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1 Introduction

The discovery of a Higgs boson [1, 2] at CERN’s Large Hadron Collider (LHC) repre-
sents the most significant result in high energy physics in recent history. Over the next
couple of decades continued measurements of the properties of the Higgs will result in
increasingly-stringent tests of the predictions from the Standard Model (SM). These stud-
ies will continue to take place at the LHC (including the future high-luminosity upgrade)
and putative future colliders, which are currently in the early design phases [3-5]. From
a Higgs precision viewpoint, one strongly-motivated future accelerator is a lepton collider,
capable of producing a large data set with small experimental uncertainties and thus allow-
ing precision studies of the Higgs boson akin to what was successfully performed at LEP
for the Z boson. In order to achieve these goals, it is vital for the theoretical community to
provide precise predictions for Higgs-related observables with accuracies at the few-percent
to per-mille level.

For the 125-GeV Higgs boson the predominant decay mode is to a pair of bottom quarks
(bb), whose partial width accounts for around 60% of the total. An accurate measurement of
H — bb is therefore crucial, since the Higgs-bottom Yukawa coupling () enters every LHC
Higgs measurement through the total width. In a hadronic environment the measurement
of H — bb is particularly challenging due to the presence of large QCD backgrounds.
In order to overcome these obstacles, experimental analyses typically focus on associated
(V H) production modes, which have more manageable backgrounds [6, 7]. However, using
jet-substructure techniques it is also possible to access H — bb through the gluon-fusion
production mode (at high transverse momenta) [8].



Given its importance to Higgs physics, the H — bb decay has been studied in the
literature for many years [9-15]. Currently, higher-order corrections from QCD are known
up to N*LO (i.e. up to order O(a3)) [16]. Additionally, the electroweak (EW) correc-
tions have been known for some time [17, 18], as well as the mixed QCDxEW corrections
(O(aayg)) [18, 19].1 Tt is thus fair to say that the theoretical knowledge of the inclusive
partial decay width for H — bb is at an advanced level, with accuracies in the desired
per-mille range. In order to study the Higgs in a collider setting it is also desirable to have
theoretically- precise differential predictions, which allow for the application of experimen-
tal phase-space cuts for arbitrary infrared-safe observables. In this case our knowledge is
not as advanced as at the inclusive level. Fully-differential predictions at NNLO in QCD
were computed several years ago [21-23], while more recent studies [24, 25] have focused
on interfacing the decay at this order to V H production, which is also known at NNLO in
QCD [26-28]. The principal aim of this paper is to extend the knowledge of the H — bb
decay differentially to N3LO accuracy.

Significant progress has been made over the past five years in regards to the computa-
tion of differential predictions at NNLO accuracy in QCD. For most 2 — 2 LHC processes
NNLO predictions have been computed, and currently the frontier lies in the computation
of the challenging 2 — 3 two-loop corrections. A crucial aspect of this advancement has
come from an increased ability to deal with the infrared (IR) divergences which affect the
component parts of a NNLO calculation (but cancel upon summation in an IR-safe observ-
able). A novel way of dealing with IR divergences at NNLO was presented in ref. [29] and
is now known as the Projection-to-Born (P2B) method. This method, initially applied to
vector boson fusion (VBF), uses the knowledge of the inclusive cross section of the pro-
cess under consideration and of the exclusive cross section of the process with one extra
final-state jet to construct local counter-terms for the matrix elements, projected onto a
LO phase space. At NNLO this method has since been applied to VBF production of
two Higgs bosons [30]. An alternate approach to pursuing NNLO calculations is to uti-
lize physical observables and factorization theorems to construct non-local counter-terms.
One such approach, known as N-jettiness slicing [31, 32|, uses the N-jettiness [33] variable
together with a factorization theorem derived from Soft Collinear Effective Field Theory
(SCET) [34-37] to perform NNLO calculations.

Compared to NNLO, very few processes are known differentially at N3LO accuracy,
although significant progress has been made over the last year. One of the flagship LHC
processes, Higgs production, has recently been computed differentially at this order [38]
(using a non-local gr-based subtraction method [39]) and analytic results for the pseudo-
rapidity distribution have also been computed [40, 41]. These results are built upon our
knowledge of the inclusive Higgs-production cross section at this order [42, 43].? The P2B
method has also been deployed at N3LO, specifically for jet production in deep inelastic
scattering [45, 46] and, for certain differential distributions, VBF and VBF di-Higgs [47, 48].

Wery recently, two-loop master integrals for the mixed QCDxEW corrections for the Higgs-top Yukawa
coupling contributions to H — bb have also been computed [20].

2Similar techniques have also been used recently to compute Higgs production through bottom quark
fusion at this order [44].
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Figure 1. Representative Feynman diagrams that enter our calculation of H — bb at O(a?)
accuracy.

