
Measuring and Modeling the Label Dynamics of Online

Anti-Malware Engines

Shuofei Zhu1, Jianjun Shi1,2, Limin Yang3

Boqin Qin1,4, Ziyi Zhang1,5, Linhai Song1, Gang Wang3

1The Pennsylvania State University
2Beijing Institute of Technology

3University of Illinois at Urbana-Champaign
4Beijing University of Posts and Telecommunications

5University of Science and Technology of China

Abstract

VirusTotal provides malware labels from a large set of anti-

malware engines, and is heavily used by researchers for mal-

ware annotation and system evaluation. Since different en-

gines often disagree with each other, researchers have used

various methods to aggregate their labels. In this paper, we

take a data-driven approach to categorize, reason, and vali-

date common labeling methods used by researchers. We first

survey 115 academic papers that use VirusTotal, and identify

common methodologies. Then we collect the daily snapshots

of VirusTotal labels for more than 14,000 files (including a

subset of manually verified ground-truth) from 65 VirusTotal

engines over a year. Our analysis validates the benefits of

threshold-based label aggregation in stabilizing files’ labels,

and also points out the impact of poorly-chosen thresholds.

We show that hand-picked “trusted” engines do not always

perform well, and certain groups of engines are strongly cor-

related and should not be treated independently. Finally, we

empirically show certain engines fail to perform in-depth anal-

ysis on submitted files and can easily produce false positives.

Based on our findings, we offer suggestions for future usage

of VirusTotal for data annotation.

1 Introduction

Online anti-malware scanning services such as VirusTo-

tal [11] have been widely used by researchers and industrial

practitioners. VirusTotal connects with more than 70 security

vendors to provide malware scanning. Users (e.g., researchers)

can submit a file and obtain 70+ labels from different engines

to indicate whether the file is malicious. This capability has

been heavily used to annotate malware datasets and provide

system evaluation benchmarks [23, 31, 35, 41, 49, 66, 69].

A common challenge of using VirusTotal is that different

security engines often disagree with each other on whether a

given file is malicious. This requires researchers to come up

with a strategy to aggregate the labels to assign a single label

to the file. In addition, recent works show that the labels of

a given file could change over time [18, 41], which makes it

even more difficult to infer the true label of the file.

As such, researchers have tried various methods to handle

the label dynamics (e.g., monitoring the labels for a few days)

and aggregate the labels across engines (e.g., setting a voting

threshold). However, most of these approaches are based on

intuitions and researchers’ experiences, but lack quantifiable

evidence and justifications. Recent efforts that try to measure

the label dynamics of VirusTotal are often limited in measure-

ment scale [57] or simply lack “ground-truth” [40], making it

difficult to draw a complete picture.

In this paper, we take a data-driven approach to catego-

rize, reason and validate the methodologies that researchers

adopted to use VirusTotal for data annotation. Our efforts in-

clude (1) analyzing more than 100 research papers published

in the past eleven years to categorize their data labeling meth-

ods using VirusTotal, and (2) running a measurement over a

year to collect daily snapshots of VirusTotal labels for a large

set of files from 65 engines. Our goal is to provide data-driven

justifications for some of the existing labeling methods (if they

are reasonable), and more importantly, identify questionable

approaches and suggest better alternatives.

Our measurement follows two key principles. First, we

use “fresh” files that are submitted to VirusTotal for the first

time. This allows us to observe the label dynamics from the

very beginning without being distracted by the files’ previous

history. Second, we track the fine-grained label dynamics

by re-scanning the files daily. We construct a main dataset

that contains 14,423 files and their daily labels of 65 engines

for more than a year. This dataset is used to measure the

label dynamics and the relationships between engines. Then

to inspect the label “correctness” of engines, we construct

smaller ground-truth datasets that contain manually-crafted

and manually-verified malware and benign files (356 files).

In total, we collected over 300 million data points.

First, we measure how often individual engines flip their

labels on a given file over time. We find over 50% of the label

flips are extremely short-lived, and will flip back quickly the

next day (i.e, “hazard” flips). Label flips widely exist across





Table 1: Summary of related papers. We select 5 representative

papers for each category. Different categories may overlap.

Data labeling # Papers Representative Papers

Threshold

t = 1 50 [60, 62, 72, 73, 78]

1 < t < 5 9 [39, 44, 47, 64, 76]

t ≥ 5 15 [24, 42, 43, 46, 75]

t < 50% 4 [48, 58, 74, 87]

t ≥ 50% 4 [14, 29, 30, 84]

Reputable Subset 10 [15, 22, 27, 84, 85]

No Aggregation 10 [34, 50, 53, 54, 80]

Dynamic Label Analysis 11 [34, 41, 58, 67, 73]

74, 84, 87]. We only find a few papers that set an aggressive

threshold. For example, two papers set t = 40 [18, 46]. Four

papers [14, 29, 30, 84] set the threshold as 50% of the engines.

Second, selecting high-reputation engines. In ten papers,

the authors think that different engines are not equally trust-

worthy. As such, the authors hand-picked a small set of en-

gines that are believed to have a good reputation. However,

the high-reputation set is picked without a clear criterion, and

the set is different in different papers. For example, Chan-

dramohan et al. [22] only consider five engines’ results. Only

two of the five engines appear in Arp et al. [15]’s trusted set.

Third, no aggregation. Ten papers directly use VirusTo-

tal’s results to build their own system or as their comparison

baselines. For example, Graziano et al. [34] use VirusTotal’s

detection rate as one of their features to train their system. For

the rest nine papers, the authors submit samples to VirusTotal,

to show their detection techniques outperform VirusTotal en-

gines [53,80], or to confirm that they have identified important

security issues [19,50,56], or to demonstrate the effectiveness

of malware obfuscations [25, 52, 54, 86].

