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directly to bottom quarks, i.e. our predictions are accurate to order O(ag’yg). We calculate
the various components needed to construct the NNLO contribution, including an inde-
pendent calculation of the two-loop amplitudes. We compare our results for the two-loop
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frame using the Durham jet algorithm.
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Introduction

The discovery of the Higgs boson [1, 2] has set a large part of the agenda in high energy

physics for the foreseeable future. Of primary concern is the need to determine the prop-
erties of the Higgs boson in relation to the predictions of the Standard Model (SM). This
is mainly achieved through measurements of the couplings of the Higgs boson to the other

SM particles and the Higgs coupling to itself. The Higgs self-coupling is of particular inter-

est, since it is intimately linked to the electroweak symmetry breaking potential, the form

of which is still unconstrained through measurements of the Higgs mass alone (although

its remaining properties are predicted in the SM). Any additional physics beyond the



Standard Model (BSM) could lead to significant changes in the shape of the electroweak
symmetry breaking potential, and thus lead to deviations from the SM predictions.

Measuring the properties of the Higgs boson is an ongoing task. In regards to that,
the LHC has already achieved a remarkable precision with existing Run II measurements
and will significantly improve upon these results over the course of the next decade. Plans
are afoot for future colliders beyond the LHC (FCs) and a particularly appealing prospect
regarding Higgs precision physics is the construction of a lepton collider. Due to the clean
experimental conditions, future lepton colliders should be able to probe the properties of
the Higgs boson down to per-mille level accuracy [3-5].

The Higgs boson decays predominately to bottom quark pairs (bb), and therefore a large
part of the experimental program at the LHC and putative FCs consists in measuring the
properties of this decay. At the LHC the H — bb process can be accessed through associated
production channels pp — V H followed by a subsequent H — bb decay [6, 7] or directly, by
using jet substructure techniques and by looking in the high-pp H +j channel [8], where the
backgrounds can be controlled to such a level as to make this measurement a possibility.
In both situations precise predictions are mandatory to ensure that theoretical calculations
have a similar or smaller uncertainty than the experimental counterparts. This will become
even more pressing at an FC, for which historical measurements from LEP for Z/v* — jets
already show that the level of experimental uncertainty will be very small indeed.

Given its importance for LHC physics, the study of Higgs plus multi-parton produc-
tion has received significant theoretical attention over the last couple of decades. Working
within the effective field theory, in which the top quark is treated as infinitely heavy, the
production of a Higgs through gluon fusion is known to N3LO in QCD [9, 10]. Recently,
differential predictions at this order have been computed using the method of Q)7 subtrac-
tion [11, 12] and analytically for the rapidity distribution [13, 14]. In order to compute
pp — H differentially at N3LO, pp — H + j must be available at NNLO, pp — H + 2j at
NLO, and pp — H + 35 at LO. These computations have all been performed [15-17].1 Of
particular note for this work is the calculation of pp — H + j at NNLO, which requires
the analytic computation of H — 3 partons in the EFT [19]. The related process in which
the Higgs boson decays to three partons via a tree-level coupling to b-quarks has been less
well-studied in the literature. Attention has naturally been focused on the H — bb pro-
cess which has been studied at NLO [20] and NNLO [21-23], and inclusively is known to
O(a?) [24]. No complete NNLO prediction for H — bbj is available, although a calculation
of the two-loop amplitudes has been presented [25].

The aim of this paper is twofold. Firstly, we perform an independent computation
of the two-loop amplitudes for H — bbg which have been presented in the literature in
ref. [25]. Secondly, we use these results to produce a NNLO Monte Carlo code for the
H — bbj process. The primary goal is to establish whether we can effectively integrate
out the additional jet at NNLO. By successfully doing so, we open up the possibility of
studying H — bb decay at N3*LO. We perform this calculation in a companion paper [26].

Our paper proceeds as follows. In section 2 we give a general overview of the calcu-
lation, while a detailed discussion of our two-loop computation is presented in section 3.

ndeed, H + 3j is also available at NLO in QCD [18].
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Figure 1. Representative Feynman diagrams for the H — bbj process at NNLO.

We discuss the results of our Monte Carlo implementation of H — bbj in section 4. After
drawing our conclusions, we present the full analytic results of our two-loop amplitudes in
the appendix.

2 Overview of the calculation

2.1 General overview

In this paper we consider the decay of a Higgs boson to a bottom quark pair and an
additional jet at NNLO in QCD. In perturbation theory up to NNLO the partial decay
width is expanded as follows:

NNLO _ pLO NLO NNLO
PH—>ij - FH—>bEj + AFH—ij T AFH—ij : (2.1)

The above formula introduces the notation we will use in this paper: Fﬁab@j defines the

partial width at order X in perturbation theory, while Afﬁﬁsz defines the coefficient which
enters the expansion for the first time at this order. Representative Feynman diagrams for
our NNLO calculation are shown in figure 1. Specifically, at NNLO we need to compute
two-loop amplitudes for H — bbg, one-loop amplitudes for H — bbgg and H — bbqq
(including identical-quark terms H — bbbb), and tree-level amplitudes for H — bbggyg,
H — bbqgg, and H — bbbbg.

Radiative corrections to the H — bb decay were first studied nearly forty years ago [20],
when it was shown that there are sizable differences between calculations in the “massless
theory”, in which the b-quark mass is dropped in the phase space and kinematics but
kept in the b-quark Yukawa coupling, and in the full theory, in which the b-quark mass
is retained throughout. These differences were shown to be primarily due to logarithms
of the form log (m2/m?%). It was also discussed how these effects can be reinstated in the
massless theory by running the b-quark mass in the Yukawa coupling. Using the b-quark
mass evolved to the Higgs scale in the massless theory results in much smaller differences
between the two theories. This was shown explicitly in ref. [27], where the inclusive decay
rate I';; ;7 was computed up to order O(a?) including power-suppressed corrections of
the form mZ(mg)/m?% up to order O(a?). The numerical evaluation of the decay rate
shows that at each order in o, the mass corrections are at the per-mille level relative to the
massless contribution at the same order and that they are also smaller than the massless
corrections at the next order in perturbation theory. It is therefore advantageous and
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Figure 2. Examples of Feynman diagrams that do not enter our calculation at NNLO.

theoretically convenient to work in the massless limit, due to the reduced complexity of
higher-order Feynman diagrams. In the massless theory the inclusive partial width for the
H — bb decay channel is currently known to an impressive O(a?) accuracy [24]. The form
factor for H — bb at three loops is also known [28], so that, once a NNLO calculation of
H — bbj is complete, all of the component pieces for H — bb at N3LO are available.

In this paper we will therefore work in the massless theory in which the b-quark mass
is dropped from the phase space and kinematics, but kept in the Yukawa coupling with the
b-quark mass run to the Higgs scale. As mentioned above, a result of the massless theory as-
sumption is that it simplifies the calculation by reducing the number of Feynman diagrams
which must be included at one and two loops. We refer in particular to diagrams in which
the Higgs boson couples indirectly to the b-quarks, for which example topologies are shown
in figure 2. At O(a?) these diagrams interfere with the respective tree-level amplitudes
for H — bbg and H — bbgg for the two-loop and one-loop calculations respectively. A
simple helicity argument indicates that these interference terms are zero. In the H — bbg
and H — bbgg tree-level amplitudes the scalar Higgs boson couples directly to the two
(massless) quarks, which therefore must have identical helicity assignments (both positive
or negative). On the other hand, the diagrams in which the Higgs couples implicitly to the
b quarks as shown in figure 2 always result in the final-state bb pair coupling directly to a
gluon. This vertex requires that the fermions have opposite helicities, and therefore there is
no combination that allows non-zero interference terms to exist, resulting in no net contribu-
tion from these diagrams at NNLO (the H — bbgg box squared would first enter at O(al)).

A slight subtlety arises when we consider the one-loop triangle diagram in which the
Higgs boson couples indirectly to the bottom quarks (i.e the left diagram in figure 2 with
no additional gluon exchanged in the loop). This diagram would self-interfere at O(a?) and
is therefore not excluded from our NNLO calculation by the argument presented above.
However, the trace over the fermion loop for this diagram contains five y matrices and
hence this term vanishes in the massless theory. In order for this diagram to give a non-
zero contribution, the quark mass must be retained in the loop. This is the case when the
loop particle is a top quark, and hence there exists a top Yukawa contribution which first
enters at O(a?) in our calculation. Schematically, the perturbative expansion of the decay

width TNNLO “ip the full theory is of the form:
H—bbj

FE&% ~ asyp Ap + o (yg By + yeyp Btb)

+al (Y2 Ch + y2 O + yiyy Cy) + O(ad), (2.2)



where gy, and y; are the bottom and top Yukawa couplings respectively. From the argu-
ments given above it is clear that in the full theory the interference terms y:yp By and
ytyp Cyp are suppressed by the bottom-quark mass (since a helicity flip is needed to make a
non-zero interference term). However, since the top Yukawa coupling is large, these mixed
terms are of phenomenological relevance. Specifically, in an effective theory in which the
top-quark loop is integrated out, the term y,y, By, contributes to around 30% of the O(a?)
coefficient [29]. For our theoretical setup, the mixed term By, and Cy, are exactly zero. In
addition, at O(a?) the pure top contribution y? C; mentioned above needs to be included.
Indeed, while formally this term enters the perturbative expansion as a one-loop squared
contribution, the higher-order corrections are known to be large (and well-studied in the
EFT approach). This means that for a good phenomenological description higher-order
terms proportional to y? should be included as well. The IR properties of this piece are
further complicated by the presence of collinear singularities as the bb pair becomes unre-
solved (in the massless theory) since this piece factors onto a different LO term (H — gg).
In this paper we drop the y? term for two reasons. Firstly, we are interested in the theoret-
ical computation of the yg terms (which is new), while the study of the y? contribution has
received significant attention in the literature through the various studies of H + j at the
LHC. Secondly, we wish to use this computation to perform the N3LO calculation of the
y? terms for H — bb. We leave the inclusion of the top Yukawa contributions to a future
study, while we remind the reader that these contributions should be included before a
complete phenomenological study is performed.

2.2 N-jettiness slicing

In order to regulate the IR divergences present in our NNLO calculation we employ the
N-jettiness slicing method [30, 31]. Since there are three partons in the final state at LO we
use the 3-jettiness variable 73 to separate our calculation into two pieces. For a parton-level
event the 3-jettiness variable [32] is defined as follows:
) 2q; - pj }
T3 = min , (2.3)
{ Q

. 1=1,2,3 i
7=1m

where the index j runs over the m partons in the phase space (with momenta p;), while
q; represent the momenta of the three most energetic jets, clustered in our case with the
Durham jet algorithm [33, 34]. Q; are the hard scales in the process, which are typically
taken to be Q; = 2E; with E; the energy of the i-th jet. We then introduce a variable 75"
that separates the phase space into two regions. The region 73 <75" contains all of the
doubly-unresolved regions of phase space and here the partial width can be approximated
with the following convolution, derived from SCET [32, 35]:

3
Lo (m3 < 75") %/H\%®S®H+(’)(T§Ht). (2.4)

i=1
In the above equation the terms 7; correspond to the jet functions which describe collinear
emissions, S denotes the soft function for three colored partons, and H is the process-
specific hard function. The explicit expressions for the jet functions J; needed for our



NNLO computation can be found in ref. [36]. For the soft function, we use the results

for the 1-jettiness soft function with arbitrary kinematics computed in ref. [37] (see also

ref. [38]). The calculation of the hard function for this process is one of the primary aims

of this paper and is discussed in section 3. In order for the approximate form of the partial
cut

width in eq. (2.4) to be accurate, 75" should be taken as small as possible to minimize the
power corrections which vanish in the limit 75" — 0.

2.3 The 3 > T3C“t contribution

Since any doubly-unresolved contribution resides in the region 73 < 75", the region

T3 > T§Ut

corresponds to the NLO calculation of H — bbjj. The methods to compute
one-loop expressions are by now well-established so we do not spend significant time on
them here. In this section we limit ourselves to a brief description of the computation. One-
loop amplitudes are computed analytically using the generalized unitarity approach [39].
Specifically, quadruple cuts are used to compute box coefficients [40], triple cuts are used
to compute the triangle coefficients [41], double cuts are used to compute bubble coeffi-
cients [42], and the rational pieces are computed using d-dimensional unitarity techniques
as outlined in ref. [43]. Our calculation is checked numerically using the d-dimensional uni-
tarity algorithm presented in ref. [44]. The resulting expressions are rather compact, with a
similar level of complexity to the H — gggg amplitudes presented in ref. [45]. Tree-level am-
plitudes are computed using the BCEW recursion relations [46] and all tree-level amplitudes
present in the calculation have been checked against Madgraph [47]. Finally, IR divergences
in the NLO calculation are regulated using Catani-Seymour dipole subtraction [48].

3 Hard function for H — bbg at NNLO

In this section we describe the calculation of the hard function H of eq. (2.4) for the process
H — bbg at NNLO accuracy. We define the hard function as a perturbative series in powers
of the renormalized strong coupling as = as(p) at the renormalization scale pu:

H="Hro + (%j) Hxro + (%;)2 Hxneo + O(ad). (3.1)
The LO, NLO, and NNLO coefficients of the hard function are
Hio = MOsren pq(0)ren® (3.2)
Hxio = 2Re (M“)’mnM(O)’fen*) (3.3)
HNNLO = M@Diren pg(Dren* | 9 Re (M(z),renM(O),ren*> (3.4)

where M@ren ig the MS-renormalized ¢-loop amplitude in the notation of ref. [49]. The

(£),ren

calculation of M with £ =0, 1,2 is described in the following sections.

