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Abstract

VirusTotal provides malware labels from a large set of anti-
malware engines, and is heavily used by researchers for mal-
ware annotation and system evaluation. Since different en-
gines often disagree with each other, researchers have used
various methods to aggregate their labels. In this paper, we
take a data-driven approach to categorize, reason, and vali-
date common labeling methods used by researchers. We first
survey 115 academic papers that use VirusTotal, and identify
common methodologies. Then we collect the daily snapshots
of VirusTotal labels for more than 14,000 files (including a
subset of manually verified ground-truth) from 65 VirusTotal
engines over a year. Our analysis validates the benefits of
threshold-based label aggregation in stabilizing files’ labels,
and also points out the impact of poorly-chosen thresholds.
We show that hand-picked “trusted” engines do not always
perform well, and certain groups of engines are strongly cor-
related and should not be treated independently. Finally, we
empirically show certain engines fail to perform in-depth anal-
ysis on submitted files and can easily produce false positives.
Based on our findings, we offer suggestions for future usage
of VirusTotal for data annotation.

1 Introduction

Online anti-malware scanning services such as VirusTo-
tal [11] have been widely used by researchers and industrial
practitioners. VirusTotal connects with more than 70 security
vendors to provide malware scanning. Users (e.g., researchers)
can submit a file and obtain 70+ labels from different engines
to indicate whether the file is malicious. This capability has
been heavily used to annotate malware datasets and provide
system evaluation benchmarks [23,31,35,41,49, 66, 69].

A common challenge of using VirusTotal is that different
security engines often disagree with each other on whether a
given file is malicious. This requires researchers to come up
with a strategy to aggregate the labels to assign a single label
to the file. In addition, recent works show that the labels of

a given file could change over time [18,41], which makes it
even more difficult to infer the true label of the file.

As such, researchers have tried various methods to handle
the label dynamics (e.g., monitoring the labels for a few days)
and aggregate the labels across engines (e.g., setting a voting
threshold). However, most of these approaches are based on
intuitions and researchers’ experiences, but lack quantifiable
evidence and justifications. Recent efforts that try to measure
the label dynamics of VirusTotal are often limited in measure-
ment scale [57] or simply lack “ground-truth” [40], making it
difficult to draw a complete picture.

In this paper, we take a data-driven approach to catego-
rize, reason and validate the methodologies that researchers
adopted to use VirusTotal for data annotation. Our efforts in-
clude (1) analyzing more than 100 research papers published
in the past eleven years to categorize their data labeling meth-
ods using VirusTotal, and (2) running a measurement over a
year to collect daily snapshots of VirusTotal labels for a large
set of files from 65 engines. Our goal is to provide data-driven
justifications for some of the existing labeling methods (if they
are reasonable), and more importantly, identify questionable
approaches and suggest better alternatives.

Our measurement follows two key principles. First, we
use “fresh” files that are submitted to VirusTotal for the first
time. This allows us to observe the label dynamics from the
very beginning without being distracted by the files’ previous
history. Second, we track the fine-grained label dynamics
by re-scanning the files daily. We construct a main dataset
that contains 14,423 files and their daily labels of 65 engines
for more than a year. This dataset is used to measure the
label dynamics and the relationships between engines. Then
to inspect the label “correctness” of engines, we construct
smaller ground-truth datasets that contain manually-crafted
and manually-verified malware and benign files (356 files).
In total, we collected over 300 million data points.

First, we measure how often individual engines flip their
labels on a given file over time. We find over 50% of the label
flips are extremely short-lived, and will flip back quickly the
next day (i.e, “hazard” flips). Label flips widely exist across



files and engines, and they do not necessarily disappear even
after a year. Instead, we show that threshold-based label ag-
gregation (i.e., a file is malicious if > ¢ engines give malicious
labels) is surprisingly effective in tolerating label dynamics if
the threshold 7 is set properly. However, the most-commonly
used # = 1 is not a good threshold.

Second, we model the relationships between different en-
gines’ labels, to examine the “independence” assumption
made by existing works. By clustering engines based on
their label sequences for the same files, we identify groups
of engines with highly correlated or even identical labeling
decisions. In addition, through a “causality” model, we iden-
tify engines whose labels are very likely to be influenced by
other engines. Our results indicate that engines should not be
weighted equally when aggregating their labels.

Third, we use the ground-truth data to inspect the label-
ing accuracy of engines, and find very uneven performance
from different engines. Interestingly, the “perceived” high-
reputation engines by existing works are not necessarily
more accurate. A subset of engines (including certain high-
reputation engines) tend to produce many false positives when
the files are obfuscated. This indicates a lack of in-depth anal-
ysis from certain engines, and also poses a challenge to find a
universally good method (and threshold) to aggregate labels.

Our contributions are summarized as the following:

e We survey 115 academic papers to categorize their meth-
ods to use VirusTotal for data labeling.

e We collect the daily snapshots of labels from 65 anti-
malware engines for more than 14,000 files over a year.
We use the dataset to reason and validate common
methodologies for label aggregation. We release the
dataset to benefit future research.

e We measure the potential impact introduced by the un-
stable and inconsistent labels. We identify question-
able methodologies and offer suggestions to future re-
searchers on the usage of VirusTotal.

2 Literature Survey: VirusTotal Usage

We start by surveying how researchers use VirusTotal for data
annotation. We collect recent papers published in Security,
Networking, Software Engineering, and Data Mining, and
then categorize their data labeling methods. The goal is to set
up the context for our measurements.

Collecting Research Papers. We collect conference pa-
pers by searching in Google Scholar with the keyword “Virus-
Total”. We only consider high-quality conference papers in
peer-reviewed venues. In total, we identify 115 relevant papers
published in the last eleven years (2008 — 2018). The authors
either use VirusTotal to label their datasets [23, 31,41, 49]
or leverage the querying/scanning API of VirusTotal as a
building block of their proposed systems [35, 66, 69].
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Figure 1: Characteristics of related papers. Sec: Security, Net:
Networking, SE: Software Engineering, and DS: Data Science.

As shown in Figure 1(a), the vast majority of papers (84 out
of 115) are published in security conferences (42 papers from
the “big-four”: S&P, CCS, USENIX Security, and NDSS). Fig-
ure 1(b) shows the upward trend of VirusTotal usage among
researchers over time. As such, it is increasingly important to
formulate a reliable method to use VirusTotal. In Figure 1(c),
we categorize the papers based on the type of files/programs
that the researchers are scanning, including Portable Exe-
cutable (PE) files [16, 42, 70], Android APK [15, 23, 36],
URL [73, 82], and others (Flash file, PDF) [20, 31, 74, 79].
We find that PE is the most popular file type.

VirusTotal Scanning APIs. VirusTotal provides file scan-
ning and URL scanning services. Its scanning interface con-
nects with more than 70 security vendors. These security
vendors either share their scanning engines for VirusTotal to
deploy (as a software package) or provide the online scan-
ning APIs that accept file submissions. To use the VirusTotal
API to label a file, users can submit the file to VirusTotal,
and VirusTotal returns the scanning results from the 70 ven-
dors (the returned labels could be “malicious” or “benign”,
indicated by the “detected” field in VirusTotal responses).

It is known that VirusTotal and its third-party vendors keep
updating their anti-malware engines, and thus the labels of a
given file may change over time. Given a file will receive la-
bels from multiple engines, it is not uncommon for the engines
to disagree with each other. For these reasons, researchers of-
ten need to aggregate/process the results to generate a single
label for the given file (i.e., labeling method).

How Researchers Aggregate the Labels. By manually
analyzing these 115 papers', we find that 22 papers have used
VirusTotal but do not clearly describe their data processing
methods. As such, we use the rest 93 papers to categorize the
mainstream data labeling approaches. A summary is shown
in Table 1. Note that different categories may overlap.

First, threshold-based method. Most papers (82 out of 93)
use a threshold ¢ to determine whether a file is malicious or
benign. If # or more engines return a “malicious” label, then
the file is labeled as malicious. Here ¢ can be an absolute
number or a ratio of engines. 50 papers set t = 1: a file is
malicious if at least one engine thinks it is malicious [51,
60,72,73,78, 81]. For 24 papers, ¢ is set to be larger than
one. Another eight papers set ¢ as a ratio [14,29, 30,48, 58,

The full paper list is available under the following link: https://
sfzhu93.github.io/projects/vt/paper-1list.html.



