymptotically stable.8

As noticed earlier, b 7→
(
b

4
3 − b− 2

3

) 3
2

increases on [1,∞), so that the condition of9

Proposition 1 is a lower bound on β.1
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4. Conclusion. In this paper we proved the existence of at least one global solution2

to a nonconvex sweeping process with Lipschitz perturbations. The uniqueness and3

exponential stability of the solution follows when the vector field of the sweeping4

process is uniformly bounded, strongly monotone and the prox-regularity constant5

of the moving constraint is not too small. A similar condition has been earlier intro-6

duced in Tanwani et al [26, Formula (3.5)] where the case of a linear perturbation7

is addressed. We further proved that the unique global solution is periodic when8

the right-hand-sides of the sweeping process are periodic in time.9

Following the lines of Kamenskii et al [14], the ideas of the present work can be10

extended to almost periodic solutions and to sweeping processes with small non-11

monotone ingredients.12

We show in Appendix that the estimate for the prox-regularity constant in Maury-13

Venel [21, Proposition 2.15, Proposition 2.17] does not agree with inequality (8),14

making our main result inapplicable to the model of [21]. At the same time, we15

analyze a toy model where we document how applicability or inapplicability of our16

result is linked to the parameters of sweeping process.17

The ultimate conclusion of the paper agrees with that of Tanwani et al [26]: closer18

the constraint to a convex one, weaker monotonicity is required to keep the sweeping19

process globally asymptotically stable.20

5. Appendix.21

5.1. Proof of Theorem 2.2. Let {ξn}∞n=1 ⊂ Rn be such that ξn ∈ C(−n) for each
n ∈ N. Define

xn(t) =

{
x(t,−n, ξn) if t ≥ −n
ξn if t < −n

where t 7→ x(t,−n, ξn) is the solution t 7→ x(t) of (1) with the initial condition22

x(−n) = ξn, n ∈ N. Since C(t) is globally bounded, then, given any k ∈ N,23

Edmond-Thibault [12, Theorem 1] ensures that all solutions of the sweeping process24

(1) on the interval [−k, k] share the same Lipschitz constant Lk > 0.25

We now follow the standard diagonal process in order to extract such a subsequence26

from {xn(t)}∞n=1 which convergences uniformly on any interval [−k, k], k ∈ N. Let27

us denote x0
n(t) = xn(t) on R for each n ∈ N. By Arzela-Ascoli theorem, there ex-28

ists a subsequence {x1
n(t)}∞n=1 ⊂ {x0

n(t)}∞n=1 which converges uniformly on [−1, 1].29

Analogously, there exists a subsequence {x2
n(t)}∞n=1 ⊂ {x1

n(t)}∞n=1 which converges30

uniformly on [−2, 2]. Repeating this procedure infinitely, we get a family of subse-31

quences {xkn(t)}∞n=1 ⊂ {xk−1
n (t)}∞n=1, k ∈ N, such that {xkn(t)}∞n=1 converges uni-32

formly on [−k, k] for any k ∈ N. Defining x̄n(t) = xnn(t) on R for each n ∈ N, we get33

that {x̄n(t)}∞n=1 converges uniformly on any [−k, k], k ∈ N. Let x̄(t) = lim
n→∞

x̄n(t).34

Let us now show that x̄(t) is a solution of the sweeping process (1). Denote by x(t)35

a solution of (1) with the initial condition x(τ) = x̄(τ). Assume x(t0) 6= x̄(t0) for36

some t0 > τ . i.e. x(t0) 6= lim
n→∞

x̄n(t0). Then there exist ε0 > 0, such that37

for each n ∈ N, there exists mn > n such that ‖x(t0)− x̄mn(t0)‖≥ ε0. (15)

Recall, x̄mn(t) is a solution of (1) for t ≥ −mn. Therefore, we can use the con-38

tinuous dependence of solutions on the initial condition (see Edmond-Thibault [12,1
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Proposition 2]) to conclude the existence of δ > 0 such that2

if τ ≥ −mn and ‖x(τ)− x̄mn(τ)‖< δ then ‖x(t)− x̄mn(t)‖< ε0, t ∈ [τ, t0]. (16)

The statements (15) and (16) contradict each other for n ∈ N sufficiently large.3

Therefore, x(t) = x̄(t) for all t ≥ τ, i.e. x̄(t) is a solution of (1).4

5.2. The crowd motion model. We give a brief introduction into the model5

by Maury-Venel [21], before we explain the inapplicability of Theorem 2.3 in this6

model.7

Consider N people with positions given by x = (x1, x2, . . . , xN ), where each person8

is geometrically represented as a disk with center xi ∈ R2 and radius r, so that9

x ∈ R2N . Two people (say i-th and j-th) cannot overlap, therefore we have an10

unilateral constraint ‖xi − xj‖ > 2r and so the set of feasible configurations is11

defined as (see [21])12

C = {x ∈ R2N : ‖xi − xj‖ − 2r ≥ 0 for all i < j}. (17)

Let U(x) = (U1(x), U2(x), · · ·UN (x)) be the spontaneous velocity of each person at13

the position x, i.e. Ui(x) is the velocity that i-th person would have in the absence of14

other people. Since the aim of Maury-Venel [21] is to have a model that describes15

people in a highly packed situation, the actual velocity of a person is defined to16

be closest to the spontaneous velocity. So the actual velocity is computed as the17

projection of the spontaneous velocity onto the set of feasible velocities. This gives18

the sweeping process (see [21])19 {
−ẋ ∈ N(C, x)− U(x)

x(0) = x0 ∈ C.
(18)

Let us consider the situation where there are only two people. By Maury-Venel20

[21, Proposition 2.15], the set C in (17) is η-prox regular with η = r
√

2. Let21

us take U(x) = −x. Viewing (18) as (1), we get f(t, x) = x and so α = 1 in22

(2). Then condition (8) of Theorem 2.3 takes the form
√

2r > LC + Mf , where23

LC = 0 (because C in (18) does not depend on t). Therefore, (8) implies Mf <24 √
2r. On the other hand, according to (7), Mf must satisfy Mf > ‖f(t, x)‖ with25

f(t, x) = x for each x ∈ C. Let us consider a pair of people positioned at (0,−r)26

and (0, r). Since ‖(0,−r)− (0, r)‖ = 2r, we have (0,−r, 0, r) ∈ C and so Mf verifies27

Mf > ‖f(0,−r, 0, r)‖ = ‖(0,−r, 0, r)‖ =
√

02 + (−r)2 + 02 + r2 =
√

2r. Therefore,28

Theorem 2.3 does not apply.29
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