3.1 Notation and kinematics

We consider the decay

H — b(p1) b(p2) g(ps) -



The Mandelstam invariants for this process are defined as

s=(p1+p2)?>0 t=(p1+p3)>>0 u= (p2+p3)* >0

and satisfy s +¢t +u = m%{ with my the mass of the Higgs boson. We also introduce the

dimensionless quantities
t U

r = - 3.5

) V= =) (3.5)

which satisfy 0 < 2 <1, 0<y<1l,0<z<l,and z+y+2z=1.
We follow the notation introduced in ref. [25], in which the unrenormalized amplitude

for H — bbg is written in terms of two tensor structures:

as % yb a “w w
2 Tij eu(p?)) [Al Tl + Ay T2 ] y (36)

M=i (
27 myy
where @, is the bare strong coupling constant, g, is the bare bottom Yukawa coupling, T7;
is the color matrix with gluon color index a and quark indices i and j, and €,(p3) is the

gluon polarization vector. Finally, the tensors 74" and T4 are defined as
T{' = u(p1)ps 7" v(p2)

t _
TV = |pf — up‘ﬁ] u(p1) v(p2) -

The coefficients A, (m = 1,2) have perturbative expansions in powers of @j:

— — \ 2
_ A0 4 (B 40 4 (D) 40 4 oF?
A Am-+<2ﬂ>1$n—%<2ﬂ> AR + 0@) (3.8)

where the coefficients A,(f;) with £ > 1 contain UV and IR divergences which are regularized
in d = 4 — 2¢ dimensions. At any order in @, the coefficients A,(f;) are obtained by applying

the projectors
1 TMT _ 1 THT

Pl =—o————T] 2
2(d — 3)tu 2(d — 3)st

1 (d—2)u
pt—____— et TR put 3.9
2 2(d—3)st" 1 2(d—3)s2t 2 (39)
to the appropriate amplitude, namely
(3.10)

AR =% Pre(ps)MY

pol

where M is the ¢-loop amplitude written, for instance, as the sum of Feynman diagrams.
The sum over the polarization states of the external gluon is performed as
Hov v
+ gt
3 e (ps)e (ps) = —g + BBL LS (3.11)
ol q-p3

where ¢ is an auxiliary vector. In our calculation we choose ¢ = p;.



3.2 Calculation

We now discuss the calculation of the coefficients A, to second order. We generate the
tree-level, one-loop, and two-loop Feynman diagrams using FeynArts [50]. At tree level, by
applying eq. (3.10) and by carrying out the trace calculations in d dimensions we directly
obtain AﬁS). At one loop and two loops, after using eq. (3.10) the coefficients A,(%) and
A%) are written in terms of scalar one-loop and two-loop integrals respectively. We reduce
them to an irreducible set of master integrals (MIs) using the programs Kira [51] and
LiteRed [52]. The topologies needed to reduce all integrals appearing in the calculation are
the same as those presented in egs. (3.2)-(3.5) of ref. [25].

At the one-loop level, there are two master integrals, namely the bubble and the box
integral. Their explicit results are presented in appendix A of ref. [53], where in particular
the result for the box integral is given as a series in the regulator € and in terms of HPLs [54]
and two-dimensional HPLs (2dHPLs) [55, 56].

At two loops, all required master integrals are known in the literature and can be
divided into three groups: planar integrals, whose results are presented in ref. [55], non-
planar integrals, computed in ref. [56], and products of two one-loop integrals. As in the
case of the one-loop box integral, the results for the two-loop planar and non-planar inte-
grals are expressed as Laurent series in € and in terms of HPLs and 2dHPLs. Furthermore,
following the discussion in section (3.3) of ref. [53], we observe that in our calculation each
master integral can be present in up to six kinematic configurations (i.e. with all possi-
ble permutations of the independent external momenta p1, p2, p3). This means that, after
substituting the explicit results of the MIs, our results for the coefficients A%) initially
contain HPLs with three arguments (z, y, or z) and 2dHPLs with six combinations (z,
y, or z in the index vector and in the argument). In order to simplify our expressions,
we can express all HPLs and 2dHPLs appearing in the calculation in terms of HPLs and
2dHPLs belonging to one unique kinematic configuration. Following refs. [53, 55, 56],
we choose 2dHPLs of argument y and index z and HPLs of arguments y and z as the

unique set.

One way of obtaining the relations needed to convert all “spurious” HPLs to a unique
set is by exploiting their integral representation and applying interchange of arguments
formulae as described in refs. [53, 55]. In this work we proceed in a slightly different way,
following the work on multiple polylogarithms (MPLs), of which HPLs and 2dHPLs are
examples, of ref. [57]. In ref. [57] it is shown that MPLs form a Hopf algebra and that
a coproduct on MPLs can be defined. The coproduct allows one to systematically de-
compose MPLs of any weight into MPLs of lower weights. Since at weight 1 it is trivial
to convert HPLs and 2dHPLs of different arguments and/or indices to a unique set, we
can apply the coproduct with a bottom-up approach to find relations between HPLs and
2dHPLs of different kinematic configurations at any weight. In our case we derive all the
relations required to reduce HPLs and 2dHPLs of up to weight 4 to the chosen set us-
ing the coproduct method. We also use GiNaC to numerically evaluate the 2dHPLs for
checking purposes.



3.3 MS-renormalized amplitudes

We now construct the MS-renormalized amplitudes M©-" that are needed for the hard
function computation at NNLO accuracy. Through eq. (3.6) this is equivalent to construct-

ing the MS-renormalized coefficients A%)’ren.

3.3.1 UV renormalization

We start by removing the UV divergences from the coefficients A%) computed in the pre-

vious section. We renormalize the bare strong coupling constant and Yukawa coupling by
performing the replacements

s — Qg Se Zy, (3.12)
Uy = Yb Zy (3.13)

with S, = GX&(?S’EE), as = as(p) and yp = yp(u) at the renormalization scale p. The

renormalization factors are given by

B g g\ 2 3
Zo=1+ (g) 1+ <%) ra + 0(ad) (3.14)

- Qs a2 3
Z, =1+ (%) s1 4 <%> 52+ O(ad) (3.15)
with r1, r9, s1, s2 explicitly defined in appendix A. By inserting egs. (3.12) and (3.13) into

egs. (3.6) and (3.8), we obtain the UV-finite coefficients ALY OV-fin,
AQUVAn — 4 (0) (3.16)
AWMUV _ g p(1) (Sl I %1) A© (3.17)
2

apevin_s2a® o (w4 ) sa+ (w402 D)4,

3.3.2 IR subtraction and conversion to MS scheme

In order to obtain the hard function we remove the explicit soft and collinear divergences
from the UV-renormalized coefficients. The IR structure of one-loop and two-loop QCD
amplitudes is universally known [58] and can be written using Catani’s subtraction opera-

tors 1()(¢). The finite coefficients AL are defined as
A — A(0)-UV-iin (3.19)
AMfin _ 4(),UV-fin _ (1) () A(0),UV-fin (3.20)
AQ@Min _ 4(2),UV-fin _ (1) () A UV-fin _ 1(2) () £(0),UV-fin (3.21)

The explicit expressions of the subtraction operators for H — bbg can be found in
appendix A. In appendix B we show the complete results for the coefficients A,(f;)’ﬁn. Specif-

ically, following the notation of eq. (4.4) of ref. [25], we write the coefficients as

V4 2
AL 3 4080 50 (J”Zg) (3.22)
n=0

with the coefficients A$2>’ﬁ“ and B%?n presented in appendix B.



Finally, following the discussion in section (2.1) of ref. [49], we obtain the MS-renor-

malized coefficients A%)’ren in the following way:
A(Oxen _ £(0).fin (3.23)
A7(71L),ren _ Ag”ll),ﬁn + C0A7(7(3)7ﬁn (324)
A@yren — A@)fin oo AW in 4 ¢, A(0).fin (3.25)

where Cp and Cy are defined in appendix A. By using egs. (3.2)—(3.4) and (3.6) we obtain the
hard function at NNLO accuracy. Explicitly, the interferences are constructed as follows:

* m),ren ;(n)ren® | 2 2 m),ren 4(n),ren™
Mlmzen pq(myzen =NLO<4yzA§ prenq(rhren g Z2Y grhven 4
— 2xy Agm),renAgn),ren* — %y Agm),renAgn),ren*> (326)

where N7p = (g‘—;) y2 N.Cp.

3.4 Comparison with existing results

We can compare our results for the coefficients A%)’ﬁn up to £ = 2 with the existing results

in the literature [25]. At tree level the agreement is trivial. Since we defined the tensors T}"
and T} as in eq. (3.7), the relation between our coefficients AﬁS)’ﬁn

ones of ref. [25] (here called Ag%t and A;O;%it) is

and the corresponding

0 20 (0),fin 0 . (0),fin
IQQZZAQ and AL}, =i AP (3.27)

At one and two loops we can compare the coefficients B,(Qn with those presented in appendix
B and C of ref. [25]. Since the coefficients B%?n have been rescaled by the tree-level
coefficients, we only need to swap Bgzl Béle to match our notation. We find complete
agreement for all coefficients at one-loop level® and at two-loop level.> The agreement at
two loops is explicitly shown in table 1 where we perform a numerical comparison between

the two sets of results for a random phase-space point.

3.5 Factorization properties of the two-loop amplitude

Although we established agreement between our two-loop amplitude and an existing result
in the literature, both share certain similarities (namely an expansion in the same master
integrals). We therefore initiate further testing of our calculation by investigating the an-
alytic structure of our result in the limits in which one of the partons becomes unresolved.
Such a check was not detailed previously. We do so by checking that our two-loop ampli-
tude correctly reproduces the known IR factorization properties of QCD [59-61] when the

2 After adjusting for a small typo (i.e. changing 12H(0,2;y) — 2H(0,2;y) in the last line of B;lg) and
dividing the literature results by an overall factor of 2 (since in the literature results the expansion parameter
is as/4m).

3 After taking into account the different definition of the Mandelstam invariants ¢ and u of ref. [25] and
after adjusting the literature results by an overall factor of 4.

~10 -



Coefficient Ref. [25] Our result
B2 15.1770833333333 | 15.1770833333333
B | —61.1367801007938 | —61.1367801007938
B2 77.6770380202061 | 77.6770380202060
B%) 15.1770833333333 | 15.1770833333333
B | —54.6784467674605 | —54.6784467674605
ng 74.2152337563907 74.2152337563904

Table 1. Numerical comparison between our two-loop results and those of ref. [25] for y = 0.19
and z = 0.67 after adjusting for an overall 1/4 factor.

external gluon becomes either soft or collinear to one of the quarks. We note that a further
by-product of this check is a confirmation of the computed factorization limits of QCD for
the soft [59] and collinear [60] limit.

3.5.1 Soft-gluon limit
In the limit of soft gluon, the momentum of the gluon vanishes, i.e. p3 — 0 which implies
that y, z — 0 simultaneously. The soft-gluon limit at two loops reads:

(2) (0)x (2) _ 0 (2 (0)=
2Re (MHangMHang) = Sppy = 2Re (S( (. DMy My

+5W(y, Z)Mg)—)bEMS)—th

+ Sy, zwgggbBMggzbE) . (3.298)

where the relevant H — bb matrix elements and the soft currents S (y, z), SM(y, 2),
S2) (y,z) are presented in appendix C. Using our results for the unrenormalized IR-

@ 0

H—>ng H—)bgg) as a series

divergent coefficients Ag) we construct the interference 2 Re (M

in € in order to compare it with the known soft limit SﬁLbEg defined above. Since the soft
limit diverges as (yz)~!, we multiply both expressions by a factor of yz. We show the
obtained numerical results in table 2. The agreement between the known soft limit and

our results is excellent.

3.5.2 Collinear limit
In the limit of the gluon becoming collinear to the outgoing quark, the invariant ¢ vanishes
which means y — 0 while z # 0. The collinear limit at two loops reads:

2Re <M(2) MO ) ~c?

H—bbg” " H—bbg H—bbg

B 0 (2) (0)
= 2Re (C( ) (v, Z)MH—mEMH—ﬂ)B

+0W(y, Z)MSLbBMSK%

+COy MG M) (3.29)
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Coefficient Yz SSL bbg Our result
e 81.7702729678 81.7702729678
€3 3818.49680411 3818.49680413
€2 130763.8079162 130763.8079168
et 3.26338843478 - 10° | 3.26338843480 - 106
€0 6.52342650778 - 107 | 6.52342650793 - 107

Table 2. Numerical comparison of our two-loop results with the known soft limit for y = z = 10710

2
and p? = . An overall factor of 2 y7 has been extracted from both results.

Coefficient Y CI(T-?LbI_;g Our result
et 283.156234427 | 283.156234427
€3 8122.55721506 | 8122.55721505
€2 170379.942318 | 170379.942317
el 2.584146 - 105 | 2.584189 - 106

€0 3.09852-107 | 3.09870 - 107

Table 3. Numerical comparison between our two-loop results and the known collinear limit for

2
y=10"12, 2 =0.23 and p? = 7"2” . An overall factor of a2 y? has been extracted from both results.

The splitting functions C(y, z), CW(y, z), CP)(y, 2) are given in appendix C. We com-
(2) (0)= I . (2) .
pare our result for 2Re (/\/l H—>bEgM H—>bl_7g> as a series in e with OH—>bEg' We multiply
both expressions by a factor of y to remove the leading divergence. The numerical results
are shown in table 3. We observe excellent agreement between our result and the known

collinear limit.

3.6 Summary

In this section we have presented the computation of the hard function required to construct
the 73 < 75" part of our NNLO calculation. We have compared our calculation to a
similar existing result in the literature and found agreement. We have also verified that
our expressions reproduce the known soft and collinear limits at this order and are therefore
confident in using our results for the phenomenology presented in the subsequent sections
of this paper.

