
Using GitHub in Large Software Engineering Classes

An Exploratory Case Study

Miroslav Tushev, Grant Williams, and Anas Mahmoud

Computer Science and Engineering
Louisiana State University
Baton Rouge, LA, 70803
mtushe1@lsu.edu, gwill83@lsu.edu, mahmoud@csc.lsu.edu

ARTICLE HISTORY

Compiled October 9, 2019

ABSTRACT

Background and Context: GitHub, has been recently used in Software Engineer-
ing (SE) classes to facilitate collaboration in student team projects as well as help
teachers to evaluate the contributions of their students more objectively.
Objective: We explore the benefits and drawbacks of using GitHub as a means for
team collaboration and performance evaluation in large SE classes.
Method: Our research method takes the form of a case study conducted in a senior
level SE class with 91 students. Our study also includes entry and exit surveys, an
exit interview, and a qualitative analysis of students’ commit behavior.
Findings: Different teams adapt GitHub to their workflow differently. Furthermore,
despite the steep learning curve, using GitHub should not affect the quality of stu-
dents’ submissions. However, using GitHub metrics as a proxy for evaluating team
performance can be risky.
Implications: we provide several recommendations for integrating Web-based con-
figuration management tools in SE classes.

KEYWORDS
GitHub; Software Engineering; education; open source

1. Introduction

Software Engineering (SE) has become an essential subject of Computer Science (CS)
Curricula worldwide. According to the Accreditation Board for Engineering and Tech-
nology (ABET), an accredited SE class must provide both breadth and depth in all
aspects of software development, from requirements gathering and system design, to
software implementation and project management. In addition to these technical out-
comes, the SE curriculum should include non-technical educational components that
are designed to enhance the students’ ability to function in teams and communicate
effectively with a broad range of audiences. The main objective is to equip students
with a set of soft and technical skills that are necessary to attain a successful career
in SE after graduation.

To realize these outcomes, most core SE classes include some sort of a medium-
sized team project that students have to work on during the class. The educational



objectives of the team project are to reinforce concepts being taught in the classroom
and simulate an industrial SE environment (Coppit & Haddox-Schatz, 2005; Hayes,
Lethbridge, & Port, 2003; Ohlsson & Johansson, 1995). However, due to the limited
time frame (typically 4 months) and the general lack of industrial experience of under-
graduate students, such projects often pose many challenges for students and teachers,
especially in relatively large classrooms (50+ students). These challenges are typically
related to problems with inter-team communication and collaboration as well as team
evaluation (Coppit, 2006; Gates, Delgado, & Mondragón, 2000; Hayes et al., 2003).

Recent research has exposed several communication problems for students working
in teams (Liu, 2005). In general, due to the lack of proper teamwork training, most
undergraduate students struggle with basic communication skills, or do not even recog-
nize the value of establishing and sustaining an effective communication channel with
their teammates. Other problems arise from the logistic hurdles typically associated
with the conflicting schedules of undergraduate students (cannot agree on a time or
location to meet) and the lack of a unified platform or tool of communication that all
team members can use effectively (Chao, 2007; Goold, Augar, & Farmer, 2006; King
& Behnke, 2005; Seppälä, Auvinen, Karavirta, Vihavainen, & Ihantola, 2016).

Another major challenge facing students working in teams is inter-team collabora-
tion (Colbeck, Campbell, & Bjorklund, 2000; Hansen, 2006; Johansson, 2000). Despite
being encouraged otherwise, students often end up forming teams of other students
whom they feel comfortable working with (mainly friends), rather than based on tech-
nical merits. This leads to the formation of unbalanced teams in terms of technical
and soft skills. In most cases, unbalanced teams lead to the emergence of cowboy pro-
grammers (Curtis, 2001; Hollar, 2006), where one dominant person in the team does
all the work, while the rest struggle to maintain the same level of contribution. Conse-
quently, this leads to the emergence of free-riders, or team members who lost interest
in the project and are satisfied with not being active in their teams (Buchta, Petrenko,
Poshyvanyk, & Rajlich, 2006; Coppit & Haddox-Schatz, 2005; Slavin, 1980; Williams,
Beard, & Rymer, 1991).

From an educational point of view, a key challenge facing teachers in software team
projects is to come up with objective methods to evaluate team performance. This
challenge stems from the fact that individual contributions are typically not separately
quantifiable. Several grading schemes have been proposed in the literature to deal with
this problem. In general, these schemes can be categorized into two types: individual
student grading and the one-grade-fits-all approach (Clark, 2005; Clark, Davies, &
Skeers, 2005; Coppit & Haddox-Schatz, 2005; Hayes et al., 2003). Peer evaluation
(students are asked to evaluate each other’s performance) and self-evaluation (students
are asked to submit a report detailing their specific contributions to the project) are
the two most popular methods for individual evaluation. However, due to the power
dynamics within the team, personal relationships, and in some cases racial and gender
biases, these approaches often fail to produce an objective evaluation of individual
students’ effort (Hayes et al., 2003; Wilkins & Lawhead, 2000). In the one-grade-fits-all
approach, one grade is assigned to the entire team based on their overall performance
as a team.

In an attempt to overcome these challenges, online version control systems, such as
GitHub and SourceForge, have been recently utilized in SE classes to facilitate student
collaboration in team projects (Feliciano, Storey, & Zagalsky, 2016; Zagalsky, Feliciano,
Margaret-AnneStorey, Zhao, & Wang, 2015). Such platforms provide programmers
with a set of online services and tools to host, share, and maintain their code as well
as create world-wide social networks of developers at unprecedented scales. The unique

2



set of technical and social features such platforms support made them an appealing
tool to be used as a means to facilitate student communication, collaboration, and
evaluation in class-based software team projects (Feliciano et al., 2016; Zagalsky et
al., 2015).

Several early studies have been conducted on utilizing GitHub in SE class
projects (Feliciano et al., 2016; Kertész, 2015; Zagalsky et al., 2015). Despite this
effort, there is still a lack of empirical evidence on the benefits and drawbacks of this
approach, especially in relatively large classrooms (50+ students). To bridge this gap,
in this paper, we present the results of an exploratory case study on using GitHub
in SE class projects. According to Wohlin et al. (2012), a case study is conducted
to investigate a single entity or phenomenon in its real-life context, within a specific
time space. In our case study, the phenomenon of interest is enforcing GitHub as a
collaboration platform in SE student team projects, the context of our study is the
CSC-4330 class offered by the Computer Science and Engineering Department (CSE)
at Louisiana State University (LSU), and the time-frame is the Fall semester of 2016.
Our main objective is to explore the impact of using such a platform on the individual
and aggregate performance as well as collaborative behavior of students. In particular,
our contributions in this paper are:

• We conduct entry and exit surveys to measure the impact of enforcing GitHub
in SE classes and outline the main challenges faced by students using such a
platform for collaboration and assignment submission.

• We make several recommendations for instructors about enforcing GitHub in
large SE classes and describe the risks associated with using such a platform for
evaluating students’ effort or their contribution to the project.

• By analyzing students’ commit behavior, we provide valuable insights into stu-
dents’ behavior when utilizing GitHub. These insights suggest further empirical
investigation to formally understand the impact of using such a tool in educa-
tional setting.

The rest of this paper is organized as follows. In Section 2, we review seminal related
work and outline our motivations. In Section 3, we describe our case study’s setup.
In Section 4, we describe the entry and exit surveys and exit interview and analyze
their results. In Section 5, we present and discuss the results of our qualitative analysis
of students’ commit behavior. In Section 6, we provide a set of recommendations for
teachers based on our main findings. In Section 7, we discuss the potential threats to
our study’s validity. Finally, in Section 8, we conclude the paper and outline several
prospects of future work.

2. Related Work

In this section, we a) review seminal work related to student collaboration and eval-
uation in SE team projects, b) summarize existing work on the utilization of GitHub
in educational setting, and c) outline our main motivations and research questions.

2.1. Team Projects in SE Courses

Students’ collaboration and evaluation in SE class projects have received considerable
attention in the literature. In particular, researchers have focused on the most effec-

3



tive teaching strategies for facilitating teamwork and objectively evaluating individual
student effort. For instance, in an attempt to narrow down the gap between class and
industrial practices, Buchta et al. (2006) developed a course where students practiced
software evolution through the implementation of change requests on medium-sized
open-source software systems. A Concurrent Versioning System (CVS) was used to
coordinate teamwork. Students were asked to submit a report after the completion
of each phase and an assessment survey was conducted at the end of the semester to
get students to rate their experience. The results showed that adapting an incremen-
tal change format in SE class projects helped to address several problems related to
individual student accountability and increased students motivation as well as their
understanding of the SE process.