How Researchers Handle the Label Changes. Surpris-

ingly, the vast majority of the papers (104/115) only take

one single snapshot of the scanning results without consid-

ering the dynamic changes of labels. A small number of

papers consider the potential label changes, and decide to

wait for some time before using the labels [18, 58, 73]. The

waiting time varies from ten days [58] to more than two

years [18]. Others submit the files multiple times to see the

differences [25, 41, 67, 79, 83].

Our Goals Our literature survey has two takeaways. First,

most researchers use a simple threshold or a trusted set of

vendors to determine if a file is malicious. The threshold

and trusted set are usually hand-picked without validating

the rationality of choices. Second, most researchers only take

one snapshot of VirusTotal results, failing to consider pos-

sible result changes. In this paper, we seek to run empirical

measurements on label dynamics to provide justifications for

some of the existing labeling methods. More importantly, we

want to identify potentially questionable approaches and pro-

pose better alternatives. Several works are related to ours. We

briefly discuss the differences.

Closely Related Works. Peng et al. [57] examined the

URL scanning engines of VirusTotal for phishing URL detec-

tion (data over a month). Our work focuses on anti-malware

engines (i.e., file scanning) over a long time (a year). We show

anti-malware engines have different/contradicting character-

istics compared to URL engines (details provided later).

Kantchelian et al. [40] proposed a machine learning model

to aggregate VirusTotal labels. However, they assumed Virus-

Total engines are independent of each other, for which we

show contradicting evidence in this paper. In addition, the data

collection method of [40] is different (e.g., file re-scanning

frequency is not controlled), which lost the opportunity to

observe fine-grained label dynamics. Finally, [40] did not

have real ground-truth for the malware dataset, and assumed

VirusTotal labels become stable after a file is submitted to

VirusTotal for four weeks (for which we have different ob-

servations). Compared with [40], our unique contribution is

that we identify previously unknown dynamic patterns (e.g.,

hazard label flips), measure the “influence” among vendors,

and provide simpler suggestions for researchers.

Other Related Works. In addition to malware scanning,

VirusTotal also provides malware family information for

known malware samples. Researchers found that different

VirusTotal engines may attribute the same malware to differ-

ent malware families [37,55,63]. One existing work measured

the correctness and inconsistency of malware family names

based on a manually labeled dataset [55]. Other works aim to

assign a family name to a malware sample by aggregating the

family names reported by different VirusTotal engines [37,63].

These works looked into a different aspect of VirusTotal en-

gines compared to ours. More importantly, their analysis was

based on a single snapshot of VirusTotal scan, and did not con-

sider the possible changes of VirusTotal labels and malware

family names over time.

3 Data Collection

To achieve the above goal, we need to capture the dynamic

label changes of different engines over a long period of time.

Our measurement follows two main principles. First, we

choose “fresh” files for our study, i.e., files that are submitted

to VirusTotal for the first time. This allows us to observe the

label dynamics from the very beginning without being dis-

tracted by the files’ previous histories. Second, to observe the

fine-grained changes, we leverage the rescan API to trigger

the VirusTotal engines to analyze our files every day. Then

we use the report API to query the latest scanning results

every day. Table 2 summarizes all the datasets we collected.



Table 2: Dataset summary. U: Unlabeled, M: Malware, B: Benign.

Dataset # Files Type Observation Period # Days

Main 14,423 U 08/2018 – 09/2019 396

Malware-I 60 M 06/2019 – 09/2019 105

Malware-II 60 M 06/2019 – 09/2019 97

Benign-I 80 B 06/2019 – 09/2019 93

Benign-II 156 B 07/2019 – 09/2019 70

3.1 Main Dataset

To obtain a large set of “fresh” files, we use VirusTotal’s

distribute API. VirusTotal receives new file submissions

from users all over the world on a daily basis. The API returns

information of the latest submissions from users. The infor-

mation includes a submission’s different hash values, whether

the file has been submitted to VirusTotal before, the file type,

and all the engines’ scanning results. We randomly sampled

14,423 PE files that were submitted to VirusTotal on August

31, 2018 for the first time. We focus on PE files since it is

the most popular submitted file type on VirusTotal [10, 65].

In addition, we hope to include both malicious and benign

files in our collection. We purposely selected samples so that:

(1) about half of the samples (7,197) had a “malicious label”

from at least one engine on August 31, 2018 (i.e., day-1); (2)

the other half of the samples (7,226) had “benign” labels from

all engines. After August 31, 2018, we leverage the rescan

API to let VirusTotal engines scan the 14,423 files every day

and use the report API to query the latest scanning results.

As we will discuss later, VirusTotal updates its engines on

a daily basis, so that using day as the crawling granularity

allows us to monitor the fine-grained label dynamics, while

making good use of our VirusTotal API quota. We do not treat

these files as “ground-truth” data, because files submitted to

VirusTotal are suspicious files at best. There is an unknown

number of true malware samples mixed with benign files,

which remain to be detected by VirusTotal engines.

From August 31, 2018 to September 30, 2019, we invoked

VirusTotal’s rescan API for these 14,423 files every day. All

the files are in 32-bit. 5,798 files are Win32 DLL files, and the

rest are Win32 EXE files. Regarding file size, more than 95%

of the PE files are within the range of 4KB to 4MB. During

396 days’ data collection period, we successfully collected

data on 378 days (95.5%). Due to technical issues (e.g., power-

outage, server failures), we missed data on 18 days (4.5%).

We argue that the missing data only accounts for a very small

portion, and should not impact our overall conclusions.

3.2 Ground-truth Dataset

The main dataset is large and diversified, but these files do

not have ground-truth labels. As such, we create another set

of “ground-truth” files to assess the “correctness” of engines.

Creating ground-truth for this study is especially challeng-

ing because our goal is to examine the reliability of existing

malware engines. This means we could not use any engine’s

labels as the ground-truth. In addition, we need “fresh” files

for our experiment. This means, any well-known malware

discovered by existing efforts are not suitable since they were

usually scanned by VirusTotal engines in the past. If we use

well-known malware, we can only capture the “tails” of the la-

bel change sequences. For these reasons, we need to manually

craft the ground-truth sets.