Table 1: Summary of related papers. We select 5 representative
papers for each category. Different categories may overlap.

Data labeling ‘ # Papers  Representative Papers
t=1 50 [60,62,72,73,78]
1<t<5 9 [39,44,47,64,76]

Threshold ¢>5 15 [24,42,43,46,75]

t < 50% 4 [48,58,74,87]

t > 50% 4 [14,29,30,84]
Reputable Subset ‘ 10 [15,22,27,84,85]
No Aggregation ‘ 10 [34,50,53,54,80]

Dynamic Label Analysis ‘ 11 [34,41,58,67,73]

74,84,87]. We only find a few papers that set an aggressive
threshold. For example, two papers set t = 40 [18,46]. Four
papers [14,29,30, 84] set the threshold as 50% of the engines.

Second, selecting high-reputation engines. In ten papers,
the authors think that different engines are not equally trust-
worthy. As such, the authors hand-picked a small set of en-
gines that are believed to have a good reputation. However,
the high-reputation set is picked without a clear criterion, and
the set is different in different papers. For example, Chan-
dramohan et al. [22] only consider five engines’ results. Only
two of the five engines appear in Arp et al. [15]’s trusted set.

Third, no aggregation. Ten papers directly use VirusTo-
tal’s results to build their own system or as their comparison
baselines. For example, Graziano et al. [34] use VirusTotal’s
detection rate as one of their features to train their system. For
the rest nine papers, the authors submit samples to VirusTotal,
to show their detection techniques outperform VirusTotal en-
gines [53,80], or to confirm that they have identified important
security issues [19,50,56], or to demonstrate the effectiveness
of malware obfuscations [25,52, 54, 86].

How Researchers Handle the Label Changes. Surpris-
ingly, the vast majority of the papers (104/115) only take
one single snapshot of the scanning results without consid-
ering the dynamic changes of labels. A small number of
papers consider the potential label changes, and decide to
wait for some time before using the labels [18,58,73]. The
waiting time varies from ten days [58] to more than two
years [18]. Others submit the files multiple times to see the
differences [25,41,67,79,83].

Our Goals Our literature survey has two takeaways. First,
most researchers use a simple threshold or a trusted set of
vendors to determine if a file is malicious. The threshold
and trusted set are usually hand-picked without validating
the rationality of choices. Second, most researchers only take
one snapshot of VirusTotal results, failing to consider pos-
sible result changes. In this paper, we seek to run empirical
measurements on label dynamics to provide justifications for
some of the existing labeling methods. More importantly, we
want to identify potentially questionable approaches and pro-

pose better alternatives. Several works are related to ours. We
briefly discuss the differences.

Closely Related Works. Peng et al. [57] examined the
URL scanning engines of VirusTotal for phishing URL detec-
tion (data over a month). Our work focuses on anti-malware
engines (i.e., file scanning) over a long time (a year). We show
anti-malware engines have different/contradicting character-
istics compared to URL engines (details provided later).

Kantchelian et al. [40] proposed a machine learning model
to aggregate VirusTotal labels. However, they assumed Virus-
Total engines are independent of each other, for which we
show contradicting evidence in this paper. In addition, the data
collection method of [40] is different (e.g., file re-scanning
frequency is not controlled), which lost the opportunity to
observe fine-grained label dynamics. Finally, [40] did not
have real ground-truth for the malware dataset, and assumed
VirusTotal labels become stable after a file is submitted to
VirusTotal for four weeks (for which we have different ob-
servations). Compared with [40], our unique contribution is
that we identify previously unknown dynamic patterns (e.g.,
hazard label flips), measure the “influence” among vendors,
and provide simpler suggestions for researchers.

Other Related Works. In addition to malware scanning,
VirusTotal also provides malware family information for
known malware samples. Researchers found that different
VirusTotal engines may attribute the same malware to differ-
ent malware families [37,55,63]. One existing work measured
the correctness and inconsistency of malware family names
based on a manually labeled dataset [55]. Other works aim to
assign a family name to a malware sample by aggregating the
family names reported by different VirusTotal engines [37,63].
These works looked into a different aspect of VirusTotal en-
gines compared to ours. More importantly, their analysis was
based on a single snapshot of VirusTotal scan, and did not con-
sider the possible changes of VirusTotal labels and malware
family names over time.

3 Data Collection

To achieve the above goal, we need to capture the dynamic
label changes of different engines over a long period of time.
Our measurement follows two main principles. First, we
choose “fresh” files for our study, i.e., files that are submitted
to VirusTotal for the first time. This allows us to observe the
label dynamics from the very beginning without being dis-
tracted by the files” previous histories. Second, to observe the
fine-grained changes, we leverage the rescan API to trigger
the VirusTotal engines to analyze our files every day. Then
we use the report API to query the latest scanning results
every day. Table 2 summarizes all the datasets we collected.



Table 2: Dataset summary. U: Unlabeled, M: Malware, B: Benign.

Dataset

Main 14,423 U

‘ #Files Type Observation Period # Days

08/2018 — 09/2019 396

Malware-I 60 M 06/2019 — 09/2019 105
Malware-1I 60 M 06/2019 - 09/2019 97
Benign-I 80 B 06/2019 — 09/2019 93
Benign-II 156 B 07/2019 — 09/2019 70

3.1 Main Dataset

To obtain a large set of “fresh” files, we use VirusTotal’s
distribute API. VirusTotal receives new file submissions
from users all over the world on a daily basis. The API returns
information of the latest submissions from users. The infor-
mation includes a submission’s different hash values, whether
the file has been submitted to VirusTotal before, the file type,
and all the engines’ scanning results. We randomly sampled
14,423 PE files that were submitted to VirusTotal on August
31, 2018 for the first time. We focus on PE files since it is
the most popular submitted file type on VirusTotal [10, 65].
In addition, we hope to include both malicious and benign
files in our collection. We purposely selected samples so that:
(1) about half of the samples (7,197) had a “malicious label”
from at least one engine on August 31, 2018 (i.e., day-1); (2)
the other half of the samples (7,226) had “benign” labels from
all engines. After August 31, 2018, we leverage the rescan
API to let VirusTotal engines scan the 14,423 files every day
and use the report API to query the latest scanning results.
As we will discuss later, VirusTotal updates its engines on
a daily basis, so that using day as the crawling granularity
allows us to monitor the fine-grained label dynamics, while
making good use of our VirusTotal API quota. We do not treat
these files as “ground-truth” data, because files submitted to
VirusTotal are suspicious files at best. There is an unknown
number of true malware samples mixed with benign files,
which remain to be detected by VirusTotal engines.

From August 31, 2018 to September 30, 2019, we invoked
VirusTotal’s rescan API for these 14,423 files every day. All
the files are in 32-bit. 5,798 files are Win32 DLL files, and the
rest are Win32 EXE files. Regarding file size, more than 95%
of the PE files are within the range of 4KB to 4MB. During
396 days’ data collection period, we successfully collected
data on 378 days (95.5%). Due to technical issues (e.g., power-
outage, server failures), we missed data on 18 days (4.5%).
We argue that the missing data only accounts for a very small
portion, and should not impact our overall conclusions.

3.2 Ground-truth Dataset

The main dataset is large and diversified, but these files do
not have ground-truth labels. As such, we create another set
of “ground-truth” files to assess the “correctness” of engines.

Creating ground-truth for this study is especially challeng-

ing because our goal is to examine the reliability of existing
malware engines. This means we could not use any engine’s
labels as the ground-truth. In addition, we need “fresh” files
for our experiment. This means, any well-known malware
discovered by existing efforts are not suitable since they were
usually scanned by VirusTotal engines in the past. If we use
well-known malware, we can only capture the “tails” of the la-
bel change sequences. For these reasons, we need to manually
craft the ground-truth sets.

Ground-truth Malware. To craft fresh malware sets, our
approach is to obfuscate well-known malware to create new
binaries. Obfuscation can help create “fresh” binaries that
have never been scanned by VirusTotal before. Meanwhile,
obfuscation is not necessarily a determining feature of mal-
ware — it is also often used by legitimate software to pro-
tect their intellectual property (copyright) or protect sensi-
tive functions (e.g., for payments and security) from reverse-
engineering [26,61,77].