Chao (2007) explored the potential uses of wikis to facilitate team collaboration
and communication in student projects. Mainly, the authors sought to compare the
effectiveness of team communication and collaboration using wikis versus more tradi-
tional communication mechanisms such as e-mail and discussion boards. The authors
reported that students quickly discovered a number of innovative ways in which wikis
could augment collaborative software development activities, such as project planning,
requirements management, and effort tracking. An anonymous survey at the end of
the project revealed that the vast majority of students found wikis to be a good tool
for project collaboration.

In an attempt to provide a more realistic project experience for students, Coppit
and Haddox-Schatz (2005) presented an approach to teaching a one-semester large-
scale SE course in which students worked together to construct a moderately sized
software system. The proposed approach included multiple strategies for facilitating
scheduling, project management, communication, and development, at a large scale.
The authors also implemented a system for automatically computing the project grade
for each student in the class based on a predefined project point system. While the
overall experience was positive, the authors pointed out several challenges regarding
the choice of the project as well as the integration of under and over-achieving students
in large scale teams.

Hayes et al. (2003) tackled the challenge of fairly and accurately discerning the
effort of individual students in SE team projects for evaluation purposes. Specifically,
the authors presented and discussed several grading approaches and best practices
for evaluating students’ contributions. The authors made several recommendations to
ensure the fairness and consistency of the grading process. These recommendations
included, for instance, using project demonstrations and quizzes to further test the
students’ knowledge of their projects, allowing team members to evaluate each other,
and to carefully and frequently monitor this process to prevent the mob mentality
among students.

Goold et al. (2006) investigated the use of an online learning environment platform
to enhance students’ experience when working in virtual teams. Three anonymous
surveys were conducted to elicit feedback from students about their experiences in
working in virtual teams within the learning environment. Most students indicated
that they valued the opportunity to discuss various aspects of the course with peers
and teaching staff online and to interact with real-life employees. The students also
reported that online team work provided the flexibility of time and place and allowed
communication and participation to be recorded. However, problems were reported
when team members left participation and submission to the last minute.

Clark et al. (2005) tackled the challenge of assessing individual contributions and
performance in SE class team projects. Specifically, the authors experimented with a

4



suite of Web-based peer assessment tools. The suite supported a time-sheet, a self/peer
evaluation survey, an individual contribution report, and a quantity report. These
tools allowed students to self-evaluate their contributions as well as other students’
contributions to the project. Different performance indicators from these tools were
then used to calculate the final grade of each student. The authors concluded that
the proposed suite provided timely feedback to students and enabled the lecturer to
manage the assessment of larger and more diverse student cohorts.

2.2. Using Git/GitHub as Educational Tools

Motivated by its undeniable positive impact on the open source software movement,
along with its social and technical features, GitHub has been recently utilized in SE
and programming classrooms as a tool for managing student projects. This has en-
couraged researchers to further investigate the benefits, drawbacks, and challenges
associated with using GitHub in their classrooms. For instance, Zagalsky et al. (2015)
examined how GitHub could improve or possibly hinder the educational experience
of students and teachers. In particular, the authors conducted a qualitative study to
understand how GitHub was being used in education, and the motivations, benefits
and challenges it brought. The study consisted of analyzing online posts describing
personal experiences in using GitHub in the classroom along with several interviews
with faculty who used GitHub to support teaching or learning. The analysis revealed
that GitHub was mainly utilized in classrooms as a submission and hosting platform.
Furthermore, the transparency of GitHub encouraged students to participate and con-
tribute more to the hosted course material. The list of limitations included multiple
barriers to entry, a steep learning curve, and the general lack of direct support for
popular educational formats, such as PDF and LaTeX.

In a follow-up study, Feliciano et al. (2016) examined students’ perspectives on us-
ing GitHub as an educational platform. The authors conducted a case study over two
classes in which GitHub was used for class material dissemination, lab work submis-
sion, and project hosting. The study design included direct interviews with the students
followed by a validation survey. The results showed that GitHub promoted student co-
operation and cross-team collaboration, making students more involved in the course.
In addition, students were able to develop and demonstrate industry-relevant skills.
However, students raised several concerns about having their work publicly available,
the steep learning curve of Git and GitHub, and the lack of educational features to
support grading and assignment management.

Kertész (2015) investigated the merits of using GitHub as a collaborative platform
for students to do their homework and submit their classroom assignments. The re-
sults of analyzing the commit patterns of students along with the results of an exit
survey indicated that, in general, students found GitHub to be useful in learning from
their faults and getting help from colleagues much faster. In addition, mots students
appreciated the opportunity of using a platform that is commonly used in the industry.
In terms of challenges, students pointed out a steep learning curve and low activity
levels by those not familiar with the platform.

Haaranen and Lehtinen (2015) described how to incrementally present the features
of Git and incorporate them into CS courses. In particular, the authors presented
a case study on running a large Web software development class utilizing Git. Data
was collected using a mixed approach, combining a feedback survey after individual
exercises, an exam that was completed by the students, and the Git usage data. The

5



results showed that Git could be used successfully to disseminate course materials and
facilitate submitting exercises. Furthermore, enforcing Git in the classroom helped
students to acquire a set of essential skills desired by the industry. However, several
concerns were raised about the difficulty of learning Git and its suitability as an
educational platform.

Heckman and King (2018) introduced a framework for supporting software engineer-
ing practices in CS classrooms. The framework uses Eclipse for development, GitHub
for submission and collaboration, and Jenkins for continuous integration and auto-
mated grading. The framework was evaluated through multiple case studies, involving
five undergraduate CS core courses. The results showed that the proposed framework,
combined with GitHub and Jenkins, helped in automated grading and in exposing
students to professional software development tools.

Hsing and Gennarelli (2019) investigated the impact of using GitHub on several
key learning variables in CS classrooms. The authors surveyed 7530 students and 300
educators from GitHub and non-GitHub classrooms. The results showed that using
GitHub in the classroom predicted better learning outcomes and classroom experi-
ences. For instance, students who received instructor feedback via GitHub reported
benefiting more from the feedback. Furthermore, students who used GitHub reported
that they learned more about teamwork and collaboration and felt more prepared for
a future internship and career.

2.3. Summary, Motivation, and Research Questions

Our review revealed that, in general, the assumptions behind utilizing GitHub in SE
class projects fall under the tenets of the collaborative learning theory. This theory
describes situations in which two or more people build synchronously and interactively
a joint solution to a specific problem. The theory suggests that learning is inherently
a social process, thus, it emphasizes the extent and quality of the exchanges that
occur within teams of students in collaborative environments as a way for increasing
critical thinking and team spirit (Curtis, 2001; Gokhale, 1995). GitHub promotes social
coding - an idea that combines programming and social features, such as user profiles,
newsfeed, following repositories, and code sharing. These features are designed to
enable developers to exchange information more freely and in the open and build social
networks of programmers working toward the same goal. Therefore, enforcing such a
platform in class is expected to enhance students’ collaboration and their sense of
teamwork. Furthermore, GitHub’s transparency can motivate students to self-regulate
their contributions by observing the progress of their teammates as well as other teams
in class (Feliciano et al., 2016). Theoretically, this could enhance the productivity of
students as well as reduce their proneness to academic procrastination.

Another objective of enforcing a tool such as GitHub in the classroom is to prepare
students for their future careers. Specifically, due to time limitations, students often
receive limited exposure to the different configuration management platforms com-
monly used in industrial setting. However, by using GitHub as the main platform for
managing their term project, students can gain a hands-on experience in using such a
platform in semi-professional setting (Buffardi, 2015).

In terms of limitations, our review revealed that the most common challenges that
restrain the utilization of GitHub in SE classes include a) the steep learning curve
often associated with introducing a new technology in the classroom, b) the lack of
features to support class-specific tasks, such as assignment submission and grading,

6



and c) the conflicts that typically arise from the variation in GitHub experience among
students. Our review also revealed that multiple researchers examined using GitHib’s
tracking features as a basis for student evaluation (Haaranen & Lehtinen, 2015; Kelle-
her, 2014; Kertész, 2015). In general, the evaluation of individual contributions in team
projects can be challenging as it is often hard to distill individual contributions to a
shared project. Using GitHub, individual students can be evaluated based on their
contributions, such as the number and/or size of their commits, pull-requests, and
comments on fellow students’ code. To enhance confidence in the grade, such informa-
tion is typically combined with peer and self-evaluation mechanisms, or a subjective
assessment of the quality of contribution (Kelleher, 2014).