4 Results

We have implemented the results discussed in the previous sections into a fully-flexible
parton-level Monte Carlo code. Our code is based upon the existing structure of
MCFM [62-65] and could be easily included in a future release of the code. Here we
present phenomenological results for H — bbj. As outlined in section 2, the b-quark mass
is set to zero kinematically, but kept in the Yukawa coupling. In order to account for
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some of the effects of the missing b-mass terms we evolve the b-quark mass to the Higgs
scale (mg = 125GeV) using the two-loop running for NLO predictions, and three-loop
running for NNLO predictions. This results in an effective b-quark mass of 2.94 GeV at
NNLO (for our central scale choice = my). We also use G = 0.116639 x 10~% GeV 2
and my = 80.385GeV. We take as(myz) = 0.118 and we run the coupling at one, two,
and three loops for LO, NLO, and NNLO calculations respectively. All results in this pa-
per compute the width in units of MeV. In order to compute rates and distributions for
H — bbj, a jet algorithm must be applied. In this paper we will present results using the
Durham jet algorithm [33, 34], which takes the variable y., as an input variable. Starting
at the parton level, the algorithm computes the following quantity for every possible pair
of partons (1, ):

2min(Ei2,EJ2)(1 — cos b;;)
Yij = Q2

(4.1)

where Ej; is the energy of parton ¢, 0;; is the angle between partons ¢ and j, and in our case
Q = mpy. If y;j; < yeutr the pairs are combined into a new object with momentum p; + p;.
The algorithm then repeats until no further clusterings are possible and the remaining
objects are classified as jets. These algorithms have been widely used at LEP to study
ete™ — jets, which is the process most similar to our H — bbj calculation. Our results
are presented in the Higgs rest frame.

We first validate our calculation by studying the dependence of the NNLO coefficient on
the unphysical slicing parameter 75"*. To do so we focus on three representative clustering
options corresponding to yey; = 0.1, 0.002 and 10~%. These choices span the various regions
of interest theoretically and experimentally. The value ycy = 0.1 is within the perturbative
regime, in which the higher-order corrections are expected to be small and agreement with
future data should be good (assuming similarity to the NNLO calculations of eTe™ —
jets [66, 67]). The second choice yeuy = 0.002 corresponds to the region in which the three-
jet rate peaks. Finally, the choice gy, = 10™* is around the region in which the NNLO
three-jet rate turns negative and becomes unphysical (the need for resummation of large
Yeut logarithms has set in long before this value is reached). The final choice is of particular
relevance to this paper, since it corresponds to integrating the NNLO calculation with a
very weak jet cut. Creating stable (and slicing-independent) results in this region allows
us to test the code in phase-space configurations which correspond to two hard jets and
one soft/collinear jet. Such configurations occur copiously in the calculation of H — bb
at N3LO (where the soft jet is not required), and therefore establishing our code here is a
prerequisite for this computation.

Our results for the three gyt values are presented in figure 3. Asymptotic behavior
is established in each region, with the dependence on missing power corrections having,
as expected, a notable dependence on yeu. For the larger choices the dependence on 75"
is rather mild, as the result for the largest value of 75" is less than 10% different to that
obtained in the asymptotic region (around 75"* < 0.05GeV for yeyt = 0.1 and 75" < 0.01
for yeut = 0.002). The dependence on 75" for yeuw = 10~* is greater and asymptotic
behavior is found for 75"* < 0.005GeV. We therefore conclude that the power corrections
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Figure 3. The 75"* dependence of the NNLO coefficient for three different jet definitions.

are under control and that our code can be used to make phenomenological predictions.
We note in passing that an LHC jet would be clustered using a kp-style algorithm and
a jet with around pyr > 30 GeV would loosely scale like 1/m%{ycut ~ 30 GeV, so that the
LHC case would look most like our results obtained when geut ~ 0.1. In this region we
have established that the power corrections are small and under control, and therefore our
code could readily be applied to LHC processes such as pp — V(H — 3j). We leave this
study to future work.

In figure 4 we show the exclusive three-jet rate at LO, NLO, and NNLO as a function
of Yeut- We present results for the three-jet rate normalized to the N3LO H — bb inclusive
rate [24]. In order to make each prediction we have set 7§% = 1072 GeV, which is in
the asymptotic region for nearly all of the phase space of interest. This choice is slightly
too large for the smallest value of y.,t studied as discussed in the previous paragraph.
However, the error on the coefficient for this choice is around 5%, which corresponds to
a phenomenologically-acceptable ~ 2% correction on the total fractional jet rate. Our
figure can be compared to similar results obtained for ete™ — jets [66, 67]. The pattern
is broadly the same, with a small positive correction in the large yeus region (around
10%), which transitions to a decrease in the jet rate for yey, < 0.01. The three-jet rate
is maximum at around ye,s = 0.002 and then turns over, becoming negative (and hence
unphysical) in the region around 10~*. Along with the central scale choice of u = my we
also provide predictions for jet rates obtained with renormalization scales p = {2,1/2} x
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Figure 4. The three-jet rate at LO, NLO, and NNLO as a function of .y for the Durham jet
algorithm. The renormalization scale is set to p = mg.

my. In addition to the implicit dependence in the loop integral expansion, the predictions
depend on p also through the running of as and my at two- and three-loop order for our
NLO and NNLO predictions respectively. We observe that the inclusion of the NNLO
corrections substantially improves the overall scale dependence. This is especially true in
the perturbative region specified by 9yt > 0.01 where we observe improvement of around
a factor of two. For instance, at y.ut = 0.1 the overall scale dependence of the jet rate at
NNLO is {+3, —6}%, compared to {+11,—10}% for the same jet cut at NLO. Finally, we
note that in the perturbative region yeyt > 0.01 the scale variation bands provide a good
estimate of the uncertainties due to the missing higher-order corrections, as the NNLO
corrections lie within the NLO scale variation band. In this region we therefore expect
the N3LO corrections to be within the NNLO band. On the other hand, in the region
Yeut < 0.01 we observe that perturbation theory breaks down and, as expected, the scale
variation bands no longer overlap. In this region the behavior of missing higher-order
corrections cannot be predicted.

In figure 5 we turn our attention to differential distributions. We present the differential
distribution for the energy component (rescaled by the Higgs mass) of the maximum-energy
jet in three-jet events clustered with y.,; = 0.2, 0.02, and 0.002. Comparing the three curves
we observe that as y.,4 decreases new phase space opens up near what would correspond
to a two-jet LO topology, which occurs around mg /2. These configurations correspond to
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Figure 5. The maximum energy of the jets (divided by the Higgs mass) for different jet-clustering
options. The right-hand panel presents the ratio of the NNLO to NLO (with pu = my) predictions
for each jet-clustering option.

two nearly back-to-back jets with a soft/collinear third jet. In the perturbative region of
Yeut = 0.2 the prediction is more physically sensible, the majority of jets having an energy
close to myr/3 with the most energetic jet peaking slightly higher than this value. For the
cases Yeut = 0.2 and 0.02 the ratio of NNLO to NLO is reasonably flat and small (between
5-10%) until Epax/mp becomes large enough that there is no LO phase space configuration
possible. In this region the NLO prediction is the first non-zero prediction and it is hence
susceptible to large corrections at the next order. The scale variation mimics that of the
total jet rate and is reasonably flat in the region in which the phase space is accessible
to all of the contributing parton-level phase spaces. We have also computed differential
distributions for smaller values of ycu = 2 x 10™%. They are not presented in figure 5 since,
for such a small value of y¢,, the differential prediction is negative over a large range of
phase space. We mention these predictions here simply to note that the code can produce
stable distributions with small MC uncertainties even in this region, which is relevant to
the N3LO results obtained in our companion paper.

5 Conclusions

In this paper we have presented the calculation of H — bbj at NNLO. We have focused
on the contributions in which the Higgs boson couples directly to bottom quarks. We
have performed an independent computation of the two-loop amplitudes needed at this
order and found agreement with a previous calculation in the literature. Additionally, we
checked our result using the known IR factorization properties of QCD when the emitted
gluon becomes soft or collinear to one of the fermions and found complete agreement with
the predictions in both limits. We have presented the two-loop amplitudes for H — bbg in
full in the appendix.
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In order to regulate the IR divergences present at this order we used the N-jettiness
slicing technique to separate the calculation into two components. In the region of small 73
we use SCET to construct an approximate form of the decay width. We used a computation
of the 1-jettiness soft function, valid for arbitrary kinematics, coupled with the known jet
functions and our computation of the hard function to construct the below-cut piece. The
region 73 >75" corresponds to the NLO computation of the H — bbjj process, for which
we calculated all of the needed helicity amplitudes using on-shell techniques of generalized
unitarity for the one-loop pieces and BCFW recursion relations for the H — bbjjj tree-level

amplitudes.

We implemented our results into a Monte Carlo code, based upon the existing N-
jettiness slicing calculations of MCFM, and used it to produce differential distributions
and jet rates for H — bbj at NNLO using the Durham jet algorithm. Our calculation
neglected top quark-induced contributions, which are phenomenologically relevant. By
combing our results with the available H + j EFT results we can produce predictions
for H — bbj relevant for the LHC and FCs which include both top and bottom Yukawa
contributions. Additionally, by performing the appropriate kinematic crossings of our
results we can compute pp — H + b at NNLO for LHC kinematics. We leave these
applications to future studies.

One of the main goals of this paper was to investigate whether a stable (slicing-
independent) Monte Carlo code could be constructed for very small jet cuts. We have
established this by presenting rates and differential distributions for a variety of values of
the jet-clustering variable y.u;. We are therefore able to effectively integrate out the jet at
NNLO and use our results in a N®LO calculation. We pursue this approach in a companion
paper to this article.
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A Formulae for renormalization and IR subtraction

The renormalization coefficients of eqgs. (3.14) and (3.15) are defined as

Bo
_ B Al
1 5 (A1)
B B
_ BB A2
2 4e€2  8e (A-2)
3CFr
_ A.
51 2¢ ( 3)
3 2
S9 = @ (SCF + B(]CF)
1 /3 ., o7 10
o (Z2ez Y — ZOpTyN A4
86<QCF+60FCA 3CFRf> (A4)
with
11 4
Bo = *CA - gTRNf (A.5)
34 20
Br = 504 = SOATRN; —ACFTRN, (A.6)
N2-1

and T = %, Ca= N, Cr = 55

The subtraction operators I9)(¢) for generic QCD processes can be found in ref. [58].
For completeness, we show here the explicit expressions for the subtraction operators in
CDR for the process H — bbg:

Ca 5Cs TgrNy e e
+< = "3 T >(y +z )] (A7)

1@ = T = 2¢) (f” + K> 1M (2¢) + H? (¢)

I'(1—e
- 5100 (190 + 2) (A8)
where
67 10
K= (% -a)ca- P, (A.9)
H®(e) = % [2H§2> + Hﬂ (A.10)
with
245 23, 13(3
H? = CpTrN G2 20 2962, 1963
P CrTg f( 216+8 + CrCy %61 32 + 3
o (L3 3G 3G
+C% ( R (A.11)
116 (3 29 @
(2) _ 2 1162 _H &
Hy™ =G (48 T T 8> +CATRNf< 54 24>
1 5
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Finally, we present the expressions for Cy and Cs in egs. (3.24) and (3.25). The coeffi-
cient Cy corresponds to the € order of the series expansion of I (1)(6). Explicitly:

Co = 7 (Ca = 2Cr) [L(w)* = 3L(x) - 2] — 5Ty [L(y) + L(:)
] [10 (L(y) + L(2)) = 3 (L(y)* + L(2)?) + 6¢2] (A.13)

12
2
where for brevity L(a) = In (—%) + Ina. The coefficient Co is defined as

Cy — %cg + 'ﬁ:p (co 4 323442 r’) Boc' (A.14)
where
NP =Ca <288 — 8C2> — % =Ny (A.15)
) = —4(Cy +2Cr) (A.16)
C) = —% (Ca —2Cp) [4L(z)* — 18L(x)* + 6(2L(z) — 6¢3 — 9¢2]
TNy (L) + L+ G + S [2L)° — 1000)° + 3GL()
+2L(2)° — 10L(2)* + 3(2L(2) — 6¢3 — 10(o] . (A.17)

B One-loop and two-loop coefficients for H — bbg

We present the explicit results for the coeflicients A and B,(f;?n of eq. (3.22) as series
in N.. The results for the one-loop and two-loop coeflicients are also available in a supple-
mentary Mathematica-readable file attached to this paper. At tree level the coeflicients are

AV = A0 = 2y r (1 - 1)
Yy z
A _ 4O o /5 (_2> . (B.1)
Y

At one loop the coefficients read:

Bl = 4;0 - % - 5]3VC (B.2)
B = 1 [ - 2HO0)H:2) +AH (1 2) () = 2H(052)H(1 — 5:9)
—3H(1—2zy) —2H(0,1 — z;y) —2H(1 — 2,0;y) +4H (2,1 — z;y)
+2H(1,07y) —3H(1;2) —|—2H(O,1,z)—|—3] —l—%[H(O;y)—i—H(O;z)
{ 6H (0;y)H (0; 2) — 10H (0;y) — 6H(1,0;y) — 10H(0; 2)
H(l,O,z) 6z — (B.3)
By =B (B.4)
R (B.5)
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At two loops:

) gy S Ne AL

9 +&_3£ N7%_17NFNC+35NC2
32N2 " 4N. 16 24 24 12

3
“T6N2 [2H(0:9)H (15 2) + 2H (0 2) H(1 = 259) + 3H(1 — ;)

—4H(1;2)H(z;y) + 2H(0,1 — z;y) + 2H(1 — 2,0;y) —4H (2,1 — z;9)

—2H(1,0;y) +3H(1;2) —2H(0,1;2) — 8(3 +4¢2 — 3

N,
+ == {— 108H (0;y)H (1;2) — 108 H(0; 2)H(1 — z;y) — 162H (1 — 2;¥)

432N,
+ 216H(1;
+ 216

JH(z;y) —108H(0,1 — z;y) — 108 H(1 — 2,0; )
H

1
+108H(0, 15 2) + 54 + 22} o [ — 162H(0;)H(0; 2)

(

(0, 432

+ 756H(0;y)H(1;2) + 756 H(0; 2) H(1 — z;y) + 1134H (1 — z;y)

—1512H(1;2)H (2;y) + 756 H(0,1 — z;9y) + 756 H(1 — 2,0;y)

—1512H (2,1 — z;y) — 270H (0; y) — 918 H(1,0; y) — 270H (0; 2)
(1:2) — 756 H (0, 1; 2) — 162H(1,0: 2) + 108Cs — 135¢» — 97}

N2 NeN,
+ ﬁ[w(o y) + 9H(0; 2) — 20} T

— 51H(0;y) — 18H(1,0;y) — 51H(0; 2) — 18H (1, 0; 2) — 24¢s + 83}

2

T 216

+3T8H(1,0; 2) — 432(3 + AT7Co — 721}
1 NF 1(2)

+ 1134H

[~ 18H(0: ) H(0; 2)

[3781{(0 y)H(0; 2) + 630H(0; ) + 378 H(1,0;y) + 630H (0; 2)

2 2 2 2 2
= Dg (% ,a + 71)1 ;0,b + ,Dg;(%,c + Nf% D§;O),d + NpN. Dg;g,e + N2 Dg 3f

N2 N,

2) 3 Np 11  NpN. T7N?

