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Abstract—Human mobility trajectories are increasingly collected by ISPs to assist academic research and commercial applications.
Meanwhile, there is a growing concern that individual trajectories can be de-anonymized when the data is shared, using information
from external sources (e.g. online social networks). To understand this risk, prior works either estimate the theoretical privacy bound or
simulate de-anonymization attacks on synthetically created datasets. However, it is not clear how well the theoretical estimations are
preserved in practice. In this paper, we collected a large-scale ground-truth trajectory dataset from 2,161,500 users of a cellular
network, and two matched external trajectory datasets from a large social network (56,683 users) and a check-in/review service
(45,790 users) on the same user population. The two sets of large ground-truth data provide a rare opportunity to extensively evaluate
a variety of de-anonymization algorithms (9 in total). We find that their performance in the real-world dataset is far from the theoretical
bound. Further analysis shows that most algorithms have under-estimated the impact of spatio-temporal mismatches between the data
from different sources, and the high sparsity of user generated data also contributes to the under-performance. Based on these
insights, we propose 4 new algorithms that are specially designed to tolerate spatial or temporal mismatches (or both) and model
location and time contexts. Extensive evaluations show that our algorithms achieve more than 17% performance gain over the best
existing algorithms, confirming our insights. Further, we propose 2 new location-privacy preserving mechanisms utilizing the
spatio-temporal mismatches to better protect users’ privacy against the de-anonymization attack. Evaluation results show that our
proposed mechanisms can reduce the performance of de-anonymization attacks by over 8.0%, demonstrating the effectiveness of our
insights.

Index Terms—Privacy, Anonymization and De-anonymization, ISP, Spatio-Temporal Trajectory.
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1 INTRODUCTION

ANONYMIZED user mobility traces are increasingly col-
lected by Internet Service Providers (ISP) to assist vari-

ous applications, ranging from network optimization [52] to
user population estimation and urban planning [13]. Mean-
while, detailed location traces contain sensitive information
about individual users (e.g., home and work location, per-
sonal habits). Even after the data is anonymized, there is a
growing concern that users can still be re-identified through
external information [49]. Recently, the US congress has
moved towards repealing the Internet Privacy Rules and
legalizing ISPs to share (or monetize on) user data [15]. The
key question is till yet to be answered: how much of user
privacy is leaked if the ISP shares anonymized trajectory
datasets?

To answer this question, early research estimates the
theoretical privacy bound by assessing the “uniqueness”
of the trajectories [11], [49], which shows that trajectory
traces are surprisingly easy to de-anonymize. With 4 spatio-
temporal points or top 3 most visited locations, results
in [11], [49] show that 80%–95% of the users can be uniquely
re-identified in a metropolitan city.

Recently, researchers start to evaluate more practical
attacks by de-anonymizing ISP trajectories using external in-
formation (e.g., location check-ins from social networks) [9],
[12], [16], [17], [26], [31]–[33], [37]–[39], [44]. However, due to
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the lack of large empirical ground-truth datasets, researchers
have to settle synthetically generated data (e.g., using parts
of the same dataset as the victim dataset and the external
information source) [26], [38]. To date, it is still not clear how
easy (or difficult) attackers can massively de-anonymize
user trajectories in practice.

In this work, we spent significant efforts to collect two
large-scale ground-truth datasets to close the gaps between
theory and practice. By collaborating with a major ISP
and two large location-based online services in China, we
obtain 2,161,500 ISP trajectories (as the target dataset), 56,683
users’ GPS/check-in traces from a large social network
(external information) and 45,790 users’ GPS traces from a
large online review service (external information). The three
datasets cover the same user population with the ground-
truth mapping.1 Using this dataset, we seek to empirically
evaluate how well de-anonymization algorithms approach
the privacy bound, and what practical challenges (if any)
that are often neglected when designing these algorithms.
Answering this question helps to provide more accurate
assessment on the privacy risks of sharing the anonymized
ISP traces.

By implementing and running 9 major de-
anonymization algorithms against our dataset, we find
the existing algorithms largely fail the de-anonymization
task using practical data. Their performance is far from the
privacy bound [11], [49], and massive errors occur, i.e., the
hit-precision is less than 20%. Further analysis reveals a

1. Personally identifiable information (PII) has been removed before
the data is handled to us. This work received the approvals from our
local intuitional board, the ISP, the online social network, and the online
review service.
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number of key factors that are often neglected by algorithm
designers. First, there widely exist significant spatio-
temporal mismatches between the ISP trajectories and
the external GPS/check-in traces, caused by positioning
errors and different location updating mechanisms. In
addition, user trajectory datasets are highly sparse across
time and users, making the de-anonymization attack very
challenging in practice.

To validate our insights, we design 4 new algorithms that
specially address the practical factors. More specifically, we
propose a spatial matching (SM) algorithm and a temporal
matching (TM) algorithm, which tolerate spatial and tem-
poral mismatches respectively. Further, we build a Gaussian
and Markov based (GM) algorithm that considers spatio-
temporal mismatches simultaneously. Finally, we enhance
the GM model by adding a user behavior model in terms of
time context to incorporate human mobility patterns (GM-
B algorithm). Extensive evaluation shows that our algo-
rithms significantly outperform existing algorithms. More
importantly, our experiments reveal new insights into the
relationship between human mobility and privacy. We find
that tolerating temporal mismatches is more important than
tolerating spatial mismatches. An intuitively explanation is
that human mobility has a strong locality, which naturally
sets a bound for location mismatches. However, at the tem-
poral dimension, since the errors are unbounded, making
the algorithm aware of the temporal matches makes a bigger
difference to the de-anonymization performance. Finally, the
GM and GM-B algorithms achieve even better performance
by considering different mismatches and human behavior
models at the same time.

Having demonstrated the usefulness of the practical
factors in de-anonymization attack, we further consider
utilizing them to better protect users’ privacy against the
de-anonymization attack. Specifically, we propose 2 new
location-privacy preserving mechanisms, which utilize the
distribution of spatio-temporal mismatches in obfuscat-
ing the ISP trajectories. Evaluation results show that our
proposed mechanisms can reduce the performance of de-
anonymization attacks, demonstrating the effectiveness of
our insights.

Overall, our work makes four key contributions:

• First, we collect three large-scale trajectory datasets
(with ground-truth) to evaluate de-anonymization
attacks. The datasets contain 2,161,500 ISP trajecto-
ries, 56,683 external trajectories, and 45,790 external
trajectories respectively, which help to overcome the
limitations of theoretical analysis and simulated val-
idations.

• Second, we build an empirical evaluation frame-
work by categorizing and implementing existing de-
anonymization algorithms (9 in total) and evalua-
tion metrics. Our evaluation on real-world datasets
reveals new insights into the existing algorithms’
under-performance.

• Third, we propose new algorithms by addressing
practical factors such as spatio-temporal mismatches,
location contexts, and time contexts. Optional com-
ponents such as user historical trajectories can also
be added to our framework to improve the perfor-
mance. Extensive performance evaluation shows that
our algorithms achieve over 17% performance gain
in terms of hit-precision. In addition, our algorithms

stay robust using parameters transferred from other
external datasets.

• Finally, we propose 2 new location-privacy preserv-
ing mechanisms by utilizing the spatio-temporal mis-
matches to better protect users’ privacy against the
de-anonymization attack. Evaluation results show
that our proposed mechanisms can reduce the per-
formance of de-anonymization attacks by over 8.0%,
demonstrating the effectiveness of our insights.

A conference version of this paper was published in [48].
Compared with the conference version, we further consider
different location-privacy preserving mechanisms in our
threat model. What’s more, we propose two new algorithms
of location-privacy preserving mechanisms which utilize the
spatio-temporal mismatches to better protect users’ location
privacy. Experimental results show that by considering spa-
tial and temporal mismatching, location-privacy preserving
mechanisms can be more effective. In addition, additional
important baselines, experimental analysis, and discussion
about our proposed algorithms are supplemented in this
version.