We apply two obfuscation tools CodeVirtualizer [8] and
Themida [9] on four existing ransomware (Table 4 in the
Appendix) and create two malware sets respectively. Each
malware set contains 60 new malware samples obfuscated
from the seeds. We choose ransomware as the seeds due
to two reasons. First, it is easy to manually verify the mali-
cious actions (i.e., encrypting files, showing the ransomware
notes). Second, we manually confirmed that the majority of
engines (57/65) advertise that they are capable of detecting
ransomware?, and thus ransomware is a relatively fair bench-
mark to compare different engines.

For each newly generated sample, we manually run the
binary in a virtual machine to confirm the malicious actions
are preserved. We also manually confirm that these samples
are indeed “fresh” to VirusTotal. These samples have differ-
ent hash values (e.g., SHA256, ssdeep) from the seeds and
can trigger VirusTotal’s file scanning after being submitted.
We perform daily VirusTotal scanning from June 18, 2019
for Malware-I and from June 25, 2019 for Malware-II. We
monitored the files over a shorter period of time (compared
to the main dataset), because we have already observed the
two malware datasets have similar patterns of label dynamics
as the main dataset.

Ground-truth Benign. We have a mixed approach to get
two benign sets, with 236 files in total. First, we apply the
same obfuscation tools to two benign programs (a sorting
algorithm written by ourselves in C and a text editor in Win-
dows). We generate 80 obfuscated goodware to examine po-
tential false positives of VirusTotal engines. These goodware
are directly comparable with the ground-truth malware since
they are generated in the same way (with different seeds).
We call this set as Benign-I. We conduct daily VirusTotal
scanning on this dataset for 93 days.

2The advertisement list is available at https://sfzhu93.github.
io/projects/vt/advertise.html.



Second, to test real-world goodware, we manually build
156 PE programs (without obfuscation). Among them, 150
PE programs are built using the source code of GNU Core
Utilities (coreutils) [4] and the Mono project [6]. coreutils
contains a suite of Unix commands (e.g., cat, 1s, rm) and
we use cygwin [5] to build them into PE files. Mono is an
open-source .NET development framework, which contains a
C# compiler, development environment and various libraries.
We build the Mono project on an Ubuntu machine. To in-
crease the diversity, we also select six built PE programs from
binutils [1], notepad++ [7] and fleck [2] projects. We call this
set as Benign-II. Just as before, we perform daily VirusTotal
scanning on these 156 benign files for 70 days.

Limitations. We understand that the above ground-truth
sets are limited in scale and diversity: the samples are biased
towards obfuscated files and the malicious files are seeded
with ransomware. This is primarily due to (1) we don’t have
access to a large number of files (including both benign and
malicious files) that have no prior history on VirusTotal; and
(2) it takes huge manual efforts to validate the malicious func-
tionality still exists after obfuscation. Considering the rate
limit of VirusTotal, the number of the ground-truth files is
already the best effort. As such, the small ground-truth sets
are only used to complement the main dataset (which is a
large sample of real-world suspicious files). We use the main
dataset to measure the fine-grained label dynamics of Virus-
Total over a long period of time. Then we use the ground-truth
sets to validate some of the observations from the main dataset
and cross-examine the correctness of VirusTotal engines.

3.3 Data Summary and Preprocessing

Across the five datasets in Table 2, we collected a total of
375,520,749 measurement points. Each measurement point is
characterized by a file-ID, a timestamp, an engine name, and a
label. These measurement points are generated by 78 different
engines in total. However, nine engines were newly added to
VirusTotal after we started the data collection for the main
dataset. We cannot observe these engines’ behaviors when the
main dataset was firstly submitted to VirusTotal. There are
another four engines, which were removed from VirusTotal’s
engine list during our data collection. The analysis results of
these four engines will not help VirusTotal users anymore.
As such, we do not consider these 13 engines in our analysis
and only focus on the remaining 65 engines in the following
sections. After filtering out irrelevant engines, we still have
343,585,060 measurement points. Among them, the main
dataset contributes 341,668,521 data points.

4 Measuring Label Dynamics

In this section, we formally model the label changes on Virus-
Total. We first characterize the different types of temporal
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Figure 2: An example file’s label sequence from AegisLab.

label changes and reason the possible causes. We then try to
estimate how long one should wait before a file’s labels be-
come stable across engines. In the end, we assess the impact
of temporal label dynamics on the labeling outcome (given
most researchers only submit files to VirusTotal to scan for
once and aggregate VirusTotal labels using a threshold ¢, as
discussed in Section 2). In this section, we focus on the main
dataset for our analysis.

4.1 Hazard Flips and Non-Hazard Flips

In our context, we model the label dynamics in a form similar
to logic signals as a sequence of “0” and “1”. More specif-
ically, given a file f and a VirusTotal engine i, the label we
obtained daily can be formulated as S; y = [l1,l2,.... L, ..., Iy]
where N is the total number of days of data collection, /;= 0
(benign) or 1 (malicious). A flip refers to a change between
two consecutive labels, namely “01” or “10”. In total, we have
2,571,809 flips in the main dataset.

We observe an interesting phenomenon, which we call
“hazard flip”. Given a file, a VirusTotal engine would some-
times flip its label and then quickly change it back the next
day. We take the term “hazard” from Digital Circuit, which
originally represents the temporary fluctuation in the output
of the circuit [17]. In our case, hazard refers to a temporary
glitch or flip in the labels, namely “010” or “101”. More for-
mally, we define a label flip as either “0 — 1" or “1 — 0.
Thus a hazard would contain two flips. We call the two flips
in a hazard “hazard flips”. Any other flips are referred to as
non-hazard flips. In total, we have 1,760,484 hazard flips and
811,325 non-hazard flips.

Figure 2 shows an example. Given a specific file
(MD5: e8799a459bdea599d1bc1615£4b746de), the original label
sequence we obtained from AegisLab is shown in Figure 2(a).
After removing hazard flips, the label sequence only con-
taining non-hazard flips is shown in Figure 2(b). We can
see that the original label sequence contains many hazards,
and some of them last for multiple days. To capture such
consecutive hazards, we search each label sequence chrono-
logically and always try to extend an identified hazard. For
example, from November 1st, 2018 to November 14th, 2018,
the label sequence of AegisLab is “00010101010010”. We
identify two hazards from it, one is “010101010” and the
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Figure 3: Characteristics of flips and hazard flips.

other one is “010”. In total, we find 737,338 hazards with
length three (“010” and “1017"), 54,801 hazards with length
five (“01010” and “10101”"), and 8,297 hazards with length
seven. The longest hazard lasts for 19 days.

Observation 1: More than half of the flips on VirusTotal are
hazard flips. Hazard flips can be identified by submitting the
same file to VirusTotal in three consecutive days.

4.2 Characteristics of Flips

Next, we analyze the characteristics of flips (including hazard
flips) across files, dates, and engines.

Distribution Across Files. In total, 1,352 files (9%) in the
main dataset do not contain any flip. For these files, all engines
always label them as “benign” throughout our data collection
period. Recall that 7,234 files were labeled as benign by all
engines on the first day. As such, if a file is labeled as benign
by all vendors when firstly submitted to VirusTotal, the prob-
ability that there will be no flip on this file is 19%. If a file is
labeled as “malicious” by any engine on day-1, at least one
flip happens later on the file. For files with flips, on average
each file contains 196 flips.

Figure 3(a) shows the CDF of a file’s normalized number
of flips. We normalize a file’s flips using the maximum num-
ber of flips on a single file (which is 1,054). We find 6,723
(46.61%) files have less than 10 flips (1% of the maximum
number of flips), and thus the drawn CDF is close to the y-axis
in the beginning. We also draw the CDF for a file’s hazard
flips (the blue line) which has a similar trend. It turns out that
hazard flips and non-hazard flips are highly correlated. We
rank files based on their hazard flips and non-hazard flips and
compute the Spearman’s correlation coefficient [28] between
the two rankings. The coefficient is 0.87 with a p-value less
than 0.01, indicating that files with more hazard flips are more
likely to have more non-hazard flips.

