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Abstract—The popularity of smart-home assistant systems such
as Amazon Alexa and Google Home leads to a booming third-
party application market (over 70,000 applications across the
two stores). While existing works have revealed security issues in
these systems, it is not well understood how to help application
developers to enforce security requirements. In this paper, we
perform a preliminary case study to examine the security vetting
mechanisms adopted by Amazon Alexa and Google Home app
stores. With a focus on the authentication mechanisms between
Alexa/Google cloud and third-party application servers (i.e. end-
points), we show the current security vetting is insufficient as
developers’ mistakes cannot be effectively detected and notified.
A weak authentication would allow attackers to spoof the cloud
to insert/retrieve data into/from the application endpoints. We
validate the attack through ethical proof-of-concept experiments.
To confirm vulnerable applications have indeed passed the
security vetting and entered the markets, we develop a heuristic-
based searching method. We find 219 real-world Alexa endpoints
that carry the vulnerability, many of which are related to critical
applications that control smart home devices and electronic cars.
We have notified Amazon and Google about our findings and
offered our suggestions to mitigate the issue.

I. INTRODUCTION

Smart home assistant systems such as Amazon Alexa and

Google Home are entering tens of millions of households

today [12]. As a result, the corresponding app marketplace

is also expanding quickly. Just like installing apps on smart-

phones, users can enable third-party applications for smart-

assistant devices. These applications are called “skills” or

“actions”. So far there are collectively more than 70,000 skills

available [2], [1], many of which are security/safety-critical.

For example, there are skills that allow users to manage

bank accounts, place shopping orders, and control smart-home

devices through a voice interface.

Considering the sensitive nature of smart-home assistants,

researchers have looked into the security aspects of these

systems and their third-party applications. For example, re-

cent studies show that it is possible to craft a voice clip

with hidden commands embedded that are recognizable by

the Alexa device but not by human observers [7], [19]. In

addition, researchers demonstrate the feasibility of a “skill

squatting” attack to invoke a malicious application whose

name sounds like the legitimate one [13]. A recent survey

study [4] investigated the network interfaces of many IoT

devices (including smart-assistant devices) to reveal their weak

encryptions and unpatched OS/software. While most existing

studies focus on the system and device-level flaws, limited

efforts are investigated to vetting the security of third-party

applications, and more importantly, helping developers to

improve the security of their applications.

In this paper, we perform a preliminary case study to exam-

ine the mechanisms that Amazon and Google implemented to

vet the security of third-party applications for their smart home

assistants. More specifically, before a third-party application

(or “skill”) can be published to the app stores, they must go

through a series of automated tests and manual vetting. In this

paper, we seek to understand (1) what aspects the security

vetting process is focused on, and (2) how effective the vetting

process is to help developers to improve security.

As a preliminary study, we focus on the authentication

mechanism used by the third-party application’s server (called

“endpoint”) to authenticate the cloud (namely, cloud au-

thentication). We choose cloud authentication because cloud-

endpoint interaction is a key component that makes smart-

home assistant skills structurally different from the conven-

tional smartphone apps. Smart assistant skills need to route

their traffic to a central cloud to translate a voice command to

an API call in order to interact with the application server.

Amazon Alexa runs both automated vetting and manual

vetting before a skill can be published, while Google Home

only runs manual vetting. Our methodology is to build our own

(vulnerable) skills and walk them through the required testing

to understand the vetting process. Our results show concerning

issues in terms of the enforcement of cloud authentication.

First, we find that the Google Home vetting process does

not require the endpoints to authenticate the cloud and their

queries, which leaves the endpoints vulnerable to spoofed

queries. Second, Amazon Alexa requires skills to perform

cloud authentication, but does a poor job enforcing it on third-

party developers. Alexa performs automated vetting that is

supposed to detect and inform developer mistakes in the skill

implementation. However, the security tests are erroneous and

have missed important checks (e.g., application identifiers). As

a result, a vulnerable skill, in theory, can pass the vetting to

enter the app store.

To illustrate the problem, we run controlled experiments to

show how an outsider can spoof the cloud to query the target

endpoint. More specifically, an attacker can build its own skill

application, and use this skill to obtain a valid signature from

the cloud for the attack traffic. Then the attacker can replay



the signed traffic to attack the target endpoints. The attack is

possible because the cloud uses the same private key to sign

all the traffic for all the skills. The signature obtained by the

attacker’s skill works on the victim’s endpoint too. We validate

the feasibility of the attack and show that vulnerable skills can

bypass both the automated tests and the manual vetting process

to enter the app markets.