Ground-truth Malware. To craft fresh malware sets, our

approach is to obfuscate well-known malware to create new

binaries. Obfuscation can help create “fresh” binaries that

have never been scanned by VirusTotal before. Meanwhile,

obfuscation is not necessarily a determining feature of mal-

ware — it is also often used by legitimate software to pro-

tect their intellectual property (copyright) or protect sensi-

tive functions (e.g., for payments and security) from reverse-

engineering [26, 61, 77].

We apply two obfuscation tools CodeVirtualizer [8] and

Themida [9] on four existing ransomware (Table 4 in the

Appendix) and create two malware sets respectively. Each

malware set contains 60 new malware samples obfuscated

from the seeds. We choose ransomware as the seeds due

to two reasons. First, it is easy to manually verify the mali-

cious actions (i.e., encrypting files, showing the ransomware

notes). Second, we manually confirmed that the majority of

engines (57/65) advertise that they are capable of detecting

ransomware2, and thus ransomware is a relatively fair bench-

mark to compare different engines.

For each newly generated sample, we manually run the

binary in a virtual machine to confirm the malicious actions

are preserved. We also manually confirm that these samples

are indeed “fresh” to VirusTotal. These samples have differ-

ent hash values (e.g., SHA256, ssdeep) from the seeds and

can trigger VirusTotal’s file scanning after being submitted.

We perform daily VirusTotal scanning from June 18, 2019

for Malware-I and from June 25, 2019 for Malware-II. We

monitored the files over a shorter period of time (compared

to the main dataset), because we have already observed the

two malware datasets have similar patterns of label dynamics

as the main dataset.

Ground-truth Benign. We have a mixed approach to get

two benign sets, with 236 files in total. First, we apply the

same obfuscation tools to two benign programs (a sorting

algorithm written by ourselves in C and a text editor in Win-

dows). We generate 80 obfuscated goodware to examine po-

tential false positives of VirusTotal engines. These goodware

are directly comparable with the ground-truth malware since

they are generated in the same way (with different seeds).

We call this set as Benign-I. We conduct daily VirusTotal

scanning on this dataset for 93 days.

2The advertisement list is available at https://sfzhu93.github.
io/projects/vt/advertise.html.







65 engines 50 engines reputable engines 35 engines

20 engines 5 engines reputable engines*

50
0

25

50

75

100

%
 o

f 
fi

le
s

days
150 300 350

(a) The original dataset

50
0

25

50

75

100

%
 o

f 
fi

le
s

250 300 350

days

(b) The dataset without hazards

Figure 4: The percentage of files whose labels do not change
after day-x. Reputable engines: the nine high-reputation engines

mentioned by previous literature; reputable engines*: the two high-

reputation engines mentioned twice by previous literature.

(both u1 and u3 are in 2018, but u2 is in 2019). Sometimes, not

all engine instances are upgraded to the same engine version

even if they are updated on the same day. There are 25,714

(1.0%) flips caused by handling two consecutive scans using

an engine updated on the same day but with two different

version numbers (u1 = u2 and v1 6= v2).

380,807 (15%) flips are likely caused by the non-

determinism of engines. In this case, an engine is used in

two consecutive scans with the same update date (u1 = u2)

and the same version (v1 = v2), but reports two different la-

bels (l1 6= l2). We do not have a good explanation for the

non-determinism based on the current data. We cannot use

desktop engines to validate the non-determinism since Virus-

Total engines are different from their desktop versions [13].

For the other 397,273 (15%) flips, the data fields for update

date or version information are “null” in their VirusTotal

responses, and we cannot categorize their root causes. Note

that the “detected” values (i.e., label information) are still

available in these responses, and thus the missing information

does not impact our analysis in other sections.

Observation 3: Engines’ model update is the major reason

of flips. However, the inconsistency during engine updates

and engines’ non-determinism have contributed a non-trivial

portion of the flips.

4.4 Label Stabilization

So far, we observe that label flips are quite prevalent. A prac-

tical question is how long a user should wait before a file’s

labels become stable. In this subsection, we characterize the

label stabilization patterns over time and its predictability.

Considering All Engines. Figure 4(a) shows the percent-

age of files whose VirusTotal labels do not change since day-x

until the end of our data collection (the blue line, all 65 en-

gines). For example, when x = 50, only 9.37% of the files

are stable, meaning these files’ labels from all vendors do not

change since day-50. The percentage increases very slowly

for most of the time, but it suddenly jumps from 9.74% to

20.22% on day-176. This is an anomaly because CrowdStrike

has hazards on 3,739 files on day-175 (reasons discussed in

Section 4.3). The percentage starts to increase very quickly

around day-350, mainly because the time period between x

and the end of data collection is too small. Indeed, it is possi-

ble that flips can still happen after our data collection period.

Excluding Highly Dynamic Vendors. We expect a file to

stabilize quickly if we exclude highly dynamic engines. We

rank engines based on their total number of flips. We gradually

remove engines with more flips and compute the percentage.

As shown in Figure 4(a), removing engines can immediately

increase the percentage of stable files. For example, removing

15 engines (50 engines left) can increase the percentage of

stable files on day-1 from 9.37% to 43.19%. However, to

stabilize most files quickly, we need to remove many engines.

In the extreme case, if we remove most engines and only

consider the five engines3 with the fewest flips, the initial

percentage of stable files is very high (88.05%) on day-1. The

percentage increases to 95% on day-77. This, to some extent,

confirms that flips widely exist across engines. We cannot

remove a small number of engines to make files stabilized.

