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1 Introduction

The discovery of the Higgs boson [1, 2] has set a large part of the agenda in high energy

physics for the foreseeable future. Of primary concern is the need to determine the prop-

erties of the Higgs boson in relation to the predictions of the Standard Model (SM). This

is mainly achieved through measurements of the couplings of the Higgs boson to the other

SM particles and the Higgs coupling to itself. The Higgs self-coupling is of particular inter-

est, since it is intimately linked to the electroweak symmetry breaking potential, the form

of which is still unconstrained through measurements of the Higgs mass alone (although

its remaining properties are predicted in the SM). Any additional physics beyond the
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Standard Model (BSM) could lead to significant changes in the shape of the electroweak

symmetry breaking potential, and thus lead to deviations from the SM predictions.

Measuring the properties of the Higgs boson is an ongoing task. In regards to that,

the LHC has already achieved a remarkable precision with existing Run II measurements

and will significantly improve upon these results over the course of the next decade. Plans

are afoot for future colliders beyond the LHC (FCs) and a particularly appealing prospect

regarding Higgs precision physics is the construction of a lepton collider. Due to the clean

experimental conditions, future lepton colliders should be able to probe the properties of

the Higgs boson down to per-mille level accuracy [3–5].

The Higgs boson decays predominately to bottom quark pairs (bb), and therefore a large

part of the experimental program at the LHC and putative FCs consists in measuring the

properties of this decay. At the LHC theH → bb process can be accessed through associated

production channels pp → V H followed by a subsequent H → bb decay [6, 7] or directly, by

using jet substructure techniques and by looking in the high-pT H+j channel [8], where the

backgrounds can be controlled to such a level as to make this measurement a possibility.

In both situations precise predictions are mandatory to ensure that theoretical calculations

have a similar or smaller uncertainty than the experimental counterparts. This will become

even more pressing at an FC, for which historical measurements from LEP for Z/γ∗ → jets

already show that the level of experimental uncertainty will be very small indeed.

Given its importance for LHC physics, the study of Higgs plus multi-parton produc-

tion has received significant theoretical attention over the last couple of decades. Working

within the effective field theory, in which the top quark is treated as infinitely heavy, the

production of a Higgs through gluon fusion is known to N3LO in QCD [9, 10]. Recently,

differential predictions at this order have been computed using the method of QT subtrac-

tion [11, 12] and analytically for the rapidity distribution [13, 14]. In order to compute

pp → H differentially at N3LO, pp → H + j must be available at NNLO, pp → H + 2j at

NLO, and pp → H + 3j at LO. These computations have all been performed [15–17].1 Of

particular note for this work is the calculation of pp → H + j at NNLO, which requires

the analytic computation of H → 3 partons in the EFT [19]. The related process in which

the Higgs boson decays to three partons via a tree-level coupling to b-quarks has been less

well-studied in the literature. Attention has naturally been focused on the H → bb pro-

cess which has been studied at NLO [20] and NNLO [21–23], and inclusively is known to

O(α4
s) [24]. No complete NNLO prediction for H → bbj is available, although a calculation

of the two-loop amplitudes has been presented [25].

The aim of this paper is twofold. Firstly, we perform an independent computation

of the two-loop amplitudes for H → bbg which have been presented in the literature in

ref. [25]. Secondly, we use these results to produce a NNLO Monte Carlo code for the

H → bbj process. The primary goal is to establish whether we can effectively integrate

out the additional jet at NNLO. By successfully doing so, we open up the possibility of

studying H → bb decay at N3LO. We perform this calculation in a companion paper [26].

Our paper proceeds as follows. In section 2 we give a general overview of the calcu-

lation, while a detailed discussion of our two-loop computation is presented in section 3.
1Indeed, H + 3j is also available at NLO in QCD [18].

– 2 –



J
H
E
P
0
6
(
2
0
1
9
)
1
2
0

(a) (b) (c)

Figure 1. Representative Feynman diagrams for the H → bbj process at NNLO.

We discuss the results of our Monte Carlo implementation of H → bbj in section 4. After

drawing our conclusions, we present the full analytic results of our two-loop amplitudes in

the appendix.

2 Overview of the calculation

2.1 General overview

In this paper we consider the decay of a Higgs boson to a bottom quark pair and an

additional jet at NNLO in QCD. In perturbation theory up to NNLO the partial decay

width is expanded as follows:

ΓNNLO
H→bbj

= ΓLO
H→bbj

+∆ΓNLO
H→bbj

+∆ΓNNLO
H→bbj

. (2.1)

The above formula introduces the notation we will use in this paper: ΓX
H→bbj

defines the

partial width at orderX in perturbation theory, while∆ΓX
H→bbj

defines the coefficient which

enters the expansion for the first time at this order. Representative Feynman diagrams for

our NNLO calculation are shown in figure 1. Specifically, at NNLO we need to compute

two-loop amplitudes for H → bbg, one-loop amplitudes for H → bbgg and H → bbqq

(including identical-quark terms H → bbbb), and tree-level amplitudes for H → bbggg,

H → bbqqg, and H → bbbbg.

Radiative corrections to the H → bb decay were first studied nearly forty years ago [20],

when it was shown that there are sizable differences between calculations in the “massless

theory”, in which the b-quark mass is dropped in the phase space and kinematics but

kept in the b-quark Yukawa coupling, and in the full theory, in which the b-quark mass

is retained throughout. These differences were shown to be primarily due to logarithms

of the form log (m2
b/m

2
H). It was also discussed how these effects can be reinstated in the

massless theory by running the b-quark mass in the Yukawa coupling. Using the b-quark

mass evolved to the Higgs scale in the massless theory results in much smaller differences

between the two theories. This was shown explicitly in ref. [27], where the inclusive decay

rate ΓH→bb was computed up to order O(α3
s) including power-suppressed corrections of

the form m2
b(mH)/m2

H up to order O(α2
s). The numerical evaluation of the decay rate

shows that at each order in αs the mass corrections are at the per-mille level relative to the

massless contribution at the same order and that they are also smaller than the massless

corrections at the next order in perturbation theory. It is therefore advantageous and
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Figure 2. Examples of Feynman diagrams that do not enter our calculation at NNLO.

theoretically convenient to work in the massless limit, due to the reduced complexity of

higher-order Feynman diagrams. In the massless theory the inclusive partial width for the

H → bb decay channel is currently known to an impressive O(α4
s) accuracy [24]. The form

factor for H → bb at three loops is also known [28], so that, once a NNLO calculation of

H → bbj is complete, all of the component pieces for H → bb at N3LO are available.

In this paper we will therefore work in the massless theory in which the b-quark mass

is dropped from the phase space and kinematics, but kept in the Yukawa coupling with the

b-quark mass run to the Higgs scale. As mentioned above, a result of the massless theory as-

sumption is that it simplifies the calculation by reducing the number of Feynman diagrams

which must be included at one and two loops. We refer in particular to diagrams in which

the Higgs boson couples indirectly to the b-quarks, for which example topologies are shown

in figure 2. At O(α3
s) these diagrams interfere with the respective tree-level amplitudes

for H → bbg and H → bbgg for the two-loop and one-loop calculations respectively. A

simple helicity argument indicates that these interference terms are zero. In the H → bbg

and H → bbgg tree-level amplitudes the scalar Higgs boson couples directly to the two

(massless) quarks, which therefore must have identical helicity assignments (both positive

or negative). On the other hand, the diagrams in which the Higgs couples implicitly to the

b quarks as shown in figure 2 always result in the final-state bb pair coupling directly to a

gluon. This vertex requires that the fermions have opposite helicities, and therefore there is

no combination that allows non-zero interference terms to exist, resulting in no net contribu-

tion from these diagrams at NNLO (the H → bbgg box squared would first enter at O(α4
s)).

A slight subtlety arises when we consider the one-loop triangle diagram in which the

Higgs boson couples indirectly to the bottom quarks (i.e the left diagram in figure 2 with

no additional gluon exchanged in the loop). This diagram would self-interfere at O(α3
s) and

is therefore not excluded from our NNLO calculation by the argument presented above.

However, the trace over the fermion loop for this diagram contains five γ matrices and

hence this term vanishes in the massless theory. In order for this diagram to give a non-

zero contribution, the quark mass must be retained in the loop. This is the case when the

loop particle is a top quark, and hence there exists a top Yukawa contribution which first

enters at O(α3
s) in our calculation. Schematically, the perturbative expansion of the decay

width ΓNNLO
H→bbj

in the full theory is of the form:

ΓNNLO
H→bbj

∼ αsy
2
b Ab + α2

s

(
y2b Bb + ytybBtb

)

+ α3
s

(
y2b Cb + y2t Ct + ytybCtb

)
+O(α4

s) , (2.2)
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where yb and yt are the bottom and top Yukawa couplings respectively. From the argu-

ments given above it is clear that in the full theory the interference terms ytybBtb and

ytybCtb are suppressed by the bottom-quark mass (since a helicity flip is needed to make a

non-zero interference term). However, since the top Yukawa coupling is large, these mixed

terms are of phenomenological relevance. Specifically, in an effective theory in which the

top-quark loop is integrated out, the term ytybBtb contributes to around 30% of the O(α2
s)

coefficient [29]. For our theoretical setup, the mixed term Btb and Ctb are exactly zero. In

addition, at O(α3
s) the pure top contribution y2t Ct mentioned above needs to be included.

Indeed, while formally this term enters the perturbative expansion as a one-loop squared

contribution, the higher-order corrections are known to be large (and well-studied in the

EFT approach). This means that for a good phenomenological description higher-order

terms proportional to y2t should be included as well. The IR properties of this piece are

further complicated by the presence of collinear singularities as the bb pair becomes unre-

solved (in the massless theory) since this piece factors onto a different LO term (H → gg).

In this paper we drop the y2t term for two reasons. Firstly, we are interested in the theoret-

ical computation of the y2b terms (which is new), while the study of the y2t contribution has

received significant attention in the literature through the various studies of H + j at the

LHC. Secondly, we wish to use this computation to perform the N3LO calculation of the

y2b terms for H → bb. We leave the inclusion of the top Yukawa contributions to a future

study, while we remind the reader that these contributions should be included before a

complete phenomenological study is performed.

2.2 N-jettiness slicing

In order to regulate the IR divergences present in our NNLO calculation we employ the

N -jettiness slicing method [30, 31]. Since there are three partons in the final state at LO we

use the 3-jettiness variable τ3 to separate our calculation into two pieces. For a parton-level

event the 3-jettiness variable [32] is defined as follows:

τ3 =
∑

j=1,m

min
i=1,2,3

{
2qi · pj
Qi

}
, (2.3)

where the index j runs over the m partons in the phase space (with momenta pj), while

qi represent the momenta of the three most energetic jets, clustered in our case with the

Durham jet algorithm [33, 34]. Qi are the hard scales in the process, which are typically

taken to be Qi = 2Ei with Ei the energy of the i-th jet. We then introduce a variable τ cut3

that separates the phase space into two regions. The region τ3 <τ cut3 contains all of the

doubly-unresolved regions of phase space and here the partial width can be approximated

with the following convolution, derived from SCET [32, 35]:

ΓH→3j
(
τ3 < τ cut3

)
≈

∫ 3∏

i=1

Ji ⊗ S ⊗H +O(τ cut3 ) . (2.4)

In the above equation the terms Ji correspond to the jet functions which describe collinear

emissions, S denotes the soft function for three colored partons, and H is the process-

specific hard function. The explicit expressions for the jet functions Ji needed for our
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NNLO computation can be found in ref. [36]. For the soft function, we use the results

for the 1-jettiness soft function with arbitrary kinematics computed in ref. [37] (see also

ref. [38]). The calculation of the hard function for this process is one of the primary aims

of this paper and is discussed in section 3. In order for the approximate form of the partial

width in eq. (2.4) to be accurate, τ cut3 should be taken as small as possible to minimize the

power corrections which vanish in the limit τ cut3 → 0.

2.3 The τ3 > τ cut
3 contribution

Since any doubly-unresolved contribution resides in the region τ3 < τ cut3 , the region

τ3 > τ cut3 corresponds to the NLO calculation of H → bbjj. The methods to compute

one-loop expressions are by now well-established so we do not spend significant time on

them here. In this section we limit ourselves to a brief description of the computation. One-

loop amplitudes are computed analytically using the generalized unitarity approach [39].

Specifically, quadruple cuts are used to compute box coefficients [40], triple cuts are used

to compute the triangle coefficients [41], double cuts are used to compute bubble coeffi-

cients [42], and the rational pieces are computed using d-dimensional unitarity techniques

as outlined in ref. [43]. Our calculation is checked numerically using the d-dimensional uni-

tarity algorithm presented in ref. [44]. The resulting expressions are rather compact, with a

similar level of complexity to theH → gggg amplitudes presented in ref. [45]. Tree-level am-

plitudes are computed using the BCFW recursion relations [46] and all tree-level amplitudes

present in the calculation have been checked against Madgraph [47]. Finally, IR divergences

in the NLO calculation are regulated using Catani-Seymour dipole subtraction [48].

3 Hard function for H → bbg at NNLO

In this section we describe the calculation of the hard function H of eq. (2.4) for the process

H → bbg at NNLO accuracy. We define the hard function as a perturbative series in powers

of the renormalized strong coupling αs ≡ αs(µ) at the renormalization scale µ:

H = HLO +
(αs

2π

)
HNLO +

(αs

2π

)2
HNNLO +O(α3

s) . (3.1)

The LO, NLO, and NNLO coefficients of the hard function are

HLO = M(0),renM(0),ren∗ (3.2)

HNLO = 2Re
(
M(1),renM(0),ren∗

)
(3.3)

HNNLO = M(1),renM(1),ren∗ + 2Re
(
M(2),renM(0),ren∗

)
(3.4)

where M(ℓ),ren is the MS-renormalized ℓ-loop amplitude in the notation of ref. [49]. The

calculation of M(ℓ),ren with ℓ = 0, 1, 2 is described in the following sections.

3.1 Notation and kinematics

We consider the decay

H → b(p1) b̄(p2) g(p3) .

– 6 –
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The Mandelstam invariants for this process are defined as

s = (p1 + p2)
2 > 0 t = (p1 + p3)

2 > 0 u = (p2 + p3)
2 > 0

and satisfy s+ t+ u = m2
H with mH the mass of the Higgs boson. We also introduce the

dimensionless quantities

x =
s

m2
H

y =
t

m2
H

z =
u

m2
H

(3.5)

which satisfy 0 < x < 1, 0 < y < 1, 0 < z < 1, and x+ y + z = 1.

We follow the notation introduced in ref. [25], in which the unrenormalized amplitude

for H → bbg is written in terms of two tensor structures:

M = i

(
αs

2π

) 1
2 yb
m2

H

Ta
ij ϵµ(p3) [A1 T

µ
1 +A2 T

µ
2 ] , (3.6)

where αs is the bare strong coupling constant, yb is the bare bottom Yukawa coupling, Ta
ij

is the color matrix with gluon color index a and quark indices i and j, and ϵµ(p3) is the

gluon polarization vector. Finally, the tensors Tµ
1 and Tµ

2 are defined as

Tµ
1 = ū(p1)̸p3 γ

µ v(p2)

Tµ
2 =

[
pµ1 − t

u
pµ2

]
ū(p1) v(p2) . (3.7)

The coefficients Am (m = 1, 2) have perturbative expansions in powers of αs:

Am = A(0)
m +

(
αs

2π

)
A(1)

m +

(
αs

2π

)2

A(2)
m +O(α3

s) (3.8)

where the coefficients A(ℓ)
m with ℓ ≥ 1 contain UV and IR divergences which are regularized

in d = 4−2ϵ dimensions. At any order in αs, the coefficients A(ℓ)
m are obtained by applying

the projectors

Pµ
1 = − 1

2(d− 3)tu
Tµ†
1 − 1

2(d− 3)st
Tµ†
2

Pµ
2 = − 1

2(d− 3)st
Tµ†
1 − (d− 2)u

2(d− 3)s2t
Tµ†
2 (3.9)

to the appropriate amplitude, namely

A(ℓ)
m =

∑

pol

P ν
m ϵ∗ν(p3)M(ℓ) (3.10)

where M(ℓ) is the ℓ-loop amplitude written, for instance, as the sum of Feynman diagrams.