To confirm that there are indeed vulnerable skills in practice,

we perform a scanning experiment. Since all Google Home

skills are by default vulnerable, this experiment focused on

searching for vulnerable Alexa skills. We leverage ZMap

to locate live HTTPS hosts and replay a spoofed but non-

intrusive query to see if a given HTTPS host returns a valid

response. In this way, we located 219 vulnerable real-world

Alexa endpoints. A closer analysis shows that some of these

vulnerable endpoints are related to important skills such as

those that control electric cars, smart locks, security cameras,

and watering systems.

We make three main contributions:

• First, we present an empirical analysis of the security

vetting process used by Amazon and Google to vet

their smart-home assistant skills. We find that the cur-

rent vetting process is insufficient to identify and notify

developers of the authentication issues in their endpoints.

• Second, we validate the problem by running a proof-of-

concept cloud spoofing attack, in an ethical manner.

• Third, we discover real-world applications that carry the

vulnerability. We notified Amazon and Google about our

findings and offered our suggestions to mitigate the issue.

II. BACKGROUND & MOTIVATION

Alexa and Google Home Skills. Both platforms support

third-party applications, which are called “Skills” on Alexa

and are called “Actions” on Google Home. For convenience,

we refer to applications of both platforms as “skills”. Figure 1

shows how a user interacts with a skill. (¶) a user talks to

the edge device to issue a voice command. (·) the edge

device passes the audio to the Alexa cloud. (¸) the cloud is

responsible to convert the speech to text and recognize which

skill the user is trying to interact with. In addition, the cloud

infers the “intent” of the command and match it with the

known intents pre-defined by the skill developers. Here, intent

is a short string to represent the functionality of the skill. After

that, the cloud sends an HTTPS request to the skill’s endpoint

(i.e., a web server). (¹) the endpoint sends the response back,

and (º) the cloud converts the text-based response to audio,

and (») plays it at the edge-device. Note that the edge device

never directly interacts with the endpoint, and every request

is routed through the cloud. For certain skills, users need to

explicitly “enable” them, but many other skills can be directly

triggered/used by calling the skill’s name.

Skill developers need to implement the endpoint to respond

to user requests. For simple skills that do not require a

database, both Alexa and Google provide a “serverless” option

for developers to hard-code the responses in the cloud. For

sophisticated skills, an endpoint is needed.
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Fig. 1: The execution of a simple voice command.

Authentication between Entities. The system contains

three main entities: the edge device, the cloud, and the

endpoint. Both Alexa and Google require HTTPS for all

communications, which also helps the clients to authenticate

the servers. In order for the servers to authenticate the clients,

first, in step ·, the cloud needs to authenticate the edge

device. This can be done because an “access token” has been

exchanged when the user first sets up the edge device at home.

Second, in step ¸, the endpoint also needs to authenticate the

cloud. This step helps the endpoint to ensure that the queries

are indeed coming from the Alexa/Google cloud instead of

outsiders. We call it “cloud authentication”, which is done in

different ways for Alexa and Google. Amazon Alexa uses a

public-key based method. The cloud signs its request payload

with a private key, and the skill endpoints can verify the

signature using the cloud’s public key when receiving the

request. The verification is required. Google Home does not

require authentication between the cloud and the endpoints.

Security Vetting Process. To make sure the skill and the

endpoint are implemented properly, there are two types of

vetting deployed by Amazon Alexa and Google Home.

• Automated Skill Vetting. Alexa requires a skill to pass a

series of tests before allowing the skill to enter the app

store. The test is fully automated and covers both func-

tional tests and security tests. Google Home, however,

doesn’t have an automated test for the skill endpoint.

• Manual Vetting. For both Alexa and Google, there are

dedicated teams that perform manual vetting on the skill

before publishing the skill.

Our Focus. Our goal is to perform a case study to learn

how effective the security vetting is and how well it helps de-

velopers to develop secure skills. We primarily focus on cloud

authentication between the cloud and the third-party endpoints

because it is entirely implemented by the skill developers. In

addition, the cloud-to-endpoint communication is also the key

reason why smart-assistant skills are fundamentally different

from conventional mobile apps — there is a need for the

cloud in the middle to translate a voice command to an

API call. Considering app developers often lack the security

experience [3], [15]. Amazon and Google are in the best

position to act as the gatekeeper to ensure all the developer

components that interact with their infrastructure (i.e., the

cloud) are securely implemented.