The aim of this paper is to provide, for the first time, fully-differential predictions for
the H — bb decay at N3LO accuracy. Herein we focus on the contributions with the most
challenging infrared structure, namely those that are proportional to yg. We will deploy the
P2B method mentioned above and present a first application of this method in conjunction
with a non-local subtraction mechanism (N-jettiness slicing in our case) at both NNLO
and N3LO. Our paper is constructed as follows. In section 2 we present a discussion of the
general framework for our calculation. We detail the P2B4+SCET method in section 3 and
first validate our results using the H — bb process at NNLO. We use our calculation to
make predictions for a variety of physical observables at N3LO accuracy in section 4 and
draw our conclusions in section 5.

2 Overview of the calculation

A general overview of our theoretical setup is included in our companion paper on the
calculation of H — bbj at NNLO accuracy [49]. Here we provide a short summary for
completeness. Representative Feynman diagrams included in our calculation of H — bb at
N3LO are shown in figure 1. At this order there are four phase-space configurations that
contribute. The two-body phase space includes terms of up to three loops (which have
been computed in refs. [50, 51]), while the remaining phase spaces correspond to those
with three or more partons in the final state and are the component pieces needed for
the calculation of H — bbj at NNLO. In our calculation we will set the b-quark mass to
zero kinematically, but retain it in the Yukawa coupling. A comparison of the radiative
corrections at NLO with or without the b-mass phase-space effects was first performed
nearly forty years ago [9]. It was shown that the sizable differences between the full and
“massless” theories arising from the b-mass terms can be compensated by running the b-
mass to the Higgs scale (and thus recapturing some of the missing logarithms of the form
log (m?/m?)). Dropping the b-quark mass kinematically results in dramatic simplifications
in the calculation of the inclusive partial width, which in the case of H — bb is known up
to O(al) in the massless theory.

In this work our primary interest lies in computing the H — bb process differentially
at N3LO. At this order, the partial width can be written as follows:

FZ?;L,% = yp Ay + asyy By + o (y3 Cy + ypyeCit )
+ o (Y2 Dy + ypye Dt + yi Dt) + O(al), (2.1)



where we have explicitly expanded in terms of both ag and the Yukawa couplings to the
bottom and top quark g, and y; respectively. The dependence on the top-quark mass
first comes in at NNLO and corresponds to diagrams in which the Higgs boson couples
to a closed loop of top quarks. These diagrams can then interfere with the LO diagram
to create a mixed ypy; term at O(a?). In our theoretical framework this interference is
exactly zero due to the requirement of a helicity flip between the massless bottom quarks
(since the bottom quarks couple to a spin-1 gluon in the y; term and to the scalar Higgs
in the y, term). Such an interference term mandates a mass inclusion kinematically to
be non-vanishing and is therefore not present in our calculation. In other words, the
interference terms are suppressed by a power of my/mg. However, since the ratio y;/yp is
large, this mixed ypy; term is phenomenologically relevant. It is IR finite, and a commonly-
used approximation is to integrate out the top-quark loop and thus work in an effective
theory in which there is a clear hierarchy of scales m, < mpy < my [12, 14]. In this
approximation the mixed term accounts for around 30% of the NNLO correction. Given
that my is not dramatically lighter than m;, one may also worry about missing terms
that are formally of order (my/m;)* and could therefore result in a significant correction.
Such a study was recently undertaken [52] keeping the exact dependence on my, m;, and
mpy, and found that the difference with respect to the exact form of the NNLO partial
width are indeed small and can be neglected at the inclusive and differential level to good
accuracy. At O(a?) a second class of diagrams enters. This contribution corresponds to
diagrams in which the Higgs does not couple to the final-state b quarks at all, but instead
is proportional to the closed loop squared, thus creating a term proportional to y? at this
order in eq. (2.1). Additionally, the interference term which arose at NNLO now receives
corrections and develops a more intricate IR structure. The 3? term has particularly
troublesome IR behavior since it does not factor onto the tree-level H — bb, but instead
factors onto H — gg. For this term there is also no helicity suppression and therefore
this contribution is large and relevant for phenomenology. The Higgs coupling to partons
through a top-quark loop, integrated out via an EFT approach, has been well studied in
the literature [53-55] and is not the principal aim of this paper (where we focus on the yf
term which has a more complicated IR structure at N3LO). However, we note that these
terms should be included before a full phenomenological study at N*LO can be completed.
We leave this work to a future study, stressing that the terms that we neglect are at most
NLO (for ypy) and therefore readily amenable using existing tools to implementation in a
future Monte Carlo generator.

3 Regulation of infrared divergences at N3LO

In this section we discuss the methods we utilize to regulate the IR singularities present
in our N3LO calculation. We primarily focus on the P2B method, since the N-jettiness
slicing method is discussed in more detail in our companion paper [49]. Firstly, we recap
the inclusive partial width, which is a prerequisite for the P2B method we use here.