Distribution over Time. Figure 3(b) shows the number of
flips each week during our data collection time window. We
have flips in all 57 weeks. We encountered technical issues
in week-12 and week-13 (with some data loss), so that there
are fewer flips in these two weeks. On average, each week
has 45,119 flips, and the first week has the highest number of
flips. Similarly, we also have hazard flips every week.

Distribution Across Engines. Flips are generated by 64
out of the 65 engines. Avast-Mobile labels all samples as be-

nign, and it is the only engine not having flips. Figure 3(c)
shows the CDF of an engine’s normalized number of flips.
We normalize each engine’s flips using the maximum num-
ber of flips from a single engine. The curve is skewed to the
left, indicating that a small group of engines contributes to
the majority of the flips. For the 64 engines with flips, on
average each of them contributes 40,184 (1.56%) flips. How-
ever, AegisLab reports 359,221 (13.96%) flips by itself, and
it is the engine with the most flips. F-Secure is ranked as the
2nd (297,973 flips), and VIPRE is ranked as the 3rd (233,875
flips). Again, the CDF of hazard flips has a similar trend. We
compute the Spearman’s correlation coefficient to examine if
engines with more hazard flips are likely to have more non-
hazard flips. The computed coefficient is 0.75 with a p-value
less than 0.01, confirming a strong correlation.

Observation 2: Both flips and hazard flips widely exist
across files, scan dates and engines.

4.3 Inferring Root Causes of Flips

We tested whether querying VirusTotal API multiple times
can resolve (hazard) flips. We found that repeated queries can
only address very limited flips, and confirmed that flips are
more likely to be caused by internal problems of VirusTotal.
To categorize detailed root causes for flips, we mainly use
the “update date” and “version information” of each engine
used in a scan, provided in VirusTotal responses. Given a
flip (/1,12) (I1 # bb) generated by engine i, we use (u1,uz) to
represent the engine’s last update dates and use (vi,v;) to
represent the engine versions when i scanned the file. The
causes of flips are categorized as follows.

Most commonly, a flip happens when the engine made a
model update, representing a decision-change of the engine.
1,710,565 (67%) flips belong to this category where u; < us.
For 213,159 (8.3%) flips, their engine version numbers also
increase chronologically (vi < v2). However, for 1,497,115
(58%) flips, the version numbers are the same for the two
consecutive scans (v; = v2), meaning the model update is
made under the same engine version number.

83,164 (3.2%) flips are likely caused by the inconsistency
during engine updates. VirusTotal is backed up by a large
(distributed) cloud service to handle the large volume of
queries [12]. Multiple instances of an engine are deployed on
multiple host machines to handle incoming requests concur-
rently. Ideally, when there is a new version of an engine, all
its instances are upgraded to the new version instantly. How-
ever, in reality, we can observe some inconsistency among
multiple engine instances (some instances are updated but
others are not on the same day). There are 57,450 (2.2%) flips
due to using an engine with an older update date to scan a
more recent request (11 > uy). For example, CrowdStrike has
hazards on 3,739 files on day-175. After inspecting the update
information on the corresponding three days (u1, uz, u3), we
find that for most files, u; is equal to u3, but u; is much larger
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Figure 4: The percentage of files whose labels do not change
after day-x. Reputable engines: the nine high-reputation engines
mentioned by previous literature; reputable engines*: the two high-
reputation engines mentioned twice by previous literature.

(both u1 and u3 are in 2018, but u; is in 2019). Sometimes, not
all engine instances are upgraded to the same engine version
even if they are updated on the same day. There are 25,714
(1.0%) flips caused by handling two consecutive scans using
an engine updated on the same day but with two different
version numbers (1] = up and v| # ).

380,807 (15%) flips are likely caused by the non-
determinism of engines. In this case, an engine is used in
two consecutive scans with the same update date (u; = up)
and the same version (v; = v;), but reports two different la-
bels (I} # I). We do not have a good explanation for the
non-determinism based on the current data. We cannot use
desktop engines to validate the non-determinism since Virus-
Total engines are different from their desktop versions [13].

For the other 397,273 (15%) flips, the data fields for update
date or version information are “null” in their VirusTotal
responses, and we cannot categorize their root causes. Note
that the “detected” values (i.e., label information) are still
available in these responses, and thus the missing information
does not impact our analysis in other sections.

Observation 3: Engines’ model update is the major reason
of flips. However, the inconsistency during engine updates
and engines’ non-determinism have contributed a non-trivial
portion of the flips.

4.4 Label Stabilization

So far, we observe that label flips are quite prevalent. A prac-
tical question is how long a user should wait before a file’s
labels become stable. In this subsection, we characterize the
label stabilization patterns over time and its predictability.

Considering All Engines. Figure 4(a) shows the percent-
age of files whose VirusTotal labels do not change since day-x
until the end of our data collection (the blue line, all 65 en-
gines). For example, when x = 50, only 9.37% of the files
are stable, meaning these files’ labels from all vendors do not
change since day-50. The percentage increases very slowly
for most of the time, but it suddenly jumps from 9.74% to
20.22% on day-176. This is an anomaly because CrowdStrike

has hazards on 3,739 files on day-175 (reasons discussed in
Section 4.3). The percentage starts to increase very quickly
around day-350, mainly because the time period between x
and the end of data collection is too small. Indeed, it is possi-
ble that flips can still happen after our data collection period.

Excluding Highly Dynamic Vendors. We expect a file to
stabilize quickly if we exclude highly dynamic engines. We
rank engines based on their total number of flips. We gradually
remove engines with more flips and compute the percentage.
As shown in Figure 4(a), removing engines can immediately
increase the percentage of stable files. For example, removing
15 engines (50 engines left) can increase the percentage of
stable files on day-1 from 9.37% to 43.19%. However, to
stabilize most files quickly, we need to remove many engines.
In the extreme case, if we remove most engines and only
consider the five engines’ with the fewest flips, the initial
percentage of stable files is very high (88.05%) on day-1. The
percentage increases to 95% on day-77. This, to some extent,
confirms that flips widely exist across engines. We cannot
remove a small number of engines to make files stabilized.

Only Considering Reputable Engines. As discussed
in Section 2, we find ten papers that hand-picked “high-
reputation” engines for data labeling. Among them, five pa-
pers are related to PE malware, and only three out of the
five papers provide detailed lists of their high-reputation en-
gines. This produces a set of nine “reputable engines” for
our analysis (Table 5 in the Appendix). In Figure 4(a), we
show the percentage of stabilized files when we only con-
sider reputable engines. We show that files do not stabilize
quickly — it is very similar to the 35-engine line. The reason
is some of the reputable engines (e.g., F-Secure) have a large
number of flips. Note that among the nine engines, there are
two engines (Kaspersky and Symantec) that are mentioned by
more than one paper. We refer to these two engines as “highly
reputable engines”. If we only consider these two engines
(the “reputable engines*” line), we observe that most files are
stabilized very quickly.

Excluding Hazards Since it is easy to identify and remove
hazards (by submitting a file to VirusTotal in three consecutive
days), we re-examine the results after removing hazards. As
shown in Figure 4(b), removing hazards can help increase
the percentage of stabilized files. The initial percentage of
stabilized files (considering all engines) changes from 9.37%
to 36.69% on day-1. However, removing hazards does not
necessarily significantly speed up the file stabilization.

Observation 4: Waiting for a longer period of time does not
guarantee to have more stable labels from individual engines,
unless we only consider a small set of engines.

3NANO-Antivirus, K7AntiVirus, Zoner, Ikarus, and Avast-Mobile.
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Figure 5: Aggregation method vs. file labels. “always mali-
cious”: files with only malicious aggregated labels throughout all
the days; “always benign’: files with only benign aggregated labels
throughout all the days; “flipping labels”: files with both benign and

malicious aggregated labels. “t”: reputable engines; “1*: the two
highly reputable engines.

4.5 Impact of Flips

In Section 2, we find that most researchers only submit a file
to VirusTotal once and simply use a threshold 7 to aggregate
VirusTotal labels. If # or more engines have labeled the file as
malicious, the file’s aggregated label is malicious. We estimate
the potential impact of (hazard) flips on this label aggregation
policy for different ¢ values by measuring how many files
have different aggregated labels (0 and 1) on different days
during our data collection time window (396 days).