2 THREAT MODEL

In this work, we seek to examine how much of individuals’
privacy will be leaked if the ISP shares their anonymized
trajectory datasets. We investigate this problem by imple-
menting and testing a wide range of de-anonymization at-
tack schemes against real-world trajectory datasets. To better
describe the de-anonymization problem, we first formally
define the threat model in this section. Our threat model
mainly consists of two components, i.e., the ISP that is the
data owner to publish anonymized trajectory traces, and the
adversary which seeks to re-identify users in the published
dataset. For the ease of reading, we summarize the key
notations in Table 1.

2.1 Location Data Publishing by ISP
Before ISPs publishes the trajectory dataset, usually two
location-privacy preserving mechanisms (LPPMs) are im-
plemented, i.e., anonymization and obfuscation, which are
introduced as follows.

Anonymization Mechanism: Let U represent the set of
the identities of all users. Before the dataset is published,
ISPs use a map function σ to anonymize it, i.e., replacing the
user identity u with pseudonym σ(u). We further define V

as the set of pseudonyms of all users.
After anonymization, a spatio-temporal record in the

dataset is defined as a 3-tuple (v, t, r), where v ∈ V is the
pseudonym of the user, and r, t are the observed location
and timestamp, respectively.

Obfuscation Mechanism: After anonymizing the loca-
tion dataset by replacing user IDs with the pseudonyms,
ISPs will further obfuscate the location records to protect
user privacy, i.e., reduce the spatio-temporal information
involved in each trajectory. In our work, we consider the
most common obfuscation mechanisms as [39], which are
summarized as follows:

• Perturbation: In perturbation mechanism, geograph-
ical coordinates of each location record are modi-
fied by adding some random noise. In this work,
we consider the most common zero-mean Gaussian
noise [42]. In addition, we denote the root mean
square of the noise as the perturbation strength ξ0.
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TABLE 1
A list of commonly used notations.

Notat. Description
U The set of true identities of all users.
V The set of pseudonyms of all users.
T The set of all time slots.
R The set of all regions.
L The set of anonymized ISP traces.
S The set of traces as external information (adversary

knowledge).
Lv ISP trajectory of user with pseudonym v.
Su External trajectory of user u.
σ Anonymization function mapping U to V .

Lσ(u) ISP trajectory of user u.
Lv(t) Location in the ISP trajectory of user v at time slot t.
Su(t) Location in the external trajectory of user u at time

slot t.
D(·, ·) Similarity score function between trajectories.
R(u,D) The rank of the true matched trajectory of u based on

similarity function D.
N(·|up,Σp) Gaussian distribution with mean vector up and co-

variance matrix Σp.
Hu, Hl Maximum tolerant temporal mismatches in two time

directions.
π(p),σ(p) Parameters of Gaussian mixture model correspond-

ing to temporal mismatches of p time units.
Tv Transition matrix of user v.
Ev Margin distribution of user v.

Φ(S, D) Performance metric of de-anonymization attack.
ξ0 Perturbation strength.
λh Location hiding level.
I(·) Indicator function of logical expressions with

I(true) = 1 and I(false) = 0.

• Location hiding: In this mechanism, according to the
anonymization requirement, every location record is
independently eliminated (i.e., its location is replaced
by ∅) with probability λh, which is denoted as the
location hiding level.

After the two LPPMs, the ISP trajectory of the user
with pseudonym v ∈ V is represented as a T -size vector
Lv = (Lv(1), Lv(2), ..., Lv(T )), where Lv(t) represents the
location observed at time slot t, and T is the number of
time slots. For time slots with a location record, Lv(t) is
the corresponding geographic coordinate. For time slots
without a location record, Lv(t) is ∅. We further define
L as the set of all mobility traces in the ISP dataset, as
L = {Lv|v ∈ V }.

2.2 Adversary
In the de-anonymization attack, an adversary seeks to re-
identify users using external information. An adversary
is described by two components, i.e., utilized knowledge
(external information), and attack method.

Adversary Knowledge. Adversaries can use different
types of external knowledge for de-anonymization. In this
paper, we mainly focus on two categories of adversaries.
The first category is the company-level attacker, e.g., appli-
cation and service providers who have users’ sub-trajectory
information uploaded by the application software installed
on the users’ mobile devices. The second category is the
individual-level attacker, who can obtain external informa-
tion by crawling the publicly available location information
(online check-ins) shared by users.

For an arbitrary adversary, regardless of its category, we
use a fixed-size vector Su = (Su(1), Su(2), ..., Su(T )) to
represent its external information, with Su(t) representing
the location (geographic coordinate) observed at time slot t
for user u ∈ U . Similarly, we set S(t) = ∅ in time slot t
without locations. We further define S = {Su|u ∈ U} as
the set of all traces in the external information.

Attack Method. Attack method of the adversary is de-
scribed by the similarity score function D defined between
trajectories in ISP dataset and external information, i.e.,
D : L × S → R, where R is the set of real numbers.
Based on this similarity function, for each user u with
external trajectory Su, the adversary ranks all its candidate
trajectories in the ISP dataset. The goal of the adversary is
to rank the ISP trajectory belonging to u, i.e., Lσ(u) as high
as possible.

More specifically, we use R(u,D) to denote the rank
of Lσ(u) based on similarity function D. Further, denote
function h as the metric of the rank R(u,D). For higher
R(u,D), h(R(u,D)) is larger. Then, the performance of the
attack method can be expressed as follows,

Φ(S, D) =
1

|U |

∑

Su∈S

h(R(u,D)).

For any adversaries, given external information S , the target
can be expressed as follows,

argmax
D

Φ(S, D).

In terms of the rank, a well-established and widely-used
evaluation metric is the hit-precision of top-k candidates. If
the rank of the true matched trajectory in the k candidates
is x, the hit-precision h(x) can be calculated as follows,

h(x) =

{

k−(x−1)
k

, if k ≥ x ≥ 1,

0, if x > k.
(1)

Overall, a larger hit-precision means that the true matched
trajectory is ranked higher, and indicates a better de-
anonymization performance. For example, if the true
matched trajectory Lσ(u) has the largest similarity, i.e.,
D(Su,Lσ(u)) ≥ D(Su,Lv) for any v ∈ V , then, R(u,D) =
1 and h(R(u,D)) = 1. If Lσ(u) ranks 3 in all candidate

trajectories in L, R(u,D) = 3 and h(R(u,D)) = k−2
k

.

3 GROUND-TRUTH TRAJECTORY DATASETS

To empirically assess the effectiveness of de-anonymization
algorithms against large-scale trajectories from ISP, we col-
lect real-world ground-truth datasets. The datasets are ob-
tained from a major ISP, a large online social network, and a
check-in/review service for an overlapped user population. We
also have the ground-truth mapping between users across
these three datasets. The datasets are obtained through our
research collaborations and a summary of the datasets is
shown in Table 2. Below, we describe the datasets in detail
and perform a preliminary analysis.

3.1 ISP Dataset

The main dataset contains 2,161,500 ISP trajectories from
a major cellular service provider in China from April 19
to April 26 in 2016 covering whole metropolitan area of
Shanghai. Each trajectory is constructed based on the user’s
connection records to the base stations (cellular towers).
Each spatial-temporal data point in the trace is characterized
by an anonymized user ID, base station (BS) ID and a
timestamp. This dataset will serve as the target dataset for
evaluating the de-anonymization attack.