3.1 The inclusive partial width

An ingredient for our calculation is the inclusive decay width for H — bb at N3LO. This was
originally computed over two decades ago [15] and is now known up to N*LO accuracy [16].
At O(a?) the inclusive partial width I';; ;7 can be written as follows

N3LO _ 1LO NLO NNLO N3LO 4
Uy = Vi T ALy T ATy + AL+ O(as) - (3.1)

The LO partial width is defined as

rLo ?Jl%mHNc

H—bb — 8 (32)

with y, = yp(p) the bottom Yukawa coupling at the renormalization scale p, my the Higgs
mass, and N, the number of colors, while the corrections at each order can be written as

N"LO _ pLO [ @s\" n(n)
Al s = Tl (?) Tolem (3.3)

with as = as(p). The coefficients ™ up to n = 3 are:

H—bb
1
Tl =5 +290L (3.4)
2
F;ng = 594 L (5180 + 2517, + 27m) + L* (Bovm, +2(7)°) (3.5)
3

FET{)—%E =53+ L (28250 + 5161 + 282’}/21 + 231%171 + 27r2n)
+ L2 (5182 + 3518070 + 5175 + 251(70)% + 26071, + 49871)

+ 23 (36h + 2000)7 + S60)°) (3:6)

where L = log (u?/m?%) and the explicit expressions for s;, 3; and ., are presented in
appendix A. For reference, at ;1 = my the inclusive partial width numerically evaluates to

N3LO [, _ _ pLo Qs Qs 2 Qg3
N3O (1) — ) = TEO [1 + 5.66667 (?> +29.1467 (?) + 41,7576 <?) ] . (37)

Finally, we will employ the following definition of the N3LO coefficient for the inclu-
sive width, which reinstates the dependence on the LO phase space (evaluated in d = 4

dimensions):
NsLO _ (Qs)? L0 ()
AI‘H—>b5 - (?) /87r FH—>b5FH—>bE Ay (3.8)
_ PN3LO
- / APNO 1, . (3.9)

3.2 Projection to Born at N3LO
The H — bb differential decay width at N3LO is constructed as follows

d AIN3LO
—— Aot / dry YV (09)d, + / ATV VR (0g)ds
+ / AT REV- P (04)dy + / AT ERE F3 (05)d®s (3.10)



where ngV‘Zb represents the triple-virtual contribution to the decay width, dfgv‘zb the

real double-virtual contribution, deIR‘zb the double-real virtual contribution, and ngR}Zb
the triple-real contribution. Each parton-level contribution belongs to a different phase
space ®; (with i = 2,...,5 respectively) over which it is integrated. The measurement
function F/"(®;) uses an IR-safe jet algorithm to cluster the 4 final-state partons onto
m final-state jets and thus defines the observable O,,. The triple-virtual contribution
contains explicit poles in the dimensional regularization parameter ¢ = (4 — d)/2 (with d
the number of space-time dimensions), whereas the triple-real term contains only implicit
poles that become manifest as at least one and at most three particles become unresolved.
The RVV and RRV contributions consist of mixtures of explicit € poles and implicit phase-
space singularities. The triple-virtual piece can be obtained from the results presented in
ref. [50], and real double-virtual in refs. [49, 56], while the calculation of H — bbj at NNLO
accuracy is discussed (including the double-real virtual and triple real) in our companion
paper [49]. This means that all the individual terms in eq. (3.10) are known, but need IR
regulation to be combined in a physically-meaningful way.
We define the Born-projected inclusive partial width as follows,

dAFN3LO inc
dfé,;;b / ATO P (D p)dD g (3.11)

where ®p = ®5 corresponds to the LO phase space and Oﬁ represents the observable O,,
evaluated for LO kinematics. We note the insertion of the two-body measurement function
FJ'(®p) into the integrand in relation to eq. (3.9). We can write the Born-projected
inclusive width in an alternate form which explicitly references the different phase spaces
which make up the total,

dAFNSLO inc
#ﬁéﬂj / dry VY Fy (@ p)dds + / dr VY Fy () dds
/ dU Y F (B )ddy + / dr I (g ) ds (3.12)

The fully-differential N3LO coefficient can then be written as

N3LO N3LO, inc NNLO NNLO
dALy g A dATE D  FAT

- 1
dO, dOB d0B + a0., (3.13)
where explicitly
d ATNNLO
H—bb,
T,:J B / AUy (@3)d®s + / APV F (04)dDy
/ dU G FE (95)dPs (3.14)
and
d ATNNLO
o = / IS () s + / drRRY B (@ ) d,y
/ AL}y 3 (@) dDs (3.15)



Eq. (3.13) represents the master equation for the Projection-to-Born technique [29, 45] and
is equivalent to eq. (3.10) by explicitly substituting egs. (3.12), (3.14), and (3.15). It can
finally be rearranged as follows

dAFNBLO
—o /Arg?’jbob (®p)dPp

/ PRV (R (@g) — B ()] ds

+ [ drie (@) - B (en) o,

+ [ dURn (£ (0s) - Fy(@)] dbs. (3.16)

Inspection of the above formula reveals that the P2B subtraction regularizes singularities
which cancel when an implicit pole turns to an explicit one via phase-space integration,
i.e. this subtraction accounts for the “last emission”. Based on the above equation, the
full N3LO H — bb coefficient can be readily computed provided that the NNLO H — bbj
differential partial width is available in a suitable format. More specifically, since the P2B
method above regulates the singularities associated with the last emission, all the other
IR divergences present in the last three lines of eq. (3.16) (namely in the construction
of the differential cross section of the process with one extra final-state jet) have to be
previously regulated and canceled by means of a different subtraction scheme. Thus far,
applications of the P2B method have utilized Catani-Seymour dipoles [57] (for applications
at NNLO) and antenna subtraction [58] (for applications at N®LO) for this purpose. Both
these regulators are clearly a good fit for the method, since neither explicitly requires a
jet in the construction of the local counter-terms. Thus far no method that employs a
jet-based physical observable to regulate divergences at NNLO has been applied to P2B.
We address this in the subsequent section.