Setting t = 1.  This means a file is malicious as long as
one engine gives a malicious label. As shown in Figure 5 (the
left-most bar), 1,352 (9.4%) files only have benign aggregated
labels and 7,067 (49.0%) files only have malicious aggregated
labels throughout the 396 days. The rest 6,004 (41.6%) files
have both benign and malicious aggregated labels, and they
are the files influenced by flips. If these files are submitted
to VirusTotal for the second time, there is a chance that a
VirusTotal user will draw a different conclusion on these files.
This suggests t = 1 is not a good threshold (and yet 50 out of
93 papers use t = 1, see Table 1).

After removing hazards, the number of files with only be-
nign aggregated labels increases to 5,289 (36.7%). The num-
ber of files with only malicious aggregated labels is almost
unchanged (7,074). The number of files influenced by non-
hazard flips is 2060 (14.3%).

Setting 2 <t <39. The second bar of Figure 5 shows the
result for # = 2. The number of files only having benign ag-
gregated labels increases to 6,975 (48.4%). There are 7,006
(48.6%) files only having malicious labels. The number of
files influenced by flips significantly decreases to 442 (3.1%).
Flips have no impact on the majority of files. Although flips
can happen on these files and actually a different set of en-
gines report malicious labels over time, the flips somehow
cancel each other’s effect and do not influence the aggregated
labels. There are very few files influenced by flips. If we re-
move hazards, the number of files influenced by flips further
decreases to 253. When we choose ¢ from 2 to 39, the ratio of
files influenced by flips is always less than 30%. If we want

to maintain the ratio of “flip-influenced” files below 10%, we
need to pick 7 between 2 to 31.

Setting r > 40.  As shown in Figure 5, when ¢ is equal to
40, there are more files having label changes (i.e., influenced
by flips). There are 7,690 (53.3%) files only with benign
aggregated labels and 2,376 (16.4%) files only containing
malicious aggregated labels. Thus, 4,357 (30.2%) files are
influenced by flips. When we choose a larger ¢ like r =50,
we can see a more obvious increase of files influenced by
flips (compared to t = 40), and there are 6,499 (45.0%) files
influenced.

Reputable Engines Only ( = 1). If we only consider the
nine reputable engines, there are 263 (1.8%) files influenced
by flips (bar “r” in Figure 5) and 220 (1.5%) files influenced by
non-hazard flips. If we only consider the two highly reputable
engines, the numbers of files that are influenced by flips and
non-hazard flips become 554 (3.8%) (bar “r*” in Figure 5)
and 401 (2.7%), respectively. The numbers of influenced files
are significantly smaller compared with all engines.

We want to emphasize that even though the threshold-
method helps stabilize the aggregated labels, it does not nec-
essarily mean the aggregated labels are correct. Label correct-
ness will be discussed in Section 6.

Observation 5: Flips can heavily influence labeling aggre-
gation results when threshold t is too small or too large. When
selecting t from a reasonable range (2— 39), the aggregated
labels are likely to be stable.

S Relationships Between VirusTotal Engines

While using a simple threshold helps tolerate label dynamic
changes, it makes an implicit assumption that each engine is
equally important and relatively independent. Even an early
work that aims to predict the label dynamics [40] makes the
assumption about the independence between engines. In this
section, we seek to examine whether this assumption is true.

First, we measure the correlations between different en-
gines’ labeling decisions. We apply hierarchical clustering to
group engines with a strong labeling similarity. Second, we
further examine the potential causalities (e.g., how one en-
gine’s labels influence another engine). We adopt an existing
method [33] to model the influence between different engines.
If we can observe correlations or causalities between certain
engines, then independence assumption would be question-
able. We use the main dataset for our analysis.

5.1 Label Correlations Between Engines

To measure the correlation between two engines, we examine
how likely the two engines give the same labels to the same
files around the same time. More specifically, given a pair of
engines (A, B), we compare their label sequences on the same
file to measure the similarity (or distance). Then we compute



the average similarity score over all the files between A and
B. The average similarity score can be used to group similar
engines together. In the following, we first discuss our engine
clustering algorithm and then discuss our findings.

5.1.1 Engine Clustering

The key to the engine clustering is to define the similarity met-
ric between two label sequences. Edit distance is a straight-
forward metric but is not good at capturing fine-grained tem-
poral similarities. For example, the edit distance between
“01000000000000” and “00000000010000” is 2, which is the
same as the edit distance between “01000000000000” and
“00100000000000”. Obviously, the second pair is more corre-
lated since the “timing” between malicious labels is closer.

To encode fine-grained temporal similarities, we divide
each label sequence into fixed-sized bins. In each bin, we
count the number of 0—1 flips, the number of 1—0 flips, the
maximum length of “all-0” sub-sequences, and the maximum
length of “all-1” sub-sequences. This forms a feature vector
of four values for each bin. Let L be the length of a sequence
and S be the size of the bin. Then the feature vector for the
sequence has 4 [L/S] dimensions. We do not compute fea-
ture vectors using sliding bin to avoid counting the same flip
multiple times. Given two sequences, we now can compute a
cosine similarity between the two feature vectors as the two
sequences’ similarity score.

For example, assume we choose bin size S = 7. Then A’s
label sequence “01000000000000 can be divided into two
bins “0100000” and “0000000”. The corresponding feature
vector for each bin is [1, 1, 1, 5] and [0, 0, 0, 7] respectively.
The entire sequence’s feature vectoris [1, 1, 1, 5,0, 0, 0, 7].
Similarly, suppose B’s label sequence is “00000000010000”,
and the feature vector is [0, 0, 0, 7, 1, 1, 1, 4]. The cosine sim-
ilarity between the two vectors is 0.871. For the two engines
A and B, their similarity score is the average sequence-level
similarity score over all the files.

Based on the similarity metric, we leverage the agglomer-
ative clustering algorithm to group similar engines. We can
easily convert the similarity score ss into a distance for the
clustering (d = 1 — ss). We choose this hierarchical clustering
method because it is easy to visualize and we don’t need to
pre-define the number of clusters. We tried bin sizes S as 7, 14
and 28 and observed similar results. Below, we only present
the result with § = 7.

5.1.2 Clustering Result Analysis

When running a hierarchical clustering algorithm, a threshold
t4 needs to be specified. If the distance between two clusters is
smaller than 74, the two clusters will be merged. We visualize
the clustering results with different #; values using a dendro-
gram in Figure 18 in the Appendix. Intuitively, as we increase
t4, more clusters will be merged together. Figure 6 shows
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Figure 6: Number of clus- Figure 7: Clustering results
ters with more than one en- with ¢t; = 0.01. Only clusters
gine vs. threshold #;. The
dash line t; = 0.01.

with more than one engine are
shown.

the number of clusters as we increase ;. Note that we only
count the number of clusters that have more than one engine
(singletons are ignored). When #; = 0.01, we have the largest
number of clusters (5 clusters), which are then visualized in
Figure 7. The five clusters contain 16 engines. The rest 49
engines (not shown in the figure) could not form meaningful
clusters under 7; = 0.01. This suggests the 16 engines are
highly similar. Among the five clusters, one cluster has six
engines (Cluster-I), one cluster has four engines (Cluster-1I),
and the other three clusters have two engines each.

Cluster-I contains GData, ESET-NOD32, BitDefender, Ad-
Aware, Emsisoft, and MicroWorld-eScan. We confirm that their
label sequences are highly similar. For example, for each pair
of the six engines, there are 14,147 files on average where the
sequence similarity is higher than 0.99. Note that 14,147 files
count for 98% of all the files in the main dataset. A similarity
score of 0.99 means the label sequences are nearly identical.
We show an example file and its label sequences from the
five engines in the cluster* in Figure 16 in the Appendix.
The flip patterns and timing are exactly the same. This result
confirms that there exist groups of vendors whose labels are
not independent but are highly synchronized.

Cluster-II contains Microsoft, McAfee-GW-Edition, McAfee,
and Cyren. Among them, McAfee-GW-Edition and McAfee are
from the same vendor (company), which could be the reason
why their labels are highly similar. However, Microsoft and
Cyren are operated by different companies from McAfee. For
each pair of the four engines, there are 13,922 files on average
with label-sequence similarity higher than 0.99. These 13,922
files count for 97% of all the files in the main dataset. We
again show an example in the Appendix (Figure 19) where
Microsoft and McAfee report identical label sequences for it.

