
Linguistic Change in Open Source Software
Miroslav Tushev∗, Saket Khatiwada†, and Anas Mahmoud‡

Division of Computer Science and Engineering, Louisiana State University
Baton Rouge, LA, 70803

∗mtushe1@lsu.edu, †skhati1@lsu.edu, ‡amahmo4@lsu.edu

Abstract—In this paper, we seek to advance the state-of-the-art
in code evolution analysis research and practice by statistically
analyzing, interpreting, and formally describing the evolution of
code lexicon in Open Source Software (OSS). The underlying
hypothesis is that, similar to natural language, code lexicon falls
under the remit of evolutionary principles. Therefore, adapting
theories and statistical models of natural language evolution
to code is expected to provide unique insights into software
evolution. Our analysis in this paper is conducted using 2,000
OSS systems sampled from a broad range of application domains.
Our results show that a) OSS projects exhibit a significant
shift in their linguistic identity over time, b) different syntactic
structures of code lexicon evolve differently, c) different factors
of OSS development and different maintenance activities impact
code lexicon differently. These insights lay out a preliminary
foundation for modeling the linguistic history of OSS projects.
In the long run, this foundation will be utilized to provide support
for basic software maintenance and program comprehension
activities, and gain new theoretical insights into the complex
interplay between linguistic change and various system and
human aspects of OSS development.

I. INTRODUCTION

Open Source Software (OSS) is a unique phenomenon in
Software Engineering. Unlike traditional commercial software,
the idea of OSS is expressed through volunteer participation of
programmers who work together to write code, make changes,
debug, and maintain the product. Over the past 20 years,
OSS has become a significant factor in driving the growth of
software industry, with major technological companies, such as
Google, Microsoft, and IBM, turning to open source as a more
reliable, cost-effective, and secure development paradigm [1].

The tremendous success of the OSS movement over the past
decade has been boosted by the emergence of online version
control systems, such as GitHub and SourceForge. These
platforms support an integrated set of technical and social
features that enabled software enthusiasts to establish world-
wide social networks of developers at unprecedented scales.
This form of open and decentralized development has forced
OSS projects to adopt more responsive development strategies
(e.g., continuous integration and deployment) in order to
control for quality and meet market pressures [2]. This rapid
pace of change imposes a substantial evolutionary pressure
on OSS projects’ source code. Observing, understanding, and
modeling the dynamics of this evolution enable developers
to diagnose and reverse the symptoms of code aging, make
informed design and maintenance decisions, and ensure a
sustainable and stable delivery process [3]. However, current
version control systems provide a single lens on software

history through commits. Commits record changes per file.
Analysis of online software repositories have reported that
commits and issue tracking systems often hold incomplete or
incorrect data, where a large percentage of change information
is rarely documented or poorly reported [4].

To overcome these limitations, in this paper, we introduce
a new window on software history. In particular, we analyze
software evolution through the lens of developers’ language,
also known as the code lexicon [5]. The vocabulary of this
language, embedded in code identifier names (e.g., method,
variable, class, and package names, etc.) and internal code
comments, captures developers’ understanding of their system
and its application domain at the most primitive level [6].
Our main hypothesis is that words in a software system’s
vocabulary exhibit evolutionary patterns similar to natural lan-
guage words, influenced by various human (developers joining
and departing) and system (maintenance activities) factors of
OSS development. This hypothesis is further supported by
the overwhelming evidence of the natural attributes of code
lexicon and its evolutionary characteristics [7], [8].

Our theoretical foundation in this paper builds upon several
modern theories of natural language evolution [9], [10]. These
theories are proposed to understand, explain, and predict lin-
guistic change as a parameter of cultural and social anthropol-
ogy [9], [10]. To conduct our analysis, we collect and analyze
a large-scale dataset of OSS projects, their revisions, and
metadata. Our contribution lies in testing several assumptions
related to the complex interplay between linguistic change and
various system and human aspects of OSS development. Our
objective is to gain a new perspective into the evolution of
code lexicon in OSS projects as well as provide support for
basic software maintenance and comprehension activities.