3.3 P2B with N-jettiness slicing

At first inspection the application of eq. (3.16) with N-jettiness slicing seems problematic,
since the application of N-jettiness slicing requires the definition of a jet observable (in
this case 3-jettiness) in order to operate. Here we address this issue, starting with a brief
summary of the method which is by now well established for NNLO calculations.

The central idea of any slicing-based method is to consider an observable which allows
one to separate the computation into two parts. At NNLO, the first part will contain all of
the doubly-unresolved regions of the phase space and will be computed using a simplifying
approximation (typically a factorization theorem). The second region will capture all of
the singly-unresolved and fully-resolved regions of phase space and thus corresponds to a
NLO calculation with one additional parton in the final state. In N-jettiness slicing, the
separating variable is the N-jettiness variable 7 [33]. For an n-parton event it is defined as

. 2q; - pj
w E iLr%f.I.l.,N{ Qi (8.17)
=1,...,n



where p; represent the momenta of the n partons, while g; represent the momenta of the N
most energetic jets (for our application N = 3) clustered with any IR-safe jet algorithm (in
our case the Durham jet algorithm [59, 60]). @; are the hard scales in the process, which
we take as (); = 2F; with E; the energy of the i-th jet. In order to separate the phase
space into two regions, we introduce a variable 7§'. In the region 7y > 75" at least one
of the n partons is resolved (so that the term 2¢; - p; in eq. (3.17) is non-vanishing). The
NNLO decay width for a generic H — Nj process can be then computed in this region
as the NLO calculation of the H — (N + 1)j process. On the other hand, in the region

cut

Tn < Tx' no parton is resolved and the NNLO decay width can be approximated with the
following convolution, derived from SCET [33, 61]:

N
INLO. (7 < 75) & /H T 08 @H+ O, (3.18)
i=1

In the above equation the terms J; represent the jet functions [62, 63], S denotes the soft
function for N colored partons, and H is the process-specific hard function. In our applica-
tion of N-jettiness slicing we consider N = 3 and therefore we need the NNLO 1-jettiness
soft function with arbitrary kinematics [64]% and the hard function computed in our com-
panion paper [49]. We also note that eq. (3.18) is accurate up to terms of O(7§™"), which
formally vanish in the limit 75" — 0. One should therefore set 75 as small as possible to
ensure the validity of the factorization formula.

In order to apply N-jettiness slicing in conjunction with eq. (3.16), let us consider
the types of partonic configurations that can occur in our calculation. As an example,
let us focus on the five-parton phase space (the triple-real contribution in eq. (3.16)). In
the Higgs rest frame, after jet clustering each phase-space event will belong to one of four
possible topologies: a two-, three-, four-, or five-jet topology. We assume now that we are
calculating an observable that requires the complete N®LO technology and thus we fix the
measurement function to demand exactly m = 2 jets (any observable with three or more
jets requires at most a NNLO calculation). In the triple-real contribution to eq. (3.16) there
are two measurement functions: F2(®5) and F3(®pg). The latter will always produce two
jets (in the rest frame) since it acts on the LO phase space ®p. It is therefore unaffected
by the number of jets obtained upon clustering of the five-parton phase space (assuming
for now that no pp or rapidity cuts are applied to the LO phase space). On the other
hand, F2(®5) will pick out the various jet topologies given an input jet algorithm, in this
case vetoing any event with more than two jets (since we fixed m = 2). This means
that upon generation of a phase-space event there are two possibilities: a) the five-parton
event corresponds to a > 3-jet topology, is vetoed by F52(<I>5) and therefore only the P2B
subtraction term is non-zero, or b) the parton-level event produces two jets. In the latter
case both terms in the last line of eq. (3.16) survive, producing events with exactly-opposite
weights, with the measurement functions applied on different phase spaces (which match
in the triple-unresolved limit producing the desired subtraction).

3See also refs. [32, 65].



For events belonging to category a) it is straightforward to compute the 3-jettiness
variable 73 and apply the cut 75" since there are (at least) three jets in the event (this
is indeed simply a rephrasing of the existing NNLO methodology). Attention must be
given to category b) two-jet events for which it is in principle unclear how a 3-jettiness cut
can be constructed. In other words, in this case we must extract a three-jet observable
from events with a two-jet topology. In order to achieve this, we first decluster the jets
(in a similar spirit to the ideas behind jet-substructure techniques [66]). For our input jet
algorithm (Durham), we reverse the last stage of the clustering algorithm, which would have
previously clustered two sub-jets with y;; < ycut together into a combined object. Since
the end point always contains two physical jets (by construction) a single declustering step
will always produce three sub-jets. The sub-jets are made up of partons which have been
previously clustered together in the initial stages of the jet algorithm. We then apply
“N-subjettiness” slicing, taking the momenta of the three sub-jets as the momenta ¢; in
eq. (3.17). Crucial to the success of this approach is the lack of explicit dependence on
the jet algorithm in the factorization formula of eq. (3.18). Furthermore, since events in
category b) have zero weight as explained above, the total two-jet rate at N3LO inherits the
overall T]‘i}lt—dependence of the parent NNLO calculation. In this regard, we do not expect
significant worsening of the power corrections when applied to our N3LO calculation relative
to our NNLO application. We investigate this behavior more carefully in the next section.
Finally, we note that the same line of reasoning can be applied to the double-real virtual
and double-virtual real contributions.