Implementation
Certificate Options

Standard Wildcard Invalid
Pass? #Req. Pass? #Req. Pass? #Req.

Valid 3 30 3 30 7 23

Ignore App-ID 3 30 3 30 7 23

Ignore Time 3 30 3 30 7 23

Accept All 7 30 7 30 7 23

Reject All 7 35 7 35 7 33

Offline 7 0 7 0 7 0

TABLE I: Results of Alexa automated test. We report whether

the skill passed the test, and the number of testing requests that the

endpoint received.

III. AUTOMATED SKILL VETTING

We start with Alexa’s automated skill vetting (since Google

Home does not have an automated vetting process). Our goal

is to understand what security tests are running against the

skill under vetting. We build our own skills, deliberately leave

mistakes, and examine if the automated tests can detect them.

A. Setting Up Vulnerable Skills

We implement an Alexa skill with 6 different versions and

each version contains different security or functional errors.

Supported Intents. Every Alexa skill should support 6 de-

fault command-lines defined by Amazon Alexa, and at least 1

custom command-lines defined by the developer. The 6 default

command-lines are mapped to 6 built-in intents. These intents

include “LaunchRequest”, “StopIntent”, “CancelIntent”, “Fall-

backIntent”, “HelpIntent”, and “NavigateHomeIntent”, which

are used to perform the basic controls of the skill. We

implement the skill to support all 6 default intents and 1

custom intent that takes an integer parameter.

HTTPS Certificate. Both Alexa and Google require

HTTPS for the endpoints. Two types of certificates are allowed

including standard certificate and wildcard certificate. For our

experiment, we test both types of valid certificates, and use a

self-signed certificate as the baseline.

Implementing the Cloud Authentication. The cloud

authentication is used for the endpoints to authenticate the

incoming requests from the cloud. According to the Alexa

documentation, the request from the cloud will contain the

signature from the cloud. In addition, each request also

contains an application-ID which indicates which application

(skill) this request is intended for; and a timestamp. Below,

we develop 6 different versions of the endpoints:

1) Valid implementation: For a given request, we validate

the cloud signature, application-ID, and timestamp be-

fore sending a response.

2) Ignoring application-ID: Everything is implemented

correctly, except that we ignore the application-ID.

3) Ignoring timestamp: Everything is implemented cor-

rectly, except that we ignore the timestamp.

4) Accepting all requests: We do not perform authentica-

tion, and always return a legitimate response.

5) Rejecting all requests: We drop all the requests.

6) Offline endpoint: The endpoint is not online.

B. Skill Testing Results

We tested our skill with 18 different settings (3 certificates ×

6 endpoint implementations) in September 2019. As shown in

Table I, standard certificate and the wildcard certificate return

the same results. However, when using an invalid certificate

(self-signed), even the correct implementation could not pass

the test. The test was terminated immediately when the invalid

certificate was detected. This result indicates that the auto-

mated tests have successfully identified invalid certificates.

As shown in Table I, the “Accept All” implementation failed

to pass the test. Analyzing the server logs shows that Alexa

cloud has sent a number of queries that carry empty or invalid

signatures. If we accept these requests, Alexa will determine

the endpoint is vulnerable and should not be published in the

store.

However, we notice that the “Ignore Application-ID” and

“Ignore Timestamp” implementations both passed the auto-

mated test. This means that if the endpoint validates the

signature but ignores the application-ID or the timestamp, the

skill can still proceed to be published. The result raises a major

concern. Without validating the application-ID, an endpoint

may accept a (malicious) request that is not intended for itself.

IV. SPOOFING THE CLOUD

The above experiment has two takeaways. First, Alexa

enforces the endpoint to validate the signature of the incoming

request; This means that published skills only accept incoming

requests signed by Alexa. Second, Alexa does not enforce the

endpoint to validate the application-ID or the timestamp. This

means it’s possible a skill endpoint may accept and process

outdated requests or requests that are not intended for itself.

This can lead to a cloud spoofing attack.