Only Considering Reputable Engines. As discussed

in Section 2, we find ten papers that hand-picked “high-

reputation” engines for data labeling. Among them, five pa-

pers are related to PE malware, and only three out of the

five papers provide detailed lists of their high-reputation en-

gines. This produces a set of nine “reputable engines” for

our analysis (Table 5 in the Appendix). In Figure 4(a), we

show the percentage of stabilized files when we only con-

sider reputable engines. We show that files do not stabilize

quickly — it is very similar to the 35-engine line. The reason

is some of the reputable engines (e.g., F-Secure) have a large

number of flips. Note that among the nine engines, there are

two engines (Kaspersky and Symantec) that are mentioned by

more than one paper. We refer to these two engines as “highly

reputable engines”. If we only consider these two engines

(the “reputable engines*” line), we observe that most files are

stabilized very quickly.

Excluding Hazards Since it is easy to identify and remove

hazards (by submitting a file to VirusTotal in three consecutive

days), we re-examine the results after removing hazards. As

shown in Figure 4(b), removing hazards can help increase

the percentage of stabilized files. The initial percentage of

stabilized files (considering all engines) changes from 9.37%

to 36.69% on day-1. However, removing hazards does not

necessarily significantly speed up the file stabilization.

Observation 4: Waiting for a longer period of time does not

guarantee to have more stable labels from individual engines,

unless we only consider a small set of engines.

3NANO-Antivirus, K7AntiVirus, Zoner, Ikarus, and Avast-Mobile.













As shown in Figure 15(a), it is almost equally difficult to get

an over 90% precision without scarifying 50% of recall.

When we consider non-obfuscated benign files (Fig-

ure 14(b)), it is clear that using a small threshold t (between

2–15) is a good choice. However, when we only consider the

high-reputation engines (Figure 15(b)), it is better to stick to

an even smaller threshold (e.g., t < 3). If we require all the

nine high-reputation engines to vote “malicious”, then we

will again lose 50% of recall.

Observation 10: A small threshold value can balance the

precision and the recall as long as the benign files are not

obfuscated.

6.3 Comparing with Desktop Engines

A subset of anti-malware engines also provide their desk-

top versions. A prior work [57] shows VirusTotal often runs

stripped-down engine versions, and thus is more likely to miss

true malicious instances. Note that this conclusion is drawn

from URL scanning for phishing website detection [57]. Be-

low, we explore if the same conclusion applies to malware

scanning.

Experiment Setup. Out of all VirusTotal vendors [3], we

find 36 vendors also offer desktop versions of their products

(the list of engines is shown in Table 5 in the Appendix). We

install them separately on 36 Windows-10 virtual machines

(version 1809). We validated that our obfuscated malicious

samples still have their malicious actions in the VM environ-

ment. For the four ground-truth datasets, we scan their files

four times (in four different days). For each time of the ex-

periment, we use fresh virtual machines and install the latest

versions of the desktop engines. We disconnect the Internet

while the engines scan the files, to prevent the engines from

uploading the files or reporting the results to their servers.

This allows us to isolate the analysis engines on the desktop

from the engines in the cloud (on VirusTotal) to compare

them fairly. It’s possible some desktop engines do not run

the analysis locally but solely rely on their remote servers for

analysis. To this end, we run the main experiment without the

Internet, and later run a validation test with the Internet.

Comparison Results (w/o Internet). All 36 engines have

some inconsistency between the desktop and VirusTotal ver-

sions. For each engine and each dataset, we calculate the

inconsistency rate, which is the number of files with differ-

ent detection results (between VirusTotal and desktop scans)

divided by the total number of files. We report the average

inconsistency rate over different experiment dates for the en-

gine.

All 36 engines have a non-zero inconsistency rate on mal-

ware datasets. The average inconsistency rate is 25.4% on

Malware-I and 29.2% on Malware-II. Some engines have

an inconsistency rate over 90% on Malware-I (98.6% on

ZoneAlarm, 90.3% on Tencent and 98.9% on Qihoo-360) be-

cause their VirusTotal engines can detect most malicious sam-

ples, but their desktop engines do not report any of them. The

inconsistency rates on the benign datasets are lower (23.4%

on Benign-I and 0% on Benign-II).

To examine which version is more accurate, we compare

precision, recall, and F1-score over the four datasets for each

engine. F1-score is the harmonic mean of precision and recall.

For precision, 26 engines (out of 36) have a higher average

precision on their desktop versions than VirusTotal across the

datasets. 25 engines have a higher average recall on VirusTo-

tal than their desktop versions. After computing F1-score to

merge precision and recall together, we find that 24 engines

(out of 36) have a higher average F1-score on VirusTotal than

their desktop versions (20.2% higher on average). Overall,

the result shows the online engines at VirusTotal are more

aggressive and tend to cover more malware, while desktop

versions are more conservative to keep a small number of false

alarms. Our result is different from that of the URL scanning

reported in [57] (where vendors’ URL engines at VirusTotal

cover fewer phishing websites than their standalone versions).

Sanity Check (w/ Internet). We perform a sanity check

by running the experiments again with VMs connecting to

the Internet. We compare the results to those when VMs are

disconnected to the Internet on the same day. In total, 23 out

of 36 engines’ results remain consistent, with or without the

Internet. 13 out of 36 engines have different results, indicat-

ing that the remote servers play a role in desktop engines’

decision. Among the 13 engines, seven engines have a lower

precision after connecting to the Internet; nine engines have a

higher recall. Overall, the results of desktop engines are get-

ting closer to those of VirusTotal engines, but the conclusion

above is still valid: desktop engines are still more conservative

with a higher precision and a lower recall. The gap is smaller

with the Internet connection.

Observation 11: Inconsistency exists between the desktop

version and the online version (at VirusTotal) for all engines.

Surprisingly, for most of the vendors, their VirusTotal engines

are able to detect more malware than their desktop versions.