16N2 8N, 16 8 8
2 2 2 2
Dg;O,a + 7,D2;0,b + Dé 3,0 + NI% Dé;()),d + NFNC Dg;g,e + ‘ch2 Dg;g,f

?()),a = —*sz + 5= [CQ (12H(0 y)+36H(1;2) —16H(1;2)H(1 — z;9)

F12H(1 — z;y) + 16H(0, 1;y) — 16H(0,1 — 2;y) + 16H(1, 1;y)

F16H(1 - 2,1y) — 32H(1 — 2,1 — 2;9) + 28) 24 H(0;y)H(1; 2)
—18H(1
(1;2)H(z;y) +24H (z;9y)H(0,1;2) + 24H(0, 1; 2)

—90 —

1; 2

2,1 —z;y) +27TH(0;y) + 108H (1,0;y) + 27TH(0; z) — 162H(1; 2)
0,1

0

(B.6)

(B.7)
(B.8)
(B.9)

(B.10)

(B.11)

;2) —12H(0;2)H(1 — z;y) + 18H(1;2)H(1 — z;y) — 18H(1 — z;y)



+24H(0;2)H ( —z;y)+24H(1;2)H (0,1 — z;y) —8H(0,1; 2) H(0,1 — z;9)
—24H(0,1 — ) —24H(1;2)H(0, z;y) — 12H(0; 2) H(1,0; y)

—12H(1;2)H (1 0;y) +8H(0,1;2)H(1,0;y) + 24H(1,0; y)
+12H(0;y)H(1,0;2) — 24H (z;y)H(1,0;2) — 16 H(0,1 — z;y)H (1,0; 2)
—16H(0,z;y)H(1,0;2) + 24H(0;y)H(1,1;2) — 48H (z;y)H(1,1; 2)
+16H(0,0;y)H(1,1;2) — 16H(0,z;y)H(1,1;2) + 18 H(1,1; 2)

—8H(0,1;2)H(1,1 — z;y) + 12H(0; 2) H(1 — 2,0;y) + 24H (1; 2) H(1 — 2,0;y)
—8H(0,1;2)H(1 — 2,0;y) —24H(1 — 2,0;y) + 24H(0; 2) H(1 — 2,1 — z;y)

+ 16H (0, O'Z)H(l—z,l—z;y)—|—32H(0,1;z)H(1—z 1—2zy)

+18H(1 — 2,1 — z;y) —24H(1;2)H(1 — z,2;y) — 24H(1; 2)H(z,0;y)

—16H (1, 1,z)H(z 0;y) —24H(0;2)H (2,1 — z;y) —48H (1;2)H (2,1 — z;y)
+16H(0,1;2)H (2,1 — z;y) + 40H (2,1 — z;y) + 48H (1;2)H (2, z; y)
—16H(0,1;2)H(z,2z;y) + 16 H(1,0; 2)H (2, 2;y) + 32H(1,1; 2)H (2, z;y)
—8H(1;y)H(0,0,1;2) + 16 H(1 — 2;y)H(0,0,1;2) + 16 H(0; ) H(0,0,1 — 2;y)
+16H(1;2)H(0,0,1 — z;y) — 16 H(1; 2)H(0,0, z;y) — 8H(1;2)H(0,1,0; )
F12H(0,1,0;y) + 8H (1 — 2;y)H(0,1,0; 2) — 16H(0; y)H(0, 1, 1; 2)
F16H (2 y)H (0, 1,1; z) — 24H(0,1,1;2) + 16H(1; 2)H (0,1 — z,0; )
+24H(0,1 ) —8H(1;2)H(0,1 — 2, z;y)

—16H(0;2)H (0 z,1—zyy) — 16H(1;2)H(0,2,1 — z;y) — 24H(0,2,1 — z; )
+16H(1;2)H(0, z, z; y) —16H(1;2)H(1,0,0;y)

—8H(0;y)H(1,0,1;2) —8H(1;y)H(1,0,1;2) + 24H (1 — z;y)H (1,0, 1; 2)

F16H (2 y)H(1,0,1;2) — 12H(1,0,1; 2) — 12H(1,0,1 — 2;3)
+8H(1;2)H(1,0,z;y) +8H(1 — z;y)H(1,1,0; 2) + 12H(1, 1,05 2)
—12H(1,1 — 2,0;y) —8H(1;2)H(1,1 — z,z;y) + 16 H(1;2)H(1 — 2,0,0; )
—8H(0;2)H(1 —2,0,1 —z;y) +24H(1 — 2,0,1 — z;9)
—8H(1;2)H(1 — 2,1,0;y) — 24H(1 — 2,1,0;y) + 24H(1 — 2,1 — 2,0;y)

+32H(1;2)H(1 — 2, 1fz,z;y)724H(1fz,z,1fz;y)
—16H(0;2)H(2,0,1 — z;y) — 16 H(1;2)H(2,0,1 — z;y) — 24H (2,0,1 — z; )
+ 16H(1,z)H(z 0, z; y) - 16H(1 2)H(z,1—2,0;y) —24H (2,1 — 2z,0;y)
—16H(0;2)H(2,1 — 2,1 — z;y) —48H(z,1 — 2,1 — z;y)
+32H(1,2)H(z —2,2; y) +16H(1;2)H(z,2,0;y)

+16H(0;2)H (2,2,1 — z;y) + 32H(1;2)H (2, 2,1 — z;y) + 48H (2, 2,1 — z;y)
—32H(1;2)H(z,2,2;y) + 16 H(0,0,1,1;2) + 16 H(0,0,1 — 2,1 — z; )
—16H(0,0,2,1 — z;y) + 16H(0,1,0,1; 2) — 8H(0,1,0,1 — z;y)
F16H(0,1,1,0;y) + 16H(0,1,1,0;2) — 8H(0,1,1 — 2,0;)
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+16H(0,1 —2,0,1 — z;y) —8H(0,1 — 2,1,0;y) + 16 H(0,1 — 2,1 — 2,0; )

—8H(0,1—2,2,1—2z;9y) —16H(0,2,1 — 2,1 — z;y) + 16 H(0, 2z, 2,1 — z; 9)

+8H(1,0,0,1;2) —16H(1,0,0,1 — 2;y) + 8H(1,0,1,0;y)

—16H(1,0,1 — 2,0;y) + 8H(1,0,2,1 — z;y) + 16 H(1,1,0,0; y)

+ 16H(1,1,0,1,z) +16H(1,1,1,0;y) + 16H(1,1,1,0; 2)

—16H(1, z0O'y)—SH(l,l—z,l,O;y)—8H(1,1—z,z,1—z;y)

+16H(1 - 2,0,0,1 — z;y) —8H(1 — 2,0,1,0;y) + 16 H(1 — 2,0,1 — 2,0; %)

—16H(1 — z,l,OOy) 8H(1—2,1,0,1—zy)+16H(1 — 2,1,1,0;y)

—8H(1—2,1,1—2,0;y) +16H(1 — 2,1 — 2,0,0;9)

+32H(1 — 2,1 —2,2,1—z;y) — 16H(2,0,1,0;y) — 16 H(2,0,1 — 2,1 — z;y)

+16H(2,0,2,1 — z;y) — 16 H (2,1 — 2,0,1 — z;y) + 16H (2,1 — 2,1,0; )

—16H (2,1 — 2,1 —2,0;y) +32H (2,1 — z,2,1 — z;y) + 16 H(2,2,0,1 — z;y)

+16H(z,2,1 — 2,0;y) + 32H(z,2,1 — 2,1 — z;y) — 32H (2,2, 2,1 — 2z;y)

—32CH(1;y) — 16GH(1; 2) + 16GH (1 — 2;y) — 84Cs + 19}
3 2

[CQH(O; ?) = 3C3] * 8z (1—-y)(y+=2)

—zH(0;2)H(1 - zy)

z
S 8a(1-y)2(y+2)
+H(1,0;2) + 3G +¢2} i

[— CH (05 2)

8(1—y)(y+2)[

—2H(0,1;2)H(1 — z;y) —2H(0;2)H(0,1 — 2;y) + 2H (1;2)H(0, 2; y)

—2H(1;2)H(1 — 2,2;y) + 2H(0,2,1 — z;y) —2H(1 — 2z,2,1 — z;y) + H(0,1; 2)
2

8(1— )2(y+2){

— H(0;2)H(0,1 - 2;9) + H(1;2)H(0,2;9) — H(1;2)H(1 — 2, z;)

+H(0,z,1—zy)—H(1—2,2,1—2z;y) — H(0,0,1;2z) — H(1,0,1; 2)

—2H(0,0,1;2) — 2H(1,0,1; z)] n ~H(0,1;2)H(1 — zy)

+ 31 Z) W+ 2) [ZCQH(O;IU) +320H(1 — z;y) — 2GH(1 — z;9)
— zH(0;9)H(0,1;2) — 2zH(0,1; 2) H(1 — z;y) _zH(l,z)H(O =)
—2H(1;2)H(1 — 2,2;y) + 32H(0,1,0;y) — 2H (0, 2,1 — 2; )

+3zH(1—2,1,0;y) —zH(1 — z,2,1 — z;y) — 2H(1 —z,l,O;y)
—2H(0,1,0;y) + 32H(1;2) — 2(2H(1;2) + 2H(0,0,1;2) — zH (1,0, 1; 2)

_BZCB] +8(1—z;(y+z)[_

+ 22H(1,0;y) — 22H(1 — 2,0;y) — 22 H(0;y) — 226 H(1 — 2;y)

+20H(1 — z;y) +2zH(0;y)H(0,1;2) +22H(0,1;2)H(1 — z;y)
+2zH(1;2)H(0,zy) + 2zH(1,0;y) + 2zH(1;2)H(1 — z,2;y) — 22H(0,1,0; )
+22zH(0,2,1 —z;y) —22H(1 — 2,1,0;y) + 2zH(1 — z,2,1 — z;y)

+2H(1 — 2,1,0;y) +2H(0,1,0;y) + 22H(0,1; 2) — 22(H(1; 2) + 2(H(1; 2)

Z2H(0;9)H(1;2) — 2°H(0,1 — z;y)
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~2H(0,1;2) — 22H(0,0,1; 2) + 22H (1,0, 1; 2) + 62C3 + z@]

P
8z (y+ z)

— 22H(1,0;y)H(0; 2) + 62°H(1,0;y) — 222H(1,1,0;y) + 22H(0;y)

— 62H(0;y)H(0; 2) — 62H (1,0;y) — GH (0;y) — 2°CH (0;2) + 622 H(1,0; 2)

+22GH (05 2) — TzH(1,0; 2) + 42%C3 + 622Co — 1023 — T2Co + 2C3}

— 2°GH(0;y) — 22 H (1;y) + 62°H(0; ) H(0; )

+ yGH(1;2) + yGH(1 — z;y) — 20H (05 y) — 220H(1 — z;y)

1
8(1—2)?
+ GH(1 - 2zy) —yH(0;y)H(0,1;2) — yH(0,1;2)H(1 — 2 )
—yH(l;z)H(O zyy) —yH(1;2)H(1 — z,2z;9) + yH(0,0,1; 2)
—yH(0,2,1 —2z;y) —yH(1,0,1;2) + yH(1 — 2,1,0; )
—yH(1—2z,2,1—2z;y)+ zH(0;y)H(0,1;2) + zH(0,1; 2) H(1 — z; )
+zH( ;2)H (0, z'y)+zH(1;z) (1—2,2;y) —22H(0,1,0;y)

+2H(0,2,1—z;y) —22H(1 — 2,1,0;y) + H(1 — 2,1,0; )
+2zH(1—2,2,1—2zy)+ylH(0;y) +yH(0,1,0;y) + H(0,1,0;y)
—220H(1;2) + GH(1;2) — 2H(0,0,1; 2) + 2H(1,0,1; 2) — 3y(s + 32(3
+ g (G — 2) — yHO)H(L:2) + 2H (O H(1:2)
+yH
—yH
—yH(1—2,0;y)+2zH(1 —2,0;y) —2H(1;2)H(1 — 2z, 2z;y) + yH(z,1 — z;y)