In summary, GitHub can potentially improve teaching and learning experience in
SE classrooms. However, there is still a research gap on how such a platform actually
affects student team dynamics and performance, especially in large classrooms (50+
students). To bridge this gap, in this paper, we explore through a case study the
main benefits, challenges, and drawbacks associated with using such a platform in
educational setting. Case studies are necessary to explore a phenomenon before formal
experiments can be run and a theory can be developed. They can be particularly useful
when the outcome of the research is highly dependent on the context of the study,
which is mainly the case in most educational research (Wohlin et al., 2012). The main
objectives of our case study are to provide insights into how students would integrate
GitHub into their workflow, assess the validity of using such a platform as a basis
for evaluating team effort, and analyze the impact of using such a tool on the quality
of students’ work, their communication, configuration management skills, as well as
other academic behaviors such as procrastination. To guide our analysis, we formulate
the following research questions:

• RQ1. What are the main benefits and drawbacks of using GitHub in SE student
team projects?

• RQ2. How do students utilize the technical and social features of GitHub in SE
team projects?

• RQ3. Can GitHub be used as a basis for evaluating team performance?

3. Case Study Setup

CSC-4330—Software Systems Development, is a core senior-level software engineer-
ing class offered by the CSE Department at LSU. This class covers the main phases
of the software engineering process, focusing on concepts of project management, re-
quirements engineering, and software testing. The class has a significant semester-long
medium-sized software project that students are expected to execute in order to pass.
Even though it is not officially a capstone design class, CSC-4330 acts as a final se-
nior project class for students in the Software Engineering concentration offered by
the CSE department. At the beginning of the semester, students are asked to form
their project teams and choose their projects. Each team should consist of four to
five students. The project is divided into four assignments. These assignments can be
described as follows:

• Software Requirements Specification (SRS): for the first assignment, students
are required to gather and document the main functional and non-functional

7



requirements of their systems. Students are expected to use the IEEE 830-19981

standard’s template to prepare their SRS document. The functional and non-
functional requirements of the system are described using textual use cases.
Students are encouraged to use any form of visual aid (e.g., use case diagrams
and sequence diagrams) to further describe their requirements.

• Software Design Document (SDD): for the second assignment, students are re-
quired to define and describe the main modular components of their system
along with their relations. This multi-view document should include a software
architecture diagram, a database schematic diagram (in case the system sup-
ports a database), a folder structure of the system, and the hardware view of the
system (Clements et al., 2000). There is no specific template for this assignment.
However, students are encouraged to follow the IEEE 1471-20002 standard’s
guidelines for documenting software architecture.

• Software Testing Document (STD): for this assignment, students are required to
describe their test plan and design a set of test cases for their system. Students
are expected to write a separate test case for each feature they listed in their
SRS document. Students are required to follow the IEEE 829-20083 standard for
documenting their test cases.

• Code: at the end of the semester, each team in the class is required to submit a
working copy of their code for grading.

Students are free to adapt whatever software development process model (life-cycle)
they find appropriate. However, most teams end up with a mixed-model where code is
produced in Agile format, while other project documents are procedure in a Waterfall
format, following their due dates. The deadline for each assignment is exactly two
full weeks (14 days) after the initial assignment date. Students are expected to spend
around 65% of class time to work on the project. The project is worth 65% of the
grade. The remaining 35% is divided between a midterm exam and a final exam.

At the end of the semester, each team has to present their project to an audience of
industry professionals, academics, and other students in the class. Each team is given
10 minutes, during which, each member of the team has to present a part of the project
and talk briefly about their specific contribution. In addition to a working demo,
the presentation must include five other main components: introduction, problem,
proposed solution, tools used, and members’ contributions. Students are graded based
on the quality of their talk, including following the presentation guidelines and running
a fully working demo. Furthermore, students are judged based on their soft skills, such
as showing up on time, following the business-casual dress code, and their ability to
answer audience questions.

In the Fall of 2016, at the beginning of the semester, the class had 91 students,
divided into 18 project teams. The students were informed that GitHub would be the
only method to submit the project assignments. The documentation assignments (SRS,
SDD, and STD) had to be submitted using MarkDown, a lightweight markup language
with plain text formatting syntax that is typically used to create GitHub ReadMe files.
Submissions were graded based on the last commit made to the assignment before 11:55
PM of the day at which the assignment was due. It is important to point out that
the third author of the paper has taught CSC-4330 twice before (the Fall semesters
of 2014 and 2015). However, GitHub was only used for the first time during the Fall

1https://standards.ieee.org/standard/830-1998.html
2https://standards.ieee.org/standard/1471-2000.html
3https://standards.ieee.org/standard/829-2008.html

8

https://standards.ieee.org/standard/830-1998.html
https://standards.ieee.org/standard/829-2008.html


semester of 2016 (the semester during which this case study was conducted).
The teaching assistant (TA) of the class held a tutorial to introduce students to

GitHub at the beginning of the semester. The tutorial included an introduction to Git
as a version control system that is used to manage source code history. GitHub was
then introduced as one of the online hosting services for Git repositories. Students were
then introduced to GitHub Desktop, a cross-platform client for Git. GitHub Desktop
provides an easy GUI to help developers contribute to projects (branch off, merge,
and deploy) without the need for using the command line of Git. The tutorial also
included introducing students to the basic concepts of configuration management and
version control, such as creating a repository, commits, comments, pull requests, merge,
forks, and branches. In addition, students were given instructions on how to create
basic MarkDown documents, including tables and figures. The students were further
encouraged to watch multiple GitHub tutorial videos that were recommended by the
instructor.

Students were assured that their final project grade would not depend on their level
of activity on GitHub (i.e., number of commits and comments). In other words, stu-
dents were told that they were free to adopt any commit strategy they felt comfortable
with as a team. Our main objective was to track how different teams would utilize
such a platform in the absence of an evaluation component.

The students were given the freedom to choose their projects and whatever tech-
nologies and tools they wanted to work with. To ensure that all teams had projects of
sufficient breadth and depth, video games or single feature mobile applications were
not allowed. All projects were approved by the teacher and the TA at the beginning
of the semester. The students were presented with several team formation options,
including ego-less (all team members share equal responsibilities), chief-programmer,
and hierarchical structures. However, the structure of each team was left for the stu-
dents to decide. Unfortunately, there was no designated lab for the class. The students
were expected to meet outside of class to work on their projects.

The research methods used in our case study included entry and exit surveys, an
exit interview, and a qualitative analysis of the commit behavior of different teams.
These methods are commonly used to collect data in case-study research (Wohlin et
al., 2012). In what follows, we describe each of these methods along with our main
findings in greater detail.

4. Survey Design and Results

Surveys are commonly used in empirical studies to obtain a quick snapshot of the cur-
rent status of a target population (Ciolkowski, Laitenberger, Vegas, & Biffl, 2003). In
general, surveys can be either direct interviews or written questionnaires. While inter-
views can help to elicit more thorough and honest responses from subjects, question-
naires have the advantage of being cheaper to execute, especially when the population
is relatively large. In SE research, surveys have become a standard tool for data collec-
tion (Punter, Ciolkowski, Freimut, & John, 2003). Interview and questionnaire surveys
are frequently conducted to gather rapid feedback from SE practitioners on a variety
of topics (Lo, Nagappan, & Zimmermann, 2015; Manotas et al., 2016). Furthermore,
surveys are commonly used in classroom research to elicit students’ feedback toward
new teaching strategies (Buchta et al., 2006; Chao, 2007).

Our study included two anonymous surveys (a descriptive entry survey and an ex-
ploratory exit survey) and an exit interview. The entry survey was used to collect

9



general descriptive information about the population. The exit survey was used to
explore how the applied treatment (i.e., enforcing GitHub in the class) influenced stu-
dents’ experience (Carver, Jaccheri, Morasca, & Shull, 2004). Finally, the exit interview
was conducted to elicit final face-to-face feedback from students. In what follows, we
describe these surveys and their results in greater detail.