6.4 Comparison with the Main Dataset

As a sanity check, we have validated the key observations

we had on the main dataset using the ground-truth datasets

too. Due to space limit, we keep our discussions brief. First,

ground-truth datasets have more hazard flips (6,708) than

non-hazard flips (5,855). Second, flips also widely exist

across files, dates, and engines. The majority of the flips are

still highly correlated with engines’ model update (73.7%).

Third, engines that are highly correlated in the main dataset

are still highly correlated in the ground-truth datasets. The

strong influencer-influenced relationships observed in the

main dataset are also observed in the ground-truth datasets

(primarily in Malware-I and Malware-II).



7 Discussion

Our measurement results have several important implications

regarding the methods of using VirusTotal for file labeling.

Data Preprocessing. Our results show that hazard flips

count for the majority of all the label flips and they affect

label stabilization of individual engines. The good news is that

hazard flips, by definition, are short-lived, and it only incurs a

small cost to get rid of them. We recommend VirusTotal users

to submit the same files to VirusTotal in three consecutive

days to identify and remove potential hazards.

Label flips happen widely across engines, files and time.

They do not necessarily disappear if researchers wait for a

longer time. The benefit of querying the labels over a long

period of time (e.g., months) is quite limited.

Label Aggregation. We show that threshold-based aggre-

gation is surprisingly effective in stabilizing the aggregated

labels against the label flips of individual engines, but the

threshold t needs to be set properly. For example, the aggre-

gated labels are still easily influenced by the flips when the

threshold is too small (t = 1) or too big (t = 40 or t = 50). If

the threshold t is chosen within a reasonable range (2–39),

the aggregated labels are more likely to stay stable.

A stable aggregated label does not necessarily mean the la-

bel is correct. Our ground-truth analysis shows that choosing

a small threshold (e.g., t < 15) helps strike a good balance be-

tween precision and recall for the aggregated labels. However,

it becomes very difficult to find a good threshold when the

benign files contain obfuscated code. Our recommendation

is that researchers should not use a small threshold if their

files are obfuscated (especially the potentially benign ones).

A better idea could be only considering engines that perform

well on obfuscated files (see Figure 13).

Engine Independence. Most existing papers treat all en-

gines equally and do not consider possible correlations of

their labeling decisions. Our experiments confirm the exis-

tence of both correlation and causality relationships between

engines. In particular, we identify groups of engines whose

label sequences are highly similar to each other (Section 5.1).

A practical suggestion is to consider them as “redundant votes”

and reduce their weights during label aggregation. We also

identify several engines whose labeling exhibits causal rela-

tionships (Section 5.2). This does not necessarily mean one

engine directly copies results from other engines – it is also

possible these engines change labels due to the impact of third

parties (blacklists), but some engines react slower than others.

High-reputation Engines. Several existing papers hand-

picked high-reputation engines for label aggregation. Our

analysis shows that most of these engines perform well (e.g.,

having more stabilized labels, being an influencer instead

of being influenced). However, we find one high-reputation

engine (F-Secure) constantly acting as an outlier. It is easily

influenced by other engines, and its label accuracy is subpar.

We notice that high-reputation engines are not always more

accurate. Four of them are not good at handling obfuscated

benign files, producing many false positives (e.g., Symantec).

Limitations & APK Experiments. As discussed in Sec-

tion 3, a key limitation is that our datasets are not diverse

enough (e.g., the main dataset only has PE files, the ground-

truth datasets are focused on ransomware). We defer in-depth

analysis on other file types to future work. Here, we briefly run

a quick measurement on Android APK files (another popular

file type for malware) to cross-examine the results.

The methodology is similar to our main experiment on

PE files. We sampled 2,071 fresh APK samples (with no

prior history at VirusTotal), and collected their daily labels

from December 26, 2019 to February 09, 2020 (46 days).

About half of the files were labeled as “benign” (1,144) by

all engines on day-1, and the other half (927) were labeled as

“malicious” by at least one engine. 59 engines have returned

their labels. We collected 5,303,106 data points in total.

We find the major observations on PE files still hold for

APK files, with some differences. First, there are 16,453 flips,

including 9,984 hazard flips. Among the APK files that have

no flip (1,264 files, 60% of all files), the vast majority of them

have been labeled as benign by all engines for the entire mea-

surement period. This is similar to what we observed on PE

files. Second, the top three engines with most flips are Mi-

crosoft (41%), Fortinet (15%), and Tencent (10%). The engine

ranking is different from that of PE files, possibly due to the

different specialties of engines. Third, in terms of engine la-

bel correlations, we also identify tightly clustered engines for

APK files. For example, GData, BitDefender, Ad-Aware, Em-

sisoft, and MicroWorld-eScan are still clustered together. The

cluster is largely similar to that under PE files, and the only

difference is ESET-NOD32 is no longer in the cluster. Finally,

interestingly, engines that were highly-influenced under PE

files (e.g., F-Secure, Comodo, AegisLab, Arcabit) now become

“influencers” under APK files. Overall, the takeaway is that

engines face common problems such as label instability, and

they have their own specialties for different malware types.

Malware Coverage Issues. VirusTotal is arguably the

biggest public malware database that researchers can ac-

cess for free. Even so, its malware coverage still has limi-

tations [38, 48]. Beyond file label stability and accuracy (the

focus of our paper), another challenge is to further improve

the malware coverage of VirusTotal’s database. In some way,

VirusTotal is already trying to improve its coverage by pro-

viding free malware scanning services to the public to gather

new malware samples from users, companies, and other secu-

rity vendors. A recent report shows that VirusTotal receives

over one million file submissions every day [65]. Future work

could look into new incentive mechanisms to encourage the

broader sharing of malware intelligence.

Data Sharing. To benefit future researchers and practition-

ers, we have released the raw data collected in this paper



(timestamped file labels) and a number of ranked lists. The

engines can be ranked based on different criteria, such as

the number of (hazard) flips, influence scores under differ-

ent influence models, and label accuracy. We have attached

the ranking method and the data with each ranked list. Our

released data is available at https://sfzhu93.github.io/

projects/vt/index.html.