The reminder of this paper is organized as follows. Section
II motivates our research. Section III describes our research
questions, data collection, and preliminary analysis. Section
IV discusses the potential implications of our work. Finally,
Section V concludes the paper.

II. BACKGROUND AND MOTIVATION

Linguistic analysis of code has revealed that developers’
vocabulary evolves over time, reflecting various types of
changes that took place between the different revisions of the
system [11], [5]. Such changes might range from a simple
variable rename, to more complex changes, such as fixing
a bug or adding a feature. Antoniol et al. [5], provided a
preliminary evidence that structural and lexical stabilities of

software systems do not have the same distribution. A follow
up study by Abebe et al. [11] found that the vocabulary used
by programmers is subject to an evolutionary pressure similar
to that affecting code structure. Both studies acknowledge
the fact that the evolution of code lexicon does not follow a
trivial pattern and more research is needed to fully understand
it. Furthermore, several researchers have exploited language
modeling techniques (e.g., n-grams [7]) and text power laws
(e.g., Zipf’s and Heap’s laws), to explore statistical regular-
ities in code [12], [8]. The results have largely confirmed
previous speculations about the naturalness of code lexicon
and provided a significant evidence on the presence of text
power laws in code. However, these algorithms are often
applied on static snapshots of software systems, ignoring the
inherently dynamic nature of code. Furthermore, exiting work
often ignores the rule of human factors in linguistic change.
However, developer teams in OSS are inherently diverse, mix-
ing and uniting people from different countries and different
development backgrounds. Whenever a new developer joins
the team, the project’s vocabulary might shift based on their
linguistic preferences and previous syntactic habits, making
OSS projects more prone to linguistic change than other, more
structured, development environments.

Motivated by a) the tremendous growth, unprecedented
success, and wide-spread of OSS products in the software
market b) the overwhelming evidence of the natural attributes
of code lexicon and its evolutionary characteristics, c) the
significant information value of the project vocabulary for
software developers, and d) the limitations of existing code
evolution analysis techniques and tools, in this paper, we
propose to study code evolution in OSS projects through
the lens of developers language. Our main hypothesis is
that, extracting, analyzing, and statistically modeling linguistic
change during OSS projects evolution will provide a new
window on software history, revealing unique aspects of code
evolution that are typically overlooked by existing methods
often available in modern version control systems, such as
observing code file and code line changes.

III. PRELIMINARY ANALYSIS

In OSS development, the frequent maintenance actions
performed on the system as well as the highly dynamic nature
of developer teams, apply immense evolutionary pressures on
the usage and survival capacity of code lexicon words. To
understand and quantify the magnitude of this change, we
formulate the following research questions:
• RQ1: Do OSS projects experience linguistic change over

time?
• RQ2: What OSS development factors impact linguistic

change?
• RQ3: Do different syntactic forms of code lexicon evolve

differently?
These questions are intended to provide a fundamental

understanding of the dynamics of linguistic change in OSS
projects. Answering these questions will help us to gain
new theoretical insights into code evolution and formulate a

research vision on how such insights can be utilized to enable
a more sustainable OSS development process.

A. Data Collection

To conduct our analysis, a large number of OSS projects,
their revisions, and metadata need to be collected from plat-
forms such as GitHub and SourceForge. In our analysis, we
focus on GitHub as our main data collection platform. To
select the projects to include in our dataset, we rely on
GitHub’s starring system. Numerous studies reported that the
number of stars tends to correlate with project success, or
the number of forks, pull requests, commits, and comments
a project receives [13]. To collect our data, we used the
GitHub API to download the top starred Java, C#, Python,
and JavaScript projects (500 x 4) along with their correspond-
ing public releases. Descriptive statistics of our dataset are
provided in Table I.