4.1. Survey Design

The entry survey was conducted at the beginning of the semester. The population
consisted of 91 students: 47 juniors, 43 seniors, and 1 sophomore. The purpose of
the survey was to collect initial descriptive data about the population, including the
students’ prior experience in programming and their familiarity with GitHub as well
as other configuration management platforms. The TA handed out the written ques-
tionnaires to the students to fill out. The instructor was not present in the classroom
during the survey. This step was necessary to remove any bias that would result from
the teacher’s presence. The students were assured that the survey was anonymous and
were encouraged to be as honest as possible in their responses. The questions in the
survey are shown in Table 1. The response rate was 100% (i.e., all of the students in
the class completed the survey).

The exit survey consisted of the same questions as the entry survey and an additional
open-ended question to collect students’ perceptions of using GitHub (“Did you face
any challenges using GitHub for this class?”). The exit survey was completed by 84
students: 45 juniors, 38 seniors, and 1 sophomore. The response rate was 92% (three
students dropped the class and four did not complete the exit survey). Both surveys
were transcribed and coded using Microsoft Excel, and then analyzed using IBM SPSS
statistical package. In what follows, we describe our main findings.

4.2. Entry Survey Results

The results of the entry survey are shown in Table 2. In general, student cohort was
split almost equally between 3rd (junior) and 4th-year (senior) students. As expected,
juniors were less experienced with programming and knew fewer programming lan-
guages than seniors.

Correlation analysis is commonly used in exploratory case studies as an effective
and straightforward tool to reveal any relationships in the data (Runeson & Höst,
2009). In our analysis, we used Spearman’s correlation to examine the relationship
between students’ experience on GitHub and the overall programming experience of
students. The results, in Fig. 1-a, show a positive and statistically significant relation-
ship between GitHub experience and the number of programming languages a student
knows (R=0.488, p < 0.001). In addition, Fig. 1-b shows a statistically significant rela-
tion between GitHub experience and programming experience (R = 0.271, p < 0.001).
Overall, the results indicate that a more experienced student in programming (number
of years and number of programming languages) is more likely to be more experienced
in a platform such as GitHub.

Fig. 2 breaks down students’ experience with GitHub, SourceForge, Dropbox, and
BitBucket. Most of the students reported high experience with Dropbox, followed by
GitHub. Dropbox is often used by our students to work on collaborative assignments.
The platform supports options to rollback older copies of files, which makes it con-
venient for basic configuration management activities. Around half of the students

10



Table 1.: The questions in the entry survey

Question Answer Variants

What year are you? Junior / Senior

How many programming lan-
guages do you know?

Numeric

How many years of experience
as a programmer do you have?

Numeric

How familiar are you with
configuration management sys-
tems?

a. Very familiar, experienced
b. Familiar
c. Somewhat familiar
d. Not familiar

Do you have a GitHub ac-
count?

yes / no

How experienced are you with
GitHub?

a. Very experienced
b. Experienced
c. Somewhat experienced
d. Never used before

Are you familiar with other
platforms? Please indicate
your level of experience for
each of the platforms below
from 1 (never used) to 4 (very
experienced).

a. SourceForge
b. DropBox
c. BitBucket
d. Other (please specify)

Table 2.: Descriptive statistics for the entry survey: the number of programming lan-
guages students knew, their experience on GitHub, and years of programming experi-
ence as reported by our study participants

Prog Languages Exp. on GH Years of Exp.

N Mean Med. StD Range Mean Med. StD Range Mean Med. StD Range

All students 91 4.06 4.00 1.95 (1-9) 1.94 2.00 0.79 (1-4) 3.62 3.00 2.05 (1-12)

Junior 47 3.60 3.00 1.62 (1-8) 1.94 2.00 0.82 (1-4) 3.45 3.00 1.92 (2-10)

Senior 43 4.49 4.00 2.11 (1-9) 1.91 2.00 0.72 (1-4) 3.71 3.00 2.11 (1-12)

indicated that they were somewhat experienced with GitHub and a fourth of the stu-
dents reported no knowledge of GitHub. The majority of students reported that they
never used SourceForge or BitBucket before.

4.3. Exit Survey Results

The plots in Fig. 3 show GitHub experience as reported by the students in the entry
and exit surveys. In the entry survey, only 11 students identified themselves as “Expe-
rienced” and even fewer as “Very experienced” as opposed to “Somewhat experienced”
and “Never used before.” The mean is in the “Somewhat experienced” category. In
the exit survey, the number of “Somewhat experienced” decreased from 49 to 44, but
the number of more experienced students increased drastically, especially in the “Ex-
perienced” category, from 11 to 29. The mean for the exit survey increased, settling
between “Somewhat experienced” and “Experienced.”

To test for statistical significance, we used Wilcoxon Rank Sum test. This test is

11



2 4 6 8 10

1

2

3

4

Number of Programming Languages

E
x
p

er
ie

n
ce

o
n

G
it

H
u
b

(a) Number of Programming Languages
vs. GitHub Experience,
(R = 0.488, p < 0.001)

0 2 4 6 8 10 12

0

1

2

3

4

Years of Experience

E
x
p

er
ie

n
ce

o
n

G
it

H
u
b

(b) Years of Experience in Programming
vs. GitHub Experience,
(R = 0.271, p < 0.01)

Figure 1.: The results of Spearman’s correlation. Noise was added for overlapping
points

10 20 30 40 50 60 70 80 90

GitHub

SourceForge

DropBox

BitBucket

Number of Students

Never used before Somewhat experienced Experienced Very experienced

Figure 2.: Students’ experience with GitHub and other platforms

non-parametric; it makes no assumptions about the distribution of the data. Thus,
it can be used when comparing two teams by continuous or ordinal non-normally
distributed dependent variables. The results of the Wilcoxon test showed that the
difference in GitHub experience for all students was statistically significant (Z =
−4.504, p < 0.001). It is important to point out that our findings here are based on a
self-assessment measure of students’ experience. Therefore, while these results give an
indication of the relation, they should be interpreted with care.

The last question in the exit survey asked students to share any challenges they
faced while using GitHub during the semester. Students’ responses were qualitatively
analyzed using a systematic coding of the data (Wohlin et al., 2012). Specifically,
the coding process involved each of the authors individually going through the set of
free-form answers, identifying the main response categories as they appeared in the
text. The categorization of each author was then manually examined by the other two
authors. A discussion session was then held to resolve any conflicts and to make sure
that the categories were exhaustive and mutually exclusive. The majority of conflicts
in individual classifications were related to the granularity level, or abstraction, of the
category. For example, two out of the three students considered difficulties in learning
Markdown to be a separate response category rather than being included under the

12



N
ev

er
us

ed
be

fo
re

So
m

ew
ha

t
ex

pe
ri
en

ce
d

E
xp

er
ie
nc

ed

V
er

y
ex

pe
ri
en

ce
d

0

20

40

60

80

Entry survey
Exit survey

GitHub experience

N
u
m

b
er

o
f

st
u
d
en

ts

Figure 3.: Frequency distribution comparison of GitHub experience in the entry and
the exit surveys

Learning curve category. The rationale was that the word MarkDown had explicitly
appeared in multiple answers, thus, should be considered separately. Such conflicts
were resolved using majority voting.

The outcome of the coding process (i.e., specific response categories) for the last
question of the exit survey is presented in Table 3. The table shows that out of 84
students, 47 mentioned that they did not experience any difficulties using GitHub. The
difficulties (RQ1) that were reported by the rest of students (N=37) can be described
as follows:

• Resolving merge conflicts: several students (N=14) reported facing problems
when resolving merge conflicts. This apparently was a common issue in the
documentation assignments, especially toward the deadlines. This issue could
have been resolved by holding another tutorial before the first assignment to
explain to students the best way for resolving merge conflicts. Actually, one of
the students pointed that out in her answer: “I feel like more attention should
be placed on teaching students how to resolve merge conflicts and dealing with
branches.”

• Steep learning curve: similar to what have been observed in related liter-
ature (Feliciano et al., 2016; Kertész, 2015; Zagalsky et al., 2015), the steep
learning curve was an issue for some students (N=6). These were mainly the
students who had no prior experience with GitHub, or any other online version
control systems. Students expressed their concerns about this issue using state-
ments such as “Bit of learning curve its a bit complicated” and “GitHub is hard
to understand and use.”