For the other three clusters, the engines are backed up by
the same company. For example, ZoneAlarm uses Kasper-
sky’s anti-virus engine [59], and AVG and Avast merged into
one company in 2016 [68]. These three clusters confirm the
effectiveness of our clustering algorithm.

As shown in Figure 6, when ?; is increased to 0.2, all the
clusters (with more than one engine) are merged into one big
cluster. This big cluster contains 28 engines and the rest 37
engines are not yet able to form any meaningful cluster. These

4ESET-NOD32 is different on this file.
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Figure 8: Heatmaps for the active model. All engines are sorted
alphabetically. The value of each cell (i, j) indicates the influence
from the engine at row-i to the engine at column-j.

28 engines represent a group of engines that are highly corre-
lated but have their differences. It is worth further analyzing
their influences on each other’s labels.

Observation 6: There are groups of engines whose labeling
decisions have strong correlations. These engines’ results
should not be treated independently.

5.2 Influence Modeling

We further examine the potential causalities between the la-
bels reported by two engines, using the happens-before re-
lationship. We adapt popular social network influence mod-
els [21,32,33] to our problem context. More specifically,
when engine j changes its label on a file to be the same as the
label of engine i, we consider i’s label is the causality of the
label change made by j, or j is influenced by i.

There are two types of influence: active and passive influ-
ence. First, suppose vendor j flips its label on a file from “0”
to “1” because vendor i also made a 0— 1 flip very recently.
We call such influence as active influence since i’s action
actively impact j’s action. Second, suppose vendor j flips its
label from “0” to “1” because vendor i has stayed on label
“1” over a period of time. We call this relationship as passive
influence since j is influenced by i’s state, not action.

5.2.1 Active Influence Model

Active model is used to model the causalities between flips
from different engines within a short period of time. Given
a file f, if engine j flips its label at time 7 and engine i flips
its label on the same direction but slightly earlier than ¢, we
consider j’s flip is influenced by i’s flip. We set a time window
w: an active influence event is established only when i’s flip
happens within [t — w,#). For our analysis, we separate 0— 1
flips from 1—0 flips, because they have different contextual
meanings in malware detection. We use A;»; to represent all
active influence events from i to j across all files. A; represents
the total number of flips in engine i. The active influence score
from i to j is measured as the probability p; ; = [An;|/|Ail.

Engine Pair Analysis. We choose the window size w =7
and compute the active influence score between each pair

Figure 9: Active model: scatter plot of engines. x: weighted sum
of incoming edges, y: weighted sum of outgoing edges. reputable
engines are in orange color, and reputable engines* are in red color.
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Figure 10: Heatmaps for the passive model. All engines are
sorted alphabetically. The value of each cell (i, j) indicates the influ-
ence from the engine at row-i to the engine at column-j.

of engines’. In Figure 8, we visualize the active influence
score p; ; in a heatmap where i (influencer) is the row number
and j (influenced) is the column number. The engines are
ordered alphabetically. We observe that there are a number of
vertical “bright” lines in both heat maps. This indicates that
there are some engines that are easily influenced by all the
other engines. Examples include AegisLab in the 2nd column,
Arcabit in the 6th column, Comodo in the 17th column, and
F-Secure in the 28th column. Users have to carefully inspect
labeling results from these engines before aggregation. We
also observe that there are no clear horizontal lines, indicating
that no engine can strongly influence all the other engines.

Active Influence Graph. To better understand the joint
influence from all engines, we construct an active influence
graph. In this directed graph, engines are nodes, and the di-
rected edges are weighted by the influence score between
the two engines. For each node, we sum its outgoing edges’
weights as an indicator of its active influence to other nodes.

We visualize one influence graph in Figure 17 in the Ap-
pendix. AegisLab, F-Secure, Comodo, and Arcabit are mostly
influenced by other engines, but their main influencer sets
are not identical (with some overlaps). For example, only Co-
modo is highly influenced by Cylance and Qihoo-360; only
AegisLab is highly influenced by Microsoft.

To understand the influence of each engine, we plot Fig-
ure 9, where x and y represent the weighted sum of incom-
ing and outgoing edges. We use yellow color to mark the
reputable engines mentioned in previous literature (Table 5)

SWindow sizes 14 and 28 generate similar results.



and use red color to mark the two highly reputable engines
(Kaspersky and Symantec). For 0—1 flips (Figure 9(a)), there
are 49 engines above the x = y line and 16 engines below the
line. One high-reputation engine (Ikarus) has the largest out-
going edge weight, indicating that it has the biggest active in-
fluence. Interestingly, one high-reputation engine (F-Secure)
is more easily influenced compared to other reputable engines.
For 1—0 flips (Figure 9(b)), the patterns are very similar.

Observation 7: Active influence widely exists between Virus-
Total engines. There are engines that are highly influenced by
many other engines at both flip directions.

5.2.2 Passive Model

While the active influence model captures highly synchro-
nized actions (e.§g., j flips right after i’s flip), passive influence
provides a different angle by showing j flips towards i’s cur-
rent state. Given a file, if engine j flips its label to [ (i.e., “0”
or “1”) at time ¢, and engine i has already stayed on label / for
w days at ¢, we consider there is a passive influence from i to
Jj- Note that w represents the size of the time window within
which i keeps a stable label to influence j. For this analysis,
we use w = 7 as the window size®. We use Apj to represent
the number of passive influence events from i to j and use A;
to represent the number of subsequences with 7 consecutive
label /. For example, if i’s sequence is “111111111100011111”
and /=“1", then |A;| = 4. We compute the passive influence
score from i to j as p; j = |An;|/|Ail.

Engine Pair Analysis. We again use heatmaps to visual-
ize passive influence scores in Figure 10. Interestingly, the
1—0 flip heatmap looks different from that of 0—1 flip. Fig-
ure 10(a) shows engines highly influenced by all the other
engines under the active model are still highly influenced un-
der the passive model (the red vertical lines). However, the
result of 1—0 (Figure 10(b)) becomes less obvious under pas-
sive influence and there is no vertical line or horizontal line
in red. Combined with the active model’s result, it shows that
engines’ flips from “malicious” to “benign” are more likely
influenced by other engines making the same flips recently,
rather than engines that always stick to the “benign” label.

Passive Influence Graph. Figure 11 is the scatter plot for
passive model, where x and y represent the weighted sum of
incoming and outgoing edges. For 0—1 flips (Figure 11(a)),
all high-reputation engines are around the top left corner, in-
dicating a strong influence to other engines. The exception is
again F-Secure, which is more likely to be influenced by oth-
ers. For 1—0 flips (Figure 11(b)), the high-reputation engines
do not have a strong passive influence to others.

Observation 8: The passive influence is weak in general.
The passive influence is relatively stronger when a benign
label is flipped to malicious.

6Changing the window size to 14 or 28 returns similar conclusions.
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Figure 11: Passive Model: scatter plot of engines. x: weighted
sum of incoming edges, y: weighted sum of outgoing edges. reputable
engines are in orange color, and reputable engines* are in red color.

6 Analyzing the Ground-Truth Dataset

So far, we use the main dataset to understand the temporal dy-
namics of labels and the relationship between engines. While
the analysis is benefited from the file diversity and longitudi-
nal data, it says little about the “correctness” of engines. In
this section, we use the smaller ground-truth sets to examine
the threshold choices for label aggregation and quantify the
different detection capabilities of engines.

6.1 Individual Engine Accuracy

We start by looking at how well individual engines classify
malware and benignware. Recall that we have four ground-
truth sets, where Malware-1 and Malware-II are generated
by obfuscating real-world malware, Benign-I is generated by
obfuscating goodware, and Benign-II is generated by recom-
piling goodware. All the files have a clean signature (means
they are never scanned by VirusTotal before, no prior history).
Note that the ground-truth sets are related to ransomware —
they allow us to examine questions about VirusTotal engines’
detection correctness, but the results should mostly reflect the
engines’ capability of analyzing ransomware.