The sum over the polarization states of the external gluon is performed as

∑

pol

ϵµ(p3)ϵ
ν∗(p3) = −gµν +

pµ3q
ν + qµpν3
q · p3

(3.11)

where q is an auxiliary vector. In our calculation we choose q = p1.

– 7 –
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3.2 Calculation

We now discuss the calculation of the coefficients Am to second order. We generate the

tree-level, one-loop, and two-loop Feynman diagrams using FeynArts [50]. At tree level, by

applying eq. (3.10) and by carrying out the trace calculations in d dimensions we directly

obtain A(0)
m . At one loop and two loops, after using eq. (3.10) the coefficients A(1)

m and

A(2)
m are written in terms of scalar one-loop and two-loop integrals respectively. We reduce

them to an irreducible set of master integrals (MIs) using the programs Kira [51] and

LiteRed [52]. The topologies needed to reduce all integrals appearing in the calculation are

the same as those presented in eqs. (3.2)–(3.5) of ref. [25].

At the one-loop level, there are two master integrals, namely the bubble and the box

integral. Their explicit results are presented in appendix A of ref. [53], where in particular

the result for the box integral is given as a series in the regulator ϵ and in terms of HPLs [54]

and two-dimensional HPLs (2dHPLs) [55, 56].

At two loops, all required master integrals are known in the literature and can be

divided into three groups: planar integrals, whose results are presented in ref. [55], non-

planar integrals, computed in ref. [56], and products of two one-loop integrals. As in the

case of the one-loop box integral, the results for the two-loop planar and non-planar inte-

grals are expressed as Laurent series in ϵ and in terms of HPLs and 2dHPLs. Furthermore,

following the discussion in section (3.3) of ref. [53], we observe that in our calculation each

master integral can be present in up to six kinematic configurations (i.e. with all possi-

ble permutations of the independent external momenta p1, p2, p3). This means that, after

substituting the explicit results of the MIs, our results for the coefficients A(ℓ)
m initially

contain HPLs with three arguments (x, y, or z) and 2dHPLs with six combinations (x,

y, or z in the index vector and in the argument). In order to simplify our expressions,

we can express all HPLs and 2dHPLs appearing in the calculation in terms of HPLs and

2dHPLs belonging to one unique kinematic configuration. Following refs. [53, 55, 56],

we choose 2dHPLs of argument y and index z and HPLs of arguments y and z as the

unique set.

One way of obtaining the relations needed to convert all “spurious” HPLs to a unique

set is by exploiting their integral representation and applying interchange of arguments

formulae as described in refs. [53, 55]. In this work we proceed in a slightly different way,

following the work on multiple polylogarithms (MPLs), of which HPLs and 2dHPLs are

examples, of ref. [57]. In ref. [57] it is shown that MPLs form a Hopf algebra and that

a coproduct on MPLs can be defined. The coproduct allows one to systematically de-

compose MPLs of any weight into MPLs of lower weights. Since at weight 1 it is trivial

to convert HPLs and 2dHPLs of different arguments and/or indices to a unique set, we

can apply the coproduct with a bottom-up approach to find relations between HPLs and

2dHPLs of different kinematic configurations at any weight. In our case we derive all the

relations required to reduce HPLs and 2dHPLs of up to weight 4 to the chosen set us-

ing the coproduct method. We also use GiNaC to numerically evaluate the 2dHPLs for

checking purposes.

– 8 –
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3.3 MS-renormalized amplitudes

We now construct the MS-renormalized amplitudes M(ℓ),ren that are needed for the hard

function computation at NNLO accuracy. Through eq. (3.6) this is equivalent to construct-

ing the MS-renormalized coefficients A(ℓ),ren
m .

3.3.1 UV renormalization

We start by removing the UV divergences from the coefficients A(ℓ)
m computed in the pre-

vious section. We renormalize the bare strong coupling constant and Yukawa coupling by

performing the replacements

αs → αs Sϵ Zα (3.12)

yb → yb Zy (3.13)

with Sϵ = exp (ϵγE)
(4π)ϵ , αs ≡ αs(µ) and yb ≡ yb(µ) at the renormalization scale µ. The

renormalization factors are given by

Zα = 1 +
(αs

2π

)
r1 +

(αs

2π

)2
r2 +O(α3

s) (3.14)

Zy = 1 +
(αs

2π

)
s1 +

(αs

2π

)2
s2 +O(α3

s) (3.15)

with r1, r2, s1, s2 explicitly defined in appendix A. By inserting eqs. (3.12) and (3.13) into

eqs. (3.6) and (3.8), we obtain the UV-finite coefficients A(ℓ),UV-fin
m :

A(0),UV-fin
m = A(0)

m (3.16)

A(1),UV-fin
m = SϵA

(1)
m +

(
s1 +

r1
2

)
A(0)

m (3.17)

A(2),UV-fin
m = S2

ϵA
(2)
m +

(
s1 +

3r1
2

)
SϵA

(1)
m +

(
s2 +

r1s1
2

+
r2
2

− r21
8

)
A(0)

m . (3.18)

3.3.2 IR subtraction and conversion to MS scheme

In order to obtain the hard function we remove the explicit soft and collinear divergences

from the UV-renormalized coefficients. The IR structure of one-loop and two-loop QCD

amplitudes is universally known [58] and can be written using Catani’s subtraction opera-

tors I(ℓ)(ϵ). The finite coefficients A(ℓ),fin
m are defined as

A(0),fin
m = A(0),UV-fin

m (3.19)

A(1),fin
m = A(1),UV-fin

m − I(1)(ϵ)A(0),UV-fin
m (3.20)

A(2),fin
m = A(2),UV-fin

m − I(1)(ϵ)A(1),UV-fin
m − I(2)(ϵ)A(0),UV-fin

m . (3.21)

The explicit expressions of the subtraction operators for H → bbg can be found in

appendix A. In appendix B we show the complete results for the coefficients A(ℓ),fin
m . Specif-

ically, following the notation of eq. (4.4) of ref. [25], we write the coefficients as

A(ℓ),fin
m =

ℓ∑

n=0

A(0),fin
m B(ℓ)

m;n ln
n

(
−m2

H

µ2

)
(3.22)

with the coefficients A(0),fin
m and B(ℓ)

m;n presented in appendix B.

– 9 –
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Finally, following the discussion in section (2.1) of ref. [49], we obtain the MS-renor-

malized coefficients A(ℓ),ren
m in the following way:

A(0),ren
m = A(0),fin

m (3.23)

A(1),ren
m = A(1),fin

m + C0A(0),fin
m (3.24)

A(2),ren
m = A(2),fin

m + C0A(1),fin
m + C2A(0),fin

m (3.25)

where C0 and C2 are defined in appendix A. By using eqs. (3.2)–(3.4) and (3.6) we obtain the

hard function at NNLO accuracy. Explicitly, the interferences are constructed as follows:

M(m),renM(n),ren∗ = NLO

(
4yz A(m),ren

1 A(n),ren
1

∗
+

2x2y

z
A(m),ren

2 A(n),ren
2

∗

− 2xy A(m),ren
1 A(n),ren

2

∗
− 2xy A(m),ren

2 A(n),ren
1

∗
)

(3.26)

where NLO =
(
αs
2π

)
y2b NcCF .

3.4 Comparison with existing results

We can compare our results for the coefficients A(ℓ),fin
m up to ℓ = 2 with the existing results

in the literature [25]. At tree level the agreement is trivial. Since we defined the tensors Tµ
1

and Tµ
2 as in eq. (3.7), the relation between our coefficients A(0),fin

m and the corresponding

ones of ref. [25] (here called A(0)
1; lit and A(0)

2; lit) is

A(0)
1; lit =

2i

z
A(0),fin

2 and A(0)
2; lit = i A(0),fin

1 . (3.27)

At one and two loops we can compare the coefficients B(ℓ)
m;n with those presented in appendix

B and C of ref. [25]. Since the coefficients B(ℓ)
m;n have been rescaled by the tree-level

coefficients, we only need to swap B(ℓ)
1;n ↔ B(ℓ)

2;n to match our notation. We find complete

agreement for all coefficients at one-loop level2 and at two-loop level.3 The agreement at

two loops is explicitly shown in table 1 where we perform a numerical comparison between

the two sets of results for a random phase-space point.

3.5 Factorization properties of the two-loop amplitude

Although we established agreement between our two-loop amplitude and an existing result

in the literature, both share certain similarities (namely an expansion in the same master

integrals). We therefore initiate further testing of our calculation by investigating the an-

alytic structure of our result in the limits in which one of the partons becomes unresolved.

Such a check was not detailed previously. We do so by checking that our two-loop ampli-

tude correctly reproduces the known IR factorization properties of QCD [59–61] when the

2After adjusting for a small typo (i.e. changing 12H(0, 2; y) → 2H(0, 2; y) in the last line of B(1)
1;0) and

dividing the literature results by an overall factor of 2 (since in the literature results the expansion parameter

is αs/4π).
3After taking into account the different definition of the Mandelstam invariants t and u of ref. [25] and

after adjusting the literature results by an overall factor of 4.
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Coefficient Ref. [25] Our result

B(2)
1;2 15.1770833333333 15.1770833333333

B(2)
1;1 −61.1367801007938 −61.1367801007938

B(2)
1;0 77.6770380202061 77.6770380202060

B(2)
2;2 15.1770833333333 15.1770833333333

B(2)
2;1 −54.6784467674605 −54.6784467674605

B(2)
2;0 74.2152337563907 74.2152337563904

Table 1. Numerical comparison between our two-loop results and those of ref. [25] for y = 0.19
and z = 0.67 after adjusting for an overall 1/4 factor.

external gluon becomes either soft or collinear to one of the quarks. We note that a further

by-product of this check is a confirmation of the computed factorization limits of QCD for

the soft [59] and collinear [60] limit.

3.5.1 Soft-gluon limit

In the limit of soft gluon, the momentum of the gluon vanishes, i.e. p3 → 0 which implies

that y, z → 0 simultaneously. The soft-gluon limit at two loops reads:

2Re
(
M(2)

H→bb̄g
M(0)∗

H→bb̄g

)
→ S(2)

H→bb̄g
= 2Re

(
S(0)(y, z)M(2)

H→bb̄
M(0)∗

H→bb̄

+ S(1)(y, z)M(1)
H→bb̄

M(0)∗
H→bb̄

+ S(2)(y, z)M(0)
H→bb̄

M(0)∗
H→bb̄

)
, (3.28)

where the relevant H → bb̄ matrix elements and the soft currents S(0)(y, z), S(1)(y, z),

S(2)(y, z) are presented in appendix C. Using our results for the unrenormalized IR-

divergent coefficients A(2)
m we construct the interference 2Re

(
M(2)

H→bb̄g
M(0)∗

H→bb̄g

)
as a series

in ϵ in order to compare it with the known soft limit S(2)
H→bb̄g

defined above. Since the soft

limit diverges as (yz)−1, we multiply both expressions by a factor of y z. We show the

obtained numerical results in table 2. The agreement between the known soft limit and

our results is excellent.

3.5.2 Collinear limit

In the limit of the gluon becoming collinear to the outgoing quark, the invariant t vanishes

which means y → 0 while z ̸= 0. The collinear limit at two loops reads:

2Re
(
M(2)

H→bb̄g
M(0)∗

H→bb̄g

)
→ C(2)

H→bb̄g
= 2Re

(
C(0)(y, z)M(2)

H→bb̄
M(0)∗

H→bb̄

+ C(1)(y, z)M(1)
H→bb̄

M(0)∗
H→bb̄

+ C(2)(y, z)M(0)
H→bb̄

M(0)∗
H→bb̄

)
. (3.29)
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Coefficient y z S(2)
H→bb̄g

Our result

ϵ−4 81.7702729678 81.7702729678

ϵ−3 3818.49680411 3818.49680413

ϵ−2 130763.8079162 130763.8079168

ϵ−1 3.26338843478 · 106 3.26338843480 · 106

ϵ0 6.52342650778 · 107 6.52342650793 · 107

Table 2. Numerical comparison of our two-loop results with the known soft limit for y = z = 10−10

and µ2 = m2
H
2 . An overall factor of α3

s y
2
b has been extracted from both results.

Coefficient y C(2)
H→bb̄g

Our result

ϵ−4 283.156234427 283.156234427

ϵ−3 8122.55721506 8122.55721505

ϵ−2 170379.942318 170379.942317

ϵ−1 2.584146 · 106 2.584189 · 106

ϵ0 3.09852 · 107 3.09870 · 107

Table 3. Numerical comparison between our two-loop results and the known collinear limit for

y = 10−12, z = 0.23 and µ2 = m2
H
2 . An overall factor of α3

s y
2
b has been extracted from both results.

The splitting functions C(0)(y, z), C(1)(y, z), C(2)(y, z) are given in appendix C. We com-

pare our result for 2Re
(
M(2)

H→bb̄g
M(0)∗

H→bb̄g

)
as a series in ϵ with C(2)

H→bb̄g
. We multiply

both expressions by a factor of y to remove the leading divergence. The numerical results

are shown in table 3. We observe excellent agreement between our result and the known

collinear limit.

3.6 Summary

In this section we have presented the computation of the hard function required to construct

the τ3 < τ cut3 part of our NNLO calculation. We have compared our calculation to a

similar existing result in the literature and found agreement. We have also verified that

our expressions reproduce the known soft and collinear limits at this order and are therefore

confident in using our results for the phenomenology presented in the subsequent sections

of this paper.

4 Results

We have implemented the results discussed in the previous sections into a fully-flexible

parton-level Monte Carlo code. Our code is based upon the existing structure of

MCFM [62–65] and could be easily included in a future release of the code. Here we

present phenomenological results for H → bbj. As outlined in section 2, the b-quark mass

is set to zero kinematically, but kept in the Yukawa coupling. In order to account for
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some of the effects of the missing b-mass terms we evolve the b-quark mass to the Higgs

scale (mH = 125GeV) using the two-loop running for NLO predictions, and three-loop

running for NNLO predictions. This results in an effective b-quark mass of 2.94GeV at

NNLO (for our central scale choice µ = mH). We also use GF = 0.116639 × 10−4GeV−2

and mW = 80.385GeV. We take αs(mZ) = 0.118 and we run the coupling at one, two,

and three loops for LO, NLO, and NNLO calculations respectively. All results in this pa-

per compute the width in units of MeV. In order to compute rates and distributions for

H → bbj, a jet algorithm must be applied. In this paper we will present results using the

Durham jet algorithm [33, 34], which takes the variable ycut as an input variable. Starting

at the parton level, the algorithm computes the following quantity for every possible pair

of partons (i, j):

yij =
2min(E2

i , E
2
j )(1− cos θij)

Q2
(4.1)

where Ei is the energy of parton i, θij is the angle between partons i and j, and in our case

Q = mH . If yij < ycut the pairs are combined into a new object with momentum pi + pj .

The algorithm then repeats until no further clusterings are possible and the remaining

objects are classified as jets. These algorithms have been widely used at LEP to study

e+e− → jets, which is the process most similar to our H → bbj calculation. Our results

are presented in the Higgs rest frame.

We first validate our calculation by studying the dependence of the NNLO coefficient on

the unphysical slicing parameter τ cut3 . To do so we focus on three representative clustering

options corresponding to ycut = 0.1, 0.002 and 10−4. These choices span the various regions

of interest theoretically and experimentally. The value ycut = 0.1 is within the perturbative

regime, in which the higher-order corrections are expected to be small and agreement with

future data should be good (assuming similarity to the NNLO calculations of e+e− →
jets [66, 67]). The second choice ycut = 0.002 corresponds to the region in which the three-

jet rate peaks. Finally, the choice ycut = 10−4 is around the region in which the NNLO

three-jet rate turns negative and becomes unphysical (the need for resummation of large

ycut logarithms has set in long before this value is reached). The final choice is of particular

relevance to this paper, since it corresponds to integrating the NNLO calculation with a

very weak jet cut. Creating stable (and slicing-independent) results in this region allows

us to test the code in phase-space configurations which correspond to two hard jets and

one soft/collinear jet. Such configurations occur copiously in the calculation of H → bb

at N3LO (where the soft jet is not required), and therefore establishing our code here is a

prerequisite for this computation.