3.2 Social Network Dataset

As the external information for de-anonymizing users, we
also collect datasets from Weibo, a large online social net-
work in China with over 340 million users. The challenge
is to obtain the ground-truth mapping between users in the
ISP dataset and the Weibo users. This is doable from the ISP
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TABLE 2
Statistics of Collected Datasets.

Dataset Total Total Total Mean #Recd. Mean #Loc.
#Users #Records #Regions (1km2) /User /User

ISP 2,161,500 134,033,750 3,056 62.01 9.19
Weibo App-level 56,683 239,289 4,346 4.22 1.67
Weibo Check-in (Historical) 10,750 141,131 2,394 13.15 7.00
Weibo Check-in (Synchronized) 503 873 686 1.74 1.34
Dianping App-level 45,790 107,543 3,931 2.35 1.61

side because Weibo’s mobile app uses HTTP to communi-
cate with its servers and the Weibo ID is visible in the URL.
Given the sensitivity of the data, we approached Weibo’s
Data and Engineering team to ask for the permission to
collect the Weibo IDs from the ISP end for this research.
After setting up a series of privacy and data protection
plans, Weibo gave us the approval to use the data only for
research purposes (more detailed data protection and ethical
guidelines are in Sec. 3.5).

App-level GPS Data. With the permission of Weibo, our
collaborators in the ISP marked the Weibo sessions for users
that appear in the ISP traces, within the same time window
April 19 to April 26 in 2016. In this way, we construct an
external GPS dataset of 56,683 matched users. In this dataset,
each location trajectory is characterized by a user’s Weibo
ID, and a series of GPS coordinates that show up in HTTP
sessions between the mobile app and Weibo server. This
dataset represents location traces that users report to the
Weibo server. Using this dataset as external information, we
can evaluate how much Weibo service can de-anonymize a
shared ISP dataset, i.e., company-level attackers. Note that
the Weibo ID is only visible to the ISP collaborator. The ID
has been replaced with an encrypted bitstream before the
data is handled to us. A mapping between the bitstream to
the anonymized ISP user ID is provided to us.

User Location Check-ins. Based on the matched Weibo
IDs, our collaborator at the ISP also helped to collect a check-
in dataset using Weibo’s open APIs2. This dataset covers
the same time window of previous datasets (Synchronized),
as well as all the historical check-ins of the matched users
(Historical). Since check-in data is publicly available to any
third-parties, we use it to evaluate how much any attackers
can de-anonymize a shared ISP dataset, i.e., individual-level
attackers. Similarly, we only access the anonymized ID,
instead of the actual Weibo ID.

3.3 Review Service Dataset
To make sure our analysis is not biased towards a single
dataset, we collected a secondary dataset to validate our
observations. The secondary dataset was collected from Di-
anping, the largest online review service in China. Dianping
has similar features as the Yelp and Foursquare combined. It
also uses HTTP for its mobile app and the user ID is visible
to ISP. Following the same procedure, our ISP collaborator
marked Dianping sessions in the ISP traces within the
same time window April 19–26 in 2016. This produced an
external GPS dataset of 45,790 matched users. Each location
trajectory is characterized by a user’s Dianping ID, and a
series of GPS coordinates with timestamps.

Similarly, the Dianping ID is only visible to the ISP
collaborator. The ID has been replaced by an encrypted
bitstream in our dataset. A mapping between the bitstream
and the anonymized ISP user ID is provided to us. We

2. http://open.weibo.com

have also notified Dianping Inc. about our research plan
and received their consent.

3.4 Data Processing
The collected datasets have different formats and precision
in terms of the time and location. We seek to format the data
in a consistent manner before our evaluation.

Converting Basestation ID to GPS. To construct user
mobility traces from the ISP data, we first convert the ID of
base stations to their geographical coordinates (longitudes
and latitudes) based on the ISP offered database, and use it
to represent the user location.

Building Trajectories. Since the timestamps have differ-
ent resolutions in different datasets, we build the trajectory
based on discrete time intervals. More specifically, we di-
vide the time span of a user’s trace into many fixed sized
time bins. Then, we add one location data point to each
time bin to build the vector Su and Lv . To systematically
match GPS locations across datasets, we also map the GPS
coordinates into regions with a certain spatial resolution.
More specifically, we use a similar method from [38], [39].
The idea is dividing the whole city into grids, where each
grid represents a “region”. Different regions do not overlap
with each other. In this way, we use a tuple of a time bin
and a location region to consistently represent a location
record. After the data processing, we define T and R as
the set of all the time bins and the set of all the spatial
regions, respectively. These above steps introduce two key
parameters to adjust the temporal and spatial resolutions of
the dataset. By default, we set the time bin as 1 hour, and
the spatial resolution as 1 km. In the later analysis, we will
also test different temporal and spatial resolutions to assess
the influence to our results and conclusions.

3.5 Ethics
We have taken active steps to preserve the privacy of in-
volved users in our datasets. First, all the data collected for
this study was kept within a safe data warehouse server
(behind a company firewall). We have never taken any
fragment of the dataset away from the server. Second, the
ISP employee (our collaborator) anonymized all the user
identifiers, including the unique identifiers of cellular net-
work users, and the actual IDs of Weibo and Dianping users.
Specific steps (e.g., crawling Weibo check-ins) that require
unencrypted Weibo/Dianping IDs were performed by the
ISP employee. After obtaining the target trajectory datasets,
the ISP employee removed the actual IDs from the datasets,
and associated each entry with an encrypted bitstream.
The mapping between the bitstream and the anonymized
cellular user identifier is provided to us. The real user IDs
are never made available to, or utilized by us. All our
data processing was fully governed by the ISP employee to
ensure compliance with the commitments of privacy stated
in the Term-of-Use statements. Third, we obtained the ap-
proval for using the Weibo data and Dianping data from the
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Fig. 1. Complementary cumulative distribution function (CCDF) of the
number of records, number of distinct locations, trajectory entropy, and
radius of gyration per user.

Data and Engineering team of Weibo and Dianping, under
the condition that the data is processed strictly following the
above steps and can only be used for research. Finally, our
research plan has been approved by our local institutional
board.

We believe through our work, we can provide more
comprehensive understandings on the privacy risks of users
when anonymized ISP trajectory data is shared. The results
will help the stakeholders to make more informed decisions
on designing privacy policies to protect user privacy in the
long run.

3.6 Preliminary Data Analysis

Table 2 shows the basic statistics of the three datasets. The
ISP dataset is the largest one with 2,161,500 users. The Weibo
dataset (app level), as the external information source, has
56,683 users, which is about 3% of the ISP user popula-
tion. This indicates that using this external information,
the adversary still faces non-trivial noises to re-identify the
target users. Compared to other datasets, the ISP dataset
covers a bigger portion of a user’s mobility trace with a
higher average number of records and distinct locations
per user (62.1 and 9.19). The Weibo and Dianping datasets
(app level) have 4.22 and 2.35 records on average per user
respectively. The Weibo check-in datasets cover both the
same time-window as other datasets (Synchronized) as well
as the historical check-ins of the users (Historical), with 1.74
and 13.15 records on average per user respectively. Not too
surprisingly, the check-in dataset is sparser than the app-
level datasets of Weibo and Dianping. Overall, the 4 external
trajectory datasets from 2 different online services provide
a diverse and large collection of user trajectories with a
ground truth mapping to the ISP dataset. In addition, as
shown in Table 2, the number of covered geographic regions
of 1km×1km in these collected datasets ranges from 686 to
4,346. The collected datasets cover both sparse trajectories
(check-in dataset) and dense trajectories (app-level datasets
of Weibo and Dianping) as the adversary knowledge. This
helps to solve the critical problem of lacking ground truth
data in the existing works [11], [38].