To extract source code lexicon from our projects, we used
regular expressions [14]. Code lexicon consists of all words
used in the source code except for the programming language
specific keywords. Such words are available in comments,
class and variable declarations, class and variable usage,
method declarations, parameters, generic types, and other
language-specific constructs, such as annotations in Java or
properties in C#. After identifiers are extracted, we further
split any compound words into their constituent words based
on camel-casing (e.g., userID is split into User and ID) or
any special characters (e.g. underscore) typically used in code
naming conventions (e.g., file_type is split into file and
type). After atomic words of code identifiers are extracted,
stemming (Porter stemmer) is applied to reduce words to their
morphological roots.

B. Quantifying Linguistic Change in OSS projects

In the first phase of our analysis, we are interested in
the magnitude of linguistic shift in OSS projects. Based on
Petersen et al.’s word-frequency model [10], the linguistic
change rate (∆λi,j) between two releases ri and rj of the
system can be calculated as the number of different words
(words birth and death) between the two releases divided by
the number of unique words in both releases. The average λs
of a system s which has n releases can be calculated as the
average λi,j between each two consecutive releases in the time
series of the system:

∆λi,j = 1− |ri ∩ rj |
|ri ∪ rj |

, λs(t) =
1

n

n−1∑
i=1

(∆λi,i+1) (1)

To answer RQ1, we calculated the linguistic difference be-
tween the first and last release (λ0,n) of each system in our
dataset. The results are presented in Fig. 1, which shows the
frequency distribution of linguistic change in code and com-
ment overlapped, sorted in an ascending order. The distribution
shows that, between the first and most recent releases, around
50% of the projects experienced more than 40% and 50%
of linguistic shift in their code and comments respectively.
Around 5% of the projects have witnessed more than 90% of

TABLE I: Descriptive statistics of our dataset of OSS projects.

Language Total # of Projects Total # of Releases Average # of Releases Total kLOC Average kLOC
Java 442 9,947 20.60 728,504.91 1,508.29
C# 480 13,482 26.23 1,330,252,20 2,588.04
Python 472 11,818 22.51 835,544,98 1,591,51
JavaScript 481 19,861 39.56 1,162,249,94 2,315,24

200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

10

20

30

40

50

60

70

80

90

100

50% of projects

90% of projects

Projects

Comments
Code

Fig. 1: The frequency distribution of λ0,n for the GitHub
projects in our dataset

Q1 Q2 Q3 Q4

0

20

40

60

80

100

Quartiles

Fig. 2: Average linguistic change rate at different release
quartiles

change in their linguistic identity (code and comments). The
results also show that linguistic change in comments was more
prominent than that of the code. To estimate the magnitude of
linguistic change at different stages of the project’s lifecycle,
we measured the average shift in the project’s language at
different development quartiles. Fig. 2 shows that changes tend
to be more severe at the early quartiles. However, projects
lean toward stability as time goes by, nonetheless, the change
is still significant (12-15%). In summary, we can conclude
that majority of OSS projects exhibit significant shift in their
linguistic identity over time.

C. OSS Factors vs. Linguistic Change

Under this phase of our analysis, we investigate how lin-
guistic change correlates with three main measures of OSS
projects activity (RQ2). These measures, or indicators of
popularity [15], can be described as follows:
• Number of contributors: OSS projects unite developers

(contributors) from around the globe. Therefore, we ex-
pect higher linguistic change levels to be associated with
higher number of contributors.

• Number of releases: a release is a distinct version of the
system that is substantially different from the previous
version. Our expectation is that more releases indicate
more change, thus higher levels of linguistic change.

• Number of commits: the number of commits is often
used as a proxy of OSS team’s productivity [15]. Con-
sequently, projects with higher number of commits are
expected to exhibit larger levels of lexicon shift.