To determine if the overhead of this steep learning curve had impacted the
quality of students’ work, we compared students’ grades with the average grades
from two previous sections of CSC-4330 (Fall semesters of 2014 and 2015) in
which GitHub was not used. The results in Fig. 4 provide evidence that the
overhead that resulted from using GitHub in class did not impact the quality
of students’ work. It is important to point out that using grades as a proxy for

13



Table 3.: A summary of the main challenges of using GitHub as described by the
students in the exit survey

Challenges Count

NA 47

Resolving merge conflicts 14

Learning curve 6

Markdown 4

Branching 3

Technical difficulties 10

Class1 Fall 2016 Class2

70

80

90

G
ra

d
e

Figure 4.: Comparing the grades (quality of submission) from the Fall 2016 to two
other sections of CSC-4330 where GitHub was not used

assessing the quality of students’ performance might raise some construct validity
concerns. Specifically, grades can be subjective, especially in assignments such as
the SRS and the SDD where there is no wrong answer. In an attempt to control
for this effect, the assignments were graded by the same instructor and the same
TA using the exact same rubric used before in the two other classes. Therefore,
these concerns were minimized.

• Branching: branching posed an issue only for a few students (N=3). In general,
students complained that “Group members not on same page for branch usage”
and pointed out “branching issues” without any going into details.

• Technical difficulties: several students (N=10) reported unexpected problems
with the platform. For instance, some students noted that GitHub sometimes did
not save changes if several students were working on the same file simultaneously:
“changes on the same document being done at the same time, causing some loss
of changes from one of them” and “while multiple of members were modifying a
project, it deleted a team member’s work.”

• MarkDown: a small number of students (N=4) reported difficulties using Mark-
Down, especially when formatting figures and tables. These concerns appeared
in comments such as “I faced a few issues with formatting in MarkDown.” Con-
sequently, some students have suggested using other platforms such as Google
Documents, for example, “I feel like google docs is a better option” and “there
are simply better options for the document submissions.”

14



4.4. Exit Interview Results

In addition to the entry and exit surveys, an exit interview was conducted after the
final copy of the project was submitted. Specifically, all teams (N=18) were required
to do a live demo separately. During this demo, students were asked to describe
their overall experience with using GitHub in the class. The interviews were semi-
structured (Wohlin et al., 2012), that is, all teams were asked the same question (i.e.,
“Please describe your overall experience with using GitHub in class”), and the discus-
sion then followed the different topical trajectories in the conversation. Each interview
session lasted between 10-15 minutes. Students’ answers were later coded following
the exact coding process used for the open-ended question in the exit survey. Overall,
the coding of the interview responses resulted in three response categories:

• Experience with GitHub: all teams in class indicated that enforcing GitHub
as a mandatory configuration management platform forced them to learn about
the platform. Several teams (N=7) indicated that they probably would have not
used the platform had it not been mandatory. Overall, the students reported
feeling more confident using GitHub and more familiar with configuration man-
agement concepts after class (RQ1).

• Steep learning curve: almost all teams (N=17) confirmed the steep learning
curve, especially at the beginning of the semester. Several teams indicated that
it took them until the second assignment to fully understand how the platform
worked and how to resolve conflicts (RQ1). Furthermore, all teams in class have
indicated that they used GitHub Desktop4 to avoid dealing with the command
line of Git.

• Team Structure: a few teams (N=4) reported that GitHub negatively im-
pacted their team structure, including issues of cowboy programming and free
riders. These phenomena emerged in teams where one member had more prior
experience with GitHub than the rest of the team. This encouraged that person
to put on the cowboy hat. Other team members, did not feel the need, or even
got discouraged, to commit as the cowboy “took care of that”. The rest of our
teams indicated that using GitHub helped them to manage the team better,
especially in task assignment and progress tracking issues (RQ1).

• Team communication: majority of the teams (N=14) implied that they did
not feel the need, or even see the value, of using the social features of GitHub.
In general, living close to each other (mainly on or around the campus), the
students felt that the social features of GitHub that facilitate distributed team
management were unnecessary. The lack of effective mobile support was also
mentioned by some students as they compared GitHub communication tools to
other more user friendly platforms such as the social networking app GroupMe
(RQ1 and RQ2). A few students expressed concerns about their repositories be-
ing public. They were worried their discussions would be perceived negatively by
the TA or the instructor. Therefore, they preferred more private communication
mediums such as GroupMe.

4https://desktop.github.com/

15

https://desktop.github.com/


0

50

100

150

200

250

300

350

400

450

500

deadlineassigned

Timeline

N
u

m
b

er
of

co
m

m
it

s

(a) Assignment 1: SRS

0

50

100

150

200

250

300

350

400

450

500

deadlineassigned

Timeline

N
u

m
b

er
of

co
m

m
it

s

(b) Assignment 2: SDD

0

50

100

150

200

250

300

350

400

450

500

deadlineassigned

Timeline

N
u

m
b

er
of

co
m

m
it

s

(c) Assignment 3: STD

0

50

100

150

200

250

300

350

400

450

500

deadline
assigned

Timeline

N
u

m
b

er
of

co
m

m
it

s

(d) Project Code

Figure 5.: Total number of commits per day for each assignment

5. Analyzing Students’ Commit Behavior

In this section, we aggregate and analyze students’ GitHub activities over the duration
of the project. Our objective is to explore how different teams adapted GitHub to their
workflow and the relation between their GitHub behavior and the quality of their work.

5.1. Analyzing the Commit Timeline

To capture the timeline commits, for each assignment, we tracked the individual com-
mit history (student name and submission time of the commit) of each student. The
data was collected throughout the semester and was indexed in an Excel sheet. Ex-
tracting this information enabled us to measure the commit frequency per day for each
individual assignment.

Our results are shown in Fig. 5. This figure plots the number of commits made by all
students from the day the assignment was assigned to the day it was due. In general,
for each assignment, the majority of commits happened closer to the deadline. An
exception to this pattern was the final code assignment, where the maximum number
of commits happened five days prior to the deadline.

These results indicate the presence of academic procrastination, a phenomenon
where students irrationally postpone, delay, or simply put off working on their as-

16



signments until the very last moment (Akerlof, 1991; Steel, 2007). This behavior is
prevalent among undergraduate students. In fact, academic research has revealed that
the overwhelming majority of college students were prone to procrastination (Knaus,
1973; Steel, 2007). In our analysis, academic procrastination can be clearly observed
by looking at the commit timeline of individual assignments: the lion’s share of sub-
missions happened right before the deadline (Howell, Watson, Powell, & Buro, 2006;
Rothblum, Solomon, & Murakami, 1986).

In general, our results have countered our assumption that GitHub would help to
reduce procrastination. Specifically, we assumed that GitHub’s transparency would
motivate our students to start working early by observing other students’ contribu-
tions in their team as well as other teams in class. Unfortunately, the commit pattern
provides evidence in favor of academic procrastination. The main takeaway message is
that, although GitHub provides a convenient method to track how and when students
contribute to their assignments, it does not alter the student behavior in terms of as-
signment submission time. In other words, it is not a silver bullet for procrastination
(RQ1).

5.2. Team Organization

In this section, we examine how different teams adapted GitHub to their workflow.
Specifically, for each team, we plotted the timeline of commits of each member of each
team, generating patterns similar to Fig. 6 (a-c). We then used a binary coding scheme
for detecting patterns. Specifically, if a student committed for a certain assignment,
they were assigned ’1’, otherwise they were assigned ’0’. This type of coding was
necessary to normalize the size and number of commits. For instance, some students
committed all their changes in one big commit while others divided their contributions
into multiple smaller commits. In both cases, the student was assigned ’1’ to indicate
that they contributed to the assignment regardless of the size or number of their
commits. We then averaged the number of 1’s (divide by 4 assignments) for each
student in the team. A student who committed to all assignments gets 4/4 while a
student who committed to only one assignment gets 1/4. Based on this coding scheme,
we identified the following three commit patterns:

• Equally committing: in three teams in our case study, every team member
was committing to each assignment throughout the semester. These teams had
an average commit rate of 0.75 - 1.0 for each member of the team. Fig. 6-a shows
a sample commit timeline for one of these teams. The timeline shows that the
number of commits spiked for almost all team members around the deadline of
each assignment. Our analysis shows that only these teams utilized branching
as everyone in the team was working concurrently on the project. Furthermore,
our analysis of teams’ performance showed that these teams did better than
other teams in terms of the final class grade, scoring an average of 90% in class
(Table. 4). A plausible explanation is that these teams were technically balanced
and everyone was well-motivated to participate in all aspects of the project.