Our results for the three ycut values are presented in figure 3. Asymptotic behavior

is established in each region, with the dependence on missing power corrections having,

as expected, a notable dependence on ycut. For the larger choices the dependence on τ cut3

is rather mild, as the result for the largest value of τ cut3 is less than 10% different to that

obtained in the asymptotic region (around τ cut3 ≤ 0.05GeV for ycut = 0.1 and τ cut3 ≤ 0.01

for ycut = 0.002). The dependence on τ cut3 for ycut = 10−4 is greater and asymptotic

behavior is found for τ cut3 ≤ 0.005GeV. We therefore conclude that the power corrections
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Figure 3. The τ cut3 dependence of the NNLO coefficient for three different jet definitions.

are under control and that our code can be used to make phenomenological predictions.

We note in passing that an LHC jet would be clustered using a kT -style algorithm and

a jet with around pT > 30GeV would loosely scale like
√
m2

Hycut ∼ 30GeV, so that the

LHC case would look most like our results obtained when ycut ∼ 0.1. In this region we

have established that the power corrections are small and under control, and therefore our

code could readily be applied to LHC processes such as pp → V (H → 3j). We leave this

study to future work.

In figure 4 we show the exclusive three-jet rate at LO, NLO, and NNLO as a function

of ycut. We present results for the three-jet rate normalized to the N3LO H → bb inclusive

rate [24]. In order to make each prediction we have set τ cut3 = 10−2GeV, which is in

the asymptotic region for nearly all of the phase space of interest. This choice is slightly

too large for the smallest value of ycut studied as discussed in the previous paragraph.

However, the error on the coefficient for this choice is around 5%, which corresponds to

a phenomenologically-acceptable ∼ 2% correction on the total fractional jet rate. Our

figure can be compared to similar results obtained for e+e− → jets [66, 67]. The pattern

is broadly the same, with a small positive correction in the large ycut region (around

10%), which transitions to a decrease in the jet rate for ycut ≤ 0.01. The three-jet rate

is maximum at around ycut = 0.002 and then turns over, becoming negative (and hence

unphysical) in the region around 10−4. Along with the central scale choice of µ = mH we

also provide predictions for jet rates obtained with renormalization scales µ = {2, 1/2} ×
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Figure 4. The three-jet rate at LO, NLO, and NNLO as a function of ycut for the Durham jet
algorithm. The renormalization scale is set to µ = mH .

mH . In addition to the implicit dependence in the loop integral expansion, the predictions

depend on µ also through the running of αs and mb at two- and three-loop order for our

NLO and NNLO predictions respectively. We observe that the inclusion of the NNLO

corrections substantially improves the overall scale dependence. This is especially true in

the perturbative region specified by ycut > 0.01 where we observe improvement of around

a factor of two. For instance, at ycut = 0.1 the overall scale dependence of the jet rate at

NNLO is {+3,−6}%, compared to {+11,−10}% for the same jet cut at NLO. Finally, we

note that in the perturbative region ycut > 0.01 the scale variation bands provide a good

estimate of the uncertainties due to the missing higher-order corrections, as the NNLO

corrections lie within the NLO scale variation band. In this region we therefore expect

the N3LO corrections to be within the NNLO band. On the other hand, in the region

ycut < 0.01 we observe that perturbation theory breaks down and, as expected, the scale

variation bands no longer overlap. In this region the behavior of missing higher-order

corrections cannot be predicted.

In figure 5 we turn our attention to differential distributions. We present the differential

distribution for the energy component (rescaled by the Higgs mass) of the maximum-energy

jet in three-jet events clustered with ycut = 0.2, 0.02, and 0.002. Comparing the three curves

we observe that as ycut decreases new phase space opens up near what would correspond

to a two-jet LO topology, which occurs around mH/2. These configurations correspond to
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Figure 5. The maximum energy of the jets (divided by the Higgs mass) for different jet-clustering
options. The right-hand panel presents the ratio of the NNLO to NLO (with µ = mH) predictions
for each jet-clustering option.

two nearly back-to-back jets with a soft/collinear third jet. In the perturbative region of

ycut = 0.2 the prediction is more physically sensible, the majority of jets having an energy

close to mH/3 with the most energetic jet peaking slightly higher than this value. For the

cases ycut = 0.2 and 0.02 the ratio of NNLO to NLO is reasonably flat and small (between

5–10%) until Emax/mH becomes large enough that there is no LO phase space configuration

possible. In this region the NLO prediction is the first non-zero prediction and it is hence

susceptible to large corrections at the next order. The scale variation mimics that of the

total jet rate and is reasonably flat in the region in which the phase space is accessible

to all of the contributing parton-level phase spaces. We have also computed differential

distributions for smaller values of ycut = 2×10−4. They are not presented in figure 5 since,

for such a small value of ycut, the differential prediction is negative over a large range of

phase space. We mention these predictions here simply to note that the code can produce

stable distributions with small MC uncertainties even in this region, which is relevant to

the N3LO results obtained in our companion paper.

5 Conclusions

In this paper we have presented the calculation of H → bbj at NNLO. We have focused

on the contributions in which the Higgs boson couples directly to bottom quarks. We

have performed an independent computation of the two-loop amplitudes needed at this

order and found agreement with a previous calculation in the literature. Additionally, we

checked our result using the known IR factorization properties of QCD when the emitted

gluon becomes soft or collinear to one of the fermions and found complete agreement with

the predictions in both limits. We have presented the two-loop amplitudes for H → bbg in

full in the appendix.
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In order to regulate the IR divergences present at this order we used the N -jettiness

slicing technique to separate the calculation into two components. In the region of small τ3
we use SCET to construct an approximate form of the decay width. We used a computation

of the 1-jettiness soft function, valid for arbitrary kinematics, coupled with the known jet

functions and our computation of the hard function to construct the below-cut piece. The

region τ3 >τ cut3 corresponds to the NLO computation of the H → bbjj process, for which

we calculated all of the needed helicity amplitudes using on-shell techniques of generalized

unitarity for the one-loop pieces and BCFW recursion relations for the H → bbjjj tree-level

amplitudes.

We implemented our results into a Monte Carlo code, based upon the existing N -

jettiness slicing calculations of MCFM, and used it to produce differential distributions

and jet rates for H → bbj at NNLO using the Durham jet algorithm. Our calculation

neglected top quark-induced contributions, which are phenomenologically relevant. By

combing our results with the available H + j EFT results we can produce predictions

for H → bbj relevant for the LHC and FCs which include both top and bottom Yukawa

contributions. Additionally, by performing the appropriate kinematic crossings of our

results we can compute pp → H + b at NNLO for LHC kinematics. We leave these

applications to future studies.

One of the main goals of this paper was to investigate whether a stable (slicing-

independent) Monte Carlo code could be constructed for very small jet cuts. We have

established this by presenting rates and differential distributions for a variety of values of

the jet-clustering variable ycut. We are therefore able to effectively integrate out the jet at

NNLO and use our results in a N3LO calculation. We pursue this approach in a companion

paper to this article.
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and u dependence in the two coefficients was incorrectly evaluated in our initial comparison.

Once this is altered accordingly our results are in perfect agreement.

– 17 –



J
H
E
P
0
6
(
2
0
1
9
)
1
2
0

A Formulae for renormalization and IR subtraction

The renormalization coefficients of eqs. (3.14) and (3.15) are defined as

r1 = −β0
2ϵ

(A.1)

r2 =
β2
0

4ϵ2
− β1

8ϵ
(A.2)

s1 = −3CF

2ϵ
(A.3)

s2 =
3

8ϵ2
(
3C2

F + β0CF
)

− 1

8ϵ

(
3

2
C2
F +

97

6
CFCA − 10

3
CFTRNf

)
(A.4)

with

β0 =
11

3
CA − 4

3
TRNf (A.5)

β1 =
34

3
C2
A − 20

3
CATRNf − 4CFTRNf (A.6)

and TR = 1
2 , CA = Nc, CF = N2

c−1
2Nc

.

The subtraction operators I(ℓ)(ϵ) for generic QCD processes can be found in ref. [58].

For completeness, we show here the explicit expressions for the subtraction operators in

CDR for the process H → bbg:

I(1)(ϵ) =
eϵγE

2Γ(1− ϵ)

(
−m2

H

µ2

)−ϵ [(
1

ϵ2
+

3

2ϵ

)
(CA − 2CF ) x

−ϵ

+

(
−CA

ϵ2
− 5CA

3ϵ
+

TRNf

3ϵ

)(
y−ϵ + z−ϵ

) ]
(A.7)

I(2)(ϵ) =
e−ϵγE Γ(1− 2ϵ)

Γ(1− ϵ)

(
β0
2ϵ

+K

)
I(1)(2ϵ) +H(2)(ϵ)

− 1

2
I(1)(ϵ)

(
I(1)(ϵ) +

β0
ϵ

)
(A.8)

where

K =

(
67

18
− ζ2

)
CA − 10

9
TRNf (A.9)

H(2)(ϵ) =
1

ϵ

[
2H(2)

q +H(2)
g

]
(A.10)

with

H(2)
q = CFTRNf

(
− 25

216
+

ζ2
8

)
+ CFCA

(
245

864
− 23ζ2

32
+

13ζ3
8

)

+ C2
F

(
− 3

32
+

3ζ2
4

− 3ζ3
2

)
(A.11)

H(2)
g = C2

A

(
5

48
+

11ζ2
96

+
ζ3
8

)
+ CATRNf

(
−29

54
− ζ2

24

)

+
1

4
CFTRNf +

5

27
T 2
RN

2
f . (A.12)
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Finally, we present the expressions for C0 and C2 in eqs. (3.24) and (3.25). The coeffi-

cient C0 corresponds to the ϵ0 order of the series expansion of I(1)(ϵ). Explicitly:

C0 =
1

4
(CA − 2CF )

[
L(x)2 − 3L(x)− ζ2

]
− 1

6
TRNf [L(y) + L(z)]

+
CA

12

[
10 (L(y) + L(z))− 3

(
L(y)2 + L(z)2

)
+ 6ζ2

]
(A.13)

where for brevity L(a) = ln
(
−m2

H
µ2

)
+ ln a. The coefficient C2 is defined as

C2 =
1

2
C2
0 +

γcusp1

8

(
C0 +

3ζ2
64

Γ′
0

)
+

β0
2
C′
1 (A.14)

where

γcusp1 = CA

(
268

9
− 8ζ2

)
− 80

9
TRNf (A.15)

Γ′
0 = −4 (CA + 2CF ) (A.16)

C′
1 = − 1

48
(CA − 2CF )

[
4L(x)3 − 18L(x)2 + 6ζ2L(x)− 6ζ3 − 9ζ2

]

+
1

12
TRNf

[
L(y)2 + L(z)2 + ζ2

]
+

CA

24

[
2L(y)3 − 10L(y)2 + 3ζ2L(y)

+ 2L(z)3 − 10L(z)2 + 3ζ2L(z)− 6ζ3 − 10ζ2
]
. (A.17)

B One-loop and two-loop coefficients for H → bbg

We present the explicit results for the coefficients A(0),fin
m and B(ℓ)

m;n of eq. (3.22) as series

in Nc. The results for the one-loop and two-loop coefficients are also available in a supple-

mentary Mathematica-readable file attached to this paper. At tree level the coefficients are

A(0),fin
1 = A(0)

1 = 2
√
2π

(
1

y
+

1

z

)

A(0),fin
2 = A(0)

2 = 2
√
2π

(
−2

y

)
. (B.1)

At one loop the coefficients read:

B(1)
1;1 =

3

4Nc
+

NF

6
− 5Nc

3
(B.2)

B(1)
1;0 =

1

4Nc

[
− 2H(0; y)H(1; z) + 4H(1; z)H(z; y)− 2H(0; z)H(1− z; y)

− 3H(1− z; y)− 2H(0, 1− z; y)− 2H(1− z, 0; y) + 4H(z, 1− z; y)

+ 2H(1, 0; y)− 3H(1; z) + 2H(0, 1; z) + 3
]
+

NF

12

[
H(0; y) +H(0; z)

]

+
Nc

12

[
− 6H(0; y)H(0; z)− 10H(0; y)− 6H(1, 0; y)− 10H(0; z)

− 6H(1, 0; z)− 6ζ2 − 3
]

(B.3)

B(1)
2;1 = B(1)

1;1 (B.4)

B(1)
2;0 = B(1)

1;0 −
1

4Nc
− Nc

4
. (B.5)
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At two loops:

B(2)
1;2 =

9

32N2
c
+

NF

4Nc
− 31

16
+

N2
F

24
− 17NFNc

24
+

35N2
c

12
(B.6)

B(2)
1;1 = − 3

16N2
c

[
2H(0; y)H(1; z) + 2H(0; z)H(1− z; y) + 3H(1− z; y)

− 4H(1; z)H(z; y) + 2H(0, 1− z; y) + 2H(1− z, 0; y)− 4H(z, 1− z; y)

− 2H(1, 0; y) + 3H(1; z)− 2H(0, 1; z)− 8ζ3 + 4ζ2 − 3
]

+
NF

432Nc

[
− 108H(0; y)H(1; z)− 108H(0; z)H(1− z; y)− 162H(1− z; y)

+ 216H(1; z)H(z; y)− 108H(0, 1− z; y)− 108H(1− z, 0; y)

+ 216H(z, 1− z; y) + 27H(0; y) + 108H(1, 0; y) + 27H(0; z)− 162H(1; z)

+ 108H(0, 1; z) + 54ζ2 + 22
]
+

1

432

[
− 162H(0; y)H(0; z)

+ 756H(0; y)H(1; z) + 756H(0; z)H(1− z; y) + 1134H(1− z; y)

− 1512H(1; z)H(z; y) + 756H(0, 1− z; y) + 756H(1− z, 0; y)

− 1512H(z, 1− z; y)− 270H(0; y)− 918H(1, 0; y)− 270H(0; z)

+ 1134H(1; z)− 756H(0, 1; z)− 162H(1, 0; z) + 108ζ3 − 135ζ2 − 97
]

+
N2

F

216

[
9H(0; y) + 9H(0; z)− 20

]
+

NFNc

72

[
− 18H(0; y)H(0; z)

− 51H(0; y)− 18H(1, 0; y)− 51H(0; z)− 18H(1, 0; z)− 24ζ2 + 83
]

+
N2

c

216

[
378H(0; y)H(0; z) + 630H(0; y) + 378H(1, 0; y) + 630H(0; z)

+ 378H(1, 0; z)− 432ζ3 + 477ζ2 − 721
]

(B.7)

B(2)
1;0 =

1

N2
c
D(2)

1;0,a +
NF

Nc
D(2)

1;0,b +D(2)
1;0,c +N2

F D(2)
1;0,d +NFNcD(2)

1;0,e +N2
c D

(2)
1;0,f (B.8)

B(2)
2;2 = B(2)

1;2 (B.9)

B(2)
2;1 = B(2)

1;1 −
3

16N2
c
− NF

8Nc
+

11

16
− NFNc

8
+

7N2
c

8
(B.10)

B(2)
2;0 =

1

N2
c
D(2)

2;0,a +
NF

Nc
D(2)

2;0,b +D(2)
2;0,c +N2

F D(2)
2;0,d +NFNcD(2)

2;0,e +N2
c D

(2)
2;0,f (B.11)

where

D(2)
1;0,a = −11

8
ζ4 +

1

32

[
ζ2
(
12H(0; y) + 36H(1; z)− 16H(1; z)H(1− z; y)

+ 12H(1− z; y) + 16H(0, 1; y)− 16H(0, 1− z; y) + 16H(1, 1; y)

+ 16H(1− z, 1; y)− 32H(1− z, 1− z; y) + 28
)
− 24H(0; y)H(1; z)

− 18H(1; z)− 12H(0; z)H(1− z; y) + 18H(1; z)H(1− z; y)− 18H(1− z; y)

+ 40H(1; z)H(z; y) + 24H(z; y)H(0, 1; z) + 24H(0, 1; z)
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+ 24H(0; z)H(0, 1− z; y) + 24H(1; z)H(0, 1− z; y)− 8H(0, 1; z)H(0, 1− z; y)

− 24H(0, 1− z; y)− 24H(1; z)H(0, z; y)− 12H(0; z)H(1, 0; y)