Attacking Method. Given a target skill (the victim), the

attacker’s goal is to spoof the cloud to interact with the

endpoint to insert or retrieve data. We use Figure 2 to describe

the attack process. The idea is that the attacker builds its own

skill, and use this skill to sign the malicious request that will

be used for the attack. (¶) the attacker registers its own skill

and the mocking intent. The mocking intent should mimic

one of the victim skill’s intents (so that the crafted payload

is understandable by the victim endpoint). (·) Both Alexa

and Google have a text interface that allows the developers

to type in their command-lines for testing purposes. Using

this text interface, the attacker can trigger the cloud to send

a request with malicious payload to its own endpoint. (¸) At

this point, the request already carries a valid signature signed

by the Alexa cloud. (¹) The attacker can record this request

and replay it to the target endpoint. The victim endpoint will

believe the request is from the Alexa cloud. Since Alexa cloud

uses the same private key to sign all the requests for all skills,

the signature signed for one skill works for another skill.

An endpoint can detect this attack if the endpoint checks

the application-ID in the request: the application-ID inside of

the request is still the ID of the attacker’s skill. Because the

application-ID is inserted by the Alexa cloud before signing

the payload, the attacker cannot modify this field.





IPs enable
Port443

Round 1 Round 2 Total
Domain

Set
Candidate

Hosts
Vul.

EPoints
Vul.

EPoints
Vul.

EPoints

48,141,053 3,196 3,346,425 122 100 219

TABLE II: Searching results of vulnerable endpoints.

if the IP is known, the skill service is not necessarily always

hosted under the root path.

Method Overview. We propose a heuristic-based searching

method, based on two intuitions. First, a skill endpoint is re-

quired to support HTTPS, which means the port 443 should be

open. Second, an Alexa endpoint should support the default in-

tents such as “LaunchRequest” and “StopIntent”. The response

for a default intent request should follow the special JSON

format defined by Alexa. As such, we search for vulnerable

skill endpoints by scanning the HTTPS hosts with a testing

query. The query carries the spoofed “LaunchRequest” intent

which is a default intent that every Alexa skill should support.

We choose this intent because “LaunchRequest” won’t cause

any internal state change or reveal any non-public information.

Implementation. Given the large number of HTTPS hosts

and the need for guessing the path, it is not feasible to test a

large number of possible paths on all HTTPS hosts. As such,

we prioritize search efficiency by sacrificing some coverage.

First, we focus on a small set of HTTPS hosts and test many

possible paths. Then we select the most common path to scan

the rest HTTPS hosts.

For round-1, we select a small set of HTTPS hosts that are

more likely to be the skill endpoints. More specifically, we

crawled 32,289 Alexa skills pages from Amazon store, and

extract their URLs of the privacy policies. Our hypothesis is

that the skill endpoint might share the same domain name

with the privacy policy URL. Note that some skills host their

privacy policy on cloud services (e.g., “amazonaws.com”).

As such, we make a whitelist of web hosting services and only

consider the hostname (instead of the domain name) in their

privacy policy URLs as the candidate.

Then we test a list of possible paths. We obtain the path

information by analyzing the example code on the Developer

Forum of Alexa and related question threads in StackOverflow.

For each host, we test the root path “/”, and other possible

paths including “/alexa”, “/echo”, “/api”, “/endpoint”, “/skill”,

“/iot”, “/voice”, “/assistant”, and “/amazon”.

After round-1, we expect to find some real-world skill

endpoints. Then, we select the most common non-root path

name. We use this pathname and the root path to test all the

HTTPS hosts that have not been tested in round-1.

Ethical Considerations. We have taken active steps to

ensure research ethics. First, for each host, we only send a

handful of queries that have minimal impact on the target

host. Second, as detailed below, we re-use the ZMap scan-

ning results [9] instead of performing our own network-wise

scanning to identify HTTPS hosts. The scope is aligned with

ZMap port 443 scanning which excludes a list of hosts that

don’t want to be scanned. We respect Internet hosts that don’t

want to be scanned by ZMap and did not test these hosts.

Third, we only test a non-intrusive Intent that does not cause

any internal state change of the skill service or reveal any

non-public information.

B. Detecting Vulnerable Skill Endpoints

We start with a list of 48,141,053 IPv4 addresses with an

open 443 port from ZMap’s scanning result archive [9].

Round-1 Search. As shown in Table II, we obtained the

Privacy policy URLs from all the 32,289 skills available in

the Alexa U.S. skill store. We extracted 3,196 unique domain

names. By matching these domain names with those of the 48

million HTTPS hosts, we got 3,346,425 candidate hosts.

By testing the spoofed intent (and candidate paths), we

found 122 Alexa skill endpoints that provided a valid response.

Here we use an IP address to uniquely represent an endpoint

server. In fact, we have identified 174 URLs that have returned

a valid response. Some of the URLs are actually mapped to

the same IP address.