8 Conclusions

In this paper, we surveyed 115 research publications that use

VirusTotal for data annotation. Then we took a data-driven

approach to reason and validate their data labeling method-

ologies. We collected a dataset of more than 14,000 files’

timestamped labels over a year from 65 anti-malware engines

at VirusTotal. We validated the benefits of threshold-based

labeling methods in tolerating temporary label flips. We also

pointed out the questionable approaches such as hand-picking

trusted engines, and ignoring the strong correlations among

engines. Future work will focus on extending the experiments

to other file types, using more diverse ground-truth datasets,

and developing new label aggregation methods.

Acknowledgement

We would like to thank our shepherd Gianluca Stringhini

and the anonymous reviewers for their helpful feedback; Xiao

Zhang at Palo Alto Networks, Inc. for sharing malware hashes;

Yiying Zhang for her valuable comments on the initial version

of this paper. Limin Yang and Gang Wang were supported by

NSF grants CNS-1750101 and CNS-1717028.

References

[1] Binutils - GNU Project - Free Software Foundation. https:

//www.gnu.org/software/binutils/.

[2] C# Websocket Implementation. https://github.com/

statianzo/Fleck.

[3] Contributors - VirusTotal. https://support.

virustotal.com/hc/en-us/articles/115002146809-

Contributors.

[4] Coreutils - GNU core utilities. https://www.gnu.org/

software/coreutils/.

[5] Cygwin. https://cygwin.com/.

[6] Mono. https://www.mono-project.com/.

[7] Notepad++ official repository. https://github.com/

notepad-plus-plus/notepad-plus-plus.

[8] Oreans technology : Software security defined. https://

oreans.com/codevirtualizer.php.

[9] Oreans technology : Software security defined. https://

oreans.com/themida.php.

[10] Statistics - VirusTotal. https://www.virustotal.com/en/

statistics/.

[11] VirusTotal. https://www.virustotal.com/.

[12] VirusTotal, Chronicle and Google Cloud. https:

//blog.virustotal.com/2019/06/virustotal-

chronicle-and-google-cloud.html.

[13] Randy Abrams. VirusTotal Tips, Tricks and Myths.

https://www.virusbulletin.com/uploads/pdf/

magazine/2017/VB2017-Abrams.pdf.

[14] Kevin Allix, Quentin Jérôme, Tegawendé F. Bissyandé, Jacques

Klein, Radu State, and Yves Le Traon. A forensic analysis of

android malware – how is malware written and how it could

be detected? In COMPSAC, 2014.

[15] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gas-

con, Konrad Rieck, and CERT Siemens. Drebin: Effective and

explainable detection of android malware in your pocket. In

NDSS, 2014.

[16] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek,

Christopher Kruegel, and Engin Kirda. Scalable, behavior-

based malware clustering. In NDSS, 2009.

[17] Stephen D. Brown and Zvonko G. Vranesic. Fundamentals of

digital logic with VHDL design. 2009.

[18] Zhenquan Cai and Roland H.C. Yap. Inferring the detection

logic and evaluating the effectiveness of android anti-virus

apps. In CODASPY, 2016.

[19] Margaux Canet, Amrit Kumar, Cédric Lauradoux, Mary-

Andréa Rakotomanga, and Reihaneh Safavi-Naini. Decom-

pression quines and anti-viruses. In CODASPY, 2017.

[20] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht

Bhaskar, and Mu Zhang. Extract me if you can: Abusing pdf

parsers in malware detectors. In NDSS, 2016.

[21] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and

Krishna P Gummadi. Measuring user influence in twitter: The

million follower fallacy. In AAAI, 2010.

[22] Mahinthan Chandramohan, Hee Beng Kuan Tan, and

Lwin Khin Shar. Scalable malware clustering through coarse-

grained behavior modeling. In FSE, 2012.

[23] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan

Zhang, Heqing Huang, Wei Zou, and Peng Liu. Finding un-

known malice in 10 seconds: Mass vetting for new threats at

the google-play scale. In USENIX Security, 2015.

[24] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting

Chen, Xiaosong Zhang, and Jean-Yves Marion. Towards

paving the way for large-scale windows malware analysis:

generic binary unpacking with orders-of-magnitude perfor-

mance boost. In CCS, 2018.

[25] Melissa Chua and Vivek Balachandran. Effectiveness of an-

droid obfuscation on evading anti-malware. In CODASPY,

2018.

[26] Christian Collberg, GR Myles, and Andrew Huntwork.

Sandmark-a tool for software protection research. IEEE S

& P, 2003.



[27] Fady Copty, Matan Danos, Orit Edelstein, Cindy Eisner, Dov

Murik, and Benjamin Zeltser. Accurate malware detection by

extreme abstraction. In ACSAC, 2018.

[28] Wayne W Daniel. Applied nonparametric statistics. PWS-

Kent, 2nd edition, 1990.

[29] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin,

Xiaorui Pan, Tongxin Li, Xueqiang Wang, and X Wang. Things

you may not know about android (un) packers: a systematic

study based on whole-system emulation. In NDSS, 2018.

[30] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Ap-

poscopy: Semantics-based detection of android malware

through static analysis. In FSE, 2014.

[31] Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni

Vigna. Analyzing and detecting malicious flash advertisements.

In ACSAC, 2009.

[32] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard

Schölkopf. Uncovering the temporal dynamics of diffusion

networks. In ICML, 2011.

[33] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan.

Learning influence probabilities in social networks. In WSDM,

2010.

[34] Mariano Graziano, Davide Canali, Leyla Bilge, Andrea Lanzi,

and Davide Balzarotti. Needles in a haystack: Mining infor-

mation from public dynamic analysis sandboxes for malware

intelligence. In USENIX Security, 2015.

[35] Mahmoud Hammad, Joshua Garcia, and Sam Malek. A large-

scale empirical study on the effects of code obfuscations on

android apps and anti-malware products. In ICSE, 2018.