− 12H(1; z)H(1, 0; y) + 8H(0, 1; z)H(1, 0; y) + 24H(1, 0; y)

+ 12H(0; y)H(1, 0; z)− 24H(z; y)H(1, 0; z)− 16H(0, 1− z; y)H(1, 0; z)

− 16H(0, z; y)H(1, 0; z) + 24H(0; y)H(1, 1; z)− 48H(z; y)H(1, 1; z)

+ 16H(0, 0; y)H(1, 1; z)− 16H(0, z; y)H(1, 1; z) + 18H(1, 1; z)

− 8H(0, 1; z)H(1, 1− z; y) + 12H(0; z)H(1− z, 0; y) + 24H(1; z)H(1− z, 0; y)

− 8H(0, 1; z)H(1− z, 0; y)− 24H(1− z, 0; y) + 24H(0; z)H(1− z, 1− z; y)

+ 16H(0, 0; z)H(1− z, 1− z; y) + 32H(0, 1; z)H(1− z, 1− z; y)

+ 18H(1− z, 1− z; y)− 24H(1; z)H(1− z, z; y)− 24H(1; z)H(z, 0; y)

− 16H(1, 1; z)H(z, 0; y)− 24H(0; z)H(z, 1− z; y)− 48H(1; z)H(z, 1− z; y)

+ 16H(0, 1; z)H(z, 1− z; y) + 40H(z, 1− z; y) + 48H(1; z)H(z, z; y)

− 16H(0, 1; z)H(z, z; y) + 16H(1, 0; z)H(z, z; y) + 32H(1, 1; z)H(z, z; y)

− 8H(1; y)H(0, 0, 1; z) + 16H(1− z; y)H(0, 0, 1; z) + 16H(0; z)H(0, 0, 1− z; y)

+ 16H(1; z)H(0, 0, 1− z; y)− 16H(1; z)H(0, 0, z; y)− 8H(1; z)H(0, 1, 0; y)

+ 12H(0, 1, 0; y) + 8H(1− z; y)H(0, 1, 0; z)− 16H(0; y)H(0, 1, 1; z)

+ 16H(z; y)H(0, 1, 1; z)− 24H(0, 1, 1; z) + 16H(1; z)H(0, 1− z, 0; y)

+ 24H(0, 1− z, 1− z; y)− 8H(1; z)H(0, 1− z, z; y)

− 16H(0; z)H(0, z, 1− z; y)− 16H(1; z)H(0, z, 1− z; y)− 24H(0, z, 1− z; y)

+ 16H(1; z)H(0, z, z; y)− 16H(1; z)H(1, 0, 0; y)

− 8H(0; y)H(1, 0, 1; z)− 8H(1; y)H(1, 0, 1; z) + 24H(1− z; y)H(1, 0, 1; z)

+ 16H(z; y)H(1, 0, 1; z)− 12H(1, 0, 1; z)− 12H(1, 0, 1− z; y)

+ 8H(1; z)H(1, 0, z; y) + 8H(1− z; y)H(1, 1, 0; z) + 12H(1, 1, 0; z)

− 12H(1, 1− z, 0; y)− 8H(1; z)H(1, 1− z, z; y) + 16H(1; z)H(1− z, 0, 0; y)

− 8H(0; z)H(1− z, 0, 1− z; y) + 24H(1− z, 0, 1− z; y)

− 8H(1; z)H(1− z, 1, 0; y)− 24H(1− z, 1, 0; y) + 24H(1− z, 1− z, 0; y)

+ 32H(1; z)H(1− z, 1− z, z; y)− 24H(1− z, z, 1− z; y)

− 16H(0; z)H(z, 0, 1− z; y)− 16H(1; z)H(z, 0, 1− z; y)− 24H(z, 0, 1− z; y)

+ 16H(1; z)H(z, 0, z; y)− 16H(1; z)H(z, 1− z, 0; y)− 24H(z, 1− z, 0; y)

− 16H(0; z)H(z, 1− z, 1− z; y)− 48H(z, 1− z, 1− z; y)

+ 32H(1; z)H(z, 1− z, z; y) + 16H(1; z)H(z, z, 0; y)

+ 16H(0; z)H(z, z, 1− z; y) + 32H(1; z)H(z, z, 1− z; y) + 48H(z, z, 1− z; y)

− 32H(1; z)H(z, z, z; y) + 16H(0, 0, 1, 1; z) + 16H(0, 0, 1− z, 1− z; y)

− 16H(0, 0, z, 1− z; y) + 16H(0, 1, 0, 1; z)− 8H(0, 1, 0, 1− z; y)

+ 16H(0, 1, 1, 0; y) + 16H(0, 1, 1, 0; z)− 8H(0, 1, 1− z, 0; y)
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+ 16H(0, 1− z, 0, 1− z; y)− 8H(0, 1− z, 1, 0; y) + 16H(0, 1− z, 1− z, 0; y)

− 8H(0, 1− z, z, 1− z; y)− 16H(0, z, 1− z, 1− z; y) + 16H(0, z, z, 1− z; y)

+ 8H(1, 0, 0, 1; z)− 16H(1, 0, 0, 1− z; y) + 8H(1, 0, 1, 0; y)

− 16H(1, 0, 1− z, 0; y) + 8H(1, 0, z, 1− z; y) + 16H(1, 1, 0, 0; y)

+ 16H(1, 1, 0, 1; z) + 16H(1, 1, 1, 0; y) + 16H(1, 1, 1, 0; z)

− 16H(1, 1− z, 0, 0; y)− 8H(1, 1− z, 1, 0; y)− 8H(1, 1− z, z, 1− z; y)

+ 16H(1− z, 0, 0, 1− z; y)− 8H(1− z, 0, 1, 0; y) + 16H(1− z, 0, 1− z, 0; y)

− 16H(1− z, 1, 0, 0; y)− 8H(1− z, 1, 0, 1− z; y) + 16H(1− z, 1, 1, 0; y)

− 8H(1− z, 1, 1− z, 0; y) + 16H(1− z, 1− z, 0, 0; y)

+ 32H(1− z, 1− z, z, 1− z; y)− 16H(z, 0, 1, 0; y)− 16H(z, 0, 1− z, 1− z; y)

+ 16H(z, 0, z, 1− z; y)− 16H(z, 1− z, 0, 1− z; y) + 16H(z, 1− z, 1, 0; y)

− 16H(z, 1− z, 1− z, 0; y) + 32H(z, 1− z, z, 1− z; y) + 16H(z, z, 0, 1− z; y)

+ 16H(z, z, 1− z, 0; y) + 32H(z, z, 1− z, 1− z; y)− 32H(z, z, z, 1− z; y)

− 32ζ3H(1; y)− 16ζ3H(1; z) + 16ζ3H(1− z; y)− 84ζ3 + 19
]

− z3

8x (1− y)2 (y + z)

[
ζ2H(0; z)− 3ζ3

]
+

z2

8x (1− y) (y + z)

[
− ζ2H(0; z)

+H(1, 0; z) + 3ζ3 + ζ2
]
+

z

8 (1− y) (y + z)

[
− zH(0; z)H(1− z; y)

− 2H(0, 1; z)H(1− z; y)− 2H(0; z)H(0, 1− z; y) + 2H(1; z)H(0, z; y)

− 2H(1; z)H(1− z, z; y) + 2H(0, z, 1− z; y)− 2H(1− z, z, 1− z; y) +H(0, 1; z)

− 2H(0, 0, 1; z)− 2H(1, 0, 1; z)
]
+

z2

8 (1− y)2 (y + z)

[
−H(0, 1; z)H(1− z; y)

−H(0; z)H(0, 1− z; y) +H(1; z)H(0, z; y)−H(1; z)H(1− z, z; y)

+H(0, z, 1− z; y)−H(1− z, z, 1− z; y)−H(0, 0, 1; z)−H(1, 0, 1; z)
]

+
z

8 (1− z)2 (y + z)

[
zζ2H(0; y) + 3zζ2H(1− z; y)− 2ζ2H(1− z; y)

− zH(0; y)H(0, 1; z)− zH(0, 1; z)H(1− z; y)− zH(1; z)H(0, z; y)

− zH(1; z)H(1− z, z; y) + 3zH(0, 1, 0; y)− zH(0, z, 1− z; y)

+ 3zH(1− z, 1, 0; y)− zH(1− z, z, 1− z; y)− 2H(1− z, 1, 0; y)

− 2H(0, 1, 0; y) + 3zζ2H(1; z)− 2ζ2H(1; z) + zH(0, 0, 1; z)− zH(1, 0, 1; z)

− 3zζ3
]
+

1

8 (1− z) (y + z)

[
− z2H(0; y)H(1; z)− z2H(0, 1− z; y)

+ z2H(1, 0; y)− z2H(1− z, 0; y)− 2zζ2H(0; y)− 2zζ2H(1− z; y)

+ 2ζ2H(1− z; y) + 2zH(0; y)H(0, 1; z) + 2zH(0, 1; z)H(1− z; y)

+ 2zH(1; z)H(0, z; y) + zH(1, 0; y) + 2zH(1; z)H(1− z, z; y)− 2zH(0, 1, 0; y)

+ 2zH(0, z, 1− z; y)− 2zH(1− z, 1, 0; y) + 2zH(1− z, z, 1− z; y)

+ 2H(1− z, 1, 0; y) + 2H(0, 1, 0; y) + z2H(0, 1; z)− 2zζ2H(1; z) + 2ζ2H(1; z)
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− zH(0, 1; z)− 2zH(0, 0, 1; z) + 2zH(1, 0, 1; z) + 6zζ3 + zζ2
]

+
1

8x (y + z)

[
− z2ζ2H(0; y)− 2z2ζ2H(1; y) + 6z2H(0; y)H(0; z)

− z2H(1, 0; y)H(0; z) + 6z2H(1, 0; y)− 2z2H(1, 1, 0; y) + 2zζ2H(0; y)

− 6zH(0; y)H(0; z)− 6zH(1, 0; y)− ζ2H(0; y)− z2ζ2H(0; z) + 6z2H(1, 0; z)

+ 2zζ2H(0; z)− 7zH(1, 0; z) + 4z2ζ3 + 6z2ζ2 − 10zζ3 − 7zζ2 + 2ζ3
]

+
1

8 (1− z)2

[
yζ2H(1; z) + yζ2H(1− z; y)− zζ2H(0; y)− 2zζ2H(1− z; y)

+ ζ2H(1− z; y)− yH(0; y)H(0, 1; z)− yH(0, 1; z)H(1− z; y)

− yH(1; z)H(0, z; y)− yH(1; z)H(1− z, z; y) + yH(0, 0, 1; z)

− yH(0, z, 1− z; y)− yH(1, 0, 1; z) + yH(1− z, 1, 0; y)

− yH(1− z, z, 1− z; y) + zH(0; y)H(0, 1; z) + zH(0, 1; z)H(1− z; y)

+ zH(1; z)H(0, z; y) + zH(1; z)H(1− z, z; y)− 2zH(0, 1, 0; y)

+ zH(0, z, 1− z; y)− 2zH(1− z, 1, 0; y) +H(1− z, 1, 0; y)

+ zH(1− z, z, 1− z; y) + yζ2H(0; y) + yH(0, 1, 0; y) +H(0, 1, 0; y)

− 2zζ2H(1; z) + ζ2H(1; z)− zH(0, 0, 1; z) + zH(1, 0, 1; z)− 3yζ3 + 3zζ3
]

+
1

8 (1− z)

[
ζ2H(1− z; y)− yH(0; y)H(1; z) + zH(0; y)H(1; z)

+ yH(1; z)H(z; y) + yH(0, 1; z)− 2H(0; y)H(0, 1; z)− 2H(0, 1; z)H(1− z; y)

− yH(0, 1− z; y) + zH(0, 1− z; y)− 2H(1; z)H(0, z; y)− zH(1, 0; y)

− yH(1− z, 0; y) + zH(1− z, 0; y)− 2H(1; z)H(1− z, z; y) + yH(z, 1− z; y)

− 2H(0, z, 1− z; y) +H(1− z, 1, 0; y)− 2H(1− z, z, 1− z; y) + 2ζ2H(0; y)

+ yH(1, 0; y)−H(1, 0; y) +H(0, 1, 0; y) + ζ2H(1; z)− zH(0, 1; z) +H(0, 1; z)

+ 2H(0, 0, 1; z)− 2H(1, 0, 1; z)− 6ζ3 − ζ2
]
+

1

8 (y + z)

[
− 4zζ2H(0; y)

+ 4zζ2H(1; y) + 2zζ2H(1− z; y)− 2ζ2H(1− z; y) + 6zH(0; y)H(0; z)

+ 3zH(0; y)H(1; z)− 3zH(0; z)H(1− z; y) + 3zH(0, 1− z; y)

+ 2zH(1, 0; y)H(0; z) + 3zH(1, 0; y)− 2zH(0; y)H(1, 0; z)

+ 2zH(1, 0; z)H(1− z; y) + 2zH(0; z)H(1− z, 0; y) + 3zH(1− z, 0; y)

+ 2zH(0, 1, 0; y) + 4zH(1, 1, 0; y) + 2zH(1− z, 1, 0; y) +H(0; y)H(1, 0; z)

− 2H(1− z, 1, 0; y) + ζ2H(0; y)− 3H(0, 1, 0; y) + 2zζ2H(0; z)− 6zζ2H(1; z)

− 3zH(0, 1; z) + 6zH(1, 0; z)− 4zH(0, 1, 0; z)− 6zH(1, 1, 0; z) + 2H(1, 1, 0; z)

+ 4zζ3 + 6zζ2 − 2ζ3
]
+

z

8 (1− y)

[
H(1; z)H(z; y) +H(z, 1− z; y)

]

+
1

8x (y + z)2

[
− z2H(0; y)H(1, 0; z) + z2H(0, 1, 0; y) + 2zH(0; y)H(1, 0; z)

− 2zH(0, 1, 0; y)−H(0; y)H(1, 0; z) +H(0, 1, 0; y)− z2ζ2H(1; z)
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+ 2z2H(0, 1, 0; z)− z2H(1, 1, 0; z) + 6zζ2H(1; z)− 2ζ2H(1; z)

+ 2zH(0, 1, 0; z) + 6zH(1, 1, 0; z)− 2H(1, 1, 0; z)
]

+
1

8 (y + z)2

[
− 2z2ζ2H(1− z; y)− z2H(0; y)H(1, 0; z)

− 2z2H(1, 0; z)H(1− z; y)− 2z2H(0; z)H(1− z, 0; y) + z2H(0, 1, 0; y)

− 2z2H(1− z, 1, 0; y)− 2zH(0; y)H(1, 0; z)− 2zH(1, 0; z)H(1− z; y)

+ 4zH(0, 1, 0; y) + 2zH(1− z, 1, 0; y) +H(0; y)H(1, 0; z)−H(0, 1, 0; y)

+ z2H(0, 1, 0; z)− 4zζ2H(1; z) + 2ζ2H(1; z)− 2zH(0, 1, 0; z)− 6zH(1, 1, 0; z)

+ 2H(1, 1, 0; z)
]
+

z2

8 (1− z) (y + z)2

[
ζ2H(1− z; y) +H(1− z, 1, 0; y)

+H(0, 1, 0; y) + ζ2H(1; z)
]
+

(2− z) z

8 (1− z) (y + z)2

[
− ζ2H(1− z; y)

−H(1− z, 1, 0; y)−H(0, 1, 0; y)− ζ2H(1; z)
]

+
z (z + 2)

8 (1− y) (y + z)2

[
ζ2H(1− z; y) +H(1, 0; z)H(1− z; y)

]

+
z2 (1 + z)

8 (1− y)2 (y + z)2

[
ζ2H(1− z; y) +H(1, 0; z)H(1− z; y)

]

− z3 (1 + z)

8x (1− y)2 (y + z)2

[
ζ2H(1; z) +H(0, 1, 0; z) +H(1, 1, 0; z)

]

− z2

8x (1− y) (y + z)2

[
ζ2H(1; z) +H(0, 1, 0; z) +H(1, 1, 0; z)

]
(B.12)

D(2)
1;0,b =

z

12 (1− x)

[
H(0; y)−H(0; z)

]
+

1

1296

[
270ζ2H(1− z; y)