• Designated configuration management engineer: in two of our teams, a
team member was assigned the role of managing GitHub related tasks. This was
reflected in the fact that only one student in the group had an average commit
rate of 1.0, the rest had a zero average. Students in these teams indicated that
they resorted to this approach to minimize merge conflicts. Fig. 6-c shows a
sample commit timeline for this type of teams. The timeline shows that only

17



Table 4.: Average grades for all groups under each commit patterns, including final
class grade (Class average is 82.3)

Pattern SRS SDD STD Code Exams Class grade

Equally committing (3) 88 92 88 89 94 90.2

Experienced Based (13) 82 88 79 81 81 82.2

Designated Engineer (2) 71 77 72 67 71 71.6

one team member was actively committing. Further investigation revealed that
these teams followed a chief programmer structure. Under this structure, only
one person is responsible for leading the entire project, while others tend to do
less work. Our analysis of team performance shows that these teams usually
underachieve in comparison to other, more balanced teams, with an average
overall class grade of 72% (Table. 4). A plausible explanation is that these teams
were not as technically-balanced to begin with, leading to the emergence of
cowboy programmers and free-riders.

• Experience-based committing: in the rest of teams (13 out of the 18 teams),
the commit pattern of individual members followed the internal task assignment
of the team. Specifically, such teams split the work along different lines: some
teams split the work into coding and documentation, while others split the work
based on assignments (SRS, SDD, and STD) or specific implementation compo-
nents (e.g., back-end and front-end). The average commit rate for individuals in
these teams is typically between 0.25 and 0.50. Fig. 6-b shows a sample commit
timeline for one of these teams. The timeline shows that some students were ac-
tive only at specific times (e.g., when the assignment that was assigned to them
by the team was due). Students in these teams reported that they resorted to
this structure to work around the variant levels of expertise in the team and to
minimize conflicts. According one student “This style choice allowed for team
members to divide project tasks into their own personal area of expertise without
the possibility of managerial conflict”. These teams had an average class grade
of 82% (Table. 4).

5.3. Number of Commits vs. Performance

Under this part of our analysis, we explore the relation between team performance, as
measured by their grades, and their level of GitHub activity (RQ3). In CSC-4330, a
one-grade-fits-all strategy is typically used to grade team projects (Hayes et al., 2003).
Specifically, all team members are assigned the same grade for each assignment. This
grading strategy was adopted to deal with the large number of students in class. In
particular, given the relatively large number of students and projects, there is no
practical or objective way to distill the contributions of individual students to the
project. In an ideal world, a one-grade-fits-all strategy should enhance the sense of
responsibility among students toward their teams as students are aware that their
behavior as individuals might affect the overall grade of the team. On the flip side,
this grading strategy might encourage free-riders.

During the semester, all assignments were graded by the same TA and the class
instructor according to a pre-defined rubric that had been used in the other two sec-

18



0

5

10

15

20

25

Timeline

N
u

m
b

er
o
f

co
m

m
it

s

(a) Equally committing members

0

5

10

15

20

25

30

Timeline

N
u

m
b

er
of

co
m

m
it

s

(b) Experience-based committing

0

5

10

15

20

Timeline

N
u

m
b

er
of

co
m

m
it

s

(c) A designated CM engineer

Figure 6.: Sample commit timelines for 3 different team organization styles. x-axes
is time and y-axes is the number of commits. Different colors in the graph indicate
different students in the team

19



tions of CSC-4330 taught previously by the same instructor. The correlation between
the number of commits and the team grade is shown in Fig. 7. In general, the results
show that, even though the relationship is slightly positive, no significant correlation
is detected between the grade and the number of commits a team made in any of the
assignments (RQ3).

5.4. Quality of Commit Messages vs. Performance

In addition to analyzing the number of commits, the quality of commit messages
(comments) was analyzed. Specifically, we downloaded and qualitatively assessed the
messages made by each team throughout the period of the project. The authors went
through the list of messages and marked them as poor, average, or good. The teams
were then assigned categories based on the quality of the majority of the comments
they made. In general, these categories can be described as follows:

• Good: this category included teams that consistently left high quality messages
with meaningful descriptions of their changes, such as what specific change was
made and what files were affected. For example, “Trent: added logical view dia-
gram and minor edits to the GUI in page 5” and “update the bolding and spacing
in section 3.6 of the SRS document.” If more than 75% of a team’s comments
were good, the team was classified under this category. Out of our teams, five
were classified as good (N=5).

• Poor: teams with poor commit messages either did not comment at all, or left
uninformative messages, such as “John” or “something!.”. If more than 75% of a
team’s comments were poor, the team was classified under this category. Out of
our teams, nine were classified as poor (N=9). Out of the nine teams, six teams
did not leave comments at all (N=6).

• Average: the rest of the teams had average quality messages. These were consid-
ered by us as somewhat informative. In general, these comments acknowledged
the specific changes made to the project, sometimes with the location of the
change or the name of the person who committed, for example, “SRS changed
by John” and “added section 2.5.”. Out of our teams, four were classified as
average (N=4).

We performed correlation analysis between the quality of the messages for each
team (1 = poor, 2 = average, and 3 = good) and their final project grade. Our results
(Fig. 8) show that, even though the overall relation was positive, the correlation was
not statistically significant. These results show that relying on the quality of commit
messages for grading can be risky (RQ3). Furthermore, these results confirm the fact
that students did not feel the need to use the social features (comments) of GitHub as
they were in the same geographical location. They mainly informed each other about
the changes they did by other means of communication such as short text messages
or social networking apps such as GroupMe (RQ2).

6. Discussion and Recommendations

Intensive research in the domain of OSS development revealed that OSS has the capac-
ity to contribute directly to improved competitiveness, deliver higher quality products,
and lower the costs of commercial software (Dinkelacker, Garg, Miller, & Nelson, 2002).

20



0 20 40 60 80 100 120 140
40

60

80

100

y = 0.0275x + 78.927
R2 = 0.0115

Number of Commits

G
ra

d
e

SRS

0 20 40 60 80 100 120 140
40

60

80

100

y = 0.0703x + 81.769
R2 = 0.1723

Number of Commits

G
ra

d
e

SDD

0 20 40 60 80 100
40

60

80

100

y = 0.0699x + 81.347
R2 = 0.1397

Number of Commits

G
ra

d
e

STD

0 50 100 150 200
40

60

80

100

y = 0.0258x + 81.777
R2 = 0.0358

Number of Commits

G
ra

d
e

Code

Figure 7.: Relationship between the total number of commits a team made and the
grade they received, per assignment.

Poor Average Good

76

78

80

82

84

86

88

y = 1.2119x + 80.568
R2 = 0.301

Commits Quality

G
ra

d
e

Figure 8.: Commits Quality vs. Grade

Therefore, having a basic knowledge of these platforms have become an essential skill
that CS graduates should possess (Steinmacher, Silva, Gerosa, & Redmiles, 2015).
Unfortunately, it is uncommon for CS departments to offer a full class on Configura-
tion Management at the undergraduate level, and sufficiently covering this topic in a
general SE class can be very challenging, especially when there is no designated lab
for the class, as in the case of CSC-4330. These observations expose an urgent need for
research dedicated to identifying the best educational strategies for integrating such

21



an unconventional software production paradigm into CS curricula. The case study
reported in this paper is an attempt toward this goal. In what follows, we summarize
our main findings and we make several recommendations regarding using GitHub in
large SE classrooms.

• Enforcing GitHub for team collaboration and assignment submission did not
impact the quality of students’ work. In general, teachers should not be worried
about the impact of the potential overhead of adapting such unconventional
project management platform on the quality of students’ submissions.

• GitHub is not a silver bullet for preventing academic procrastination. Overall,
students did not feel the need to start submitting earlier. Strategies such as
micro-deadlines, where an assignment is sliced into multiple micro tasks that
should be submitted separately, might help to mitigate this problem.

• Different teams integrated GitHub into their workflow differently. In a few teams,
each member in the team committed to all assignments, and in a few other
teams, only one team member was assigned to commit for the team. However,
the majority of teams followed a commit pattern based on the different expertise
within the team.