We conclude this section by defining the Born phase-space events that enter the P2B
subtraction terms. For each event we simply define the following Born phase-space point:

mpyg

(Lny), po=—=(1,—ny) (3.19)

mpyg

&g = {p1,p2}, p1= >

where n; is the three-dimensional unit vector pointing in the direction of the leading jet
(defined as the jet with the largest energy component).

3.4 Validation at NNLO

In order to validate our implementation of the P2B method at NNLO we have imple-
mented an independent calculation at this order using the N-jettiness slicing approach.
As discussed in previous sections, this method uses the predictions of SCET to establish
a factorization theorem which can be used at small values of the physical N-jettiness ob-
servable 7y (which in this instance corresponds to a 2-jettiness cut, 72). One therefore
must ensure that the 75" variable is taken to small enough values that the missing power
corrections in eq. (3.18) are negligible. Our parameter choices are as follows. We take the
mass of the Higgs boson to be my = 125 GeV. As input we take the mass of the b-quark
to be mp = 4.7 GeV, which enters into the Yukawa coupling vy, (and is set to zero kine-
matically). In order to compensate for higher-order effects arising from the b-quark mass
we run the mass to the Higgs scale. At NNLO we use the three-loop running, resulting in
an effective b-quark mass of my(mpy) = 2.94 GeV. Our remaining electroweak inputs are
Gr = 0.116639 x 1074 GeV~2 and my = 80.385GeV. We take as(my) = 0.118 and we
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Figure 2. The dependence of the H — bb NNLO coefficient for the two-jet partial width on
the N-jettiness slicing parameter 7$%*. The physical jet cut is set to yeus = 0.1. The coefficient
is normalized to the prediction obtained from the difference of the inclusive result and the NLO
(inclusive) three-jet rate.

evolve the coupling using three-loop running. For our subsequent predictions at N*LO we
keep the three-loop running of o and m;, for simplicity (the difference between three-loop
and four-loop running is very small [67]). All of the results for partial widths in this paper
are in units of MeV. Our results presented herein have been produced using a fully-flexible
Monte Carlo code, for which we have extensively used the existing structure of MCFM
8.0 where applicable (specifically for phase-space generation, Catani-Seymour dipoles [68],
N-jettiness slicing [69], and OMP and MPI compatibility [70]). Our subsequent extended
Monte Carlo is thus in a suitable format to be interfaced with MCFM and be released
publicly in the future.

As a first check on the correctness of our results we compute the NNLO coefficient
for the two-jet rate for jets clustered with the Durham algorithm [59, 60] with yc, = 0.1.
This algorithm starts from a parton-level phase-space point and computes the following
quantity y;; for all pairs of objects i and j:

2min(Ei2,E]2)(1 — cos b;;)
Yij = oz ;

(3.20)

where E; is the energy of particle 4, ;; is the angle between particles ¢ and j, and @ is the
hard scale of the process, which in our case is () = mpy. If y;; < yecus, the two objects are
combined into a new one with four momentum p!' + pé-‘ . The procedure is then iterated
until no more clustering is possible and the final objects are classified as jets. In addition
to the independence on the slicing parameter, a further check of our implementation of the
N-jettiness slicing calculation of the NNLO two-jet rate can be constructed by taking the
difference between the NNLO total inclusive rate and the inclusive three-jet rate at NLO.
We compare this prediction to our results obtained with N-jettiness slicing in figure 2
observing excellent agreement in the asymptotic region 75"* < 0.1 GeV. In order to ensure
that the dependence on 75" in the differential distributions is also small we present the
differential ratio for two different choices of 75" for the Fy,ax/mp observable in figure 3.
Again, we observe excellent agreement for different choices of 75"*. We use the prediction

cut

with 75" = 0.05 GeV for our subsequent comparisons with the P2B method.
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Figure 3. The dependence of the differential distribution for the maximum jet energy in the NNLO
two-jet rate on the N-jettiness slicing parameter 75"*. The physical jet cut is set t0 yeur = 0.1.
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Figure 4. Comparison of three different methodologies for computing the differential NNLO par-
tial width. Shown are results obtained using Projection-to-Born with Catani-Seymour dipoles
(P2B+CS), Projection-to-Born with N-jettiness slicing (P2B+SCET), and N-jettiness slicing
(SCET). Results are normalized to those obtained using P2B+CS. The left-hand plot shows
the pseudo-rapidity, while the right-hand plot shows the transverse momentum of the jet.