+ 279H(0; y)H(1; z) + 279H(0; z)H(1− z; y) + 324H(1; z)H(1− z; y)

+ 204H(1− z; y)− 720H(1; z)H(z; y)− 324H(0, 0; y)H(1; z)

− 324H(0, 0; z)H(1− z; y) + 216H(0; y)H(0, 1; z)− 216H(0, 1; z)H(1− z; y)

− 108H(0, 1; z)H(z; y)− 108H(0; z)H(0, 1− z; y) + 216H(1; z)H(0, 1− z; y)

+ 279H(0, 1− z; y) + 324H(1; z)H(0, z; y) + 54H(1, 0; y)H(0; z)

− 54H(0; y)H(1, 0; z) + 216H(1, 0; z)H(1− z; y) + 324H(1, 0; z)H(z; y)

+ 216H(0; y)H(1, 1; z)− 432H(1, 1; z)H(z; y)− 108H(0; z)H(1− z, 0; y)

+ 216H(1; z)H(1− z, 0; y) + 279H(1− z, 0; y) + 216H(0; z)H(1− z, 1− z; y)

+ 324H(1− z, 1− z; y)− 432H(1; z)H(1− z, z; y) + 324H(1; z)H(z, 0; y)

+ 324H(0; z)H(z, 1− z; y)− 432H(1; z)H(z, 1− z; y)− 720H(z, 1− z; y)

− 432H(1; z)H(z, z; y)− 324H(0, 0, 1− z; y)− 324H(0, 1− z, 0; y)

+ 216H(0, 1− z, 1− z; y) + 324H(0, z, 1− z; y)− 324H(1− z, 0, 0; y)

+ 216H(1− z, 0, 1− z; y) + 216H(1− z, 1− z, 0; y)− 432H(1− z, z, 1− z; y)

+ 324H(z, 0, 1− z; y) + 324H(z, 1− z, 0; y)− 432H(z, 1− z, 1− z; y)
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− 432H(z, z, 1− z; y)− 216ζ2H(1; y) + 81H(0; y)− 360H(1, 0; y)

+ 54H(0, 1, 0; y) + 324H(1, 0, 0; y)− 216H(1, 1, 0; y) + 54ζ2H(1; z)

+ 189H(0; z) + 204H(1; z)− 441H(0, 1; z)− 81H(1, 0; z) + 324H(1, 1; z)

− 108H(0, 0, 1; z) + 54H(0, 1, 0; z)− 216H(0, 1, 1; z)− 216H(1, 0, 1; z)

+ 18ζ3 − 54ζ2 − 742
]

(B.13)

D(2)
1;0,c = − 5

32
ζ4 +

1

1296

[
ζ2
(
324H(0; z)H(1; y)− 756H(1; y) + 972H(0; y)H(1; z)

+ 324H(1; y)H(1; z) + 1161H(1; z) + 648H(0; z)H(1− z; y)

+ 1296H(1; z)H(1− z; y) + 1917H(1− z; y)− 1296H(0, 1; y)

− 324H(0, 1; z) + 972H(0, 1− z; y)− 972H(1, 0; y)− 324H(1, 0; z)

− 1296H(1, 1; y) + 324H(1, 1; z) + 324H(1, 1− z; y)

+ 648H(1− z, 0; y) + 1296H(1− z, 1− z; y)− 2295
)
− 810H(0; y)

− 486H(0; y)H(0; z)− 432H(0; z)− 1926H(0; y)H(1; z)− 951H(1; z)

− 1440H(0; z)H(1− z; y)− 1782H(1; z)H(1− z; y)− 951H(1− z; y)

+ 5148H(1; z)H(z; y) + 2268H(1; z)H(0, 0; y) + 2268H(1− z; y)H(0, 0; z)

− 702H(0; y)H(0, 1; z) + 1188H(1− z; y)H(0, 1; z)− 864H(z; y)H(0, 1; z)

+ 648H(0, 0; y)H(0, 1; z) + 3546H(0, 1; z) + 594H(0; z)H(0, 1− z; y)

− 1188H(1; z)H(0, 1− z; y) + 648H(0, 0; z)H(0, 1− z; y)

− 324H(0, 1; z)H(0, 1− z; y)− 1926H(0, 1− z; y)− 1296H(1; z)H(0, z; y)

− 648H(0, 1; z)H(0, z; y)− 540H(0; z)H(1, 0; y) + 486H(1; z)H(1, 0; y)

− 324H(0, 1; z)H(1, 0; y) + 2250H(1, 0; y) + 1026H(0; y)H(1, 0; z)

+ 270H(1− z; y)H(1, 0; z)− 1296H(z; y)H(1, 0; z) + 648H(0, 0; y)H(1, 0; z)

− 1296H(0, z; y)H(1, 0; z)− 324H(1, 0; y)H(1, 0; z) + 324H(1, 0; z)

− 1188H(0; y)H(1, 1; z) + 2376H(z; y)H(1, 1; z) + 648H(0, z; y)H(1, 1; z)

− 1782H(1, 1; z)− 324H(0, 1; z)H(1, 1− z; y) + 324H(1, 0; z)H(1, 1− z; y)

+ 1566H(0; z)H(1− z, 0; y)− 1188H(1; z)H(1− z, 0; y)

+ 648H(0, 0; z)H(1− z, 0; y) + 972H(0, 1; z)H(1− z, 0; y)

+ 972H(1, 0; z)H(1− z, 0; y)− 1926H(1− z, 0; y)

− 1188H(0; z)H(1− z, 1− z; y) + 1296H(1, 0; z)H(1− z, 1− z; y)

− 1782H(1− z, 1− z; y) + 2376H(1; z)H(1− z, z; y)

− 1944H(0, 1; z)H(1− z, z; y) + 648H(1, 0; z)H(1− z, z; y)

− 1296H(1; z)H(z, 0; y) + 648H(0, 1; z)H(z, 0; y) + 648H(1, 1; z)H(z, 0; y)

− 1296H(0; z)H(z, 1− z; y) + 2376H(1; z)H(z, 1− z; y)

− 648H(0, 1; z)H(z, 1− z; y) + 648H(1, 0; z)H(z, 1− z; y)

+ 5148H(z, 1− z; y) + 432H(1; z)H(z, z; y)− 3240H(0, 1; z)H(z, z; y)
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+ 648H(1, 0; z)H(z, z; y)− 1296H(1, 1; z)H(z, z; y)− 648H(0; y)H(0, 0, 1; z)

− 324H(1; y)H(0, 0, 1; z)− 1296H(1− z; y)H(0, 0, 1; z)

− 2592H(z; y)H(0, 0, 1; z) + 108H(0, 0, 1; z) + 2268H(0, 0, 1− z; y)

+ 648H(1; z)H(0, 0, z; y)− 324H(0; z)H(0, 1, 0; y) + 324H(1; z)H(0, 1, 0; y)

− 2484H(0, 1, 0; y)− 324H(0; y)H(0, 1, 0; z) + 324H(1; y)H(0, 1, 0; z)

+ 1296H(1− z; y)H(0, 1, 0; z) + 648H(z; y)H(0, 1, 0; z)− 1512H(0, 1, 0; z)

− 648H(z; y)H(0, 1, 1; z) + 1188H(0, 1, 1; z) + 2268H(0, 1− z, 0; y)

− 648H(0; z)H(0, 1− z, 1− z; y)− 1188H(0, 1− z, 1− z; y)

+ 324H(1; z)H(0, 1− z, z; y) + 1296H(1; z)H(0, z, 0; y)

− 1296H(0; z)H(0, z, 1− z; y) + 648H(1; z)H(0, z, 1− z; y)

− 1296H(0, z, 1− z; y) + 648H(1; z)H(0, z, z; y)− 648H(0; z)H(1, 0, 0; y)

+ 648H(1; z)H(1, 0, 0; y)− 2268H(1, 0, 0; y) + 648H(1− z; y)H(1, 0, 0; z)

+ 324H(0; y)H(1, 0, 1; z)− 324H(1; y)H(1, 0, 1; z)

+ 972H(1− z; y)H(1, 0, 1; z)− 648H(z; y)H(1, 0, 1; z) + 1674H(1, 0, 1; z)

− 648H(0; z)H(1, 0, 1− z; y) + 486H(1, 0, 1− z; y) + 324H(1; z)H(1, 0, z; y)

− 756H(1, 1, 0; y) + 648H(0; y)H(1, 1, 0; z) + 324H(1; y)H(1, 1, 0; z)

+ 2268H(1− z; y)H(1, 1, 0; z) + 648H(z; y)H(1, 1, 0; z)

− 324H(0; z)H(1, 1− z, 0; y) + 486H(1, 1− z, 0; y)

− 324H(1; z)H(1, 1− z, z; y) + 648H(0; z)H(1− z, 0, 0; y)

+ 2268H(1− z, 0, 0; y) + 324H(0; z)H(1− z, 0, 1− z; y)

− 1188H(1− z, 0, 1− z; y) + 648H(1; z)H(1− z, 0, z; y)

+ 324H(0; z)H(1− z, 1, 0; y) + 972H(1; z)H(1− z, 1, 0; y)

+ 1458H(1− z, 1, 0; y) + 648H(0; z)H(1− z, 1− z, 0; y)

− 1188H(1− z, 1− z, 0; y) + 648H(1; z)H(1− z, z, 0; y)

+ 648H(0; z)H(1− z, z, 1− z; y) + 2376H(1− z, z, 1− z; y)

− 2592H(1; z)H(1− z, z, z; y) + 648H(1; z)H(z, 0, 1− z; y)

− 1296H(z, 0, 1− z; y) + 648H(1; z)H(z, 0, z; y) + 648H(1; z)H(z, 1− z, 0; y)

− 1296H(z, 1− z, 0; y) + 648H(0; z)H(z, 1− z, 1− z; y)

+ 2376H(z, 1− z, 1− z; y)− 1296H(1; z)H(z, 1− z, z; y)

+ 648H(1; z)H(z, z, 0; y) + 648H(0; z)H(z, z, 1− z; y)

− 1296H(1; z)H(z, z, 1− z; y) + 432H(z, z, 1− z; y)

− 3888H(1; z)H(z, z, z; y)− 648H(0, 0, 1, 0; y) + 1296H(0, 0, 1, 0; z)

+ 648H(0, 0, z, 1− z; y) + 324H(0, 1, 0, 1− z; y)− 1296H(0, 1, 1, 0; y)

+ 648H(0, 1, 1, 0; z) + 324H(0, 1, 1− z, 0; y) + 972H(0, 1− z, 1, 0; y)

+ 324H(0, 1− z, z, 1− z; y) + 1296H(0, z, 0, 1− z; y) + 1296H(0, z, 1− z, 0; y)

– 26 –



J
H
E
P
0
6
(
2
0
1
9
)
1
2
0

+ 648H(0, z, 1− z, 1− z; y) + 648H(0, z, z, 1− z; y)− 324H(1, 0, 0, 1; z)

+ 648H(1, 0, 0, 1− z; y)− 1296H(1, 0, 1, 0; y) + 648H(1, 0, 1, 0; z)

+ 648H(1, 0, 1− z, 0; y) + 324H(1, 0, z, 1− z; y)− 1296H(1, 1, 0, 0; y)

+ 648H(1, 1, 0, 1; z)− 1296H(1, 1, 1, 0; y) + 972H(1, 1, 1, 0; z)

+ 648H(1, 1− z, 0, 0; y)− 324H(1, 1− z, z, 1− z; y) + 648H(1− z, 0, 1, 0; y)

+ 648H(1− z, 0, z, 1− z; y) + 648H(1− z, 1, 0, 0; y)

+ 972H(1− z, 1, 0, 1− z; y) + 972H(1− z, 1, 1− z, 0; y)

+ 1296H(1− z, 1− z, 1, 0; y) + 648H(1− z, z, 0, 1− z; y)

+ 648H(1− z, z, 1− z, 0; y)− 2592H(1− z, z, z, 1− z; y)

+ 648H(z, 0, 1− z, 1− z; y) + 648H(z, 0, z, 1− z; y)

+ 648H(z, 1− z, 0, 1− z; y) + 648H(z, 1− z, 1− z, 0; y)

− 1296H(z, 1− z, z, 1− z; y) + 648H(z, z, 0, 1− z; y) + 648H(z, z, 1− z, 0; y)

− 1296H(z, z, 1− z, 1− z; y)− 3888H(z, z, z, 1− z; y)− 972ζ3H(1; y)

+ 648ζ3H(1; z) + 1620ζ3H(1− z; y) + 1845ζ3 + 2464
]
+

3ζ3 z3

8x (1− y)2 (y + z)

+
z2

8x (1− y) (y + z)

[
ζ2 +H(1, 0; z) + 3ζ3

]
+

z

8 (1− y) (y + z)

[
2ζ2H(1− z; y)

− zH(0; z)H(1− z; y)− 2H(0, 1; z)H(1− z; y)− 2H(0; z)H(0, 1− z; y)

+ 2H(1; z)H(0, z; y) + 2H(1, 0; z)H(1− z; y)− 2H(1; z)H(1− z, z; y)

+ 2H(0, z, 1− z; y)− 2H(1− z, z, 1− z; y)− 6H(0; y) + 2ζ2H(0; z)

+ 2ζ2H(1; z) +H(0, 1; z)− 2H(0, 0, 1; z) + 2H(0, 1, 0; z)− 2H(1, 0, 1; z)

+ 2H(1, 1, 0; z)
]
+

z2

8 (1− y)2 (y + z)

[
ζ2H(1− z; y)−H(0; z)H(0, 1− z; y)

−H(0, 1; z)H(1− z; y) +H(1; z)H(0, z; y) +H(1, 0; z)H(1− z; y)

−H(1; z)H(1− z, z; y) +H(0, z, 1− z; y)−H(1− z, z, 1− z; y)

+ ζ2H(0; z) + ζ2H(1; z)−H(0, 0, 1; z) +H(0, 1, 0; z)−H(1, 0, 1; z)

+H(1, 1, 0; z)
]
+

z2

8 (1− z)2 (y + z)

[
ζ2H(1− z; y)−H(0; y)H(0, 1; z)

−H(0, 1; z)H(1− z; y)−H(1; z)H(0, z; y)−H(1; z)H(1− z, z; y)

−H(0, z, 1− z; y) +H(1− z, 1, 0; y)−H(1− z, z, 1− z; y) + ζ2H(0; y)

+H(0, 1, 0; y) + ζ2H(1; z) +H(0, 0, 1; z)−H(1, 0, 1; z)− 3ζ3
]

+
z

8 (1− z) (y + z)

[
− 2ζ2H(1− z; y)− zH(0; y)H(1; z) + 2H(0; y)H(0, 1; z)

+ 2H(0, 1; z)H(1− z; y)− zH(0, 1− z; y) + 2H(1; z)H(0, z; y) + zH(1, 0; y)

− zH(1− z, 0; y) + 2H(1; z)H(1− z, z; y) + 2H(0, z, 1− z; y)

− 2H(1− z, 1, 0; y) + 2H(1− z, z, 1− z; y)− 2ζ2H(0; y) +H(1, 0; y)

− 2H(0, 1, 0; y)− 2ζ2H(1; z) + 6H(0; z) + zH(0, 1; z)−H(0, 1; z)
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− 2H(0, 0, 1; z) + 2H(1, 0, 1; z) + 6ζ3 + ζ2
]
+

z

8x (y + z)

[
6zH(0; y)H(0; z)

− 6H(0; y)H(0; z) + 6zH(1, 0; y)− 6H(1, 0; y) + 6zH(1, 0; z)− 7H(1, 0; z)

+ 6zζ2 − 6ζ3 − 7ζ2
]
+

1

8 (1− z)2

[
yζ2H(1; z) + yζ2H(1− z; y)− zζ2H(0; y)

− zζ2H(1− z; y)− yH(0; y)H(0, 1; z)− yH(0, 1; z)H(1− z; y)

− yH(1; z)H(0, z; y)− yH(1; z)H(1− z, z; y) + yH(0, 0, 1; z)

− yH(0, z, 1− z; y)− yH(1, 0, 1; z) + yH(1− z, 1, 0; y)

− yH(1− z, z, 1− z; y) + zH(0; y)H(0, 1; z) + zH(0, 1; z)H(1− z; y)