(L;2)H (2;9) + yH(0,1;2) — 2H (03 ) H(0,1;2) — 2H(0,1;2) H(1 — 25 9)
(0
(
—2H(0,2,1 —z;y) + H(1 — 2,1,0;y) —2H(1 — z,2,1 — z;y) + 2 H(0; y)
(1,
(

1 —2zy) +2H(0,1 - z;y) — 2H(1;2)H(0, z3y) — 2H(1,0; )

+yH(1,0y) — H(1,0;y) + H(0,1,0;y) + GH(1;2) — 2H(0,1;2) + H(0, 1; 2)

+2H(0,0,132) — 2H(1,0,152) = 663 — o + — 42 H(0;y)

1
8(y+2)
+420H (Ly) + 22GH(1 — 2y) — 2GH (1 — z;y) + 62H(0; y) H(0; 2)
+3zH(0;y)H(1;2) —32zH(0; 2)H(1 — z;y) + 3zH(0,1 — z; )
+22H(1,0;y)H(0;2) +32zH(1,0;y) — 2zH(0;y)H(1,0; 2)
+22H(1,0;2)H(1 — 2z;y) +22H(0;2)H(1 — 2,0;9y) + 3zH(1 — 2,0;y)
+22H(0,1,0;y) + 42H(1,1,0;y) + 22H(1 — 2,1,0;y) + H(0;y)H(1,0; 2)
—2H(1—2,1,0;y) + (2H(0;y) — 3H(0,1,0;y) + 220 H(0; z) — 622 H(1; 2)
—3zH(0,1;2) +62H(1,0;2) —4zH(0,1,0;2) — 62H(1,1,0;2) + 2H(1,1,0; 2)

4265 +62G, — 2G5 + ﬁ [H(1:2) H(z5y) + H(z, 1= 259)

1 2 . . 2 . . )
IO [ — 22H(0;y)H(1,0;2) + 22H(0,1,0; y) + 22H(0; y) H(1,0; 2)
—22H(0,1,0;y) — H(0;y)H(1,0;2) + H(0,1,0;y) — 2°CH(L; 2)
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+222H(0,1,0;2) — 22H(1,1,0; 2) + 62(H(1; 2) — 2 H(1; 2)
4 22H(0,1,0:2) + 62H(1,1,0;2) — 2H(1,1,0; z)}
R
8(y+2)?
—222H(1,0;2)H(1 — 2z;y) — 22°H(0; 2)H(1 — 2,0; ) + 22H(0,1,0; y)
—222H(1 — 2,1,0;9) — 22H(0;y)H(1,0; 2) — 22H(1,0; 2) H(1 — z;7)
+42H(0,1,0;y) + 22H(1 — 2,1,0;y) + H(0; y)H(1,0;2) — H(0,1,0;y)

+ 22H(0,1,0;2) — 42 H(1; 2) + 20 H(1; 2) — 22H(0,1,0; 2) — 62H(1,1,0; 2)
22
8(1—Z)(y+2)2[
2—2)z
8(1—2)(y+2)?

—H(1-2,1,0;y9) — H(0,1,0;9) —Czﬂ(l;Z)}

—222GH(1 - zyy) — 2*H(0;y)H(L,0; 2)

+2H(1,1,0; z)] n GH( — zy)+ H(1 - 2,1,0;y)

—i—H(O,l,O;y)—i—CQH(l;z)]—i- [—CzH(l—z;y)

8(1 iti;j_ 2)2 [QH(l —zy) + H(1,0;2)H(1 — z; y)}
22 z
T3 - y()l;(ry i e [CzH(l —zyy) + H(1,0;2)H(1 — z; y)}
23 z
S8z (1 _(:yl);_(y)+ 2)2 [<2H(1§Z) + H(0,1,0;2) + H(1, 1,0;2)}
52

T 8z(1—y) (y+2)2 [C2H(1; z) + H(0,1,0;2) + H(L, 1,0;2)} (B.12)

12 (12— ) [H((); y) — H z)} 12196 [

+279H (0;y)H (1;2) + 279H(0; 2) H(1 — z;y) + 324H(1;2)H(1 — 23 y)

270 H (1 — z;y)

+204H (1 — z;y) — T20H(1; 2)H (23 ) — 324H (0, 0; y) H(1; 2)
—324H(0,0;2)H(1 — z;y) + 216 H(0; y) H ((), 1;2) —216H(0,1;2)H(1 — z;y)
— 108H (0, 1, 2)H(z;y) — 108H (0; 2) H(0,1 — z;y) + 216 H(1; 2) H(0,1 — z;y)
+279H (0,1 — z;y) + 324H (1; 2) H(0, 2; y) +54H(1,0;y)H(0; 2

)
— 54H(0; y)H(l 0;2) +216H(1,0;2)H(1 — z;y) + 324H(1,0; 2) H(z; y)

+216H(0;y)H(1,1;2) — 432H(1,1;2)H(z;y) — 108H (0; 2) H(1 — 2,05 y)
+216H(1,z) (1—2 0;y) +279H (1 — 2,0;y) + 216 H(0; 2) H(1 — 2,1 — z;y)
+324H(1 — ) 432H(1;2)H(1 — z,z;y) + 324H (1;2) H(z,0; y)

+ 324H (0; z) ( y) —432H(1;2)H (2,1 — z;y) — 720H (2,1 — 23 9)
—432H(1;2)H (z z; y) —324H(0,0,1 — Z'y) —324H(0,1 — 2,0;y)
+216H(0,1 — 2,1 — z;y) + 324H(0, 2,1 — z;y) — 324H (1 — 2,0,0;y)
+216H(1 —2,0,1 —2z;y) + 216H(1 — 2,1 — z,O;y)—432H(1—z,z,1—z;y)
+ 324H (2,0 y) +324H (2,1 — 2,0;y) —432H (2,1 — 2,1 — z;9)
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—432H(z,2,1 — z;y) — 216¢2H (1;y) + 81H(0;y) — 360H(1,0;y)

£ 54H(0,1,0;y) + 324H(1,0,0;y) — 216 H(1,1,0;y) + 54C H(1; 2)
+180H (0; 2) + 204H (15 2) — 441H(0,1; 2) — SLH(L,0; 2) + 324H (1, 1; 2)
—108H(0,0,1; 2) + 54H(0,1,0; 2) — 216 H (0,1, 1; 2) — 216 H(1,0,1; 2)

118¢; — 54@ - 742} (B.13)

——<4 + T35 [gg (32405 2)H (1; y) — T56H (1; ) + 972H (03 ) H(1; 2)
+324H(1;y)H(1;2) + 1161H (1;2) + 648H (0; 2) H(1 — z; )
+1296H(1;2)H(1 — z;y) + 1917TH(1 — z;y) — 1296 H(0, 1; y)
—324H(0,1;2) + 972H (0,1 — z;y) — 972H(1,0; y) — 324H(1,0; 2)
C1206H(1, 1;y) + 324H (1,1; 2) + 324H(1,1 — 2:)

L 648H(1 — 2,0,y) + 1296H (1 — 2,1 — 2;y) — 2295) — 810H(0; y)

—486H (0;y)H(0; z) —432H(0;2) — 1926 H (0; y)H (1;2) — 951 H (1; 2)

— 1440H(0;2)H(1 — z;y) — 1782H(1;2)H(1 — z;y) — 951H (1 — z;y)

+ 5148H (1;2)H(z;y) + 2268 H (1; 2) H(0,0;y) + 2268H (1 — z;y) H(0,0; 2)
—T702H(0;y)H(0,1;2) + 1188H (1 — z;y)H(0,1; 2) — 864 H (2; y)H(0,1; 2)
648 H(0,0;y)H(0, 1; 2) + 3546 H (0, 1; 2) + 594H (0; 2) H (0,1 — 23 1)
—1188H(1;2)H (0,1 — z;y) + 648H(0,0; 2) H(0,1 — z; )

—324H(0,1;2)H (0,1 — z;y) — 1926 H(0,1 — z;y) — 1296 H(1; 2)H(0, z; )
— GASH(0,1; 2)H (0, 2;y) — SA0H(0; 2)H (1, 0: ) + 486 H (1; ) H(1,0; 1)
~324H(0,1; 2)H(1,0;y) + 2250H (1, 0; y) + 1026 H(0; y) H (1, 0; )
+270H (1 — z;y)H(1,0;2) — 1296 H (z;y)H(1,0; 2) + 648H(0,0; y) H(1,0; 2)
— 1206 H(0, 2;y)H(1,0; 2) — 324H (1, 0; ) H (L, 0; 2) + 324H (1, 0; 2)
—1188H(0;y)H(1,1;2) + 2376 H (z;y)H(1,1;2) + 648H (0, z; y) H(1, 1; 2)
C1782H(1,1;2) — 324H(0,1; 2)H(1,1 — 2;y) + 324H(1,0; 2)H(1,1 — 2;)
+ 1566 H(0;2)H(1 — 2,0;y) — 1188H (1; 2) H(1 — z,0;y)

+648H(0,0; 2)H(1 — 2,0;y) +972H(0,1; 2) H(1 — 2,0; y)

FOT2H(1,0; 2)H(1 — 2,0;y) — 1926H(1 — z,0; 1)
—1188H(0;2)H(1 — 2,1 — z;y) + 1296 H(1,0; 2) H(1 — 2,1 — z;y)
—1782H(1 — 2,1 — z;y) + 2376 H(1; 2)H(1 — 2z, 2z; y)

—1944H(0,1;2)H(1 — 2z, z;y) + 648H(1,0; 2) H(1 — z, z;y)
—1296H(1;z)H(z,0;y) + 648H(0,1;2)H(z,0;y) + 648H (1,1; 2)H(z,0; y)
—1296H(0;2)H (2,1 — z;y) + 2376 H(1;2)H (2,1 — z; )

—648H(0,1;2)H (2,1 — z;y) + 648H(1,0; 2)H (2,1 — 2;y)

+5148H (2,1 — z;y) + 432H(1;2)H (2, z;y) — 3240H (0, 1; 2) H (2, z; y)
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+ 648H(1,0;2)H (2, z;y) — 1296 H (1, 1; 2)H(z, z; y) — 648H (0;y)H (0,0, 1; 2)
—324H(1;y)H(0,0,1;2) — 1296 H(1 — z;y)H (0,0, 1; z)

— 2592H (2;y)H(0,0,1; 2) + 108H (0,0, 1; 2) + 2268H(0,0,1 — 2 1))

£ 648 H (13 2)H(0,0, 2;y) — 324H(0; 2)H(0,1,0;y) + 324H(1; 2)H(0,1,0; )
— 2484 H(0,1,0;y) — 324H(0;y)H(0,1,0; 2) + 324H(1; ) H(0,1,0; 2)
F1296H (1 — 2 y)H(0,1,0; 2) + 648H (2; ) H(0, 1,0; 2) — 1512H(0,1,0; 2)

— 648H (z; y)H (0, 1, 1; z) + 1188H(0, 1,1;2) + 2268H(0, 1—2,0;y)
— 648H (0; 2)H (0, .y) — 1188H (0, )
+324H(1;2)H(0,1 - 2, 2; y) +1296H(1; 2)H (0 z,0; y)

- 1296H(0;2)H(O,z,1 — 21y) + 648H (15 2)H (0, 2,1 — 2; )

—1296H(0, 2,1 — z;y) + 648H(1; 2)H (0, z, z;y) — 648H (0; 2) H(1,0,0; y)
+648H (1; 2)H(1,0,0; 1) — 2268H (1,0, 0: y) + 648H (1 — 2 y)H(1,0,0; 2)

+ 324H (0; ) (1,0,1;2) — 324H(1; y)H(1,0,1; 2)

+972H(1 — z;y)H(1,0,1;2) — 648H(z;y)H(1,0,1; 2) + 1674H (1,0, 1; 2)

— 648H (0; z) (1,0,1 — z;y) + 486H(1,0,1 — z;y) + 324H(1;2)H (1,0, z; y)
—756H(1,1,0;1) + 648H (0: y) H(1,1,0; 2) + 324H (1; y) H (1, 1,0; 2)
+2268H(1 — z;y)H(1,1,0;2) + 648H (z;y)H(1,1,0; 2)

—324H(0;2)H (1,1 — 2,0;y) + 486 H(1,1 — z,0; y)

—324H(1;2)H(1,1 — z,z;y) + 648H(0; ) H(1 — 2,0,0; %)

+2268H (1 — 2,0,0;y) + 324H(0; 2)H(1 — 2,0,1 — z;9)

—1188H(1 — 2,0,1 — z;y) + 648H (1; 2) H(1 — 2,0, z;y)

324H(0; 2)H(1 — 2,1,0;y) + 972H(1; 2)H(1 — 2,1,0; )

+ 1458 H(1 — 2,1,0;y) + 648H(0; 2) H(1 — 2,1 — 2,0; y)

—1188H(1 — z,1 — 2,0;y) + 648H (1;2)H(1 — 2, 2,0; y)

+648H(0;2)H(1 — z,2,1 — z;y) + 2376 H(1 — 2, 2,1 — z;y)
—2592H(1;2)H(1 — 2,2, 2;y) + 648H(1; 2) H(2,0,1 — z;9)

—1296H (2,0,1 — z;y) + 648H(1; 2) H (2,0, 2;y) + 648H (1;2)H (2,1 — 2,0; )
—1296H (2,1 — 2,0;y) + 648H(0; 2)H (2,1 — 2,1 — 2z; %)

+2376H (2,1 — 2,1 — z;y) — 1296 H(1; 2) H (2,1 — 2, z;y)

+648H (1;2)H(z,2,0;y) + 648H (0; 2)H (2, 2,1 — 2;y)

—1296H(1;2)H (2, 2,1 — z;y) + 432H (2, 2,1 — z; )

— 3888H(1;2)H(z,2,2;y) — 648H(0,0,1,0;y) + 1296 H(0, 0, 1, 0; 2)