Further, we show the complementary cumulative distri-
bution functions (CCDF) of the number of records, number

of distinct locations, trajectory entropy, and radius of gyra-
tion in Fig. 1. Specifically, we set the maximum limits of hor-
izontal axises as 20 and 10 in Fig. 1(a) and (b) respectively,
because we find there is not any synchronized check-in
trajectories with more than 20 records and 10 distinct visited
locations. In addition, for each user u, its trajectory entropy
can be calculated by Entropy = −

∑

r∈R Pr(u)logPr(u), in
which Pr(u) is the probability of visiting region r by u. It
describes the regularity of traces in spatial dimension [10].
In addition, radius of gyration [18] is defined as the mean
square root of the distance of each point in the trajectory
to its center of mass, and can be formally defined as

rg =
√

ΣT
t=1(L(t)− Lcm)2/T , where Lcm = 1/T

∑T
t=1 L(t)

is the center of mass of the trajectory. It reflects the range of
a user’ activity area. The results coincides with Table 2. That
is, ISP trajectories have largest number of records, distinct
locations, and entropy, while check-in trajectories exhibit the
strongest sparsity. However, as we can observe from Fig. 1(c)
and (d), ISP trajectories have smaller radius of gyration and
larger entropy, indicating that users with larger activity area
are more likely to be captured in the external datasets.

4 DE-ANONYMIZATION IN PRACTICE

Based on the above three large-scale datasets, we investigate
the potential privacy leakage of the ISP trajectory dataset.
In order to show the theoretical bound of privacy leakage,
we first investigate the uniqueness of trajectories in Sec. 4.1.
Then, comparing with the theoretical bound, we implement
9 existing de-anonymization algorithms in practice, and
show their performance in Sec. 4.2.

4.1 Theoretical Privacy Bound
Uniqueness of trajectory in an anonymity mobility dataset
is a well-recognized metric to measure the privacy bound
and the de-anonymization risks [8], [11], [19], [41], [49]. In
1930, Edmond Locard showed that 12 points are sufficient
to uniquely identify a fingerprint [11]. Similarly, the analysis
of the uniqueness of trajectories is to estimate the number of
points necessary to uniquely identify the mobility trace of
an individual.

Uniqueness metric is based on the concept of k-
anonymity model [45], which is computed as follows. Let Tp

denote a sub-trajectory of a user with p randomly selected
spatio-temporal points. Then we search for other trajectories
in the dataset that match or contain the p points of Tp. We
define the matched trajectories as the anonymity set of Tp de-
noted as A(Tp). Then the user’s uniqueness is characterized
by |A(Tp)|, i.e., the number of matched trajectories in the
anonymity set. Intuitively, the uniqueness metric estimates
how likely a user can be re-identified if an external adver-
sary observed a random p points in her trace. If |A(Tp)| = 1,
its anonymity set only contains one trace, i.e., trajectory of its
true owner. This means the p points can uniquely re-identify
the user. For example, the hit-precision with k = 1 cannot
exceed the fraction of |A(Tp)| = 1 when we only have p
external location records. Thus, it characterizes the upper
bound of de-anonymization performance with p points.

As for other privacy metrics such as l-diversity [24] and
t-closeness [27], actually they are stricter privacy metrics
than k-anonymity. For example, trajectories contained in
2-anonymity set, i.e., |A(Tp)| = 2, are very likely to not
satisfy requirement of l-diversity and t-closeness. Thus, po-
tential risks measured based on l-diversity and t-closeness
are higher than that of k-anonymity. As mentioned above,
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Fig. 2. Theoretical analysis of the privacy bound, where p is the number of randomly selected data points from the trajectories as the external
observations.

our utilized uniqueness metric has characterized the upper
bound of de-anonymization performance with p points.
Thus, there is no necessity to consider these stricter privacy
metrics.

Note that the above trajectory matching is based on both
location and time. We consider two data points match if they
fall into the same location region and time bin (we defined
the location region and time bin in §3.4). For example, if
two trajectories show users visiting the same locations in
the same order but at different time slots, they are not
the same. The uniqueness metric is the very basic metric
to quantify the de-anonymization risk. More sophisticated
metric can further consider the location context (e.g., user
density in a given area) and the time context (e.g., day and
night patterns) [11].

We focus on the uniqueness of the ISP trajectories to
show their de-anonymization risks. Specifically, we ran-
domly sample 10 sub-trajectories with p points for each ISP
trajectory and compute the average fraction of anonymity
sets with different size to characterize the uniqueness of
trajectories. We first show the uniqueness of ISP trajectories
as the function of p in Fig. 2(a). We can observe that the
uniqueness of ISP trajectories is high, i.e., 5 points can
uniquely identify over 75% users, indicating their potential
high risk to be de-anonymized. In addition, we analyze the
influence of the spatio-temporal resolutions on the unique-
ness to show the potential privacy gain of LPPMs. For
external datasets, ISP cannot implement LPPMs on them.
Thus, they are ignored in this analysis. We fix the number
of spatio-temporal points as 5, and obtain the uniqueness of
the ISP dataset. As shown in Fig. 2(b) and (c), the uniqueness
measure is not very sensitive to the spatio-temporal reso-
lution (log scale x-axis). Reducing the temporal resolution
from 30 minutes to 4 hours only leads to the decreasing of
uniqueness by 20%, while reducing the spatial resolution
from 250m to 1km only leads to the decreasing of unique-
ness by 26%. The resolution degradation is likely to hurt the
usability of the dataset which only brings in a little privacy
benefit in exchange.

In summary, the obtained user trajectories are highly
unique. Even when the spatial granularity is very low, 5
points are sufficient to uniquely identify over 75% users,
indicating the high potential risk of individual trajectories
to be de-anonymized, which exposes a big threat to users’
privacy.

4.2 Actual Performance of Attack Methods
To examine the effectiveness of de-anonymization attacks,
we implement 9 major attacking algorithms discussed in the

Sec. 8. We focus on algorithms that are designed (or can be
adopted) to work on trajectory datasets.

HMM: Shokri et al. [39] focus on de-anonymizing users’
trajectories based on their mobility patterns. Specifically,
they train a Markov model to describe the mobility of users,
which is represented by the transition matrix T v . They also
define a function f : R × R → R to describe the spatial
mismatching between the adversary’s knowledge and users’
true locations. After using Lv to estimate T v , the similarity
score can be calculated by:

DHMM(Su,Lv) = P (Su|T
v)

=
∑

Z

∏

t∈T

f(Z(t), S(t))T v
Z(t−1),Z(t),

(2)

where Z is the hidden variable representing users’ true loca-
tions. In addition, since we mainly focus on the performance
of the similarity score function in terms of the rank, this
similarity does not need to be normalized.

MKV: Mulder et al. [12] also focus on de-anonymization
based on Markov model. Specifically, they measure the
similarity of the transition matrix and margin distribution
of trajectories in different datasets, which can be defined as:

DMKV(Su,Lv) =
∑

r1,r2∈R

Eu(r1)T
u
r1,r2

Ev(r1)T
v
r1,r2

. (3)

HIST: Naini et al. [31] focus on de-anonymization by
matching the histograms of trajectories. Specifically, they
use Γu to denote the histogram of user u defined as
Γu(r) = 1

|T |

∑

t∈T I(Su(t) = r). Based on the histograms,

their similarity score can be defined as:
DHIST(Su,Lv) = −DKL(Γu|Γ̄)−DKL(Γv|Γ̄), (4)

where Γ̄ = (Γu + Γv)/2, and DKL the Kullback-Leibler
divergence function [46].