To test if these relationships are statistically significant,
we conducted an Ordinary Least Squares (OLS) Regression
analysis for each programming language. The indicators were
log-transformed to meet the normality assumption. The results
of the analysis are presented in Table II. In general, the number
of contributors seem to have an impact on the linguistic change
of code for Java, C#, and JavaScript. It also showed statistical
significance with comments’ linguistic change for C# and
JavaScript. However, it failed to reach the level of statistical
significance for Python, both for code and comments. The
number of releases consistently predicted linguistic change for
code and comments across all programming languages, with
high statistical significance. In addition, this variable showed
a relatively good exploratory power of the variance in the
dependent variables by achieving larger R2 values. Overall,
the number of releases turned out to be a much stronger
predictor of the linguistic change than all other indicators. The
number of commits consistently showed significance across all
languages. Smaller R2 values suggest that number of commits
is not enough to explain the variation in the dependent
variables. Nevertheless, the relationship is strong and positive.
In summary, linguistic change can be significantly predicted
by the number of published releases and commits. The number
of contributors, however, tends to show mixed results.

D. Lexicon Words Fitness

To examine the impact of the syntactic structure of code
lexicon words on their fitness (RQ3), we analyzed the sur-
vival rates of misspelled words and short forms (single letter
identifiers, abbreviations, and acronyms) in comparison to

TABLE II: Regression analysis of the impact of different factors of OSS development on the linguistic change of code and
comments (cmnt) in different programming languages.

Java C# Python JavaScript

Code Cmnt Code Cmnt Code Cmnt Code Cmnt

Contributors
B 6.91† 1.20 6.25† 6.15∗ 3.11 0.11 14.52‡ 11.81‡

R2 0.03 0.00 0.02 0.01 0.00 0.00 0.07 0.04

Releases
B 27.99‡ 27.80‡ 26.65‡ 31.65‡ 24.24‡ 25.47‡ 27.04‡ 26.06‡

R2 0.28 0.18 0.23 0.24 0.18 0.15 0.21 0.16

Commits
B 7.00‡ 3.94∗ 6.78‡ 6.83† 5.03† 3.32 12.17‡ 8.65‡

R2 0.05 0.01 0.03 0.03 0.02 0.00 0.07 0.03

Note: *p<0.5; †p < 0.01; ‡p < 0.001

correctly spelled natural words in our 2,000 sample projects.
Misspellings were identified using Levenshtein distance and
a natural language dictionary. Based on existing literature, it
makes sense to assume that natural language words will be
more syntactically fit than short forms, while misspellings will
be the least fit. Based on Petersen et al. [10], the fitness of a
word in a project’s vocabulary of size n at a specific release
(t) can be quantified as the number of times that word appears
in the release ui(t) divided by the total number of words in
the release Nu(t), such that:

fi(t) =
ui(t)

N(t)
, N(t) =

n∑
i=1

ui(t) (2)

The word’s birth is marked as the first release where fi(t) >
0, and the release of death is the release at which the word
disappears fi(t) = 0. The average fitness of a word over its
lifetime in a project of n releases, can be calculated as:

〈fi〉 =
1

n

n∑
j=1

fj(t). (3)

The results of our lexicon fitness analysis, based on word
syntactic type (natural, short, and misspelling) is shown in
Fig. 3. In general, the results came out as expected. Natural
language words are the fittest, followed by short forms (ab-
breviations), followed by misspellings. In summary, we can
conclude that different syntactic forms (type and length) have
different survival capacity, or fitness. In what follows, we
discuss the implications of these findings in greater detail.

IV. DISCUSSION AND EXPECTED IMPACT

The main goal of our analysis in this paper is to provide a
preliminary evidence on the natural attributes of code lexicon
evolution. According to Croft’s [16], understanding language
change provides a basis for understanding the generation and
propagation of language structures, thus provides a description
of how a language system may emerge and continue to change
over time.