We now compare the predictions from N-jettiness slicing to our implementation of P2B
at NNLO. We have implemented the P2B method at NNLO using two different subtraction
methods for the NLO part of the calculation: one with Catani-Seymour dipoles, and a
second one using N-(sub)jettiness slicing. In the Higgs rest frame the most physically-
relevant observables are delta functions at LO (for example the jet energy or the jet mass).
In general, there is no special direction in momentum space with which to construct more
elaborate observables. In order to fully test the cancellation of IR singularities it is most
useful to construct an observable which has a non-trivial distribution at LO. In this
paper we therefore introduce the following two quantities: the transverse momentum of
the leading jet (the jet with highest energy) pr5* and the pseudo-rapidity of the jet ]n?aﬂ.
These two jet observables are measured with respect to the “z”-axis which we take to be
a fictitious beam axis (i.e. we imagine that the Higgs was formed in a pu*u~ collision with
an operating energy /s = mp).

The calculation of these observables at NNLO is presented in figure 4. We set u = mp
for these predictions and maintain the same parameter choices as before. We choose a value
of 75" = 0.05 GeV for both of the calculations which require N-jettiness slicing. We ob-
serve excellent agreement within the sub-percentage Monte Carlo uncertainties for all three
predictions. Our proposed method of P2B+ N-jettiness slicing is thus validated at NNLO
and we proceed to use this method to obtain results at N3LO accuracy in the next section.

- 11 -
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Figure 5. Jet fractions at orders as, o2, and a?. Each prediction is normalized to the total partial
width at that order.

4 Results

The results presented in this section are obtained using the same parameter choices as
discussed in section 3. We begin by computing jet rates at O(ag). At this order, possible
topologies consist of two-, three-, four-, or five-jet events, which are accurate respectively
to N3LO, NNLO, NLO, and LO in perturbation theory. Since the inclusive partial width is
known at N3LO, the two-jet rate can be inferred directly from the knowledge of the other
components at their respective orders. Therefore, we can use the NNLO three-jet results
taken from our companion paper [49], compute the exclusive NLO four-jet and LO five-jet
rates as a function of the y.,; parameter, and obtain the two-jet rate at N3LO.

Our results are presented in figure 5, where we present the fractional jet rate at different
orders in O(ay), each prediction being normalized to the total partial width at that order.
As it may be expected, the characteristics are broadly the same as similar calculations
for ete™ — Z — jets computed at the same order [71, 72]. For Z — jets, copious data
from LEP is available for a comparison between theory and data. A future lepton collider
should therefore be able to make the same sort of plot and compare to our predictions here.
Expecting similarities with the Z data, as the order in perturbation theory increases the
agreement with data for the jet rate is expected to improve. At smaller y.u; the two-jet
rate turns negative at each order in perturbation theory (beyond LO). However, for O(a?)
the fractional rate is very small and negative for the smallest values of y.yt considered here.
Specifically, at g, = 1074 the two-jet fractional rate at NNLO is —24%, whereas at N3LO
the rate is only —4%. One may therefore optimistically hope that at N*LO the two-jet rate
will remain physical to even very small values of the jet-clustering parameter. The change
in slope for small values of the jet-clustering parameter is clearly visible when comparing
the NNLO plot (middle plot, red line) to the N3LO one (right-hand plot, purple line).

For the remainder of this section we will turn our attention to N3LO predictions
which cannot simply be inferred from the NNLO three-jet inclusive rate. We will focus

- 12 —
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on the choice yeut ~ 0.1, since a) this is the value for which perturbation theory should
do a good job at describing collider data, and b) this value corresponds to jets that are

somewhat similar to LHC anti-k7 jets (assuming transverse momentum scaling of the form
pr o~ 1/ycutm%). Before proceeding further we first quantify the residual dependence of
our N3LO predictions on the 3-(sub)jettiness slicing parameter 75", We present the 75-
dependence of the N3LO coefficient for yeys = 0.1 in figure 6. We have normalized the
coefficient to the total inclusive correction AFIEI%I% at this order. To illustrate the size of
the power corrections we additionally show the function —2.35-0.00289 75" In3 (75" /m )
in the plot. We observe that the 7$"'-dependence for this jet clustering is not dramatic,
only changing 10% over the range [0.02-0.3] GeV. The dependence between 75" ~ .02
0.05 GeV is around one percent. Our differential predictions obtained at this order have
MC uncertainties around a few percent (on the N3LO coefficient) and therefore our results
are insensitive to 75" when 75" < 0.03GeV. We predominately use 75" = 0.02 GeV
for the subsequent differential predictions in this section (supplemented by additional runs
with 75"* = 0.03 GeV to improve MC uncertainties in some distributions). The two-jet rate
is around a factor of —2 times the inclusive correction at this order, illustrating that there
is a large cancellation at this order across jet bins and reminding us that, when exclusive
jet quantities are considered, the smallness of an inclusive correction does not necessarily

transfer to all distributions and all regions of phase space.