LRCF: Goga et al. [16] further consider the popularity of
different regions. Specifically, they apply the term frequency
- inverse document frequency (TF-IDF) [43] weighting scheme
to the histograms, i.e., Λu(r) = Γu(r)/log(IDF (r)), where
IDF (r) =

∑

u∈U

∑

t∈T I(Su(t) = r) is the number of
records in region r of the whole dataset. Then, they measure
the cosine similarity between Λu and Λv as follow:

DLRCF(Su,Lv) = ΛT
uΛv/‖Λu‖‖Λv‖. (5)

WYCI: Rossi et al. [38] propose a probabilistic de-
anonymization algorithm. They use the frequency of user
login in different locations to approximate the probability

of visiting these locations by P (r|Lv) =
nv

r
+α

∑
r∈R nv

r
+α|R| ,

where nv
r is the number of times user v visits location r,

|R| is the number of locations in the dataset, and α > 0 is
the smoothing parameter, which is used to eliminate zero

Authorized licensed use limited to: University of Illinois. Downloaded on May 15,2020 at 16:01:04 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2952774, IEEE

Transactions on Mobile Computing

7

probabilities. By following the recommended setting in [28],
we set α = 0.1. Then, their similarity score is defined as
follow:

DWYCI(Su,Lv) =
∏

t∈T ,Su(t) 6=∅

P (Su(t)|Lv). (6)

ME: Cecaj et al. [9] estimate the probability of trace-user
pairs being the same person according to the number of
their matching elements. Their similarity score is defined as
the number of meeting events as follow:

DME(Su,Lv) =
∑

t∈T

I(Su(t) = Lv(t)). (7)

POIS: Riederer et al. [37] mainly consider using the “en-
countering” events to match the same users. They assume
the number of visits of each user to a location during a
time period follows Poisson distribution, and an action (e.g.
login) on each service occurs independently with Bernoulli
distribution. Based on this mobility model, the algorithm
computes a score for every candidate pair of trajectories,
which can be calculated as follows,

DPOIS(Su,Lv) =
∑

t∈T

∑

r∈R

φr,t(Su(t), Lv(t)), (8)

where φ measures the importance of an “encountering”
event in location r at time slot t, and can be given as follows,

φr,t(Su(t), Lv(t)) =
P (Su(t) = r, Lv(t) = r|σ(u) = v)

P (Su(t) = r)P (Lv(t) = r)
.

(9)
It can be calculated based on their mobility model with the
assumptions of Poisson visits and Bernoulli actions.

NFLX: Narayanan et al. [32] propose a de-anonymization
algorithm that can tolerate some mistakes in the adversary’s
knowledge. In order to adapt this algorithm to the trajectory
data, we use the similarity score modified by [37], which is
defined as follows:
DNFLX(Su,Lv) =

∑

(r,t):r=Su(t)=Lv(t)

wr ∗ fr(Su,Lv), (10)

where wr=1/In(
∑

v,t Lv(t)=r) and fr(Su,Lv) is given by

fr(Su,Lv) = e
n
v
r

n0 + e
− 1

nv
r

∑
t:Su(t)=r

min
t′:Lv(t′)=r

|t−t
′|

τ0 . (11)

In addition, nv
r is the number of times user v visits lo-

cation r. Temporal mismatches are considered in this al-
gorithm. However, it does not perform well under spatial
mismatches.

MSQ: Ma et al. [26] find the matched traces by min-
imizing the expected square between them. That is, their
similarity score can be expressed as follows:

DMSQ(Su,Lv) = −
∑

t∈T

|Lv(t)− Su(t)|
2. (12)

Spatial mismatches are considered in this algorithm. How-
ever, it does not perform well under temporal mismatches.
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Fig. 3. Hit-precision of different algorithms as a function of the number
of records in Weibo’s app-level trajectories.

Note that POIS, HMM, ME, MSQ algorithms are essen-
tially based on the “concurrent” events and do not expect
temporal mismatches. For these algorithms, we define “con-
currency” based on 1-hour time bins as the default setting,
i.e., if timestamps of two records are within the same 1-hour
time bin, we regard them as “concurrent”. On the other
hand, POIS, WYCI, HIST, ME, NFLX, LRCF, MKV algo-
rithms are based on the definition of “co-located” events and
do not expect spatial mismatches. For these algorithms, we
define the “co-location” based on the 1km×1km geographic
grids, i.e., if two records are located in the same geographic
grid, we regard them as “co-located”. The resolution values
1 hour and 1 km are set as the default. We will further
analyze the influence of the spatio-temporal resolutions to
these algorithms later in Sec. 6.4.

Fig. 3 shows the hit-precision of all 9 algorithms for
using Weibo’s app-level trajectories to de-anonymize the
ISP trajectories. For each external trajectory, its candidate
trajectories are limited to these who have “encountered”
with it among the 2,161,500 ISP trajectories, i.e., have spatio-
temporal points at the same region within the same time-
bin. The hit-precision is plotted as the function of the num-
ber of records in app-level trajectories, where we set k in
hit-precision as 10. As shown in Fig. 3, de-anonymization
algorithms based on users’ mobility patterns (e.g., MKV
and HIST) have the worst performance with the maximum
hit-precision less than 8%. On the other hand, algorithms
based on meeting events including ME and POIS have
better performance, with the maximum hit-precision about
11%. Algorithms such as NFLX and MSQ achieve a better
performance. Even so, their maximum hit-precision is only
about 20%, which means even for users whose external tra-
jectories have sufficient records, existing de-anonymization
algorithms can only de-anonymize less than 20% of users
based on the top-1 candidate trajectories. In addition, from
the perspective of expectations, the true matched trajecto-
ries are ranked near the 8th position on average. The hit-
precision of existing de-anonymization algorithms is far
from the privacy bound obtained in Sec. 4.1, i.e., 5 points
can uniquely identify over 75% users.

Note that in our experiment, datasets are already
“matched” — the user population of the external dataset
is already a subset of users in the target ISP dataset. This
means for each trajectory in the external datasets, we know
that there must be a trajectory in the ISP dataset. In practice,
the attack is likely to be more difficult since the external
dataset may contain users that are not in the ISP dataset (i.e.
extra noise). To this end, our results are likely to represent
the upper-bound performance of the de-anonymization al-
gorithms. Next, we further investigate the reasons behind
the under-performance.

5 REASONS BEHIND UNDERPERFORMANCE

5.1 Spatio-Temporal Mismatch

We start by investigating the potential spatio-temporal mis-
matches between trajectories in different datasets. Fig. 4
shows the distribution of spatio-temporal mismatches of
external datasets with respect to the ISP dataset. More
specifically, for a given user, we match her trajectory in
the external dataset with her ISP trajectory. We define a
spatial mismatch as the geographical distance between two
data records (from two trajectories) that fall into the same
time slots. Similarly, we define a temporal mismatch as the
minimum time interval between the external record and the
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Fig. 4. Distribution of the spatial and temporal mismatching (with the ISP traces). The empirical distribution is compared with the fitting results of
Rayleigh, exponential, power-law distributions.

ISP record at the same location region. Note that we limit
the temporal mismatch within 24 hours to eliminate the
influence of the second visit to the same location.

Large Spatio-Temporal Mismatches. Fig. 4(a), (b) and (c)
show the complementary cumulative distribution functions
(CCDF) of spatial mismatches of different datasets. We
observe that the spatial mismatches are prevalent. More
than 37% of the records in the app-level trajectory data
of Weibo have spatial mismatches over 2km. It is similar
in the other application, Dianping, of which the spatial
mismatch of over 31% of the records are larger than 2km.
We also observe that the distribution of Weibo’s app-level
data and Dianping’s app-level data can be approximated by
the power-law distribution in the range of 0 to 10km. After
10km, they can be approximated better by the exponential
distribution. For Weibo’s check-in data, the power-law part
has longer range. The large spatial mismatches can cause
problems to de-anonymization algorithms that rely on exact
location matching [37], [38].