In Figure 12, we compare the detection result on the first-
day of VirusTotal’s scanning and the last day of the scanning.
Note that, for malware sets, we show the true positive (TP)
rate (i.e, ratio of correctly identified malware). For benign sets,
we show the false positive (FP) rate (i.e., ratio of misclassified
benignware). A high TP rate and a low FP rate mean the
engine is more accurate. For malware sets, we show that
the engines on the last day (Figure 12(c)) are indeed more
accurate than that on the first day (Figure 12(a)). In particular,
on the last day, 75.4% of the engines have a TP rate of nearly
100% on Malware-I dataset. Files in Malware-II are harder
to detect — only 24.6% of the engines have a near 100%
TP rate. Overall, the detection capability of different engines
varies significantly. A large portion (20%-50%) of engines
only detects less than 50% of malware files.

Figure 12(b) and Figure 12(d) show that performance on
benign files is more stable when comparing the first day and
the last day. Benign-II (files are not obfuscated) has almost
no false positive. However, engines produce a high FP rate
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on Benign-I where obfuscation is applied. Only about 25%
of the engines have zero false positive on Benign-I. These
engines either have actually analyzed the files or report most
files as benign (i.e., having zero true positive when analyzing
the two malware sets).

About 75% of the engines have false positives on Benign-I.
A possible explanation is that those engines use “obfuscation”
as a feature for their malware detection without carefully
analyzing the files. About 25% of the engines have a high FP
rate (>70%), indicating that they have put a heavy weight on
the “obfuscation” feature.

To understand which engines are easily misled by obfusca-
tion, we present Figure 13. We combine Malware-I, Malware-
IT and Benign-I to calculate the FP rate and the TP rate for
each engine (on the last day). All three datasets are obfus-
cated — if an engine has a high TP rate and a low FP rate
on these datasets, it means the engine has truly analyzed the
files’ behavior rather than relying on “obfuscation” to make a
decision. In practice, benign files may also use obfuscation to
prevent copyright infringements and reverse-engineering.

In Figure 13, engines at the bottom left corner has a near-
zero FP rate, but also cannot detect most of the malware (low
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Figure 14: Precision and recall for different threshold # when
using all engines.
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Figure 15: Precision and recall for different threshold r when
only using reputable engines.

TP rate). Engines at the top right corner are likely to heavily
rely on obfuscation as a feature — they detect most of the
malware and also mis-classify most obfuscated benignware.
Interestingly, a number of high-reputation engines belong to
this group (e.g., AVG, McAfee, Microsoft, Sophos, Symantec).
The most effective engines are located at the bottom right
corner. They manage to maintain a relatively low FP rate, and
still detect most malware (e.g., Jiangmin, Zillya, Kaspersky).

Observation 9: Obfuscation in benign files can easily cause
false positives to VirusTotal engines. High-reputation engines
are not necessarily better at handling obfuscation.

6.2 Aggregating Engines’ Labels

While individual engines have an uneven performance, it is
possible that label aggregation can help improve the overall
accuracy. Here we test two different aggregation methods.
First, we use a simple threshold ¢ to determine if a file has a
malicious label. If # or more engines give a malicious label,
then we mark the file as malicious. The results are shown in
Figure 14. Second, we only consider the nine high-reputation
engines mentioned in previous works and apply the same
threshold method. The results are in Figure 15. We test two
different settings: “all malware + Benign-I"” and ““all malware
+ Benign-II” to isolate the impact of benign file obfuscation.

When we consider obfuscated benign files, as shown in
Figure 14(a), it is very difficult to get a high precision without
significantly scarifying recall. There is only a small range of
t (between t =45 and t =55) where we can detect half of the
malware with a 95%+ precision. The situation is not neces-
sarily better when we only consider high-reputation engines.



As shown in Figure 15(a), it is almost equally difficult to get
an over 90% precision without scarifying 50% of recall.

When we consider non-obfuscated benign files (Fig-
ure 14(b)), it is clear that using a small threshold 7 (between
2-15) is a good choice. However, when we only consider the
high-reputation engines (Figure 15(b)), it is better to stick to
an even smaller threshold (e.g., t < 3). If we require all the
nine high-reputation engines to vote “malicious”, then we
will again lose 50% of recall.

Observation 10: A small threshold value can balance the
precision and the recall as long as the benign files are not
obfuscated.

6.3 Comparing with Desktop Engines

A subset of anti-malware engines also provide their desk-
top versions. A prior work [57] shows VirusTotal often runs
stripped-down engine versions, and thus is more likely to miss
true malicious instances. Note that this conclusion is drawn
from URL scanning for phishing website detection [57]. Be-
low, we explore if the same conclusion applies to malware
scanning.

Experiment Setup. Out of all VirusTotal vendors [3], we
find 36 vendors also offer desktop versions of their products
(the list of engines is shown in Table 5 in the Appendix). We
install them separately on 36 Windows-10 virtual machines
(version 1809). We validated that our obfuscated malicious
samples still have their malicious actions in the VM environ-
ment. For the four ground-truth datasets, we scan their files
four times (in four different days). For each time of the ex-
periment, we use fresh virtual machines and install the latest
versions of the desktop engines. We disconnect the Internet
while the engines scan the files, to prevent the engines from
uploading the files or reporting the results to their servers.
This allows us to isolate the analysis engines on the desktop
from the engines in the cloud (on VirusTotal) to compare
them fairly. It’s possible some desktop engines do not run
the analysis locally but solely rely on their remote servers for
analysis. To this end, we run the main experiment without the
Internet, and later run a validation test with the Internet.

Comparison Results (w/o Internet). All 36 engines have
some inconsistency between the desktop and VirusTotal ver-
sions. For each engine and each dataset, we calculate the
inconsistency rate, which is the number of files with differ-
ent detection results (between VirusTotal and desktop scans)
divided by the total number of files. We report the average
inconsistency rate over different experiment dates for the en-
gine.

All 36 engines have a non-zero inconsistency rate on mal-
ware datasets. The average inconsistency rate is 25.4% on
Malware-I and 29.2% on Malware-II. Some engines have
an inconsistency rate over 90% on Malware-I (98.6% on
ZoneAlarm, 90.3% on Tencent and 98.9% on Qihoo-360) be-

cause their VirusTotal engines can detect most malicious sam-
ples, but their desktop engines do not report any of them. The
inconsistency rates on the benign datasets are lower (23.4%
on Benign-I and 0% on Benign-II).

To examine which version is more accurate, we compare
precision, recall, and F1-score over the four datasets for each
engine. F1-score is the harmonic mean of precision and recall.
For precision, 26 engines (out of 36) have a higher average
precision on their desktop versions than VirusTotal across the
datasets. 25 engines have a higher average recall on VirusTo-
tal than their desktop versions. After computing F1-score to
merge precision and recall together, we find that 24 engines
(out of 36) have a higher average F1-score on VirusTotal than
their desktop versions (20.2% higher on average). Overall,
the result shows the online engines at VirusTotal are more
aggressive and tend to cover more malware, while desktop
versions are more conservative to keep a small number of false
alarms. Our result is different from that of the URL scanning
reported in [57] (where vendors’ URL engines at VirusTotal
cover fewer phishing websites than their standalone versions).

Sanity Check (w/ Internet). We perform a sanity check
by running the experiments again with VMs connecting to
the Internet. We compare the results to those when VMs are
disconnected to the Internet on the same day. In total, 23 out
of 36 engines’ results remain consistent, with or without the
Internet. 13 out of 36 engines have different results, indicat-
ing that the remote servers play a role in desktop engines’
decision. Among the 13 engines, seven engines have a lower
precision after connecting to the Internet; nine engines have a
higher recall. Overall, the results of desktop engines are get-
ting closer to those of VirusTotal engines, but the conclusion
above is still valid: desktop engines are still more conservative
with a higher precision and a lower recall. The gap is smaller
with the Internet connection.

Observation 11: Inconsistency exists between the desktop
version and the online version (at VirusTotal) for all engines.
Surprisingly, for most of the vendors, their VirusTotal engines
are able to detect more malware than their desktop versions.

6.4 Comparison with the Main Dataset

As a sanity check, we have validated the key observations
we had on the main dataset using the ground-truth datasets
too. Due to space limit, we keep our discussions brief. First,
ground-truth datasets have more hazard flips (6,708) than
non-hazard flips (5,855). Second, flips also widely exist
across files, dates, and engines. The majority of the flips are
still highly correlated with engines’ model update (73.7%).
Third, engines that are highly correlated in the main dataset
are still highly correlated in the ground-truth datasets. The
strong influencer-influenced relationships observed in the
main dataset are also observed in the ground-truth datasets
(primarily in Malware-I and Malware-II).