[36] Heqing Huang, Cong Zheng, Junyuan Zeng, Wu Zhou, Sencun

Zhu, Peng Liu, Suresh Chari, and Ce Zhang. Android malware

development on public malware scanning platforms: A large-

scale data-driven study. In BigData, 2016.

[37] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar

Dash, Tegawendé F Bissyandé, Yves Le Traon, Jacques Klein,

and Lorenzo Cavallaro. Euphony: Harmonious unification of

cacophonous anti-virus vendor labels for android malware. In

MSR, 2017.

[38] Colin C Ife, Yun Shen, Steven J Murdoch, and Gianluca

Stringhini. Waves of malice: A longitudinal measurement of

the malicious file delivery ecosystem on the web. In AsiaCCS,

2019.

[39] Luca Invernizzi, Stanislav Miskovic, Ruben Torres, Christo-

pher Kruegel, Sabyasachi Saha, Giovanni Vigna, Sung-Ju Lee,

and Marco Mellia. Nazca: Detecting malware distribution in

large-scale networks. In NDSS, 2014.

[40] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad

Miller, Vaishaal Shankar, Rekha Bachwani, Anthony D. Joseph,

and J. D. Tygar. Better malware ground truth: Techniques for

weighting anti-virus vendor labels. In AISec, 2015.

[41] Amin Kharraz, Sajjad Arshad, Collin Mulliner, William Robert-

son, and Engin Kirda. Unveil: A large-scale, automated ap-

proach to detecting ransomware. In USENIX Security, 2016.

[42] Doowon Kim, Bum Jun Kwon, and Tudor Dumitraş. Certified

malware: Measuring breaches of trust in the windows code-

signing pki. In CCS, 2017.

[43] Doowon Kim, Bum Jun Kwon, Kristián Kozák, Christopher

Gates, and Tudor Dumitraş. The broken shield: Measuring

revocation effectiveness in the windows code-signing pki. In

USENIX Security, 2018.

[44] Eugene Kolodenker, William Koch, Gianluca Stringhini, and

Manuel Egele. Paybreak: defense against cryptographic ran-

somware. In AsiaCCS, 2017.

[45] Deguang Kong and Guanhua Yan. Discriminant malware dis-

tance learning on structural information for automated malware

classification. In KDD, 2013.

[46] David Korczynski and Heng Yin. Capturing malware propa-

gations with code injections and code-reuse attacks. In CCS,

2017.

[47] Platon Kotzias, Leyla Bilge, and Juan Caballero. Measuring

PUP prevalence and PUP distribution through pay-per-install

services. In USENIX Security, 2016.

[48] Bum Jun Kwon, Jayanta Mondal, Jiyong Jang, Leyla Bilge,

and Tudor Dumitraş. The dropper effect: Insights into malware

distribution with downloader graph analytics. In CCS, 2015.

[49] Stevens Le Blond, Adina Uritesc, Cédric Gilbert, Zheng Leong

Chua, Prateek Saxena, and Engin Kirda. A look at targeted

attacks through the lense of an ngo. In USENIX Security, 2014.

[50] Bo Li, Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci.

Jsgraph: Enabling reconstruction of web attacks via efficient

tracking of live in-browser javascript executions. In NDSS,

2018.

[51] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques

Klein. Reflection-aware static analysis of android apps. In

ASE, 2016.

[52] Gen Lu and Saumya Debray. Weaknesses in defenses against

web-borne malware. In DIMVA, 2013.

[53] Long Lu, Vinod Yegneswaran, Phillip Porras, and Wenke Lee.

Blade: An attack-agnostic approach for preventing drive-by

malware infections. In CCS, 2010.

[54] Guozhu Meng, Yinxing Xue, Chandramohan Mahinthan, An-

namalai Narayanan, Yang Liu, Jie Zhang, and Tieming Chen.

Mystique: Evolving android malware for auditing anti-malware

tools. In AsiaCCS, 2016.

[55] Aziz Mohaisen and Omar Alrawi. Av-meter: An evaluation of

antivirus scans and labels. In DIMVA, 2014.

[56] Nick Nikiforakis, Steven Van Acker, Wannes Meert, Lieven

Desmet, Frank Piessens, and Wouter Joosen. Bitsquatting:

Exploiting bit-flips for fun, or profit? In WWW, 2013.

[57] Peng Peng, Limin Yang, Linhai Song, and Gang Wang. Open-

ing the blackbox of virustotal: Analyzing online phishing scan

engines. In IMC, 2019.

[58] Moheeb Abu Rajab, Lucas Ballard, Noe Lutz, Panayiotis

Mavrommatis, and Niels Provos. Camp: Content-agnostic

malware protection. In NDSS, 2013.

[59] Neil Rubenking. Check Point ZoneAlarm Free An-

tivirus+. https://www.pcmag.com/review/322439/

check-point-zonealarm-free-antivirus-2017.



[60] Armin Sarabi and Mingyan Liu. Characterizing the inter-

net host population using deep learning: A universal and

lightweight numerical embedding. In IMC, 2018.

[61] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes

Kinder, Georg Merzdovnik, and Edgar Weippl. Protecting

software through obfuscation: Can it keep pace with progress

in code analysis? ACM Computing Surveys (CSUR), 2016.

[62] Edward J. Schwartz, Cory F. Cohen, Michael Duggan, Jef-

frey Gennari, Jeffrey S. Havrilla, and Charles Hines. Using

logic programming to recover c++ classes and methods from

compiled executables. In CCS, 2018.

[63] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan

Caballero. Avclass: A tool for massive malware labeling. In

RAID, 2016.

[64] Mahmood Sharif, Jumpei Urakawa, Nicolas Christin, Ayumu

Kubota, and Akira Yamada. Predicting impending exposure to

malicious content from user behavior. In CCS, 2018.