Fig. 4(d), (e) and (f) show the probability mass function
(PMF) of temporal mismatches. The temporal mismatches
are also very prevalent. Only 30% of Weibo’s app-level loca-
tion records are in the same time slot with their correspond-
ing ISP records. The large temporal mismatches indicate that
performing exact temporal matching will introduce errors
to determine the co-location of users [9], [37]. Overall, we
can observe significant spatial and temporal mismatches
between different datasets collected from the same set of
users.

Finally, we observe that the mismatches follow different
types of distributions. For example, Fig. 4(c) show that the
spatial mismatch of Weibo’s check-in data can be approx-
imated by the power-law distribution. For Dianping, the
power-law distribution fits well for the head of the empirical
distribution, but does not capture the tail. To this end,
modelling the spatio-temporal mismatches requires a more

general framework.

Possible Reasons behind the Mismatches. There are a
number of possible reasons that can cause the mismatch. We
discuss some of them below.

First, inherent GPS errors: it is well-known that the GPS
system had intrinsic source of errors [4] such as satellite
errors (ephemeris and satellite clock), earth atmosphere
errors (ionosphere and troposphere), and receiver errors
(frequency drift, signal detection time).

Second, GPS unreachable locations: due to the coverage of
satellite signal, GPS signal is not always available in certain
areas such as indoor and underground [25]. For example,
when a user is on a subway going through a tunnel, the
GPS reading will be interrupted leading to corrupted trajec-
tories. Meanwhile, the user’s smartphone can still connect to
the nearby base station, which can lead to spatio-temporal
mismatches between the ISP and the app-level trajectories.

Third, location updating mechanisms: to save battery life,
many mobile apps do not update user GPS frequently, espe-
cially when the device is sleeping [6]. The slightly outdated
GPS can still be used for non-critical services (e.g., venue
recommendation), but leads to inaccurate user trajectories,
especially temporal mismatches between different trajectory
datasets.

Fourth, deployment of base stations: the base stations (BS)
are placed unevenly in the city. In the ISP trajectory dataset,
we use the connected BS to estimate the user’s location,
which may cause the spatial mismatches, especially in areas
where the base stations are sparse.

Fifth, user behavior: for the check-in dataset, mismatches
may also come from special user behavior. According to
recent measurement studies [47], [51], 39.9% check-ins (on
Foursquare) are remote check-ins with over 500 meters
away from users’ actual GPS location. Users often check-
in at a remote location (that they are not physically visiting)
to earn virtual badges or compete with their friends. Users
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may also check-in a few hours later after they visited a
venue [47], which causes significant temporal mismatches.
These factors can lead to major mismatches between the
check-ins and the ISP trajectories.

Finally, repeated user mobility: it is possible that a user
visits one location several times within the same day, but
the ISP trajectory and external trajectory capture different
events among them. Based on our definition, temporal mis-
match is measured by the minimum time interval between
the external record and the ISP record at the same location
region. Thus, we can find obvious temporal mismatches in
the trajectories of this user. However, different from tempo-
ral mismatches caused by reasons such as location updating
mechanisms and user behavior, these temporal mismatches
actually do not come from the “errors” of the trajectories.
However, a similar correlation between location records
with time difference in different trajectories can be observed.
Further, by elaborately modelling this phenomenon, the
information contained can be utilized to improve the de-
anonymization performance. Thus, we do not distinguish
this factor from other “real” mismatches of trajectories.

Such spatio-temporal mismatches can lead to major er-
rors for de-anonymization algorithms. However, many of
the above factors cannot be fundamentally avoided in prac-
tice. To this end, de-anonymization algorithms should de-
sign adaptive mechanisms to tolerate these spatio-temporal
mismatches.

5.2 Data Sparsity

Another possible reason for the under-performance of ex-
isting algorithms is high sparsity of the real-world mobility
traces. In large-scale trajectory datasets, the vast majority of
the users have very sparse location records. For example, in
the ISP dataset, users on average have 62 records in a week,
but 22.9% users have less than 1 records and 35.5% of the
users have less than 2 records (Fig. 1). The external datasets
(Weibo and Dianping) are even sparser with less than 5
records per user on average. This means that within the 1-
hour time bins of the one-week period, the vast majority of
the time bins are empty (with the location unknown). The
high sparsity makes it difficult to accurately match trajecto-
ries across two datasets. This property is often overlooked
when testing a de-anonymized algorithm on a synthetically
generated dataset or a small dataset contributed by several
hundreds of volunteers.

6 OUR DE-ANONYMIZATION METHOD

Inspired by the reasons of under-performance of existing
algorithms, we propose new de-anonymization algorithms
by addressing practical factors such as spatio-temporal
mismatches and data sparsity. First, to address the spatio-
temporal mismatches, we develop a Gaussian mixture
model (GMM) to estimate and amend both spatial and
temporal mismatches. The parameters of GMM are flexible
and can be optimized according to specific datasets. Second,
to address the data sparsity issue, we propose two other
methods. a) We propose a Markov-based per-user mobility
model to estimate the distribution of a given user’s missing
locations in the “empty” time slots of the trajectory; b) We
leverage the whole dataset to aggregate global location con-
texts and time context features to further infer the missing
location records.

Our proposed algorithms combine Gaussian mixture
model and Markov model. We refer the algorithm as GM.

Specifically in our model, each spatio-temporal point in the
ISP trajectory L and external trajectory S are regarded as a
random variable. Further, we show the graphical model of
variables in Fig. 5, and each arrow in the graphical model
indicates a dependency, which is modelled by combining
Gaussian mixture model and Markov model. Finally, based
on the probabilistic model, we define their similarity score
function as follows,

DGM(S,L) = log p(S|L). (13)
In this section, we will introduce how to compute this
probability-based similarity score to de-anonymize loca-
tion trajectories. Specifically, we firstly introduce how we
model the spatio-temporal mismatches based on GMM in
Sec. 6.1. Then, we introduce how we model users’ mobility
in Sec. 6.2. After that, we extend our proposed algorithm by
considering time context, i.e., the information contained in
the “empty” time bins of the trajectory in Sec. 6.3. Finally,
we extensively evaluate the performance of our proposed
de-anonymization algorithms in Sec. 6.4.

6.1 Modelling Spatio-Temporal Mismatches: Gaussian
Mixture Model (GMM)
In this section, we focus on modelling the spatio-temporal
mismatches between the ISP trajectory and external trajec-
tory, which is described by arrows between ISP location
records (purple nodes) and external location records (blue
nodes) in Fig. 5. Due to the existence of temporal mis-
matches, each external location record S(t) is dependent
with not only the ISP location record in the same time bin
L(t), but also ISP location records in other time bins. Thus,
in Fig. 5, there exist arrows between S(t) and L(t − Hu)
to L(t + Hl), where Hu and Hl are the maximum tolerant
temporal mismatch in two time directions. Further, given
a fixed temporal mismatch p, i.e., given the fact that S(t)
and L(t− p) correspond to the same event, there also exists
spatial mismatch between them. Thus, we model the differ-
ence between S(t) and L(t − p) as a Gaussian distribution
N (·|up,Σp). Overall, by considering temporal mismatches
and spatial mismatches simultaneously, the probability dis-
tribution of S(t) conditioned on L can be just described
as a Gaussian mixture model (GMM) [7], which will be
introduced in detail in the following part of this section.

By definition, GMM is a finite linear superposition of
Gaussian densities, which can be expressed as:

p(x) =
K
∑

k=1

π(k)N (x|uk,Σk),

where x is the random variable following GMM distribu-
tion. Each Gaussian density N (x|uk,Σk) is called a compo-
nent and has its own mean uk and covariance Σk [7].