+ zH(1; z)H(0, z; y) + zH(1; z)H(1− z, z; y)− zH(0, 1, 0; y)

+ zH(0, z, 1− z; y)− zH(1− z, 1, 0; y) + zH(1− z, z, 1− z; y)

+ yζ2H(0; y) + yH(0, 1, 0; y)− zζ2H(1; z)− zH(0, 0, 1; z) + zH(1, 0, 1; z)

− 3yζ3 + 3zζ3
]
+

1

8 (1− z)

[
2ζ2H(1− z; y)− yH(0; y)H(1; z)

+ zH(0; y)H(1; z) + yH(1; z)H(z; y) + yH(0, 1; z)− 2H(0; y)H(0, 1; z)

− 2H(0, 1; z)H(1− z; y)− yH(0, 1− z; y) + zH(0, 1− z; y)

− 2H(1; z)H(0, z; y)− zH(1, 0; y)− yH(1− z, 0; y) + zH(1− z, 0; y)

− 2H(1; z)H(1− z, z; y) + yH(z, 1− z; y)− 2H(0, z, 1− z; y)

+ 2H(1− z, 1, 0; y)− 2H(1− z, z, 1− z; y) + 2ζ2H(0; y) + yH(1, 0; y)

−H(1, 0; y) + 2H(0, 1, 0; y) + 2ζ2H(1; z)− 6H(0; z)− zH(0, 1; z)

+H(0, 1; z) + 2H(0, 0, 1; z)− 2H(1, 0, 1; z)− 6ζ3 − ζ2
]

+
1

24 (y + z)

[
− 72ζ2H(1− z; y) + 7zH(0; y) + 18zH(0; y)H(0; z)

+ 9zH(0; y)H(1; z)− 9zH(0; z)H(1− z; y) + 36H(0, 1; z)H(1− z; y)

+ 9zH(0, 1− z; y) + 9zH(1, 0; y)− 18H(1, 0; y)H(1; z)

− 18H(1, 0; z)H(1− z; y) + 9zH(1− z, 0; y) + 36H(1; z)H(1− z, z; y)

− 18H(1, 0, 1− z; y)− 18H(1, 1− z, 0; y)− 18H(1− z, 1, 0; y)

+ 36H(1− z, z, 1− z; y) + 36ζ2H(1; y) + 36H(1, 1, 0; y)− 36ζ2H(1; z)

− 7zH(0; z)− 9zH(0, 1; z) + 18zH(1, 0; z) + 18H(1, 0, 1; z) + 18zζ2
]

+
z

8 (1− y)

[
H(1; z)H(z; y) +H(z, 1− z; y)

]
(B.14)

D(2)
1;0,d =

1

432

[
3H(0; y)H(0; z)− 20H(0; y) + 15H(0, 0; y)− 20H(0; z)

+ 15H(0, 0; z) + 6ζ2
]

(B.15)

D(2)
1;0,e = −19

36
ζ3 +

1

12 (1− x)x

[
y2H(0; y)H(0; z)

+ y2H(1, 0; z) + y2H(1, 0; y) + 2yH(0; z)− 2yH(0; y)
]
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+
1

1296x

[
− 108yH(0; y)H(0; z) + 180H(0; y)H(0; z)− 324H(0; y)H(0, 0; z)

− 270H(0; y)H(1, 0; z)− 216yH(0; z)− 324H(0, 0; y)H(0; z)

− 54H(1, 0; y)H(0; z)− 108yH(1, 0; z)− 216H(1, 0; z)H(1− z; y)

− 216H(0; z)H(1− z, 0; y)− 216H(1− z, 1, 0; y) + 216yH(0; y)

+ 855H(0; y)− 738H(0, 0; y)− 108yH(1, 0; y) + 360H(1, 0; y)

− 54H(0, 1, 0; y)− 324H(1, 0, 0; y) + 216H(1, 1, 0; y) + 639H(0; z)

− 738H(0, 0; z) + 360H(1, 0; z)− 54H(0, 1, 0; z)− 324H(1, 0, 0; z)

− 136
]
− 1− x

1296x

[
180H(0; y)H(0; z)− 324H(0; y)H(0, 0; z)

− 270H(0; y)H(1, 0; z)− 324H(0, 0; y)H(0; z)− 54H(1, 0; y)H(0; z)

− 216H(1, 0; z)H(1− z; y)− 216H(0; z)H(1− z, 0; y)

− 216H(1− z, 1, 0; y) + 855H(0; y)− 738H(0, 0; y) + 360H(1, 0; y)

− 54H(0, 1, 0; y)− 324H(1, 0, 0; y) + 216H(1, 1, 0; y) + 639H(0; z)

− 738H(0, 0; z) + 360H(1, 0; z)− 54H(0, 1, 0; z)− 324H(1, 0, 0; z)

− 136
]
− yz ζ2

12 (1− x)x
− 1

144
ζ2
[
24H(1− z; y) + 12H(0; y)− 24H(1; y)

+ 12H(0; z) + 1
]

(B.16)

D(2)
1;0,f =

11

4
ζ4 +

1

2592

[
ζ2
(
3618H(0; y) + 1944H(0; y)H(0; z) + 2646H(0; z)

+ 648H(0; z)H(1; y)− 2376H(1; y) + 648H(1; y)H(1; z) + 2916H(1; z)

− 648H(0; z)H(1− z; y)− 1296H(1; z)H(1− z; y) + 3348H(1− z; y)

− 1296H(1; z)H(z; y) + 1296H(0, 1; y) + 1296H(0, 1; z) + 1296H(0, 1− z; y)

+ 1944H(1, 0; y) + 1296H(1, 0; z) + 1296H(1, 1; y) + 648H(1, 1; z)

+ 648H(1, 1− z; y)− 648H(1− z, 0; y)− 1296H(1− z, 1; y)

− 1296H(z, 1− z; y) + 954
)
− 2652H(0; y)− 2700H(0; y)H(0; z)

− 6000H(0; z) + 4536H(0; z)H(0, 0; y) + 5760H(0, 0; y)

+ 4536H(0; y)H(0, 0; z) + 1296H(0, 0; y)H(0, 0; z) + 5760H(0, 0; z)

+ 108H(0; z)H(1, 0; y)− 4500H(1, 0; y) + 4428H(0; y)H(1, 0; z)

+ 3348H(1− z; y)H(1, 0; z) + 1296H(0, 1− z; y)H(1, 0; z)

+ 648H(1, 0; y)H(1, 0; z)− 4500H(1, 0; z) + 648H(1, 0; z)H(1, 1− z; y)

+ 3348H(0; z)H(1− z, 0; y)− 648H(1, 0; z)H(1− z, 0; y)

− 1296H(1, 0; z)H(z, 0; y)− 1296H(1, 0; z)H(z, 1− z; y)

+ 648H(0; z)H(0, 1, 0; y) + 2052H(0, 1, 0; y) + 648H(0; y)H(0, 1, 0; z)

+ 648H(1; y)H(0, 1, 0; z) + 648H(1− z; y)H(0, 1, 0; z)

+ 1296H(z; y)H(0, 1, 0; z) + 3024H(0, 1, 0; z) + 1296H(0; z)H(0, 1− z, 0; y)

+ 1296H(0; z)H(1, 0, 0; y) + 4536H(1, 0, 0; y) + 1296H(0; y)H(1, 0, 0; z)
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+ 4536H(1, 0, 0; z)− 2376H(1, 1, 0; y) + 648H(1; y)H(1, 1, 0; z)

− 1296H(1− z; y)H(1, 1, 0; z)− 1296H(z; y)H(1, 1, 0; z) + 2916H(1, 1, 0; z)

+ 648H(0; z)H(1, 1− z, 0; y)− 648H(0; z)H(1− z, 1, 0; y)

+ 3348H(1− z, 1, 0; y)− 1296H(0; z)H(z, 1− z, 0; y) + 1296H(0, 0, 1, 0; y)

+ 2592H(0, 0, 1, 0; z) + 1296H(0, 1, 1, 0; y) + 1296H(0, 1, 1, 0; z)

+ 1296H(0, 1− z, 1, 0; y) + 1944H(1, 0, 1, 0; y) + 2592H(1, 0, 1, 0; z)

+ 1296H(1, 1, 0, 0; y) + 1296H(1, 1, 0, 0; z) + 1296H(1, 1, 1, 0; y)

+ 648H(1, 1, 1, 0; z) + 648H(1, 1− z, 1, 0; y) + 648H(1− z, 0, 1, 0; y)

− 1296H(1− z, 1, 1, 0; y) + 1296H(z, 0, 1, 0; y)− 1296H(z, 1− z, 1, 0; y)

+ ζ3
(
− 648H(0; y)− 648H(0; z) + 648H(1; y) + 3240H(1; z)

+ 2592H(1− z; y) + 6552
)
− 379

]
− 3 z2

4x (1− y) (y + z)
H(0; y)

− 3 z

4 (1− z) (y + z)
H(0; z) +

1

24x (y + z)

[
3z2ζ2H(0; y) + 6z2ζ2H(1; y)

− 38z2H(0; y)H(0; z) + 3z2H(1, 0; y)H(0; z)− 38z2H(1, 0; y)

+ 6z2H(1, 1, 0; y)− 6zζ2H(0; y) + 18zH(0; y) + 38zH(0; y)H(0; z)

+ 38zH(1, 0; y) + 3ζ2H(0; y) + 3z2ζ2H(0; z)− 38z2H(1, 0; z) + 38zH(1, 0; z)

− 12z2ζ3 − 38z2ζ2 + 12zζ3 + 38zζ2 − 6ζ3
]
+

3

4 (1− z)
H(0; z)

+
1

24 (y + z)

[
− 6zζ2H(0; y) + 24zζ2H(1; y)− 6zζ2H(1− z; y)− 31zH(0; y)

− 38zH(0; y)H(0; z) + 12zH(1, 0; y)H(0; z)− 38zH(1, 0; y)

− 12zH(0; y)H(1, 0; z)− 6zH(1, 0; z)H(1− z; y)− 6zH(0; z)H(1− z, 0; y)

+ 12zH(0, 1, 0; y) + 24zH(1, 1, 0; y)− 6zH(1− z, 1, 0; y)− 3H(0; y)H(1, 0; z)

− 3ζ2H(0; y) + 3H(0, 1, 0; y) + 12zζ2H(0; z)− 18zζ2H(1; z)− 6ζ2H(1; z)

+ 31zH(0; z)− 38zH(1, 0; z)− 6zH(0, 1, 0; z)− 18zH(1, 1, 0; z)

− 6H(1, 1, 0; z)− 12zζ3 − 38zζ2 + 6ζ3
]
+

1

8x (y + z)2

[
z2H(0; y)H(1, 0; z)

− z2H(0, 1, 0; y)− 2zH(0; y)H(1, 0; z) + 2zH(0, 1, 0; y) +H(0; y)H(1, 0; z)

−H(0, 1, 0; y) + 2z2ζ2H(1; z)− z2H(0, 1, 0; z) + 2z2H(1, 1, 0; z)

− 4zζ2H(1; z) + 2ζ2H(1; z)− 4zH(1, 1, 0; z) + 2H(1, 1, 0; z)
]

+
1

8 (y + z)2

[
2z2ζ2H(1− z; y) + z2H(0; y)H(1, 0; z)

+ 2z2H(1, 0; z)H(1− z; y) + 2z2H(0; z)H(1− z, 0; y)− z2H(0, 1, 0; y)

+ 2z2H(1− z, 1, 0; y) + 2zH(0; y)H(1, 0; z)− 2zH(0, 1, 0; y)

−H(0; y)H(1, 0; z) +H(0, 1, 0; y)− z2H(0, 1, 0; z) + 4zζ2H(1; z)

− 2ζ2H(1; z) + 4zH(1, 1, 0; z)− 2H(1, 1, 0; z)
]

(B.17)
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and

D(2)
2;0,a = D(2)

1;0,a +
1

32

[
4H(0; y)H(1; z) + 4H(0; z)H(1− z; y)− 18H(1− z; y)

− 24H(1; z)H(z; y) + 4H(0, 1− z; y) + 4H(1− z, 0; y)− 24H(z, 1− z; y)

− 24H(0; y)− 4H(1, 0; y)− 18H(1; z)− 4H(0, 1; z)− 7
]

+
z

8 (1− y) (y + z)

[
− 2ζ2H(1− z; y) + 4zH(0; z)H(1− z; y)

+ 2H(0, 1; z)H(1− z; y)− 2H(1, 0; z)H(1− z; y) + 2H(0; z)H(0, 1− z; y)

− 2H(1; z)H(0, z; y) + 2H(1; z)H(1− z, z; y)− 2H(0, z, 1− z; y)

+ 2H(1− z, z, 1− z; y)−H(0, 1; z) + 2H(0, 0, 1; z) + 2H(1, 0, 1; z)
]

+
z2

8 (1− y)2 (y + z)

[
− ζ2H(1− z; y) +H(0, 1; z)H(1− z; y)

−H(1, 0; z)H(1− z; y) +H(0; z)H(0, 1− z; y)−H(1; z)H(0, z; y)

+H(1; z)H(1− z, z; y)−H(0, z, 1− z; y) +H(1− z, z, 1− z; y)

+H(0, 0, 1; z) +H(1, 0, 1; z)
]
+

z2

8 (1− z)2 (y + z)

[
− ζ2H(1− z; y)

+H(0; y)H(0, 1; z) +H(0, 1; z)H(1− z; y) +H(1; z)H(0, z; y)

+H(1; z)H(1− z, z; y) +H(0, z, 1− z; y)−H(1− z, 1, 0; y)

+H(1− z, z, 1− z; y)− ζ2H(0; y)−H(0, 1, 0; y)− ζ2H(1; z)−H(0, 0, 1; z)

+H(1, 0, 1; z) + 3ζ3
]
+

z

8 (1− z) (y + z)

[
2ζ2H(1− z; y) + 4zH(0; y)H(1; z)

− 3H(0; y)H(1; z)− 2H(0; y)H(0, 1; z)− 2H(0, 1; z)H(1− z; y)

+ 4zH(0, 1− z; y)− 3H(0, 1− z; y)− 2H(1; z)H(0, z; y)− 4zH(1, 0; y)

+ 4zH(1− z, 0; y)− 3H(1− z, 0; y)− 2H(1; z)H(1− z, z; y)

− 2H(0, z, 1− z; y) + 2H(1− z, 1, 0; y)− 2H(1− z, z, 1− z; y) + 2ζ2H(0; y)

+ 2H(1, 0; y) + 2H(0, 1, 0; y) + 2ζ2H(1; z)− 4zH(0, 1; z) + 4H(0, 1; z)

+ 2H(0, 0, 1; z)− 2H(1, 0, 1; z)− 6ζ3 − ζ2
]
+

1

8x (y + z)

[
2z2H(0; y)H(0; z)

+ 2z2H(1, 0; y) + 4zζ2H(0; y)− 4zζ2H(1; y)− 6zH(0; y)− 8zH(0; y)H(0; z)

− 2zH(1, 0; y)H(0; z)− 6zH(1, 0; y) + 4zH(0; y)H(1, 0; z)− 4zH(0, 1, 0; y)

− 4zH(1, 1, 0; y)− 4H(0; y)H(1, 0; z)− 4ζ2H(0; y) + 6H(0; y)−H(1, 0; y)

+ 4H(0, 1, 0; y) + 2z2H(1, 0; z)− 4zζ2H(0; z) + 6zζ2H(1; z)

− 8ζ2H(1; z) + 6zH(0; z)− 9zH(1, 0; z) + 6zH(1, 1, 0; z) +H(1, 0; z)

− 8H(1, 1, 0; z) + 2z2ζ2 + 2zζ3 − 7zζ2 + 8ζ3 + ζ2
]

+
1

8 (1− z)2

[
− yζ2H(1; z)− yζ2H(1− z; y) + zζ2H(0; y) + zζ2H(1− z; y)

+ yH(0; y)H(0, 1; z) + yH(0, 1; z)H(1− z; y) + yH(1; z)H(0, z; y)
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+ yH(1; z)H(1− z, z; y)− yH(0, 0, 1; z) + yH(0, z, 1− z; y) + yH(1, 0, 1; z)