In general, our preliminary analysis has revealed that the
majority of OSS projects exhibit a significant shift in their lin-
guistic identity over time. This shift seems to be more drastic at
the first quartile of releases, and then tends to happen at almost

Python Java C# Javascript

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
ve

ra
ge

fit
tn

es
s

Natural Words
Acronyms
Misspellings

Fig. 3: Syntactic fitness for various word forms

a steady pace. We also notice that this change is far from
being a linear function of the number of releases, contributors,
and commits. Furthermore, our preliminary results suggest
the presence of a syntactic Darwinian effect between words,
where less fit syntactic forms (i.e., misspellings and short
forms) are more prone to go extinct than their natural counter-
parts. Another interesting observation is that, some words tend
to show significant fluctuation in their utility (disappearing and
reappearing multiple times). Examining our projects shows
that the majority of these words are common misspellings of
natural words (e.g., idetifies, exising). These findings represent
the basis for our future work agenda in this domain. Our aim
is to provide a fundamental understating of how conventions
in OSS projects emerge and become shaped by selection.
Specifically, by analyzing massive numbers of OSS projects,
their revisions, and metadata, we seek to advance the state-of-
the-art in code evolution analysis research and practice along
the following directions:

• Documenting software history: Developers frequently
ask questions about the history of the code to understand
the change rationale, track bugs to their origin, or trace
features to their older versions [3]. Code lexicon change
is typically influenced by maintenance activities (e.g.,
adding features, fixing bugs, and refactoring). Therefore,
the ability to capture and model the change in the

system’s vocabulary is expected to reveal the history
of events that led to these changes. An underlying as-
sumption is that different software evolution activities
have different impacts on the systems vocabulary. This
analysis will enable us to quantify OSS projects’ memory
by documenting their linguistic change, thus provide a
unique window on software history.

• Supporting code change activities: Analyzing the fit-
ness of system vocabulary can reveal the importance of
the different system features and describe the way the
system has evolved to its current state. For instance, by
mapping words’ fitness to the importance of the code they
describe, architecturally significant code can be identified
and protected. Using such information, any contribution
that is directed toward semantically fit words can be
subjected to more intensive code reviews. Furthermore,
word fitness analysis can be utilized during code reviews
to preserve the syntactic fitness of the project and provide
project-specific styling and naming restrictions for OSS
development [12]. In fact, such restrictions can be further
utilized for devising automated methods for faster style
checking, especially that recent research has shown that
around 25% of code reviews in OSS development contain
suggestions about naming [12].

• Building OSS teams: it is important to understand
how the internal dynamics of developer teams and the
linguistic norms of the project jointly evolve. In their
work on online communities, Danescu-Niculescu-Mizil et
al. [17] reported that members of an online community
who fail to adapt to the evolving linguistic norms of
the community are projected to leave the community.
Assuming that OSS projects offer an underlying social
structure that resembles an online community, it would
be important to examine the impact of linguistic change
on members (developers) of OSS teams. Specifically,
identifying the linguistic habits of OSS developers and
their level of linguistic adaptation can help to identify
optimal linguistic change rates that can sustain partic-
ipation levels in OSS team. Such information can aid
in predicting, early in developers’ career, how long they
will stay active in the community. According to Schilling
et al. [18], the early identification of developers who
are likely to remain is an eminent challenge for the
management of OSS initiatives. Furthermore, resolving
the relations between linguistic change and other aspects
of OSS code development will enable us to uncover best
practices for fostering and controlling innovation in OSS
development teams. For instance, resolving the relations
between linguistic stability, code quality, and developer
creativity will enable us to provide practical guidelines
for reviewing code contributions. Our goal is to define
the levels of linguistic change that can be optimal for
keeping the system’s quality under control, at the same
time, do not restrain OSS developers’ creativity.