We show the conditional dependence structure between
location records in the ISP trajectory and external trajectory
of the same user in Fig. 5. Specifically, we use component
N (x|up,Σp) to model the probability density of external
records with temporal mismatching of p time units. Then,
let LC represent the complete ISP trajectory, i.e., ∀t ∈ T ,
LC(t) 6= ∅. Conditioned on it, the probability density func-
tion (PDF) of an external record S(t) can be calculated as,

p(S(t)|L) =
Hu
∑

p=−Hl

π(p) · N (S(t)|L(t− p), σ2(p)I2), (14)

where π(p) is the probability of the temporal mismatch to
be p time units, and σ(p) is the root mean square of the
spatial distance between locations of trajectory S and L

conditioned on the temporal mismatch of p time units. Since
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Fig. 5. Graphical model for L (ISP trajectory) and S (external trajectory).

S(t) and L(t) are represented by geographical longitudes
and latitudes, which are 2-dimensional vectors, I2 is a
2 × 2 identity matrix. Note that the GPS coordinates have
been mapped into discrete regions, and we use continuous
distributions as an approximation to their probability mass
function (PMF). Because we mainly focus on the perfor-
mance of the similarity score function in terms of the rank,
this approximation is reasonable.

In addition, Hu and Hl are the maximum tolerant
temporal mismatch in two time directions. Specifically, in
our problem, we only consider time delay in adversary’s
knowledge. Thus, we set Hl to be zero and denote Hu as H
for simplicity. Parameters π(p) and σ(p) in (14) of our pro-
posed model can be chosen by the empirical values shown
in Fig. 4. On the other hand, they can also be estimated
by EM algorithm [7] based on the ground-truth location
records. Specifically, given M external records {S1, ..., SM}
with their corresponding Hu +Hl + 1 ISP records in neigh-
boring time slots, e.g., for Sn, its neighboring ISP records
are (Ln,−Hl

, ..., Ln,Hu
). In addition, we define znk as the

latent variable to indicate whether Sn are generated by Lnk

(corresponding temporal mismatch is k time units). Thus,

we have
∑Hu

h=−Hl
znk = 1. Then, in the E step of EM

algorithm, we calculate the distribution of znk conditioned
on the parameters π and σ, which can be expressed as
follows,

γ(znk) := P (znk = 1) =
π(k)N (Sn|Lnk, σ

2(k)I2)
∑Hu

j=−Hl
π(j)N (Sn|Lnj , σ2(j)I2)

.

In the M step, we re-estimate the parameters π and σ using
the distribution of znk, which can be expressed as follows,
{

π(k) = 1
M

∑M
n=1 γ(znk), k = −Hl, ..., Hu,

σ2(k) = 1
2M

∑M
n=1 γ(znk)|Sn − Lnk|

2, k = −Hl, ..., Hu.

Then, by a finite number of repeating E and M step, we
obtain the value of π and σ.

6.2 Modelling User Mobility: Markov Model

Based on the graphical model shown in Fig. 5, we can
observe that conditioned on a completely observed ISP
trajectory L, S(t) for different t is independent with each
other. Then probability density function (PDF) of a full
trajectory in external dataset can be calculated as follows,

p(S|L) =
∏

S(t) 6=∅

p(S(t)|L). (15)

However, from the analysis in Sec. 3.6, we can observe that
users’ locations in many time slots are missing, i.e., L(t) = ∅
for many t ∈ T . In the case, (14) cannot be applied directly.
In addition, S(t) for different t also becomes dependent
with each other. Thus, (15) cannot be applied. To solve it,
we enumerate all possible complete trajectories of L, and
apply the formula of total probability with respect to them.
Specifically, denote C(L) as the set of all possible complete

trajectories of L. Then the PDF of S(t) conditioned on L can
be calculated as follow:

p(S|L) =
∑

LC∈C(L)

p(LC |L)
∏

S(t) 6=∅

p(S(t)|LC). (16)

where external records S(t) of different t are assumed to
be statistically independent conditioned on each complete
trajectory LC ∈ C. The independence can be derived from
the graphical model shown in Fig. 5. On the other hand,
as we can observe from Sec. 3, the trajectories in external
dataset are obviously sparser than those in the anonymized
dataset. It indicates that in real external trajectories, for each
pair of adjacent non-empty records S(t1) and S(t2), we
usually have |t1 − t2| � H . Thus, we can assume that
external records are independent regardless of whether their
dependent ISP records are observed.

As for the probability p(LC |L), we calculate it by using
a Markov model. Specifically, we use two different orders,
i.e., 0-order and 1-order, Markov models as follows.

0-Order Markov Model. In the 0-order Markov model,
location of each time slot is assumed to be independent with
each other. Denote E(r) as the margin distribution of the
user’s ISP trajectory, which can be calculated as follows,

E(r) := p(L(t) = r) =

∑

t∈T I(L(t) = r) + αr
∑

t∈T I(L(t) 6= ∅) +
∑

r∈R αr

,

where I(·) is defined to be an indicator function of the
logical expression with I(true) = 1 and I(false) = 0. In
addition, αr is the parameter to eliminate zero probabilities.
For example, in Laplace smoothing [28], αr is set to be the
same value for different r. In our work, we use the location
context to implement the smoothing as follow,

αr = α0 ·
∑

v∈V

∑

t∈T

I(Lv(T ) = r), (17)

where αr is in proportion to the number of records at
location r with α0 as the parameter to adjust the influence
of location context.

Based on these definitions, the probability of a complete
trajectory LC ∈ C(L) conditioned on L can be calculated as
follows,

p(LC |L) =
∏

t∈T ,L(t)=∅

E(LC(t)). (18)

1-Order Markov Model. In the 1-order Markov model,
location of each time slot is assumed to be dependent on
the location in the last time slot. Denote T (r1, r2) as the
transition matrix of the user, which can be calculated as
follows,

T (r1, r2) := p(L(t+ 1) = r2|L(t) = r1),

=

∑

t∈T I(L(t) = r1)I(L(t+ 1) = r2) + βr1r2
∑

t∈T I(L(t) = r1)I(L(t+ 1) 6= ∅) +
∑

l2∈R βr1l2

.

Similarly, βr1r2 is the parameter to eliminate zero transition
probabilities. We also use the aggregate transition statistics
of users to help modelling users with sparse data, which can
be represented as follows,

βr1r2 = β0 ·
∑

v∈V

∑

t∈T

I(Lv(t) = r1) · I(Lv(t+1) = r2), (19)

Then, we have:

p(LC |L) =
1

P (L)

∏

t∈T

T (LC(t), LC(t+ 1)),

where P (L) is a normalization constant to make the total
probability equal to one, i.e.,

∑

LC∈C(L) p(LC |L) = 1.
Further, based on our assumption of independence of

external records discussed in (16), the computational com-
plexity can be reduced by only considering the dependent
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Fig. 6. Hit-precision of different de-anonymization algorithms using Weibo’s app-level trajectories as the external information (company-level
attacker).

sub-trajectory of LC for each S(t). Taking 0-order Markov
model for example, for each S(t), we only consider possible
value of LC(t− p) for p ∈ {0, 1, ..., H}. Thus, we have:

p(S(t)|L) =

H∑

p=0

∑

r∈R

p(LC(t−p) = r|L)·π(p)N (S(t)|r, σ2(p)I2),

where p(LC(t − p) = r|L) is the probability of a record at
location r in time slot t− p in the user’s complete trajectory,
which can be represented as follows,

p(LC(t− p) = r|L) =











E(r), L(t− p) = ∅,

1, L(t− p) = r,

0, otherwise.

By this way, the complexity can be reduced from O(T ·RH)
to O(T ·R ·H), which is similar for 1-order Markov model.
In addition, we will analyze the influence of ignoring de-
pendency of external records in Sec. 9.