Round-2 Search. Based on the round-1 result, we find that

“/alexa” is the most common path (88 out of 174), followed

by the root path (30 out of 174). Next, we use these two paths

to perform the round-2 searching. As shown in Table II, we

discovered 100 additional vulnerable endpoints.

Vulnerable Skill Endpoints. From the two rounds of

searching, we detected in total 219 vulnerable Alexa end-

points. It should be noticed that the searching result is only

a lower-bound considering the incomplete guessing of path-

names. There could be even more vulnerable skill endpoints.

We then examine the geolocation distribution of these

vulnerable endpoints based on their countries. We observe

that more than half of vulnerable endpoints (115, 52.5%) are

located in the United States, followed by Germany (35, 16.0%)

and Ireland (16, 7.3%). The top 3 countries cover 75.8% of

all vulnerable endpoints.

Case Studies. We send another spoofed “HelpIntent”

request to each endpoint, and the returned information helps

to identify the actual skills. Some vulnerable skills are less

“safety-critical” which are related to games, sports, and news.

However, there are indeed skills that are providing critical

services. For example, one vulnerable skill on Alexa is used

for controlling electric cars. At least three vulnerable skills are

from online banking services. A number of vulnerable skills

are used to control other smart-home or IoT devices to adjust

the air purifier and thermostats, set an alarm for the home

security system, and keep track of water and electricity usage.

We give a few specific examples below.

“Brunt” is an automated home furnishing accessory com-

pany, and its products include smart plugs, wireless chargers,

air purifiers, blind controllers, and power sockets. The vulnera-

ble skill “Brunt” supports turning on and off Brunt devices and

changing their configurations. “My Valet” is one of the most

popular skills that can control Tesla cars. The skill can be used

remotely to lock and unlock the car, obtain information of the

car’s current location, and open the roof and the trunk. Note

that the skill is not officially developed by Tesla, and the skill’s



endpoint is vulnerable to cloud spoofing. “Newton Mail” is an

email application, supporting reading recent emails and other

common operations such as deleting an email.

VII. RELATED WORK

IoT Security & Privacy. With the wide adoption of IoT

devices, security and privacy have become a pressing issue [5].

A related research direction looks into the user authentica-

tion schemes of IoT devices [18], malicious command-lines

injection [6] and controlling the device through inaudible

voice [19] due to a lack of authentication. A recent work

that incorrect endpoint side checks can lead to severe attacks

including password brute-forcing, leaked password probing,

and security access token hijacking [20]. Our work is different

since we look into smart-home assistant systems and examine

the interaction between the cloud and third-party endpoints

(instead of user-end authentication).

App Developers and Security Coding. A related body

of work focuses on understanding the mistakes made by

app developers. For example, researchers show that many

poorly implemented security mechanisms in mobile apps

are due to developers who are inexperienced, distracted or

overwhelmed [3], copying and pasting code from online fo-

rums [16], asking more permission than they need [17], [11] or

failing to use cryptographic API correctly [10]. Even with tools

to help the developers in the Android development environ-

ment [14], it is often not enough to prevent insecure apps [17].

While most existing works are focused on smartphone apps,

we for the first time investigate this issue in smart assistant

systems. Our result shows that more work needs to be done

to help the developers.

VIII. DISCUSSION & CONCLUSION

The problem described in the paper comes from the insuffi-

cient security vetting process before releasing the applications

into the market. There is a confusion between cloud and

application-level authentication in Alexa’s automated testing.

Alexa enforced an endpoint to verify the cloud identity but did

not enforce the verification of the application identity. This

makes endpoints vulnerable to replayed requests that were

intended for other applications (e.g., the attacker’s skill). We

have reported our findings to the Alexa and Google Home

team and informed them about our experiments. The coun-

termeasure is to implement dedicated skill tests and enforce

developers to check the application-ID and the timestamp.

Our work has a few limitations. First, our search only

covers a limited number of “paths”. The number of vulnerable

endpoints can only be interpreted as a lower bound. Second,

we only confirmed that the endpoints were vulnerable to cloud

spoofing attacks. We did not further test SQL injection attacks

for ethical considerations. An open question is how to design

the security vetting process to effectively help developers.

First, we need to improve the coverage of the automated tests

to perform more security checks. Second, we need to provide

informative and actionable feedback to developers. Such a

mechanism can be integrated into the software development

kit (SDK) for developers.
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