V. CONCLUSIONS

In this paper, we proposed to study code evolution in OSS
projects from the unique perspective of developer language.
Our main hypothesis is that, in distributed development en-
vironments, code lexicon is constantly changing in response
to immense evolutionary pressure. Capturing, modeling, and
interpreting such change can provide a unique window on
software change, providing insights into software history that
are often missed by existing code evolution analysis methods.
The results provided an initial evidence on the magnitude of
lexicon change, its natural attributes, and main driving forces.
Based on this evidence, we introduced several directions of
future work that are aimed at using linguistic change as a
factor to identify best practices for managing and sustaining
successful OSS projects and vibrant OSS communities.

ACKNOWLEDGMENT

This research is supported by the U.S. National Science
Foundation (Award CCF 1821525).

REFERENCES

[1] A. Boulanger, “Open-source versus proprietary software: Is one more
reliable and secure than the other?” IBM Systems, vol. 44, no. 2, pp.
239–248, 2005.

[2] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs,
and benefits of continuous integration in open-source projects,” in ASE,
2016, pp. 426–437.

[3] M. Codoban, S. Ragavan, D. Dig, and B. Bailey, “Software history under
the lens: a study on why and how developers examine it,” in ICSME,
2015, pp. 1–10.

[4] T. Zimmermann, S. Kim, A. Zeller, and J. Whitehead, “Mining version
archives for co-changed lines,” in MSR, vol. 6, 2006, pp. 72–75.

[5] G. Antoniol, Y. Gueheneuc, E. Merlo, and P. Tonella, “Mining the
lexicon used by programmers during sofware evolution,” in ICSM, 2007,
pp. 14–23.

[6] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” in ICPC, 2006, pp. 3–12.

[7] A. Hindle, E. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness
of software,” in ICSE, 2012, pp. 837–847.

[8] D. Pierret and D. Poshyvanyk, “An empirical exploration of regularities
in open-source software lexicons,” in ICPC, 2009, pp. 228–232.

[9] E. Lieberman, J.-B. Michel, J. Jackson, T. Tang, and M. Nowak,
“Quantifying the evolutionary dynamics of language,” Nature, vol. 449,
p. 713, 2007.

[10] A. Petersen, J. Tenenbaum, S. Havlin, and E. Stanley, “Statistical laws
governing fluctuations in word use from word birth to word death,”
Scientific reports, vol. 2, p. 313, 2012.

[11] S. Abebe, S. Haiduc, A. Marcus, P. Tonella, and G. Antoniol, “Analyzing
the evolution of the source code vocabulary,” in CSMR, 2009, pp. 189–
198.

[12] M. Allamanis and C. Sutton, “Mining source code repositories at
massive scale using language modeling,” in MSR, 2013, pp. 207–216.

[13] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in GitHub,” in
FSE, 2015, pp. 805–816.

[14] S. Khatiwada, M. Kelly, and A. Mahmoud, “STAC: A tool for static
textual analysis of code,” in ICPC, 2016, pp. 1–3.

[15] B. Vasilescu, D. Posnett, B. Ray, M. van den Brand, A. Serebrenik,
P. Devanbu, and V. Filkov, “Gender and tenure diversity in GitHub
teams,” in CHI, 2015, pp. 3789–3798.

[16] W. Croft, Evolution: Language Use and the Evolution of Languages.
Springer Berlin Heidelberg, 2013, pp. 93–120.

[17] C. Danescu-Niculescu-Mizil, R. West, D. Jurafsky, J. Leskovec, and
C. Potts, “No country for old members: User lifecycle and linguistic
change in online communities,” in WWW, 2013, pp. 307–318.

[18] A. Schilling, S. Laumer, and T. Weitzel, “Who will remain? An
evaluation of actual person job and person team fit to predict developer
retention in FLOSS projects,” in HICSS, 2012, pp. 3346–3455.

	Introduction
	Background and Motivation
	Preliminary Analysis
	Data Collection
	Quantifying Linguistic Change in OSS projects
	OSS Factors vs. Linguistic Change
	Lexicon Words Fitness

	Discussion and Expected Impact
	Conclusions
	References