Our final state consists of two jets clustered with the Durham jet algorithm. We
distinguish the two jets based upon which has the largest energy component (and refer
to them as the max and min jets hereafter). As discussed previously, the dynamics of
the rest-frame observables is somewhat limited, since physically-relevant distributions such
as the energy of the jet and the mass of the jet are delta functions at LO. Therefore,
higher-order corrections factorize onto corrections to LO observables Or,o which contain
contributions from every phase-space region and to observables O # Or,o which contain (at
most) corrections from one order lower and lack of the two-body phase space. This restricts
the ability to study the delicate cancellations that must occur at N3LO. To overcome this,
we reintroduce the fictitious collision axis of section 3, and assume that the z-direction is

~13 -
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Figure 7. The (mpg-scaled) transverse momentum and pseudo-rapidity of the maximum-energy
jet in the Higgs rest frame at NLO, NNLO, and N3LO.

special and corresponds to a beam axis. We then measure the transverse momentum pr
and pseudo-rapidity n with respect to this axis. This defines non-trivial observables at LO,
allowing us to test our predictions more stringently. These predictions also confirm that
we can compute jet observables relevant for LHC physics (i.e. if desired we could impose
phase-space cuts on these observables).

Our results for [7"**| and pp7*/mpy are shown in figure 7. We present the NLO,
NNLO, and N3LO predictions (suppressing LO for clarity). In each case the upper panel
presents the differential distribution, while the middle panel illustrates the ratio to the NLO
prediction and the lower panel the ratio to the NNLO prediction. Since a scalar particle
at rest decays isotropically, the rapidity distribution is sculpted only by the phase-space
integration of the final-state jets. For this reason the higher-order corrections are flat and
do not noticeably alter the shape of the distribution. As the order in perturbation theory
increases, the scale variation drops considerably (we vary the scale between mpy /2 < p <
2myr). This observable inherits the scale variation from the total jet rate and is similar
to the scale variation presented in appendix A for the total width. At NLO the scale
variation is around {+3.5, —5}% across the entire distribution. For NNLO and N3LO the
rate obtained with the scale choice = my is close to the maximum rate (again as in the
inclusive rate in appendix A), and as such the scale variation band is set by p = mpy and
p = mp/2. At NNLO the variation is around —1.2% and at N3LO it drops by a factor
of two to around —0.7%. The pp distribution is more dynamic, especially in the region
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pr ~ mp/2. Here the kinematics of the region is sensitive to the emission of additional
soft radiation and thus experiences sizable corrections in the perturbative expansion. At
NLO for pr ~ mp/2 an artificial cancellation of the scale dependence occurs, resulting
in essentially no scale dependence in this bin at this order. As the order increases to
NNLO and N3LO the corrections are around —10% and —15% compared to NLO. Across
the remaining phase space the corrections are positive and between 5% in the softest bin
increasing to around 15% in the penultimate bin. Comparing N3LO to NNLO in the lower
panel we see that the N3LO corrections reside at the very edge of the scale variation band
at NNLO, which corresponds to around a 2% to 5% correction to the NNLO rate in the
bulk region and —8% correction in the pr ~ my /2 bin. This bin has the largest scale
variation at N3LO corresponding to around +4%. Away from this bin the scale variation
at N3LO is much smaller, around 1%.

We now turn our attention to the more physically-relevant observables that do not
require the introduction of an arbitrary reference direction, namely the energy and invariant
mass of the maximum-energy jet. Our results for the (mp-rescaled) energy distribution
are presented in figure 8. This observable can broadly be classified into three regions: the
d-component defined by the LO phase space at E;nax = mpg/2, the “bulk” region defined
by 0.5 < E}na’(/mH < 0.6, and the “tail” defined by E7** > 0.6mp. We discuss the
d-component first, which corresponds to the first bin of our histogram. As can be seen
from the middle and lower panels, there is a large (negative) correction in going from NLO
to NNLO (~ —30%), while the correction in going from NNLO to N3LO is much smaller
(around —2%), indicating a good convergence of the perturbation series here. The major
change in this region at N3LO is the dramatic reduction in scale variation compared to
NNLO, which has gone from +15% to +3%. In the bulk region the observable is one order
lower in the perturbation theory, i.e. NLO behaves like LO etc. In our case the N3LO
correction acts like a NNLO calculation, with the scale variation growing as a function of
E* from a few percent at the softer end to around 10-15% at the more energetic range of
the region. The tail region corresponds to a region of phase space which is inaccessible to
two- and three-parton phase-space configurations. Therefore in this region the observable
behaves like a calculation two orders lower in perturbation theory. As such, the NNLO
calculation becomes LO-like (the scale variation in the tail at NNLO is flat since we are
merely comparing the overall factor my(u;) o2(u;) with w; = {1/2,1,2} my). Since the
observable is “LO”, we see large corrections > 2 and large scale dependence in going from
NNLO to N3LO. We note that there exists a “super-tail” region not shown in the figure
in which E;nax > 0.65myr. In this region only the five-parton phase space contributes and
therefore the N3LO prediction behaves like a LO prediction.