L 648H(0,0,2,1 — 2;y) + 324H(0,1,0,1 — 2;y) — 1296H(0,1,1,0; 3))
+648H(0,1,1,0;2) + 324H(0,1,1 — 2,0;y) + 972H (0,1 — 2,1,0; y)
+324H(0,1 — z,2,1 — z;y) + 1296 H(0, 2,0,1 — z;y) + 1296 H(0, 2,1 — z,0; y)
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+ 648H(0, 2,1 — — z;y) + 648H(0, 2z, 2,1 — z;y) — 324H(1,0,0,1; 2)
648H(1,0,0,1 — 2; y) —1296H(1,0,1,0;y) + 648H(1,0,1,0; 2)
+648H(1,0,1 — 2,0;y) + 324H(1,0, 2,1 — 2 y) — 1296H(1, 1,0, 0; )
+648H(1,1 0,1;2) — 1296 H(1,1,1,0;y) + 972H(1,1,1,0; 2)
+648H (1,1 — 2,0,0;y) —324H (1,1 — z,2,1 — z;y) + 648H (1 — 2,0,1,0; )
+648H(1—z 0,2,1—zy)+648H(1 — 2,1,0,0; )
+972H(1 — 2,1,0,1 — z;y) + 972H(1 — 2,1,1 — 2,0; y)
+1296H(1 — 2,1 — 2,1,0;y) + 648H(1 — 2,2,0,1 — z;y)
+648H(1 — 2z,2,1 — 2,0;y) —2592H (1 — z,2,2,1 — z;y)
+ 648H(2,0,1 — 2,1 — z;y) + 648H(2,0,2,1 — z;y)
+648H (2,1 — 2,0,1 — z;y) + 648H (2,1 — 2,1 — 2,0; y)
—1296H (2,1 — z,2,1 — z;y) + 648H(z,2,0,1 — z;y) + 648H(2,2,1 — 2,0;y)
—1296H (z,2,1 — z,1 — z;y) — 3888H (2, 2, 2,1 — z;y) — 972(sH(1;y)
3(3 23

8z (1—-y)*(y+2)
z

z
AT Sy e
—zH(0;2)H(1 — z;y) —2H(0,1;2)H(1 — z;y) — 2H(0; 2) H(0,1 — 23 y)
+2H(1;2)H(0,2z;9) +2H(1,0;2)H(1 — z;y) —2H(1;2)H(1 — 2,23 y)
+2H(0,2,1 —z;y) —2H(1 — z,2,1 — z;y) — 6 H(0;y) + 2¢2H (0; 2)
+20H(1;z)+ H(0,1;2) —2H(0,0,1;2) + 2H(0,1,0; 2) — 2H(1,0,1; 2)

22

8(L—y)*(y+=2)
—H(0,1;2)H(1 — z;y) + H(1;2)H(0, z;y) + H(1,0; 2) H(1 — z;9)
—H(L;2)H1 — z,z;y) + H(0,2,1 — z;y) — H(1 — z,2,1 — z;9)

+ (H(0;2) + (H(1;2) — H(0,0,1;2) + H(0,1,0;2) — H(1,0,1; 2)

648G H (15 2) + 1620C3 H (1 — 23 y) + 1845Cs + 2464] +

2

G+ H(1,0:2) + 36| +

+2H(1,1,0; Z)] + GH(1—zy) — H(0;2)H(0,1 — z;y)

+HLL0:2)| + 55— y+@pﬂa—zw—H@wH&L@

— H(0,1;2)H (1—z y)— H(1;2)H(0,z;y) — H(1;2)H(1 — 2z, 2z, y)
—H0,2,1—z;9)+ H1—2,1,0;y) — H(1 — 2,2,1 — z;9y) + (GH(0; y)
+ H(0,1,0;y) + (2H(1;2) + H(0,0,1;2) — H(1,0,1;2) — 3(3

z
TR+ )
+2H(0,1;2)H(1 — z;y) — zH(0,1 — z;9) + 2H(1; 2) H(0, z;9) + 2H(1,0;y)
—zH(1 = 2,0;y) +2H(1;2)H(1 — 2z, 2;y) + 2H(0, 2,1 — z;9)
—2H(1—2,1,0;y) + 2H(1 — 2z, 2,1 — z;y) — 2H(0;y) + H(1,0;y)
—2H(0,1,0;y) —2¢H(1;2) + 6H(0;2) + zH(0,1; 2) — H(0, 1; 2)

— 20 H(1 - z;y) — zH(0;y)H(1; 2) + 2H (0; ) H (0, 1; 2)
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2
Dg;()),e - =

—2H(0,0,1;2) +2H(1,0,1;2) + 6¢3 + Cz] + [GzH(O; y)H(0; 2)

z
8z (y+2)
—6H(0;y)H(0;2) + 6ZH(1 0;y) —6H(1,0;y) + 62H(1,0;2) — TH(1,0; 2)
+ 620 — 6¢3 — TC2| + S1_27 {yézH(l; z) +yQH(1 — zy) — 2GH(0; y)
— 2QH(1 = zy) — yH(0;y)H(
—yH(1;2)H (0Z'y)—yH(l;Z)H(l—z,Z;yHyH(O,O,l;Z)
—yH(0,2,1—2;y) —yH(1,0,1;2) + yH(1 — 2,1,0; y)
—yH(l1—2z,2,1—2z;y)+ zH(0;y)H(0,1;2) + zH(0,1; 2) H(1 — 2z; )

(

(

07172) yH(O717Z)H(]‘_Zvy)

)
+2H(1;2)H(0, 2;y) + 2H(L 2)H(1 — 2, 2;9) — 2H(0,1,0; )
+2H(0,2,1 —z;y) —zH(1 — 2,1,0;y) + zH(1 — z,2,1 — z;y)
+yGH(05y) + yH(0,1,05y) — 2GH(1;2) — 2H(0,0,1;2) + 2H(1,0,1; 2)

=80+ 3]+ g [ (1= 250) — yH O H(L:2)

s y)H(1;2) + yH(L2)H(zy) +yH(0,1;2) — 2H(0;y) H(0, 15 2)
L;2)H(1 — zy) —yH(0,1 — z;9) + zH (0,1 — z;y)
;2)H(0,2;y) — zH (1, O'y)—yH(l—z,O;y)+zH(1—z,0;y)
i 2)H(1 — 2z, 2z;y) +yH (2,1 — zy) —2H(0, 2,1 — 23 y)

y) —2H(1 —ZZ1—Z'y)+2C2H(0;y)+yH(1,0;y)
0,1,0;y) +20H(1;2) —6H(0;2) — zH (0, 1; 2)

z,1,0;
— H(1,0;y) +2H
+2H(0 0,1,Z) 2H(1,0,1;Z) —6C3 — (o

(
+ H(0,1;2) (
" 24(y1+) = T2GH(1 = zy) + T2H(0;y) + 182H (05 y) H (0; 2)
+ 92H(0; y)H( 2) — 02H(0: 2)H(1 — 2:y) + 36H(0,1: 2) H(1 — 2: y)

+92H(0,1 —2;y) +92H(1,0;y) — 18H (1,0;y) H(1; 2)
—18H(1,0;2)H(1 — 2z;y) + 92H(1 — 2,0;y) + 36 H(1; 2) H(1 — 2, 2;y)
—18H(1,0,1 — z;y) — 18H(1,1 — 2,0;y) — 18 H(1 — 2,1,0;y)
+36H(1—2z,2,1—z;y) +36H(1;y) + 36 H(1,1,0;y) — 36¢2H (1; 2)
— T2H(0;2) — 92H(0,1; 2) + 182H (1,0; 2) + 18H(1,0,1; 2) + 18zg2]
2

— |H(1;2)H (z; H(z,1— z;
oy HGAH ) + H 1 = )
5 [3H(0 Y)H(0; 2) — 20H(0; ) + 15H (0, 0; ) — 20H (0; 2)
+15H(0,0; 2) +6g2}

19 )

%CS + 20— {y H(0;9)H(0; 2)

+y?H(1,0;2) + y>H(1,0;y) + 2y H(0; 2) — 2yH(0;y)
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+

e | — 108y H (0:y) H(0; 2) + 180H (0;y) H (0; 2) — 324H (0: y) H(0, 0; 2)

—2T0H(0;y)H (1,0; 2) — 216y H(0; ) — 324H(0,0;y) H (0; 2)
—54H(1,0;y)H(0;2) — 108y H (1,05 2) — 216 H(1,0; 2) H(1 — z;y)
—216H(0;2)H(1 — 2,0;y) — 216 H(1 — 2,1,0;y) + 216y H (0;y)

+ 855H(0;y) — 738H (0,0;y) — 108y H (1, 0;y) + 360H (1, 0;y)

— 54H(0,1,0;y) — 324H(1,0,0;y) + 216 H(1, 1,0;y) + 639H (0; 2)
— 738H(0,0;2) +360H (1,0;z) — 54H (0,1,0; 2) — 324H (1,0,0; 2)
1-
1296 «
—270H(0; y) H(1,0; 2) — 324H (0, 0; y) H (0; 2) — 54H (1, 0; ) H (0; 2)
—216H(1,0;2)H(1 — z;y) — 216 H(0; 2) H(1 — 2,0; )

—216H(1 — 2,1,0;y) + 855H(0; y) — 738H (0, 0;y) + 360H (1,0; y)
— 54H(0,1,0;y) — 324H(1,0,0;y) + 216 H(1, 1,0;y) + 639H (0; 2)
— 738H(0,0; 2) + 360H (1,0: 2) — 54H(0,1,0; z) — 324H(1,0,0; 2)

- 136} [180H(0 y)H (0; 2) — 324H (0; y) H (0, 0; 2)

- 136} . 12(2/12—@35).@ . MCQ 2UH(1 — 2z y) + 12H(0:y) — 24H (1;y)
+12H(0; z) + 1] (B.16)

—4“4 + 5555 [Cz (3618H(o y) + 1944H (0; y) H(0; 2) + 2646 H (0; 2)

+ 648H(0; 2)H(1; y) — 2376 H (1;y) + 648H (1; y) H(1; 2) + 2916 H(1; 2)
—648H(0;2)H(1 — z;y) — 1296 H (1; 2) H(1 — z;y) + 3348H (1 — z;y)
—1296H (1; z)H (z;y) + 1296 H(0,1;y) + 1296 H (0, 1; 2) + 1296 H(0,1 — z;y)
+1944H(1,0;y) + 1296 H(1,0; 2) + 1296 H (1, 1;y) + 648H (1, 1; 2)

+648H (1,1 — z;y) — 648H (1 — 2,0;y) — 1296 H(1 — z,1;y)

—1296H (2,1 — z;y) + 954) —2652H(0;y) — 2700H (0; y)H (05 2)

(
— 6000H (0: 2) + 4536 H (0; ) H (0, 0; ) + 5760H (0, 0; )
4536 H (05 ) H (0, 0; 2) + 1296 H (0, 0; ) H (0, 0; 2) -+ 5760H (0, 0; 2)
+108H(0; 2)H(1,0; ) — 4500H (1, 0; y) + 4428 H(0; y) H (1, 0; 2)
+3348H (1 — z;y)H(1,0;2) + 1296 H(0,1 — z;y) H(1,0; 2)
+648H(1,0;y)H(1,0;2) — 4500H (1,0; 2) + 648H (1,0;2)H (1,1 — 2;y)
+ 3348H(0;2)H(1 — z,0;y) — 648H (1,0; 2)H(1 — z,0; )
—1296H(1,0;2)H(z,0;y) — 1296 H(1,0; 2)H (2,1 — z; y)
+ 648H (0; 2)H(0,1,0; 1) + 2052H (0, 1,0; ) + 648 H (0; ) H (0, 1,0; 2)
+ 648H (1;y)H(0,1,0;2) + 648H (1 — 2z;y)H (0, 1,0; 2)
1296 H (2 y) H(0,1,0; 2) + 3024H (0, 1,0; 2) + 1296 H(0; 2) H(0,1 — 2, 0; 7))
+ 1296 H(0; 2)H (1,0,0;y) 4+ 4536 H (1,0,0;y) + 1296 H (0; y) H (1,0, 0; z)
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+4536H(1,0,0; 2) — 2376 H(1,1,0;y) + 648 H (1;y)H(1,1,0; 2)
—1296H (1 — z;y)H(1,1,0;2) — 1296 H(z;y)H (1,1,0; 2) + 2916 H(1, 1, 0; 2)
+648H(0;2)H (1,1 — 2,0;y) — 648H(0; 2) H(1 — 2,1,0;y)
£ 3348H(1 — 2,1,0;y) — 1296 H(0; 2)H (2,1 — 2, 0;9) + 1296 H(0,0,1,0; y)
+2592H(0,0,1,0; 2) + 1206 H (0, 1,1,0; ) + 1296 H(0, 1, 1,0; 2)
F1296H (0,1 — 2,1,0;y) + 1944H(1,0,1,0;y) + 2592H (1,0, 1,0; 2)
+1296H(1,1,0,0;y) + 1296H(1,1,0,0; 2) + 1296 H(1,1,1,0; y)
F648H(1,1,1,0;2) + 648H(1,1 — 2,1,0;y) + 648H (1 — 2,0,1, 0; y)
—1296H(1 — 2,1,1,0;y) + 1296 H(z,0,1,0;y) — 1296 H(z,1 — 2,1,0;y)
+ 43( — 648H (0;) — 648H (0; z) + 648H (15 y) + 3240H (1; 2)

322
S dw(l-y)(y+2)
32°CoH (0;y) + 62°C2H (15 y)

+2592H(1 — 2;y) + 6552) - 379] H(0;y)