[65] Linhai Song, Heqing Huang, Wu Zhou, Wenfei Wu, and Yiying

Zhang. Learning from big malwares. In APSys, 2016.

[66] Michael Spreitzenbarth, Felix Freiling, Florian Echtler,

Thomas Schreck, and Johannes Hoffmann. Mobile-sandbox:

Having a deeper look into android applications. In SAC, 2013.

[67] Nedim Srndic and Pavel Laskov. Detection of malicious pdf

files based on hierarchical document structure. In NDSS, 2013.

[68] Vince Steckler. Avast and AVG become one. https://blog.

avast.com/avast-and-avg-become-one.

[69] Gianluca Stringhini, Oliver Hohlfeld, Christopher Kruegel, and

Giovanni Vigna. The harvester, the botmaster, and the spam-

mer: On the relations between the different actors in the spam

landscape. In AsiaCCS, 2014.

[70] Bo Sun, Akinori Fujino, and Tatsuya Mori. Poster: Toward

automating the generation of malware analysis reports using

the sandbox logs. In CCS, 2016.

[71] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jag-

pal, Alexandros Kapravelos, Damon Mccoy, Antonio Nappa,

Vern Paxson, Paul Pearce, Niels Provos, and Moheeb Abu Ra-

jab. Ad injection at scale: Assessing deceptive advertisement

modifications. In S&P, 2015.

[72] Kurt Thomas, Juan A Elices Crespo, Ryan Rasti, Jean-Michel

Picod, Cait Phillips, Marc-André Decoste, Chris Sharp, Fabio

Tirelo, Ali Tofigh, Marc-Antoine Courteau, et al. Investigating

commercial pay-per-install and the distribution of unwanted

software. In USENIX Security, 2016.

[73] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and Gang

Wang. Needle in a haystack: Tracking down elite phishing

domains in the wild. In IMC, 2018.

[74] Zacharias Tzermias, Giorgos Sykiotakis, Michalis Polychron-

akis, and Evangelos P. Markatos. Combining static and dy-

namic analysis for the detection of malicious documents. In

EuroSec, 2011.

[75] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-

Rodriguez, Yao Guo, Li Li, Juan Tapiador, Jingcun Cao, and

Guoai Xu. Beyond google play: A large-scale comparative

study of chinese android app markets. In IMC, 2018.

[76] Liang Wang, Antonio Nappa, Juan Caballero, Thomas Risten-

part, and Aditya Akella. Whowas: A platform for measuring

web deployments on iaas clouds. In IMC, 2014.

[77] Pei Wang, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng Chen,

Tao Wei, and Dinghao Wu. Software protection on the go:

A large-scale empirical study on mobile app obfuscation. In

ICSE, 2018.

[78] Michelle Y. Wong and David Lie. Tackling runtime-based

obfuscation in android with tiro. In USENIX Security, 2018.

[79] Christian Wressnegger and Konrad Rieck. Looking back on

three years of flash-based malware. In EuroSec, 2017.

[80] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue

Liu. Effective real-time android application auditing. In S&P,

2015.

[81] Ke Xu, Yingjiu Li, Robert H. Deng, and Kai Chen. Deeprefiner:

Multi-layer android malware detection system applying deep

neural networks. In EuroS&P, 2018.

[82] Zhaoyan Xu, Antonio Nappa, Robert Baykov, Guangliang

Yang, Juan Caballero, and Guofei Gu. Autoprobe: Towards au-

tomatic active malicious server probing using dynamic binary

analysis. In CCS, 2014.

[83] Yinxing Xue, Junjie Wang, Yang Liu, Hao Xiao, Jun Sun, and

Mahinthan Chandramohan. Detection and classification of

malicious javascript via attack behavior modelling. In ISSTA,

2015.

[84] Wei Yang, Deguang Kong, Tao Xie, and Carl A. Gunter. Mal-

ware detection in adversarial settings: Exploiting feature evo-

lutions and confusions in android apps. In ACSAC, 2017.

[85] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-

aware android malware classification using weighted contex-

tual api dependency graphs. In CCS, 2014.

[86] Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie.

Droidalarm: An all-sided static analysis tool for android

privilege-escalation malware. In AsiaCCS, 2013.

[87] Ziyun Zhu and Tudor Dumitras. Chainsmith: Automatically

learning the semantics of malicious campaigns by mining

threat intelligence reports. In EuroS&P, 2018.

Appendix

Table 3: 9 high-reputation engines and the papers that men-
tioned them. Kaspersky and Symantec are mentioned in two papers.

Kaspersky [22, 71], Symantec [22, 45] AVG [71],

F-Secure [22], Ikarus [22], McAfee [45],

Microsoft [45], ESET-NOD32 [45], Sophos [71],

Table 4: Seed ransomware files and number of engines de-

tected each file on June 1, 2019 (out of 65 engines)

MD5 # Engines

40c5113e35dd653ca1fc1524d51da408 56

5dc58c702f21ba786e3a51eb8c37bd14 56

8b6bc16fd137c09a08b02bbe1bb7d670 52

bbd4c2d2c72648c8f871b36261be23fd 49




	Introduction
	Literature Survey: VirusTotal Usage
	Data Collection
	Main Dataset
	Ground-truth Dataset
	Data Summary and Preprocessing

	Measuring Label Dynamics
	Hazard Flips and Non-Hazard Flips
	Characteristics of Flips
	Inferring Root Causes of Flips
	Label Stabilization
	Impact of Flips

	Relationships Between VirusTotal Engines
	Label Correlations Between Engines
	Engine Clustering
	Clustering Result Analysis

	Influence Modeling
	Active Influence Model
	Passive Model


	Analyzing the Ground-Truth Dataset
	Individual Engine Accuracy
	Aggregating Engines' Labels
	Comparing with Desktop Engines
	Comparison with the Main Dataset

	Discussion
	Conclusions