• Students in balanced teams, on average, performed the best in class (scored the
highest on the project and exams), while students in teams with a designated
configuration management engineer generally struggled to survive the class (Ta-
ble 4). Such information can be used by instructors to assess team performance
early in the process. Specifically, having a designated configuration management
engineer could be a sign of a dysfunctional group (e.g., a team with a cowboy
programmer or free riders). Usually, such phenomena do not surface till the end
of the semester, when students from these teams come forward with their prob-
lems. However, using GitHub, such behavior can be detected early based on
the commit pattern (e.g., one team member committing). If detected, teachers
can interfere early in the semester to resolve any personal conflicts among team
members, or dissolve the team altogether. A suggestion to balance out such un-
balanced teams is to utilize methods for encouraging students to participate.
Recent research has revealed that including industrial partners in SE capstone
projects can encourage students to learn new technologies and participate more
actively in project activities (Paasivaara, Vodă, Heikkilä, Vanhanen, & Lasse-
nius, 2018).

• There is no statistically significant correlation between teams’ project grades
(quality of submissions) and their number of commits or the quality of their
comments (commit messages). These findings suggest that teachers should be
careful before using GitHub as a basis for grading. Furthermore, as mentioned
in the previous point, different teams adapt GitHub to their workflow differently.
This might result in undermining the progress of some teams, or students who
do not commit frequently. Overall, we conclude that level of GitHub’s activity,
as measured by the number of commits or quality of comments, is not a reliable
proxy of team effort. An alternative, perhaps more objective strategy would be to
analyze the quality of students’ commits or the number of added/deleted lines of
code. This strategy might work in smaller classrooms, or when the entire class is
working on the exact same project. This way the instructor can evaluate students’
contributions to specific parts of the project more objectively (e.g., a section in a
document or a feature in the code). However, performing such evaluation in large
classrooms can be a tedious job, especially if students are working on different

22



projects using multiple programming languages and utilizing a very broad range
of external libraries.

• There seems to be a consensus among students that conventional text editing
tools, such as Google Docs or MS Word, can be more convenient for collaborat-
ing on documentation assignments (SRS, STD, and SDD). In fact, nine out of
our teams mentioned that they first drafted their assignment documents using
Google Docs and then converted them to MarkDown. Based on these obser-
vations, we recommend limiting GitHub usage to code submission only. Other
assignments could be submitted using more traditional formats such as MS Word
or PDF.

• Our students reported difficulties at the beginning of the class getting used to, or
even understand, the various features of GitHub. However, the majority of the
concerns were focused on dealing with merge conflicts. Therefore, we recommend
a separate tutorial, or a pre-project assignment or class exercise, focusing on
these problems early in the semester to speed up the learning process.

• Students did not feel the need to utilize the social features of GitHub in their
communication. The majority of the students reported that they used other tools
to exchange information about the project. Among these tools, the mobile app
GroupMe was the most popular platform. In general, most students reported
that they did not feel comfortable communicating publicly, or even for their
internal project discussions to be seen by the class TA or the instructor. Our
students also reported that the features that the app provided (e.g., sharing
media content and getting notifications) made it more appealing than GitHub.
In general, in classroom setting, where students are in the same geographical
space, and likely to be in the same social circle, GitHub social features seem to
be unnecessary for communication.

7. Threats to Validity

In this section, we outline the main threats that could potentially undermine the
validity of our results.

7.1. Internal Validity

Internal validity refers to the confounding factors that might affect the causal relations
established in the experiment (Wohlin et al., 2012). An internal validity threat might
stem from the power dynamics in the classroom. Specifically, students might alter
their responses in order to please the instructor and the TA, for example, claiming to
have more programming experience or that using GitHub positively impacted their
learning experience. To mitigate such threats, we enforced anonymity in both of our
surveys. Furthermore, the primary class instructor was not present during the surveys.
The students were also assured that their answers to the surveys’ questions would not
impact their grades.

Another threat to our study’s internal validity might result from the fact that one
of the main co-authors of the paper is the main instructor of the class. This might lead
to confirmation bias, where experimenters would interpret evidence in ways that are
partial to existing beliefs. However, as mentioned earlier, all assignments were graded
by the instructor and the TA according to a predefined rubric that was previously
used in two other sections of CSC-4330 taught by the instructor.

23



To prevent the possibility of any other confounding effects, the students were assured
multiple times that their level of activity on GitHub (number of commits, comments,
and pull requests) did not impact their project grade by any means. This design
decision was necessary to prevent altering the behavior of students (e.g., excessive
committing to give the impression of a higher activity).

7.2. External Validity

Threats to external validity are conditions that limit the ability to generalize the re-
sults of the experiment (Wohlin et al., 2012). For instance, repeating our study under
various settings, such as a different grading scheme, class size, or project specifications,
might lead to different results. Nonetheless, given that our study was specifically aimed
at CS students, and the fact that the sample size was reasonable (91 subjects), a gen-
eralization over the whole population of CS students is still possible. We do, however,
acknowledge the fact that further formal experimentation is necessary to support these
claims.

7.3. Construct Validity

Construct validity is the degree to which the various performance measures accurately
capture the concepts they purport to measure (Wohlin et al., 2012). For instance,
we relied on students’ assessment of their own skills as an indicator of their GitHub
experience before and after the treatment. Self-reporting is commonly used to assess
students’ learning outcomes (Haaranen & Lehtinen, 2015; Hsing & Gennarelli, 2019).
However, we do acknowledge the fact that this method is subjective, and might not
precisely quantify the shift in students’ experience. Therefore, our findings regarding
this matter, while statistically significant, should be interpreted with care.

Another threat might stem from using students’ grades as a proxy for judging the
quality of their work. To mitigate this threat, students’ assignments were graded based
on a predefined rubric. Furthermore, assignments were graded without taking GitHub
activity into account. In fact, to prevent any experimenter bias (e.g., the researcher
would assign teams who showed more GitHub activity higher grades), the researcher
who was responsible for collecting GitHub data did not participate in the grading
process.

7.4. Conclusion Validity

Threats to the conclusion validity are concerned with issues that affect the ability to
draw the correct conclusion about relations between the treatment and the outcome
of an experiment (Wohlin et al., 2012). In our case study, we compared students’
experience in GitHub before and after the class using the non-parametric Wilcoxon
Rank Sum test. This test assumes the observations from both groups are independent
of each other. In our study, establishing pairs for the entry and exit surveys was not
possible due to the anonymity of the surveys, thus our survey groups could be treated
as independent even though the same group was used for both surveys. This makes
Wilcoxon Rank Sum test applicable to our unpaired study design.

Finally, our discussion of grades vs. team structure in Section 5.2 relied only on 18
data points (team grades). While these numbers were suggestive of a correlation, there
was no sufficient statistical power to make any strong claims about our assumptions.

24



Therefore, additional case studies, or formal experiments, with more data points are
necessary to test these claims.

8. Conclusions and Future Work

This paper reported the results of a case study on using GitHub to facilitate student
collaboration and evaluation in SE class projects. The objective of our case study
was to explore the different ways students utilized such a platform to manage their
projects and assignments. The research method consisted of entry and exit surveys,
an exit interview, and a qualitative analysis of the commit behavior of students. The
results showed that, despite the steep learning curve, enforcing GitHub in SE team
projects can help students to learn about online version control platforms without
impacting the quality of their work. However, the level of GitHub activity (e.g., number
of commits or quality of commit messages) cannot be used as a reliable proxy for
assessing team performance. In particular, students in different project teams utilized
GitHub differently. Therefore, it was not possible to distill a single metric for effort
assessment that would work for the entire class. Furthermore, the results revealed
that the social features of GitHub were of limited use to the students as they felt more
comfortable communicating using other tools.

The case study reported in this paper contributes to the existing research effort
on developing effective educational strategies for integrating professional software pro-
duction and collaboration platforms into existing CS curricula. Our future work will
include conducting other case studies, using more recent versions of open source tools,
and targeting other variables that are often associated with online collaborative plat-
forms, such as gender bias, team structure, and project type. Our long term goal is
to derive a formal theory that can explain the different factors that control student
collaboration in software-intensive team projects, predict student academic behavior
when using collaborative platforms (e.g., procrastination, free riders, and cowboy pro-
grammers), and aid in individual as well as team student effort assessment.

Acknowledgment

This research is partially supported by the U.S. National Science Foundation under
Grant No. (CCF 1821525) and Louisiana State University Emerging Research Grants
(FRG-E)

References

Akerlof, G. (1991). Procrastination and obedience. The American Economic Review , 81 (2),
1–19.