3z 1
_ H(0: - -
A(1-2)(y+2) (’Z)+24x(y+z)[
— 3822H(0;9)H(0; z) + 322H(1,0; ) H(0; z) — 3822 H(1,0;y)
+622H(1,1,0;y) — 62(H(0;y) + 182H(0;y) + 382H(0;y) H(0; 2)

+382H(1,0;y) + 3CH(0;y) + 322CH(0; z) — 3822H(1,0; z) + 382H(1,0; 2)

—122%¢5 — 3822Cs + 122(3 + 382Ca — 6@,} + 4(13_2)1{(0; 2)
L
24 (y+2)
—382zH(0;y)H(0;2) + 122H(1,0;y)H(0; z) — 382H(1,0;y)
—122H(0;y)H(1,0;2) — 62H(1,0;2)H(1 — z;y) — 62H(0; 2) H(1 — 2,0;y)
+122H(0,1,0;y) + 242zH(1,1,0;y) — 6zH(1 — 2,1,0;y) — 3H(0;y)H(1,0; z)
—30H(0;y) +3H(0,1,0;y) + 122(2H(0; z) — 1822 H(1; z) — 6(2H(1; 2)
+312zH(0;2) — 382H (1,0;2) — 62H(0,1,0; 2) — 182H(1,1,0; 2)

—620H(0;y) +2420H(1y) — 62GH(1 — 2;y) — 31zH(0; y)

—6H(1,1,0;2) — 122(3 — 382 + 6@,} + 22H(0;9)H(1,0; 2)

8x (y+ 2)?
— 22H(0,1,0;y) — 22H(0;y)H(1,0; 2) + 22H(0,1,0; y) + H(0; ) H(1,0; 2)
— H(0,1,0;y) + 222 H(1; 2) — 22H(0,1,0; 2) + 222 H(1,1,0; 2)
A2 H(1;2) + 26 H(1; 2) — 42H(1,1,0; 2) + 2H (1, 1,0; z)}
+ 5 (222G H(1 — z;y) + 22 H(0;y)H(1,0; 2
JOFE CoH ( y) (0;y)H( )
+222H(1,0;2)H(1 — z;y) + 222H(0; 2)H(1 — 2,0;y) — 22H(0,1,0; %)
+22°H(1 — 2,1,0;y) + 22H (0;y) H(1,0; 2) — 22H(0,1,0;y)
— H(0;y)H(1,0;2) + H(0,1,0;y) — 2°H(0,1,0; z) + 42(H (15 2)
—2(2H(1;2) +42H(1,1,0;2) —2H(1,1,0; 2) (B.17)
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and

Dg;[),

2)

1
= DY oo [AH(O:9)H (13 2) + 4H(0;2)H(1 — zy) — 18H(1 - 231)

32
—24H(1;2)H(zy) +4H(0,1 — z;y) +4H(1 — 2,0;y) — 24H (2,1 — z;y)

—24H(0;y) — 4H(1,0;y) — 18H(1; 2) — 4H(0,1; 2) — 7}

—20H(1 —2z;y)+42zH(0;2)H(1 — z;y)

z
+ [
8(1—y)(y+2)
+2H(0,1;2)H(1 — z;y) —2H(1,0; 2)H(1 — z;y) + 2H(0; 2) H(0,1 — z; )
—2H(1;2)H(0,z;9) + 2H(1;2) H(1 — 2, 2;y) — 2H(0, 2,1 — 27)
+2H(1—z,2,1 —2z;y) — H(0,1;2) + 2H(0,0,1; 2) + 2H (1,0, 1; 2)

2’2

AL @5 HOLH( - 5y)
— H(1,0;2)H(1 — z;y) + H(0;2)H(0,1 — z;9) — H(1;2)H(0, ;)
+H(;2)H(1 —2,2;y) —H(0,2,1 —z;y) + H1 — z,2,1 — 2z;)
2,’2

S(1—2)2(y+2) — GH(1 - zy)
0;9)H(0,1;2) + H(0,1;2)H(1 — z;y) + H(1;2)H(0, ;)

L;2)H(1 — z, Z‘y)—l—H(O,z,l—z;y)—H(l—z,l,O;y)

1—221=zy) - H(0y) — H(0,1,0;y) — (2H(1;2) — H(0,0,1; 2)

+ H(0,0,1;2) + H(1,0,1; z)] n

H(
H(
H(
H(

1,0,1;2) +3¢| + 2H(1 - z;y) + 42H(0;y) H(1; 2)

z
8(1—2)(y+=2)
—3H(0;y)H(1;2) —2H(0;y)H(0,1;2) —2H(0,1; 2) H(1 — 2z;9)
+42zH(0,1 — 2z;y) —3H(0,1 — z;y) —2H(1;2)H(0, z;y) — 4zH(1,0; )
+4zH(1— 2,0;y) —3H(1 — 2,0;y) —2H(1;2)H(1 — 2, z;y)
—2H(0,2,1 — z;y) +2H(1 — 2,1,0;y) —2H(1 — z,2,1 — z;y) + 2o H(0; y)

+2H(1,0;y) +2H(0,1,0;y) + 2(oH(1;2) —4zH(0,1; z) + 4H(0, 1; 2)

+2H(0,0,1;2) — 2H(1,0,1; 2) — 6(3 — (2| + 222H(0;y)H(0; 2)

1
8z (y+2)
+222H(1,0;y) + 420 H (05 y) — 42(H (15 y) — 62H (05 y) — 82H (0; ) H(0; 2)
—2zH(1,0;y)H(0;2) — 62H(1,0;y) +4zH(0;y)H(1,0;2) —4zH (0,1, 0;y)
—42H(1,1,0;y) — 4H(0;y)H(1,0;2) — 4G H (05 y) + 6H (05 y) — H(1,0;y)
+4H(0,1,0;y) + 222H(1,0; 2) — 42 H(0; 2) + 62CH (15 2)

—8(H(1;2) 4+ 62H(0;2) —92H(1,0;2) + 62H(1,1,0; 2) + H(1,0; 2)

= 8H(1,1,0;2) +25%Co + 22G — T2o +8Gs + G

+ —yCQH(1;2) —yGH(1 — z;y) + 2GH(0;y) + 2 H(1 — z;y)

1
8(1—2)2 [
+yH(0;y)H(0,1;2) + yH (0,15 2) H(1 — 2;y) + yH(1;2)H (0, 25 y)
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+yH(1;2)H(1 — 2, 2;9) —yH(0,0,1;2) + yH(0,2,1 — z;9) + yH(1,0,1; 2)
—yH(1 —2,1,0;y)+yH(1l — 2,2,1 — z;y) — zH(0; y) H(0, 1; 2)
—zH(0,1;2)H(1 — zy) —zH(1;2)H(0, z;y) — 2H(1; 2)H(1 — 2, 23 y)
+2H(0,1,0;y) — zH(0,2,1 — z;y) + zH(1 — 2,1,0;y)

—zH(1 = z,2,1 = zy) + y(=C)H(0;y) —yH(0,1,0;y) + 2(H(1; 2)
4 2H(0,0,1;2) — 2H(1,0,1; 2) + 3yCs — 3zC3}
ST [~ 2eH (0 = )+ Ay H (0 H(152) — 42H (0:)H (12
+3H(0;y)H (1; 2) — dyH (1 2)H (23 y) — 4yH(0,1; 2) + 2H(0;y) H (0, 1; 2)
+2H(0,1;2)H(1 — zy) + 4yH(0,1 — z;y) —42zH(0,1 — z;y)
+3H(0,1 —z;y)+2H(1;2)H(0, z;y) + 42H(1,0;y) + 4yH(1 — z,0; y)
—4zH(1 — 2,0;y) + 3H(1 — 2,0;y) + 2H(1;2)H(1 — z,2; y)
—4yH(z,1 — z;y) + 2H(0,2,1 — z;y) —2H(1 — 2,1,0;y)
+2H(1 —2,2,1 - 2y) — 2QH(0;y) — 4yH(1,0;y) — 2H(1,0; )
—2H(0,1,0;y) —2¢H(1;2) + 4zH(0,1;z) — 4H(0,1;2) — 2H (0,0, 1; 2)

4 2H(1,0,1;2) + 6C3 + 42} + [GzH(o; y) + 22H(0; ) H(0; 2)

1
8(y+2)
+22H(1,0;y) + 3H(0;y)H(1,0;2) + 3¢ H(0;y) — 6H(0;y) + H(1,0;y)
—3H(0,1,0;y) + 6CoH(1;2) —62H(0;2) +22H(1,0;2) — H(1,0; 2)

+OH(1,1,0;2) + 226 — 66— G = 5 [H(1 ) H(z50)
24

822 (1 —y)? (y+2)
3

8a2(1—y)(y+2)
|G H (0:y) + 25 H (1) — 6:2H (0; y) H (0 2)

+ H(z 1 2y)| - [C2H(0:2) + GH(132) + H(0,1,0;2)

+H(1,1,0:2) = 3G + [H(1,0;2) + |
L1
822 (y+ 2)
+ 22H(1,0;y)H(0; 2) — 62°H(1,0;y) + 22H(0;y)H(1,0; 2) — 22H (0,1, 0; )
+222H(1,1,0;y) — 226H (05 y) + 62H(0; y)H(0; 2) + 62H(1,0;y)
—22zH(0;y)H(1,0;2) +22zH(0,1,0;y) + H(0; y)H(1,0;2) + (oH(0; y)
— H(0,1,0;y) + 222GH(0; 2) + 322G H(1;2) — 72°H(1,0; 2)
+322H(1,1,0;2) — 42 H (15 2) + 26 H(1; 2) + 62H(1,0; 2) — 42H(1,1,0; 2)
F2H(1,1,0;2) — 722C5 — T2%Co + 42Cs + 62Ca — 2@,]
3 22 3z
B I D E i  Trwn

+ H(z,1-2y) +8(13_‘72)2[—11’(0;1/)1{(1;2')+H(1;Z)H(z;y)

[H(1;2)H(2)
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—H(O,l—z;y)—H(l—z,O;y)+H(Z71—z;y)+H(1,0;y)+H(071;Z)]

(B.18)
19 1
D+ =5 = 15 | HOw) + H(0:2)| = ) O+ yHO; 2 (B19)
—§4 + Tl% (o324 (0: 2) H (15 ) — 756H (1; )
+972H(0;y)H(1;2) + 324H(1;y)H(1; 2) + 1161 H (15 2)

(1
+ 648H (0; 2)H(
+1917H(1 — z;y) — 1296 H(0, 1;y) — 324H (0, 1; 2)
+972H(0,1 — z;y) —972H(1,0;y) — 324H(1,0; 2)

—1296H (1,1;y) + 324H (1,1;2) + 324H (1,1 — z;y)

1—zy)+1296H(1;2)H(1 — z;y)

4 6A8H(1 — 2,0;y) + 1206 H (1 — 2,1 — 2;y) — 2133) — 540H(0; y)

— 324H(0; y) H(0; 2) + 432H(0; 2) — 1278 H (0; y) H (1; 2) — TOSH (1; 2)
—1278H(0; 2)H(1 — z;y) — 1782H (1;2)H(1 — z;y) — 7T08H (1 — z;y)

+ 4176 H (1; 2)H (z;y) + 2268H(1; 2) H(0,0;y) + 2268H (1 — z;y)H(0,0; 2)
—702H(0;y)H(0,1;2) + 1188H (1 — z;y)H(0,1;2) — 864H (z;y)H(0,1; 2)
4 GASH(0,0;y) H (0, 1; 2) + 2898.H (0, 1; 2) -+ 594H (0; 2) H (0,1 — ;7))

— 1188H (1;2)H (0,1 — z;y) + 648H(0,0; 2) H(0,1 — z; )
—324H(0,1;2)H(0,1 — z;y) — 1278 H(0,1 — z;y) — 1296 H(1; 2) H(0, z; )
— 648H(0,1;2)H (0, z;y) — 540H (0; 2)H(1,0;y) + 486 H(1; 2) H(1,0; y)

— 324H(0,1; 2)H(1,0;y) + 1764H (1, 0;y) + 1026 H(0; y) H (L, 0; 2)
+270H (1 — z;y)H(1,0;2) — 1296 H (z;y)H(1,0; z)

+ 648H(0,0;y)H (1,0;2) — 1296 H (0, z; y) H(1, 0; 2)

— 324FH(1,0;y)H(1,0; 2) + 486 H(1,0; z) — 1188H(0;y)H (1, 1; 2)
+2376H (z;y)H(1,1 z) + 648H(0,z;y)H(1,1;2) — 1782H(1,1; 2)
—324H(0,1;2)H(1,1 — z;y) + 324H(1,0; 2) H(1,1 — z;y)

F1566H(0; 2)H (1 — 2,0;y) — 1188H(1; 2)H(1 — 2,0: 3)

+ 648H(0,0; 2)H(1 — 2,0;y) + 972H(0,1; 2) H(1 — 2,0; )
+972H(1,0;2)H(1 — 2z,0;y) — 1278 H(1 — 2,0; )

—1188H(0;2)H(1 — 2,1 — z;y) + 1296 H (1,0; 2) H(1 — 2,1 — z;y)
—1782H(1 — 2,1 — z;y) + 2376 H(1; 2) H(1 — 2, 2; y)

—1944H(0,1;2)H(1 — 2z, z;y) + 648H(1,0; 2) H(1 — z, 23 y)

— 1296 H(1; 2)H (2,0;y) + 648H(0,1;2)H(2,0;y) + 648H(1,1; 2) H(z,0; )
—1296H (0; 2)H (2,1 — z;y) + 2376 H(1;2)H (2,1 — z;y)

— 648H(0,1;2)H (2,1 — z;y) + 648H(1,0; 2)H(z,1 — z;y)