7 Discussion

Our measurement results have several important implications
regarding the methods of using VirusTotal for file labeling.

Data Preprocessing.  Our results show that hazard flips
count for the majority of all the label flips and they affect
label stabilization of individual engines. The good news is that
hazard flips, by definition, are short-lived, and it only incurs a
small cost to get rid of them. We recommend VirusTotal users
to submit the same files to VirusTotal in three consecutive
days to identify and remove potential hazards.

Label flips happen widely across engines, files and time.
They do not necessarily disappear if researchers wait for a
longer time. The benefit of querying the labels over a long
period of time (e.g., months) is quite limited.

Label Aggregation. We show that threshold-based aggre-
gation is surprisingly effective in stabilizing the aggregated
labels against the label flips of individual engines, but the
threshold 7 needs to be set properly. For example, the aggre-
gated labels are still easily influenced by the flips when the
threshold is too small (r = 1) or too big (t =40 or t = 50). If
the threshold ¢ is chosen within a reasonable range (2-39),
the aggregated labels are more likely to stay stable.

A stable aggregated label does not necessarily mean the la-
bel is correct. Our ground-truth analysis shows that choosing
a small threshold (e.g., t < 15) helps strike a good balance be-
tween precision and recall for the aggregated labels. However,
it becomes very difficult to find a good threshold when the
benign files contain obfuscated code. Our recommendation
is that researchers should not use a small threshold if their
files are obfuscated (especially the potentially benign ones).
A better idea could be only considering engines that perform
well on obfuscated files (see Figure 13).

Engine Independence. Most existing papers treat all en-
gines equally and do not consider possible correlations of
their labeling decisions. Our experiments confirm the exis-
tence of both correlation and causality relationships between
engines. In particular, we identify groups of engines whose
label sequences are highly similar to each other (Section 5.1).
A practical suggestion is to consider them as “redundant votes”
and reduce their weights during label aggregation. We also
identify several engines whose labeling exhibits causal rela-
tionships (Section 5.2). This does not necessarily mean one
engine directly copies results from other engines — it is also
possible these engines change labels due to the impact of third
parties (blacklists), but some engines react slower than others.

High-reputation Engines. Several existing papers hand-
picked high-reputation engines for label aggregation. Our
analysis shows that most of these engines perform well (e.g.,
having more stabilized labels, being an influencer instead
of being influenced). However, we find one high-reputation
engine (F-Secure) constantly acting as an outlier. It is easily
influenced by other engines, and its label accuracy is subpar.

We notice that high-reputation engines are not always more
accurate. Four of them are not good at handling obfuscated
benign files, producing many false positives (e.g., Symantec).

Limitations & APK Experiments. As discussed in Sec-
tion 3, a key limitation is that our datasets are not diverse
enough (e.g., the main dataset only has PE files, the ground-
truth datasets are focused on ransomware). We defer in-depth
analysis on other file types to future work. Here, we briefly run
a quick measurement on Android APK files (another popular
file type for malware) to cross-examine the results.

The methodology is similar to our main experiment on
PE files. We sampled 2,071 fresh APK samples (with no
prior history at VirusTotal), and collected their daily labels
from December 26, 2019 to February 09, 2020 (46 days).
About half of the files were labeled as “benign” (1,144) by
all engines on day-1, and the other half (927) were labeled as
“malicious” by at least one engine. 59 engines have returned
their labels. We collected 5,303,106 data points in total.

We find the major observations on PE files still hold for
APK files, with some differences. First, there are 16,453 flips,
including 9,984 hazard flips. Among the APK files that have
no flip (1,264 files, 60% of all files), the vast majority of them
have been labeled as benign by all engines for the entire mea-
surement period. This is similar to what we observed on PE
files. Second, the top three engines with most flips are Mi-
crosoft (41%), Fortinet (15%), and Tencent (10%). The engine
ranking is different from that of PE files, possibly due to the
different specialties of engines. Third, in terms of engine la-
bel correlations, we also identify tightly clustered engines for
APK files. For example, GData, BitDefender, Ad-Aware, Em-
sisoft, and MicroWorld-eScan are still clustered together. The
cluster is largely similar to that under PE files, and the only
difference is ESET-NOD32 is no longer in the cluster. Finally,
interestingly, engines that were highly-influenced under PE
files (e.g., F-Secure, Comodo, AegisLab, Arcabit) now become
“influencers” under APK files. Overall, the takeaway is that
engines face common problems such as label instability, and
they have their own specialties for different malware types.

Malware Coverage Issues.  VirusTotal is arguably the
biggest public malware database that researchers can ac-
cess for free. Even so, its malware coverage still has limi-
tations [38,48]. Beyond file label stability and accuracy (the
focus of our paper), another challenge is to further improve
the malware coverage of VirusTotal’s database. In some way,
VirusTotal is already trying to improve its coverage by pro-
viding free malware scanning services to the public to gather
new malware samples from users, companies, and other secu-
rity vendors. A recent report shows that VirusTotal receives
over one million file submissions every day [65]. Future work
could look into new incentive mechanisms to encourage the
broader sharing of malware intelligence.

Data Sharing. To benefit future researchers and practition-
ers, we have released the raw data collected in this paper



(timestamped file labels) and a number of ranked lists. The
engines can be ranked based on different criteria, such as
the number of (hazard) flips, influence scores under differ-
ent influence models, and label accuracy. We have attached
the ranking method and the data with each ranked list. Our
released data is available at https://sfzhu93.github.io/
projects/vt/index.html.

8 Conclusions

In this paper, we surveyed 115 research publications that use
VirusTotal for data annotation. Then we took a data-driven
approach to reason and validate their data labeling method-
ologies. We collected a dataset of more than 14,000 files’
timestamped labels over a year from 65 anti-malware engines
at VirusTotal. We validated the benefits of threshold-based
labeling methods in tolerating temporary label flips. We also
pointed out the questionable approaches such as hand-picking
trusted engines, and ignoring the strong correlations among
engines. Future work will focus on extending the experiments
to other file types, using more diverse ground-truth datasets,
and developing new label aggregation methods.
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Appendix

Table 3: 9 high-reputation engines and the papers that men-
tioned them. Kaspersky and Symantec are mentioned in two papers.

Kaspersky [22,71], Symantec [22,45] AVG [71],
F-Secure [22], Ikarus [22], McAfee [45],
Microsoft [45], ESET-NOD32 [45], Sophos [71],

Table 4: Seed ransomware files and number of engines de-
tected each file on June 1, 2019 (out of 65 engines)

MD5 ‘ # Engines
40c5113e35dd653calfc1524d51da408 56
5dcb8c702f21ba786e3a51eb8c37bd14 56
8b6bc16£d137c09a08b02bbelbb7d670 52
bbd4c2d2c72648c8£871b36261be23fd 49




Table 5: Engines with both VirusTotal and desktop versions.

Ad-Aware, Avast, AVG, Avira, BitDefender, CAT-QuickHeal, ClamAV,
CMC,Comodo, ESET-NOD32, F-Prot, F-Secure, GData, Ikarus,
Jiangmin, K7AntiVirus, Kaspersky, Kingsoft, Malwarebytes,
McAfee, Microsoft (Windows Defender), MicroWorld-eScan,
NANO-Antivirus, Panda, Qihoo-360, Rising, SUPERAntiSpyware,
Symantec (Norton), TACHYON, Tencent, TotalDefense, TrendMicro,
Vipre, Webroot, Zillya, ZoneAlarm
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Figure 16: An example file with almost identical detec-
tion results reported by the five engines in Cluster-I (Sec-
tion 5.1). MD5: 2efcdc93a9de94b1604f6665d2a0589a.
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Figure 17: Active influence graph for 0—1 flips. Edges
weight<0.25 are removed. A thicker edge A to B means a larger
influence from A to B. A larger node means a bigger influencer.
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Figure 18: The dendrogram of engine clusters. x-axis shows the
distance threshold. A shorter distance indicates two engines have
more similar label sequences. Clusters with distance shorter than
the threshold are gradually merged together.
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Figure 19: An example file with almost identical detection
results reported by the two engines in Cluster-II (Sec-

tion 5.1). MD5: bf£a5£6881f9abfed54037b446e34b94.
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