Buchta, J., Petrenko, M., Poshyvanyk, D., & Rajlich, V. (2006). Teaching evolution of open-
source projects in software engineering courses. In International conference on software
maintenance (pp. 136–144).

Buffardi, K. (2015). Localized open source collaboration in software engineering education.
In Frontiers in education conference (pp. 1–5).

Carver, J., Jaccheri, L., Morasca, S., & Shull, F. (2004). Issues in using students in empirical
studies in software engineering education. In Software metrics symposium (pp. 239–249).

25



Carver, J., Jaccheri, L., Morasca, S., & Shull, F. (2010). A checklist for integrating student
empirical studies with research and teaching goals. Empirical Software Engineering , 15 (1),
35–59.

Chao, J. (2007). Student project collaboration using wikis. In Conference on software engi-
neering education & training (pp. 255–261).

Ciolkowski, M., Laitenberger, O., Vegas, S., & Biffl, S. (2003). Practical experiences in the
design and conduct of surveys in empirical software engineering. Empirical methods and
studies in software engineering , 104–128.

Clark, N. (2005). Evaluating student teams developing unique industry projects. In Aus-
tralasian conference on computing education (pp. 21–30).

Clark, N., Davies, P., & Skeers, R. (2005). Self and peer assessment in software engineering
projects. In Australasian conference on computing education (pp. 91–100).

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Stafford, J., . . . Nord, R. (2000).
Documenting software architectures: Views and beyond. Addison-Wesley.

Colbeck, C., Campbell, S., & Bjorklund, S. (2000). Grouping in the dark: What college
students learn from group projects. The Journal of Higher Education , 71 (1), 60–83.

Coppit, D. (2006). Implementing large projects in software engineering courses. Computer
Science Education, 16 (1), 53–73.

Coppit, D., & Haddox-Schatz, J. (2005). Large team projects in software engineering courses.
In ACM SIGCSE Bulletin (pp. 137–141).

Curtis, T. (2001). So you wanna be a cowboy. IEEE Software, 18 (2), 112–111.
Dinkelacker, J., Garg, P., Miller, R., & Nelson, D. (2002). Progressive open source. In

International conference on software engineering (pp. 177–184).
Feliciano, J., Storey, M.-A., & Zagalsky, A. (2016). Student experiences using GitHub in soft-

ware engineering courses: A case study. In International conference on software engineering
companion (pp. 422–431).

Gates, A., Delgado, N., & Mondragón, O. (2000). A structured approach for managing a
practical software engineering course. In Annual frontiers in education conference. Building
on a century of progress in engineering education (pp. 21–26).

Gokhale, A. (1995). Collaborative learning enhances critical thinking. Journal of Technology
Education, 7 (1), 22–30.

Goold, A., Augar, N., & Farmer, J. (2006). Learning in virtual teams: Exploring the student
experience. Journal of Information Technology Education , 5 , 477–490.

Haaranen, L., & Lehtinen, T. (2015). Teaching Git on the side: Version control system as
a course platform. In ACM Conference on innovation and technology in computer science
education (pp. 87–92).

Hansen, R. (2006). Benefits and problems with student teams: Suggestions for improving team
projects. Journal of Education for Business , 82 (1), 11–19.

Hayes, J., Lethbridge, T., & Port, D. (2003). Evaluating individual contribution toward group
software engineering projects. In International conference on software engineering (pp.
622–627).

Heckman, S., & King, J. (2018). Developing software engineering skills using real tools for
automated grading. In ACM Technical symposium on computer science education (pp.
794–799).

Hollar, A. B. (2006). Cowboy: An agile programming methodology for a solo programmer.
Howell, A., Watson, D., Powell, R., & Buro, K. (2006). Academic procrastination: The pattern

and correlates of behavioural postponement. Personality and Individual Differences , 40 (8),
1519–1530.

Hsing, C., & Gennarelli, V. (2019). Using GitHub in the classroom predicts student learning
outcomes and classroom experiences: Findings from a survey of students and teachers. In
ACM Technical symposium on computer science education (pp. 672–678).

Hu, Z., & Gehringer, E. (2019). Use bots to improve GitHub pull-request feedback. In ACM
Technical symposium on computer science education (pp. 1262–1263).

Johansson, C. (2000). Communicating, measuring and preserving knowledge in software de-

26



velopment (Unpublished doctoral dissertation). Ronneby, Sweden.
Kelleher, J. (2014). Employing Git in the classroom. In World congress on computer applica-

tions and information systems (pp. 1–4).
Kertész, C.-Z. (2015). Using GitHub in the classroom-a collaborative learning experience. In

International symposium for design and technology in electronic packaging (pp. 381–386).
King, P., & Behnke, R. (2005). Problems associated with evaluating student performance in

groups. College Teaching , 53 (2), 57–61.
Klassen, R., Krawchuk, L., & Rajani, S. (2008). Academic procrastination of undergraduates:

Low self-efficacy to self-regulate predicts higher levels of procrastination. Contemporary
Educational Psychology , 33 (4), 915–931.

Knaus, W. (1973). Overcoming procrastination. Rational Living .
Liu, C. (2005). Using issue tracking tools to facilitate student learning of communication skills

in software engineering courses. In Conference on software engineering education & training
(pp. 61–68).

Lo, D., Nagappan, N., & Zimmermann, T. (2015). How practitioners perceive the relevance
of software engineering research. In Joint meeting on foundations of software engineering
(pp. 415–425).

Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., . . . Clause, J.
(2016). An empirical study of practitioners’ perspectives on green software engineering. In
International conference on software engineering (p. 237-248).

Ohlsson, L., & Johansson, C. (1995). A practice driven approach to software engineering
education. IEEE Transactions on Education , 38 (3), 291–295.

Paasivaara, M., Vodă, D., Heikkilä, V. T., Vanhanen, J., & Lassenius, C. (2018). How does
participating in a capstone project with industrial customers affect student attitudes? In In-
ternational conference on software engineering: Software engineering education and training
(pp. 49–57).

Punter, T., Ciolkowski, M., Freimut, B., & John, I. (2003). Conducting on-line surveys in
software engineering. In International symposium on empirical software engineering (pp.
80–88).

Reisbig, A., Jr, M. H., White, M., & Rush, B. (2007). Improving response rates: introducing an
anonymous longitudinal survey research protocol for veterinary medical students. Journal
of Veterinary Medical Education , 34 (2), 194–201.

Rothblum, E., Solomon, L., & Murakami, J. (1986). Affective, cognitive, and behavioral
differences between high and low procrastinators. Journal of Counseling Psychology , 33 (4),
387.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering , 14 (2), 131.

Seppälä, O., Auvinen, T., Karavirta, V., Vihavainen, A., & Ihantola, P. (2016). What com-
munication tools students use in software projects and how do different tools suit different
parts of project work? In International conference on software engineering companion (pp.
432–435).

Slavin, R. (1980). Cooperative learning. Review of Educational Research , 2 (50), 315-342.
Steel, P. (2007). The nature of procrastination: A meta-analytic and theoretical review of

quintessential self-regulatory failure. Psychological Bulletin , 133 (1), 65.
Steinmacher, I., Silva, M., Gerosa, M., & Redmiles, D. (2015). A systematic literature review

on the barriers faced by newcomers to open source software projects. Information and
Software Technology , 59 , 67–85.

Wilkins, D., & Lawhead, P. (2000). Evaluating individuals in team projects. In Sigcse technical
symposium on computer science (p. 172-175).

Williams, D., Beard, J., & Rymer, J. (1991). Team projects: Achieving their full potential.
Journal of Marketing Education , 13 (2), 45–53.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslèn, A. (2012). Ex-
perimentation in software engineering. Springer.

Zagalsky, A., Feliciano, J., Margaret-AnneStorey, Zhao, Y., & Wang, W. (2015). The emer-

27



gence of Github as a collaborative platform for education. In ACM Conference on computer
supported cooperative work & social computing (pp. 1906–1917).

28


	Introduction
	Related Work
	Team Projects in SE Courses
	Using Git/GitHub as Educational Tools
	Summary, Motivation, and Research Questions

	Case Study Setup
	Survey Design and Results
	Survey Design
	Entry Survey Results
	Exit Survey Results
	Exit Interview Results

	Analyzing Students' Commit Behavior
	Analyzing the Commit Timeline
	Team Organization
	Number of Commits vs. Performance
	Quality of Commit Messages vs. Performance

	Discussion and Recommendations
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusions and Future Work