+ 4176 H (2,1 — z;y) + 432H(1;2)H (2, z;y) — 3240H (0, 1; 2)H(z, z;y)

—~
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+ 648H(1,0;2)H(z, z;y) — 1296 H (1,1; 2)H (2, z; y)

— 648H(0;y)H(0,0,1;2) —324H(1;y)H(0,0,1; 2)

—1296H (1 — z;y)H(0,0,1; 2) — 2592H (2;y)H (0,0, 1; 2) + 108 H(0, 0, 1; 2)
+ 2268H(0,0,1 — z;y) + 648H (1; 2) H(0,0, z; y) — 324H(0; 2) H(0, 1,0; y)
+324H(1;2)H(0,1,0;y) — 2484H(0,1,0;y) — 324H(0;y)H (0, 1,05 2)
4324 H (1;y)H(0,1,0;2) + 1296 H(1 — 2 y)H(0,1,0; 2)

+ 648H (z;y)H(0,1,0;2) — 1512H(0,1,0; 2) — 648H (z;y)H (0,1, 1; 2)

+ 1188H(0,1,1;2) + 2268 H (0,1 — 2,0;y) — 648 H (0; 2) H(0,1 — 2,1 — z;y)
—1188H(0,1 — 2,1 — z;y) + 324H(1;2)H(0,1 — z, 2z, y)

+ 1296H(1;2)H(0, 2,0;y) — 1296 H (0; 2) H(0, 2,1 — z; )

+ 648H (1;2)H (0, 2,1 — z;y) — 1296 H(0, 2,1 — z; )

+ 648H (1;2)H(0, 2, z;y) — 648H (0; 2)H(1,0,0;y) + 648H (1; 2) H(1,0,0;y)
—92268H(1,0,0;y) + 648H (1 — 2 y)H(1,0,0; 2) + 324H(0; y)H(1,0, 1; )
—324H(1;y)H(1,0,1;2) + 972H (1 — z;y)H (1,0, 1; 2)

— GASH (z;y)H(1,0,1; 2) + 167T4H (1,0, 1; 2) — 648H(0; 2)H(1,0,1 — 2 7))
+486H (1,0,1 — z;y) + 324H(1;2)H (1,0, z;y) — 756 H(1,1,0; y)

+ 648H(0;y)H(1,1,0;2) + 324H (1;y)H(1,1,0; 2)

+2268H(1 — z;y)H(1,1,0;2) + 648 H(2; y)H(1,1,0; z)

—324H(0;2)H (1,1 — 2,0;y) + 486 H(1,1 — 2,0; )

—324H(1;2)H(1,1 — z,z;y) + 648H(0; 2) H(1 — 2,0,0; )

+2268H(1 — 2,0,0;y) +324H(0; 2)H(1 — 2,0,1 — z;9)

—1188H (1 — 2,0,1 — z;y) + 648H (1;2)H(1 — 2,0, z; y)
+324H(0;2)H (1 — 2,1,0;y) + 972H(1; 2)H(1 — 2,1,0; )

1458H(1 — 2,1,0;y) + 648H(0; 2)H(1 — 2,1 — 2,0; y)

—1188H(1 — 2,1 — 2,0;y) + 648H (1;2)H (1 — 2, 2,0; y)
+648H(0;2)H(1 — z,2,1 — z;y) + 2376 H(1 — 2z, 2,1 — z;y)
—2592H(1;2)H(1 — 2,2, 2;y) + 648H(1; 2) H(2,0,1 — z; )
—1296H(2,0,1 — z;y) + 648H(1; 2) H(z,0, z; y)

+648H (1;2)H (2,1 — 2,0;y) — 1296 H(z,1 — 2,0; )

+648H(0;2)H (2,1 — 2,1 — z;y) + 2376 H (2,1 — 2,1 — z;y)

—1296H (1;2)H (2,1 — z,z;y) + 648H(1; 2)H(z, 2,0; y)

+648H(0;2)H (2, 2,1 — z;y) — 1296 H(1; 2) H (2, 2,1 — z;y)
+432H(z,2,1 — z;y) — 3888H (1;2)H (2, 2, z;y) — 648H(0,0, 1, 0; y)
+1206H(0,0,1,0;2) + 648H (0,0, 2,1 — 2;) + 324H(0,1,0,1 — 2 )
—1296H(0,1,1,0;y) + 648H(0,1,1,0; 2) + 324H(0,1,1 — 2,0;y)
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+972H (0,1 — 2,1,0;y) + 324H (0,1 — 2z, 2,1 — 2z; )

+ 1296 H (0, 2,0,1 — z;y) + 1296 H(0, 2,1 — 2,0;y) + 648H (0, 2,1 — 2,1 — z;y)
+648H(0,2,2,1 — z;y) — 324H(1,0,0,1;2) + 648H(1,0,0,1 — 2; )
~1296H(1,0,1,0;y) + 648H(1,0,1,0; 2) + 648H(1,0,1 — 2,0; )
+324H(1,0,2,1 — 2;y) — 1206 H(1,1,0,0;y) + 648H(1,1,0,1; 2)
—1296H(1,1,1,0;y) + 972H(1,1,1,0; 2) + 648H(1,1 — 2,0,0;y)
—324H(1,1 — z,2,1 — z;y) + 648H (1 — 2,0,1,0; )

+648H(1 — 2,0,2,1 — z;y) + 648H (1 — 2,1,0,0; 9)

+972H(1 — 2,1,0,1 — z;y) + 972H(1 — 2,1,1 — 2,0; y)

+1296H(1 — 2,1 — 2,1,0;y) + 648H (1 — 2,2,0,1 — z;y)
+648H(1 — z,2,1 — 2,0;y) — 2592H(1 — z,2,2,1 — z;y)

+ 648H (2,0,1 — 2,1 — z;y) + 648H(2,0,2,1 — z;y)

+ 648H (2,1 — 2,0,1 — z;y) + 648H (2,1 — 2,1 — 2,0;y)

—1296H (2,1 — z,2,1 — z;y) + 648H(2,2,0,1 — z;y) + 648H(2,2,1 — 2,0;y)
—1296H (z,2,1 — 2,1 — z;y) — 3888H (z,2,2,1 — z;y) — 972¢3 H(1; y)

4 648C3H (1; 2) + 1620C3H (1 — 23 y) + 1845 — 38}

+%[—H(0;y)H(0;2)—H(O;y)—H(LO;yHH(O;Z)
—H(l,O;Z)—CQ] —Zl(lz))_z)H(O;Z)Jrf;[—zﬂ(O;y)H(O;Z)

+ H(0;y)H(0;2) — zH(1,0;y) + H(1,0;y) — 2H(1,0; 2) + H(1,0; 2)
_zC2+C2] +ZZ{H(O;Z}H(l—z;y)—H(l;z)H(Z;y) — H(z,1—zy)

b [ HO: ) H (1 2) — yH (1 2)H(z:9) — yH(0,1:2) + yH(0, 1~ z:1)

8z
3z
H(1—2,0:y) —yH(z,1— 2:79) —yH(1,0: M a— - ) B.2
+yH(1-20y) —yH(z,1 - 2z;y) —yH(1,0;y) Y ira—y) (0;y)  (B.20)
2 2
D;;g,d = D5;()),d (B21)
@ _ (1-2)z . . . .
2;0,e Dl;O,e + 12 (1 _ :L‘) 72 [H(Oa y)H(O,Z) + H(l,o, y) + H(l,O,z) + C2
1

_ m [ZH(O;Z/) + ZH(O; y)H(O;Z) + ZH(l,O;y) _ H(O;y)

—zH(0;2)+ zH(1,0;2) + ZCQ} — [5H(0; y) — zH(0;y)

48 (1 — )
+42H(0;y) — 42H (0 z)} + ﬁ [74 — 15H(0; z)} (B.22)
1
288
4 36H(1,0; 2) + 36¢, — 565} +

D@ =D 4 [36H(0; Y H (0; 2) + 60H (0; ) + 36H (1, 0;y) + 192H(0; 2)

-2
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— 1122°H(0:y)H(0: 1222H(1,0; 62CoH (0
et o) (2 H O H(0:2) + 122 H (1, 03y) + 626 (0:y)

—2420H(1;y) + 20zH(0;y) + 8zH(0; y) H(0; z) — 122H (1,0; y) H(0; 2)
+22zH(1,0;y) + 62H(0;y)H(1,0;2) — 62H(0,1,0;y) — 242H(1,1,0; y)
—6H(0;y)H(1,0; 2) — 6¢2H(0; ) — 2H(0;y) + 3H(1,0;9) + 6H(0,1,0;9)
+1222H(1,0; 2) — 122 H(0; 2) + 122(H(1; 2) — 126 H(1; 2) — 202H(0; 2)
4 142H(1,0; 2) + 122H(0,1,0; 2) + 122H(1,1,0; 2) — 3H(1,0; 2)

C12H(1,1,0; 2) 4+ 1222Co + 1225 + 82Co + 12(3 — 3@]

1
4+ ———|112zH(0;y) + 122z H(0; y)H(0; z) + 122H (1, 0;
IO (0;9) (05 ) H(0; 2) (1,059)

+9H (0;y)H(1,0;2) + 9CH (0;y) + 2H(0;y) — 3H(1,0;y) — 9H(0,1,0;y)
+ 18 H(1;2) — 112H(0; 2) — 18H (05 2) + 122H (1,05 2) + 3H(1,0; 2)

322
prereany s U

— 3% H(0;y) — 62°CH(1;y) + 202°H (0; y) H (0; 2)

+18H(1,1,0; 2) + 122C5 — 18(3 + 3| +

e
—322H(1,0;9)H(0; 2) + 202 H(1,0;y) — 322H(0;y)H(1,0; 2)

+322H(0,1,0;y) — 62°H(1,1,0;y) + 62 H(0;y) — 182H(0; y)
—20zH(0;y)H(0;2) —202H(1,0;y) + 62H(0;y)H(1,0; 2) — 62H(0,1,0;y)

— 3H(0;y)H(1,0; 2) — 3G2H (0;y) + 3H(0,1,0; y) — 32°C2H(0; 2)

— 62%CH(1;2) +2022H(1,0; 2) + 322H(0,1,0; 2) — 62°H(1,1,0; 2)
+122(,H(1;2) — 6(H(1;2) —202H(1,0; 2) + 122H(1,1,0; 2)

—6H(1,1,0;2) + 122°¢3 + 202°¢y — 122¢3 — 202(a + 6(3| - (B.23)

C Formulae for soft and collinear limits

We list the unrenormalized H — bb matrix elements that are needed for the soft and
collinear limit checks of the two-loop H — bbg amplitude. The matrix elements in CDR

read:
MDD =2 N. c.1
oo Mt oy = 25 M (C.1)
(1) (0)x (0) (0)x
My My = ( ) My 5Mi s (A7) S Cr
(1—€)?2T(1+e)T(1—¢)?
( ) & (2~ 26) (C2)
@ 0 _Lras\2 ) (0 m2\
MH—)bBMH—>bb 4 (7> MH—}beH_ﬂ)B <_,u2> Fo (C.3)

where F3 is taken from eq. (2.24) of ref. [28] and S, = ex&(ﬂe)lE).
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The soft currents in eq. (3.28) are defined as

1 1—y—
SO (y, 2) = 16ma, Cp — ( z> (C4)
my yz
2 —€
S (y,2) = — S<0> : 4T)eS, C ( mH>
(,2) (y, 2 ( ) Al
o — _ )3 2
<1 y z> INQ! . €)’T'(1+¢) (C.5)
Yz F(l—?e

5(2)(11,2):%5(0)(9"2)(;;) ( ) < )
L&
6

1 5 5Ca  31(3
N -~ I Z R 5
{CA f<63+186 < >+162+18 9)

1 11 1/ 67 1/ 193 11 11G
2 - -~ - e . A, o
* CA(264 PR < 36 " C2> ¢ ( 5412 6

5TL67G, , 341G | 7@) o (6)]

81 36 18 8

(C.6)

where S (y, z) and SM)(y, z) have been adapted from egs. (12), (13), and (26) of ref. [68],
while S (y, 2) is taken from eq. (11) of ref. [59].

The collinear functions in eq. (3.29) are

2
C(O)(y,z) =4na,Cp ZSp;O)(e) (C.7)
n=1
1 1
CW(y,z) = 2 P 5 (4rag)? S. O ZSp(l) (¢) Sp? (e) (C.8)
1 1
C®(y, z) = 2@ L (dmag)® S2Cp Zsp@) () Sp ) (e) . (C.9)
n=1

The tree-level splitting functions in CDR are (see eqgs. (4.17) and (4.18) of ref. [60]):

Spy” (€) = ml%z [1 - eg — 22)} (C.10)
— )2
() = -9t (eRTY

At one loop, the splitting functions in CDR are (see egs. (4.21) and (4.22) of ref. [60]):

ol = —er(e) (am” (<28 s - (R ] e

So8(6) = —er(e) (4m) (=22} 50, (c13)
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with

[(1—€)?T(1+e)

cr(e) = T(1 - 2) (C.14)
s (e) = % [1 - gem <Lim <1__ZZ> - NlcQLim (1__’:> )} . (C.15)

The two-loop splitting functions Sp,(f)(e) in CDR are (see eqs. (3.7)—(3.14) and (4.24)—(4.25)
of ref. [60]):

1 2 e %cp(e) (Po
2 (e) = = (1) . S e (1) _ (2),fin
(0 = 5 (3900) "+ D (04 ) ol 20 + gy ) + 52 + 00,
(C.16)

where

—evE —2e
Hiag(0) = S e (L20) e - o (- B+ ) can

with Hy) and K as defined in appendix A. Finally, the functions Sp?)’ﬁn and Spg)’ﬁn

correspond to eqs. (4.24) and (4.25) of ref. [60] respectively with the replacement w — z.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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