We present the invariant mass of the jet (with the largest energy) m{ﬁax, divided by the
Higgs mass, in figure 9. At LO all jets are made of single partons and therefore have zero
mass.? The region near the LO boundary is highly sensitive to soft and collinear radiation,
and this observable should be resummed (for instance in a parton-shower prescription)

“In the massless approximation. They would have m;/mg ~ 0.02 had we retained the b-quark mass
kinematically.
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Figure 8. The energy component of the four-vector for the jet with maximum energy rescaled by
the Higgs mass in the Higgs rest frame at NLO, NNLO, and N3LO.

to fully capture the physics. In this region of phase space one demands that the most
energetic jet be almost massless, which pushes the calculation into the region of phase
space in which the two jets are almost-massless partons scattering back to back. In order
to obtain a physically-sensible prediction at fixed order one must ensure that the bin
near m; = 0 is inclusive enough to carry out an adequate cancellation of IR singularities
into an IR-safe observable. In other words, if the prediction is binned too finely, the
perturbation theory breaks down and undesirable effects (such as a negative differential
cross section) can occur. We therefore combine the first four bins into one larger bin in our
differential prediction shown in figure 9. This is actually insufficient to ensure a physically-
reliable prediction for all scale choices at NNLO, but is sufficient at N3LO (in which we are
primarily interested here). To ensure a positive-definite prediction at NNLO the first five
bins need to be combined. We note in passing that at NLO no combination is necessary
since the prediction consists only of a three-body phase space (which diverges to +oo at
6(m*/mp)) and of the two-body phase space (which diverges to —oo at 6(m}***/my))).
Given the poor convergence of the perturbation series in this region, both higher-order
corrections, and the subsequent scale variations, are large. Away from the troublesome -
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Figure 9. The mass of the jet (divided by my) for the jet with maximum energy in the Higgs rest
frame at NLO, NNLO, and N3LO.

region the observable behaves much in the same fashion as the EJ"* observable discussed
previously. Specifically, we observe a bulk region in which the observable is NNLO and the
corrections are (reasonably) small and a tail region in which the three-body phase space is
not present and the observable becomes NLO, resulting in large corrections at N3LO.

5 Conclusions

In this paper we have presented N3LO predictions for the H — bb decay process. We
focused on the piece with the most intricate infrared structure, corresponding to diagrams
in which the Higgs boson couples directly to the final-state bb pair. In order to regulate
the TR divergences present at this order we used the Projection-to-Born (P2B) method,
employed for the first time with N-jettiness slicing as the IR regulator for the NNLO+j
contribution. We developed a method of dealing with the requirement of observing a
jet direction in the N-jettiness slicing approach, namely effectively declustering the last
stage of the jet algorithm and using the substructure of the jets to produce three (sub)jet
directions. We validated our method at NNLO using three different methods to regulate
the IR divergences.
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We used our calculation to present jet rates at O(a?) and differential distributions for
several physical observables using the Durham jet algorithm with ..t = 0.1. The method
discussed in this paper is readily applicable to more complicated Higgs processes, such as
associated production of a Higgs boson with a vector boson at the LHC or future collider.
We demonstrated this by computing jet observables with respect to an artificial collision
axis. Our calculation can also be used outside of the Higgs rest frame. Indeed, since the
Higgs is a scalar particle, there is no correlation between decay and production mechanisms.
One can therefore always boost any event into the Higgs rest frame, perform the N-jettiness
regulation (which need not match exactly the requirement of the measurement function,
i.e. one could still employ Durham clustering if desired), then boost back to the laboratory
frame and impose additional selection criteria. We leave this study, together with the
inclusion of the remaining top-induced contribution to the H — bb process at O(a?), to

future work.
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A The inclusive H — bb decay width

We present the explicit expressions for the coefficients s;, 8; and 7!, of eqgs. (3.4)—(3.6)
following the notation of ref. [15]. The coefficients s; read:
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Figure 10. Dependence on the renormalization scale p of the inclusive H — bb decay width up to
N3LO accuracy (rescaled by the LO width at u = mp).

with C4 = N, Cp = 23\; , and N; the number of quark flavors. The coefficients of the
QCD g function explicitly read:

1111 4

Bo = 1 [3014 ~3 RNf} (A.4)
1

61 = 16 |: 3 CA — §CATRNJC — 4CFTRNf (A5)

with Tr=3. The coefficients ~/, are taken from eq. (12) of ref. [73] and their expressions are:
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Finally, it is instructive to show the renormalization scale variation of the inclusive
H — bb decay width up to O(ag’). The inclusive decay width depends on the renormaliza-
tion scale p through the bottom Yukawa coupling yp (i), the strong coupling constant o (),
and the coefficients I‘;I) 4 of eas. (3.4)—(3.6). We plot the ratios Fg Lbcl))(u) FI;IO_)bg(M =mpg)
with n = 0,...,3 as u/my is varied in the range {1/8,8} in figure 10. The values of aj
and y, at different scales are obtained using the Mathematica package RunDec [67]. As ex-
pected, the inclusion of higher-order corrections stabilizes the inclusive decay width, which

shows very small scale dependence at N3LO in the primary region of interest {1/2,2}mp.
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