− yH(1− z, 1, 0; y) + yH(1− z, z, 1− z; y)− zH(0; y)H(0, 1; z)

− zH(0, 1; z)H(1− z; y)− zH(1; z)H(0, z; y)− zH(1; z)H(1− z, z; y)

+ zH(0, 1, 0; y)− zH(0, z, 1− z; y) + zH(1− z, 1, 0; y)

− zH(1− z, z, 1− z; y) + y(−ζ2)H(0; y)− yH(0, 1, 0; y) + zζ2H(1; z)

+ zH(0, 0, 1; z)− zH(1, 0, 1; z) + 3yζ3 − 3zζ3
]

+
1

8 (1− z)

[
− 2ζ2H(1− z; y) + 4yH(0; y)H(1; z)− 4zH(0; y)H(1; z)

+ 3H(0; y)H(1; z)− 4yH(1; z)H(z; y)− 4yH(0, 1; z) + 2H(0; y)H(0, 1; z)

+ 2H(0, 1; z)H(1− z; y) + 4yH(0, 1− z; y)− 4zH(0, 1− z; y)

+ 3H(0, 1− z; y) + 2H(1; z)H(0, z; y) + 4zH(1, 0; y) + 4yH(1− z, 0; y)

− 4zH(1− z, 0; y) + 3H(1− z, 0; y) + 2H(1; z)H(1− z, z; y)

− 4yH(z, 1− z; y) + 2H(0, z, 1− z; y)− 2H(1− z, 1, 0; y)

+ 2H(1− z, z, 1− z; y)− 2ζ2H(0; y)− 4yH(1, 0; y)− 2H(1, 0; y)

− 2H(0, 1, 0; y)− 2ζ2H(1; z) + 4zH(0, 1; z)− 4H(0, 1; z)− 2H(0, 0, 1; z)

+ 2H(1, 0, 1; z) + 6ζ3 + ζ2
]
+

1

8 (y + z)

[
6zH(0; y) + 2zH(0; y)H(0; z)

+ 2zH(1, 0; y) + 3H(0; y)H(1, 0; z) + 3ζ2H(0; y)− 6H(0; y) +H(1, 0; y)

− 3H(0, 1, 0; y) + 6ζ2H(1; z)− 6zH(0; z) + 2zH(1, 0; z)−H(1, 0; z)

+ 6H(1, 1, 0; z) + 2zζ2 − 6ζ3 − ζ2
]
− z

2 (1− y)

[
H(1; z)H(z; y)

+H(z, 1− z; y)
]
− z4

8x2 (1− y)2 (y + z)

[
ζ2H(0; z) + ζ2H(1; z) +H(0, 1, 0; z)

+H(1, 1, 0; z)− 3ζ3
]
+

z3

8x2 (1− y) (y + z)

[
H(1, 0; z) + ζ2

]

+
1

8x2 (y + z)

[
z2ζ2H(0; y) + 2z2ζ2H(1; y)− 6z2H(0; y)H(0; z)

+ z2H(1, 0; y)H(0; z)− 6z2H(1, 0; y) + z2H(0; y)H(1, 0; z)− z2H(0, 1, 0; y)

+ 2z2H(1, 1, 0; y)− 2zζ2H(0; y) + 6zH(0; y)H(0; z) + 6zH(1, 0; y)

− 2zH(0; y)H(1, 0; z) + 2zH(0, 1, 0; y) +H(0; y)H(1, 0; z) + ζ2H(0; y)

−H(0, 1, 0; y) + 2z2ζ2H(0; z) + 3z2ζ2H(1; z)− 7z2H(1, 0; z)

+ 3z2H(1, 1, 0; z)− 4zζ2H(1; z) + 2ζ2H(1; z) + 6zH(1, 0; z)− 4zH(1, 1, 0; z)

+ 2H(1, 1, 0; z)− 7z2ζ3 − 7z2ζ2 + 4zζ3 + 6zζ2 − 2ζ3
]

− 3 z2

8 (1− y) y (y + z)
H(0; z)H(1− z; y) +

3 z

8 (1− y) y

[
H(1; z)H(z; y)

+H(z, 1− z; y)
]
+

3 y

8 (1− z) z

[
−H(0; y)H(1; z) +H(1; z)H(z; y)
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−H(0, 1− z; y)−H(1− z, 0; y) +H(z, 1− z; y) +H(1, 0; y) +H(0, 1; z)
]

(B.18)

D(2)
2;0,b = D(2)

1;0,b +
19

72
− 1

48

[
H(0; y) +H(0; z)

]
− 1

12 (1− x)

[
zH(0; y) + yH(0; z)

]
(B.19)

D(2)
2;0,c = − 5

32
ζ4 +

1

1296

[
ζ2
(
324H(0; z)H(1; y)− 756H(1; y)

+ 972H(0; y)H(1; z) + 324H(1; y)H(1; z) + 1161H(1; z)

+ 648H(0; z)H(1− z; y) + 1296H(1; z)H(1− z; y)

+ 1917H(1− z; y)− 1296H(0, 1; y)− 324H(0, 1; z)

+ 972H(0, 1− z; y)− 972H(1, 0; y)− 324H(1, 0; z)

− 1296H(1, 1; y) + 324H(1, 1; z) + 324H(1, 1− z; y)

+ 648H(1− z, 0; y) + 1296H(1− z, 1− z; y)− 2133
)
− 540H(0; y)

− 324H(0; y)H(0; z) + 432H(0; z)− 1278H(0; y)H(1; z)− 708H(1; z)

− 1278H(0; z)H(1− z; y)− 1782H(1; z)H(1− z; y)− 708H(1− z; y)

+ 4176H(1; z)H(z; y) + 2268H(1; z)H(0, 0; y) + 2268H(1− z; y)H(0, 0; z)

− 702H(0; y)H(0, 1; z) + 1188H(1− z; y)H(0, 1; z)− 864H(z; y)H(0, 1; z)

+ 648H(0, 0; y)H(0, 1; z) + 2898H(0, 1; z) + 594H(0; z)H(0, 1− z; y)

− 1188H(1; z)H(0, 1− z; y) + 648H(0, 0; z)H(0, 1− z; y)

− 324H(0, 1; z)H(0, 1− z; y)− 1278H(0, 1− z; y)− 1296H(1; z)H(0, z; y)

− 648H(0, 1; z)H(0, z; y)− 540H(0; z)H(1, 0; y) + 486H(1; z)H(1, 0; y)

− 324H(0, 1; z)H(1, 0; y) + 1764H(1, 0; y) + 1026H(0; y)H(1, 0; z)

+ 270H(1− z; y)H(1, 0; z)− 1296H(z; y)H(1, 0; z)

+ 648H(0, 0; y)H(1, 0; z)− 1296H(0, z; y)H(1, 0; z)

− 324H(1, 0; y)H(1, 0; z) + 486H(1, 0; z)− 1188H(0; y)H(1, 1; z)

+ 2376H(z; y)H(1, 1; z) + 648H(0, z; y)H(1, 1; z)− 1782H(1, 1; z)

− 324H(0, 1; z)H(1, 1− z; y) + 324H(1, 0; z)H(1, 1− z; y)

+ 1566H(0; z)H(1− z, 0; y)− 1188H(1; z)H(1− z, 0; y)

+ 648H(0, 0; z)H(1− z, 0; y) + 972H(0, 1; z)H(1− z, 0; y)

+ 972H(1, 0; z)H(1− z, 0; y)− 1278H(1− z, 0; y)

− 1188H(0; z)H(1− z, 1− z; y) + 1296H(1, 0; z)H(1− z, 1− z; y)

− 1782H(1− z, 1− z; y) + 2376H(1; z)H(1− z, z; y)

− 1944H(0, 1; z)H(1− z, z; y) + 648H(1, 0; z)H(1− z, z; y)

− 1296H(1; z)H(z, 0; y) + 648H(0, 1; z)H(z, 0; y) + 648H(1, 1; z)H(z, 0; y)

− 1296H(0; z)H(z, 1− z; y) + 2376H(1; z)H(z, 1− z; y)

− 648H(0, 1; z)H(z, 1− z; y) + 648H(1, 0; z)H(z, 1− z; y)

+ 4176H(z, 1− z; y) + 432H(1; z)H(z, z; y)− 3240H(0, 1; z)H(z, z; y)
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+ 648H(1, 0; z)H(z, z; y)− 1296H(1, 1; z)H(z, z; y)

− 648H(0; y)H(0, 0, 1; z)− 324H(1; y)H(0, 0, 1; z)

− 1296H(1− z; y)H(0, 0, 1; z)− 2592H(z; y)H(0, 0, 1; z) + 108H(0, 0, 1; z)

+ 2268H(0, 0, 1− z; y) + 648H(1; z)H(0, 0, z; y)− 324H(0; z)H(0, 1, 0; y)

+ 324H(1; z)H(0, 1, 0; y)− 2484H(0, 1, 0; y)− 324H(0; y)H(0, 1, 0; z)

+ 324H(1; y)H(0, 1, 0; z) + 1296H(1− z; y)H(0, 1, 0; z)

+ 648H(z; y)H(0, 1, 0; z)− 1512H(0, 1, 0; z)− 648H(z; y)H(0, 1, 1; z)

+ 1188H(0, 1, 1; z) + 2268H(0, 1− z, 0; y)− 648H(0; z)H(0, 1− z, 1− z; y)

− 1188H(0, 1− z, 1− z; y) + 324H(1; z)H(0, 1− z, z; y)

+ 1296H(1; z)H(0, z, 0; y)− 1296H(0; z)H(0, z, 1− z; y)

+ 648H(1; z)H(0, z, 1− z; y)− 1296H(0, z, 1− z; y)

+ 648H(1; z)H(0, z, z; y)− 648H(0; z)H(1, 0, 0; y) + 648H(1; z)H(1, 0, 0; y)

− 2268H(1, 0, 0; y) + 648H(1− z; y)H(1, 0, 0; z) + 324H(0; y)H(1, 0, 1; z)

− 324H(1; y)H(1, 0, 1; z) + 972H(1− z; y)H(1, 0, 1; z)

− 648H(z; y)H(1, 0, 1; z) + 1674H(1, 0, 1; z)− 648H(0; z)H(1, 0, 1− z; y)

+ 486H(1, 0, 1− z; y) + 324H(1; z)H(1, 0, z; y)− 756H(1, 1, 0; y)

+ 648H(0; y)H(1, 1, 0; z) + 324H(1; y)H(1, 1, 0; z)

+ 2268H(1− z; y)H(1, 1, 0; z) + 648H(z; y)H(1, 1, 0; z)

− 324H(0; z)H(1, 1− z, 0; y) + 486H(1, 1− z, 0; y)

− 324H(1; z)H(1, 1− z, z; y) + 648H(0; z)H(1− z, 0, 0; y)

+ 2268H(1− z, 0, 0; y) + 324H(0; z)H(1− z, 0, 1− z; y)

− 1188H(1− z, 0, 1− z; y) + 648H(1; z)H(1− z, 0, z; y)

+ 324H(0; z)H(1− z, 1, 0; y) + 972H(1; z)H(1− z, 1, 0; y)

+ 1458H(1− z, 1, 0; y) + 648H(0; z)H(1− z, 1− z, 0; y)

− 1188H(1− z, 1− z, 0; y) + 648H(1; z)H(1− z, z, 0; y)

+ 648H(0; z)H(1− z, z, 1− z; y) + 2376H(1− z, z, 1− z; y)

− 2592H(1; z)H(1− z, z, z; y) + 648H(1; z)H(z, 0, 1− z; y)

− 1296H(z, 0, 1− z; y) + 648H(1; z)H(z, 0, z; y)

+ 648H(1; z)H(z, 1− z, 0; y)− 1296H(z, 1− z, 0; y)

+ 648H(0; z)H(z, 1− z, 1− z; y) + 2376H(z, 1− z, 1− z; y)

− 1296H(1; z)H(z, 1− z, z; y) + 648H(1; z)H(z, z, 0; y)

+ 648H(0; z)H(z, z, 1− z; y)− 1296H(1; z)H(z, z, 1− z; y)

+ 432H(z, z, 1− z; y)− 3888H(1; z)H(z, z, z; y)− 648H(0, 0, 1, 0; y)

+ 1296H(0, 0, 1, 0; z) + 648H(0, 0, z, 1− z; y) + 324H(0, 1, 0, 1− z; y)

− 1296H(0, 1, 1, 0; y) + 648H(0, 1, 1, 0; z) + 324H(0, 1, 1− z, 0; y)
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+ 972H(0, 1− z, 1, 0; y) + 324H(0, 1− z, z, 1− z; y)

+ 1296H(0, z, 0, 1− z; y) + 1296H(0, z, 1− z, 0; y) + 648H(0, z, 1− z, 1− z; y)

+ 648H(0, z, z, 1− z; y)− 324H(1, 0, 0, 1; z) + 648H(1, 0, 0, 1− z; y)

− 1296H(1, 0, 1, 0; y) + 648H(1, 0, 1, 0; z) + 648H(1, 0, 1− z, 0; y)

+ 324H(1, 0, z, 1− z; y)− 1296H(1, 1, 0, 0; y) + 648H(1, 1, 0, 1; z)

− 1296H(1, 1, 1, 0; y) + 972H(1, 1, 1, 0; z) + 648H(1, 1− z, 0, 0; y)

− 324H(1, 1− z, z, 1− z; y) + 648H(1− z, 0, 1, 0; y)

+ 648H(1− z, 0, z, 1− z; y) + 648H(1− z, 1, 0, 0; y)

+ 972H(1− z, 1, 0, 1− z; y) + 972H(1− z, 1, 1− z, 0; y)

+ 1296H(1− z, 1− z, 1, 0; y) + 648H(1− z, z, 0, 1− z; y)

+ 648H(1− z, z, 1− z, 0; y)− 2592H(1− z, z, z, 1− z; y)

+ 648H(z, 0, 1− z, 1− z; y) + 648H(z, 0, z, 1− z; y)

+ 648H(z, 1− z, 0, 1− z; y) + 648H(z, 1− z, 1− z, 0; y)

− 1296H(z, 1− z, z, 1− z; y) + 648H(z, z, 0, 1− z; y) + 648H(z, z, 1− z, 0; y)

− 1296H(z, z, 1− z, 1− z; y)− 3888H(z, z, z, 1− z; y)− 972ζ3H(1; y)

+ 648ζ3H(1; z) + 1620ζ3H(1− z; y) + 1845ζ3 − 38
]

+
3 z

4x

[
−H(0; y)H(0; z)−H(0; y)−H(1, 0; y) +H(0; z)

−H(1, 0; z)− ζ2
]
− 3

4 (1− z)
H(0; z) +

3 z

4x2

[
− zH(0; y)H(0; z)

+H(0; y)H(0; z)− zH(1, 0; y) +H(1, 0; y)− zH(1, 0; z) +H(1, 0; z)

− zζ2 + ζ2
]
+

3 z

8 y

[
H(0; z)H(1− z; y)−H(1; z)H(z; y)−H(z, 1− z; y)

]

+
3

8 z

[
yH(0; y)H(1; z)− yH(1; z)H(z; y)− yH(0, 1; z) + yH(0, 1− z; y)

+ yH(1− z, 0; y)− yH(z, 1− z; y)− yH(1, 0; y)
]
+

3z

4x (1− y)
H(0; y) (B.20)

D(2)
2;0,d = D(2)

1;0,d (B.21)

D(2)
2;0,e = D(2)

1;0,e +
(1− z) z

12 (1− x)x2

[
H(0; y)H(0; z) +H(1, 0; y) +H(1, 0; z) + ζ2

]

− 1

12 (1− x)x

[
zH(0; y) + zH(0; y)H(0; z) + zH(1, 0; y)−H(0; y)

− zH(0; z) + zH(1, 0; z) + zζ2
]
− 1

48 (1− x)

[
5H(0; y)− xH(0; y)

+ 4zH(0; y)− 4zH(0; z)
]
+

1

144

[
74− 15H(0; z)

]
(B.22)

D(2)
2;0,f = D(2)

1;0,f +
1

288

[
36H(0; y)H(0; z) + 60H(0; y) + 36H(1, 0; y) + 192H(0; z)

+ 36H(1, 0; z) + 36ζ2 − 565
]
+

3

4 (1− z) (y + z)
H(0; z)
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+
1

24x (y + z)

[
12z2H(0; y)H(0; z) + 12z2H(1, 0; y) + 6zζ2H(0; y)

− 24zζ2H(1; y) + 20zH(0; y) + 8zH(0; y)H(0; z)− 12zH(1, 0; y)H(0; z)

+ 2zH(1, 0; y) + 6zH(0; y)H(1, 0; z)− 6zH(0, 1, 0; y)− 24zH(1, 1, 0; y)

− 6H(0; y)H(1, 0; z)− 6ζ2H(0; y)− 2H(0; y) + 3H(1, 0; y) + 6H(0, 1, 0; y)

+ 12z2H(1, 0; z)− 12zζ2H(0; z) + 12zζ2H(1; z)− 12ζ2H(1; z)− 20zH(0; z)

+ 14zH(1, 0; z) + 12zH(0, 1, 0; z) + 12zH(1, 1, 0; z)− 3H(1, 0; z)

− 12H(1, 1, 0; z) + 12z2ζ2 + 12zζ3 + 8zζ2 + 12ζ3 − 3ζ2
]

+
1

24 (y + z)

[
11zH(0; y) + 12zH(0; y)H(0; z) + 12zH(1, 0; y)

+ 9H(0; y)H(1, 0; z) + 9ζ2H(0; y) + 2H(0; y)− 3H(1, 0; y)− 9H(0, 1, 0; y)

+ 18ζ2H(1; z)− 11zH(0; z)− 18H(0; z) + 12zH(1, 0; z) + 3H(1, 0; z)

+ 18H(1, 1, 0; z) + 12zζ2 − 18ζ3 + 3ζ2
]
+

3 z2

4x2 (1− y) (y + z)
H(0; y)

+
1

24x2 (y + z)

[
− 3z2ζ2H(0; y)− 6z2ζ2H(1; y) + 20z2H(0; y)H(0; z)

− 3z2H(1, 0; y)H(0; z) + 20z2H(1, 0; y)− 3z2H(0; y)H(1, 0; z)

+ 3z2H(0, 1, 0; y)− 6z2H(1, 1, 0; y) + 6zζ2H(0; y)− 18zH(0; y)

− 20zH(0; y)H(0; z)− 20zH(1, 0; y) + 6zH(0; y)H(1, 0; z)− 6zH(0, 1, 0; y)

− 3H(0; y)H(1, 0; z)− 3ζ2H(0; y) + 3H(0, 1, 0; y)− 3z2ζ2H(0; z)

− 6z2ζ2H(1; z) + 20z2H(1, 0; z) + 3z2H(0, 1, 0; z)− 6z2H(1, 1, 0; z)

+ 12zζ2H(1; z)− 6ζ2H(1; z)− 20zH(1, 0; z) + 12zH(1, 1, 0; z)

− 6H(1, 1, 0; z) + 12z2ζ3 + 20z2ζ2 − 12zζ3 − 20zζ2 + 6ζ3
]
. (B.23)

C Formulae for soft and collinear limits

We list the unrenormalized H → bb matrix elements that are needed for the soft and

collinear limit checks of the two-loop H → bbg amplitude. The matrix elements in CDR

read:

M(0)
H→bb̄

M(0)∗
H→bb̄

= 2 y2b m
2
H Nc (C.1)

M(1)
H→bb̄

M(0)∗
H→bb̄

= −
(αs

2π

)
M(0)

H→bb̄
M(0)∗

H→bb̄
(4π)ϵSϵCF

(
−m2

H

µ2

)−ϵ
(1− ϵ)2

ϵ2
Γ(1 + ϵ)Γ(1− ϵ)2

Γ(2− 2ϵ)
(C.2)

M(2)
H→bb̄

M(0)∗
H→bb̄

=
1

4

(αs

2π

)2
M(0)

H→bb̄
M(0)∗

H→bb̄

(
−m2

H

µ2

)−2ϵ

F2 (C.3)

where F2 is taken from eq. (2.24) of ref. [28] and Sϵ =
exp (ϵγE)
(4π)ϵ .
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The soft currents in eq. (3.28) are defined as

S(0)(y, z) = 16παsCF
1

m2
H

(
1− y − z

y z

)
(C.4)

S(1)(y, z) = −1

2
S(0)(y, z)

(αs

2π

)
(4π)ϵSϵCA

(
−m2

H

µ2

)−ϵ

(
1− y − z

y z

)ϵ Γ(1− ϵ)3 Γ(1 + ϵ)2

ϵ2 Γ(1− 2ϵ)
(C.5)

S(2)(y, z) =
1

4
S(0)(y, z)

(αs

2π

)2
(
−m2

H

µ2

)−2ϵ(
1− y − z

y z

)2ϵ

[
CANf

(
1

6ϵ3
+

5

18ϵ2
+

1

ϵ

(
19

54
+

ζ2
6

)
+

65

162
+

5ζ2
18

− 31ζ3
9

)

+ C2
A

(
1

2ϵ4
− 11

12ϵ3
+

1

ϵ2

(
−67

36
+ ζ2

)
+

1

ϵ

(
−193

54
− 11ζ2

12
− 11ζ3

6

)

− 571

81
− 67ζ2

36
+

341ζ3
18

+
7ζ4
8

)
+O(ϵ)

]
(C.6)

where S(0)(y, z) and S(1)(y, z) have been adapted from eqs. (12), (13), and (26) of ref. [68],

while S(2)(y, z) is taken from eq. (11) of ref. [59].

The collinear functions in eq. (3.29) are

C(0)(y, z) = 4παsCF

2∑

n=1

Sp(0)n (ϵ) (C.7)

C(1)(y, z) =
1

2

1

(2π)2
(4παs)

2 SϵCF

2∑

n=1

Sp(1)n (ϵ) Sp(0)n (ϵ) (C.8)

C(2)(y, z) =
1

2

1

(2π)4
(4παs)

3 S2
ϵ CF

2∑

n=1

Sp(2)n (ϵ) Sp(0)n (ϵ) . (C.9)

The tree-level splitting functions in CDR are (see eqs. (4.17) and (4.18) of ref. [60]):

Sp(0)1 (ϵ) =
1

m2
H

2

y

[
1 + ϵ(1− 2z)

z

]
(C.10)

Sp(0)2 (ϵ) =
1

m2
H

2

y

[
(1− ϵ)

(1− z)2

z

]
. (C.11)

At one loop, the splitting functions in CDR are (see eqs. (4.21) and (4.22) of ref. [60]):

Sp(1)1 (ϵ) = −cΓ(ϵ) (4π)
ϵ

(
−m2

H

µ2

)−ϵ

y−ϵ

[
s(1)(ϵ)−

(
N2

c + 1

Nc

)
z

4(1− 2ϵ)

]
(C.12)

Sp(1)2 (ϵ) = −cΓ(ϵ) (4π)
ϵ

(
−m2

H

µ2

)−ϵ

y−ϵ s(1)(ϵ) , (C.13)
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with

cΓ(ϵ) =
Γ(1− ϵ)2 Γ(1 + ϵ)

Γ(1− 2ϵ)
(C.14)

s(1)(ϵ) =
Nc

2ϵ2

[
1−

∞∑

m=1

ϵm
(
Lim

(
1− z

−z

)
− 1

N2
c
Lim

(
−z

1− z

))]
. (C.15)

The two-loop splitting functions Sp(2)n (ϵ) in CDR are (see eqs. (3.7)–(3.14) and (4.24)–(4.25)

of ref. [60]):

Sp(2)n (ϵ) =
1

2

(
Sp(1)n (ϵ)

)2
+

e−ϵγE cΓ(ϵ)

cΓ(2ϵ)

(
β0
2ϵ

+K

)
Sp(1)n (2ϵ) +Hqq̄g(ϵ) + Sp(2),finn +O(ϵ) ,

(C.16)

where

Hqq̄g(ϵ) =
e−ϵγE cΓ(ϵ)

ϵ
(4π)2ϵ

(
−m2

H

µ2

)−2ϵ

y−2ϵ [z(1− z)]−2ϵ
(
H(2)

g − β0
8
K +

β1
16

)
(C.17)

with H(2)
g and K as defined in appendix A. Finally, the functions Sp(2),fin1 and Sp(2),fin2

correspond to eqs. (4.24) and (4.25) of ref. [60] respectively with the replacement w → z.
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b-quarks at NNLO accuracy, JHEP 04 (2015) 036 [arXiv:1501.07226] [INSPIRE].

[23] W. Bernreuther, L. Chen and Z.-G. Si, Differential decay rates of CP-even and CP-odd Higgs
bosons to top and bottom quarks at NNLO QCD, JHEP 07 (2018) 159 [arXiv:1805.06658]
[INSPIRE].

[24] P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Scalar correlator at O(α4
s), Higgs decay into

b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003
[hep-ph/0511063] [INSPIRE].

– 39 –

https://doi.org/10.1103/PhysRevLett.114.212001
https://arxiv.org/abs/1503.06056
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.06056
https://doi.org/10.1007/JHEP05(2016)058
https://arxiv.org/abs/1602.00695
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.00695
https://doi.org/10.1103/PhysRevLett.98.222002
https://arxiv.org/abs/hep-ph/0703012
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0703012
https://doi.org/10.1007/JHEP02(2019)096
https://arxiv.org/abs/1807.11501
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.11501
https://doi.org/10.1007/JHEP01(2018)145
https://arxiv.org/abs/1710.03016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.03016
https://doi.org/10.1103/PhysRevD.99.034004
https://arxiv.org/abs/1810.09462
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.09462
https://doi.org/10.1007/JHEP06(2013)072
https://doi.org/10.1007/JHEP06(2013)072
https://arxiv.org/abs/1302.6216
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6216
https://doi.org/10.1016/j.physletb.2014.11.021
https://arxiv.org/abs/1408.5325
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5325
https://doi.org/10.1088/1126-6708/2006/10/028
https://arxiv.org/abs/hep-ph/0608194
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0608194
https://doi.org/10.1103/PhysRevLett.111.131801
https://arxiv.org/abs/1307.4737
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4737
https://doi.org/10.1007/JHEP02(2012)056
https://arxiv.org/abs/1112.3554
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3554
https://doi.org/10.1103/PhysRevD.22.715
https://doi.org/10.1103/PhysRevD.22.715
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D22,715%22
https://doi.org/10.1007/JHEP03(2012)035
https://arxiv.org/abs/1110.2368
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2368
https://doi.org/10.1007/JHEP04(2015)036
https://arxiv.org/abs/1501.07226
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.07226
https://doi.org/10.1007/JHEP07(2018)159
https://arxiv.org/abs/1805.06658
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.06658
https://doi.org/10.1103/PhysRevLett.96.012003
https://arxiv.org/abs/hep-ph/0511063
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0511063


J
H
E
P
0
6
(
2
0
1
9
)
1
2
0

[25] T. Ahmed, M. Mahakhud, P. Mathews, N. Rana and V. Ravindran, Two-loop QCD
corrections to Higgs → b+ b+ g amplitude, JHEP 08 (2014) 075 [arXiv:1405.2324]
[INSPIRE].

[26] R. Mondini, M. Schiavi and C. Williams, N3LO predictions for the decay of the Higgs boson
to bottom quarks, arXiv:1904.08960 [INSPIRE].

[27] K.G. Chetyrkin, Correlator of the quark scalar currents and Gamma(tot) (H → hadrons) at
O(α3

s) in pQCD, Phys. Lett. B 390 (1997) 309 [hep-ph/9608318] [INSPIRE].

[28] T. Gehrmann and D. Kara, The Hbb̄ form factor to three loops in QCD, JHEP 09 (2014)
174 [arXiv:1407.8114] [INSPIRE].

[29] A. Primo, G. Sasso, G. Somogyi and F. Tramontano, Exact Top Yukawa corrections to Higgs
boson decay into bottom quarks, Phys. Rev. D 99 (2019) 054013 [arXiv:1812.07811]
[INSPIRE].

[30] J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness Subtractions for NNLO
QCD Calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].

[31] R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a
jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002
[arXiv:1504.02131] [INSPIRE].

[32] I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to
Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

[33] N. Brown and W.J. Stirling, Jet cross-sections at leading double logarithm in e+e−

annihilation, Phys. Lett. B 252 (1990) 657 [INSPIRE].

[34] S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering
algorithm for multi-jet cross-sections in e+e− annihilation, Phys. Lett. B 269 (1991) 432
[INSPIRE].

[35] I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to
Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].

[36] T. Becher and M. Neubert, Toward a NNLO calculation of the B̄ → Xsγ decay rate with a
cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251
[hep-ph/0603140] [INSPIRE].

[37] J.M. Campbell, R.K. Ellis, R. Mondini and C. Williams, The NNLO QCD soft function for
1-jettiness, Eur. Phys. J. C 78 (2018) 234 [arXiv:1711.09984] [INSPIRE].

[38] R. Boughezal, X. Liu and F. Petriello, N -jettiness soft function at next-to-next-to-leading
order, Phys. Rev. D 91 (2015) 094035 [arXiv:1504.02540] [INSPIRE].

[39] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory
amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]
[INSPIRE].

[40] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4
super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

[41] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019
[arXiv:0704.1835] [INSPIRE].

[42] P. Mastrolia, Double-Cut of Scattering Amplitudes and Stokes’ Theorem, Phys. Lett. B 678
(2009) 246 [arXiv:0905.2909] [INSPIRE].

– 40 –

https://doi.org/10.1007/JHEP08(2014)075
https://arxiv.org/abs/1405.2324
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2324
https://arxiv.org/abs/1904.08960
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.08960
https://doi.org/10.1016/S0370-2693(96)01368-8
https://arxiv.org/abs/hep-ph/9608318
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9608318
https://doi.org/10.1007/JHEP09(2014)174
https://doi.org/10.1007/JHEP09(2014)174
https://arxiv.org/abs/1407.8114
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.8114
https://doi.org/10.1103/PhysRevD.99.054013
https://arxiv.org/abs/1812.07811
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.07811
https://doi.org/10.1007/JHEP09(2015)058
https://arxiv.org/abs/1505.04794
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04794
https://doi.org/10.1103/PhysRevLett.115.062002
https://arxiv.org/abs/1504.02131
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.02131
https://doi.org/10.1103/PhysRevLett.105.092002
https://arxiv.org/abs/1004.2489
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2489
https://doi.org/10.1016/0370-2693(90)90502-W
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B252,657%22
https://doi.org/10.1016/0370-2693(91)90196-W
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B269,432%22
https://doi.org/10.1103/PhysRevD.81.094035
https://arxiv.org/abs/0910.0467
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.0467
https://doi.org/10.1016/j.physletb.2006.04.046
https://arxiv.org/abs/hep-ph/0603140
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0603140
https://doi.org/10.1140/epjc/s10052-018-5732-1
https://arxiv.org/abs/1711.09984
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.09984
https://doi.org/10.1103/PhysRevD.91.094035
https://arxiv.org/abs/1504.02540
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.02540
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9403226
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://arxiv.org/abs/hep-th/0412103
https://inspirehep.net/search?p=find+EPRINT+hep-th/0412103
https://doi.org/10.1103/PhysRevD.75.125019
https://arxiv.org/abs/0704.1835
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.1835
https://doi.org/10.1016/j.physletb.2009.06.033
https://doi.org/10.1016/j.physletb.2009.06.033
https://arxiv.org/abs/0905.2909
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2909


J
H
E
P
0
6
(
2
0
1
9
)
1
2
0

[43] S.D. Badger, Direct Extraction Of One Loop Rational Terms, JHEP 01 (2009) 049
[arXiv:0806.4600] [INSPIRE].

[44] R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized
D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [INSPIRE].

[45] S. Badger, E.W. Nigel Glover, P. Mastrolia and C. Williams, One-loop Higgs plus four gluon
amplitudes: Full analytic results, JHEP 01 (2010) 036 [arXiv:0909.4475] [INSPIRE].

[46] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in
Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

[47] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond,
JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

[48] S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO
QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323]
[INSPIRE].

[49] T. Becher, G. Bell, C. Lorentzen and S. Marti, Transverse-momentum spectra of electroweak
bosons near threshold at NNLO, JHEP 02 (2014) 004 [arXiv:1309.3245] [INSPIRE].

[50] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys.
Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
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