6.3 Modelling Time Context
In previously proposed methods, we calculate the prob-
ability p(S|L) by only considering the observed records
in S such that S(t) 6= ∅ as shown in (15), and ignoring
the unobserved time slots t with S(t) = ∅. However, this
equation holds only when records in S and L are generated
independently, which is not true in practice. For example,
when a person is using cellular phone, the location will
be requested by some applications with a larger probabil-
ity. Similarly, when a user shares a check-in, it is more
likely to access Internet in the near time (e.g., navigation
services, location-based services). The consequence here is
that spatio-temporal records in different datasets are not
generated independently. Thus, in order to calculate the
conditional probability p(S|L) more accurately, we need to
consider the similarity score in terms of correlation of record
generation in different datasets.

Specifically, we focus on whether there exists a record at
time slot t in S and L while ignoring their concrete value.
Thus, we define the 0-1 variable Ix to indicate whether x
equals to ∅, i.e., if x = ∅ then Ix = 0; otherwise Ix = 1.
Then, the similarity score can be expressed as:

DB(S,L) := log
∏

t∈T

P (IS(t)|IL(t))

=
∑

η,χ∈{0,1}

(1− |IS(t) − η|)(1− |IL(t) − χ|) logPη|χ,

where the correlation is characterized by four parameters
P1|1, P1|0, P0|1, and P0|0. For example, P0|1 represents the
probability of S(t) to be ∅ under the condition of L(t) 6= ∅.
Then, the combined similarity score can be calculated as:

DGM−B = DGM +DB.
We refer to this upgrade version of GM algorithm as the
GM-B algorithm. However, different with π and σ in GMM,
which can be set to be empirical value, parameters of Px|x
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Fig. 7. Impact of spatial and temporal resolution.

highly depend on the ground truth data. For the same
reason, the GM-B algorithm can only be used when there
is a thorough understanding of the dataset (e.g., sufficient
ground truth data to train the parameters). Thus, GM-B
algorithm shows the best performance that can be achieved
based on our proposed method, while GM algorithm shows
the performance when we do not have sufficient ground
truth data.

6.4 Performance Evaluation

In this section, we evaluate our algorithms compared with
baseline methods on different trajectory datasets. In addi-
tion, we vary key parameters and experiment settings to
examine the robustness of the proposed algorithms.

6.4.1 Baseline Algorithm

For baseline comparisons, except for the 9 major attacking
algorithms, we also propose two simplified versions of
our proposed algorithms which only consider spatial mis-
matches and temporal mismatches, respectively. We refer
to them as spatial matching (SM) algorithm and temporal
matching (TM) algorithm.

Spatial Matching Algorithm (SM). The SM algorithm
ignores the mismatch in temporal dimension, and only
matches records at the same time slot with Gaussian dis-
tribution. Then, its similarity score can be defined as:

DSM(S,L) = log
∏

S(t) 6=∅

1

2πσ2
exp(−

(S(t)− L(t))2

2σ2
).

Similarly with GM algorithm, when L(t) is ∅, the margin
distribution is used to estimate the PDF of S(t).

Temporal Matching Algorithm (TM). On the contrary,
the temporal matching algorithm only matches locations by
regions, and it sums the weighted minimum time interval
to obtain the similarity score as follows,

DTM(S,L) =
∑

S(t) 6=∅

π(arg min
p∈T ,S(t)=L(p)

|t− p|).

Specifically, we use empirical temporal mismatch distribu-
tion shown in Fig. 4 as π(t).
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6.4.2 Experimental Settings

Our proposed algorithms require value of parameter
π(p) and σ(p) describing the spatio-temporal mismatches
between trajectory datasets to be matched. For de-
anonymization based on Weibo’s and Dianping’s app-level
trajectories, we randomly select 5,000 external location
records with their time-adjacent ISP location records to es-
timate these parameters based on EM algorithm. As for de-
anonymization based on Weibo’s check-in trajectory dataset,
since the number of ground truth user is very limited
(503 users for Weibo’s synchronized check-in dataset), we
set π(p) based on the distribution of temporal mismatches
shown in Fig. 4(f), and set σ(p) to be 0.5 kilometer for
each p. As for the parameters of location context, we set
α0 = |R|/N and β0 = |R|2/N , where N is the total number
of records in the ISP dataset. Then, we calculate these
parameters based on (17) and (19). As for parameters of time
context, they are estimated based on location records with
randomly sampled time-bins, of which the number is the
same with that used in estimating π(p) and σ(p). For other
state-of-the-art algorithms based on “concurrent” or “co-
located” events, we set the spatial and temporal resolution
as 1km and 1hour, respectively. In addition, we set k as 10
in hit-precision by default.

6.4.3 Experimental Results

De-anonymization using Weibo’s App-level Trajectories.
As a primary experiment, we evaluate the performance of
different algorithms by using Weibo’s app-level trajectories
as the external information to de-anonymize the ISP dataset.
This experiment corresponds to the attack of company-level
adversaries. Specifically, we implement de-anonymization
algorithms by using all the 56,683 Weibo’s app-level tra-
jectories as external information. Then, the hit-precision
is calculated as functions of different metrics of external
trajectories shown in Fig. 6, including number of records,
number of distinct locations, trajectory entropy, and radius
of gyration of the external trajectories.

Fig. 6(a) shows that SM algorithm does not perform
better than existing algorithms, especially compared with
those tolerating spatio-temporal mismatches, e.g., NFLX and
MSQ. On the other hand, TM algorithm shows a higher
hit-precision than SM algorithm, indicating tolerating tem-
poral mismatches is more important than tolerating spatial
mismatches in de-anonymization attacks. The intuition is
that spatial mismatches are bounded by the strong locality
of human movements, while temporal mismatches are not
physically bounded.

In addition, we find that GM algorithm (modelling both
spatial and temporal mismatches) achieves much better re-
sults. The hit-precision of GM is 10% higher compared with
existing algorithms. Finally, by comprehensively modelling
users’ behavior, GM-B algorithm achieves another signifi-
cant performance gain (7% hit-precision). Overall, a large
number of records help to improve the de-anonymization
accuracy. The best hit-precision of our proposed algorithm
achieves 41% for external trajectories with more than 10
records, improving over 72% compared with the existing
algorithms.

We notice that after the number of records get higher
than 10, the performance gain stalls. In Fig. 6(b), we directly
show the relationships between the hit-precision with the
number of distinct locations of external trajectories. The
results show a very different trend: the hit-precision is

rapidly growing with the number of distinct locations. For
external trajectories with about 10 distinct locations, we can
de-anonymize the corresponding ISP trajectory with the best
hit-precision over 77%.

From Fig. 6(d), we can observe the best hit-precision in
terms of radius of gyration only achieve 52%. Compared
with Fig. 6(b) and (c), the result indicates that trajectory
entropy is more dominating factors in the de-anonymization
attack.

As mentioned in Sec. 4.2, POIS, WYCI, HIST, ME, NFLX,
LRCF and MKV are based on “co-located” events. These
algorithms are likely to be sensitive to spatial mismatches
and even spatial resolutions. To be fair for these algorithms,
we examine their hit-precision under different spatial res-
olutions (temporal resolution is set to the default value
1 hour). For comparison purposes, we also mark the hit-
precision of GM and GM-B in the figures (using default
1 hour and 1km). As shown in Fig. 7(a), most algorithms,
i.e., NFLX, WYCI, LRCF and HIST, achieve their highest
hit-precision under our default spatial resolution of 1km,
while POIS and ME algorithms achieve their highest hit-
precision under the spatial resolution of 2km. Our proposed
algorithms still outperform existing algorithms, i.e., the GM
and GM-B algorithms improve the mean hit-precision by
31.6% and 83.8% relative to the best hit-precision of existing
algorithms respectively.

Similarly, POIS, HMM, ME and MSQ are based on
“concurrent” events, making them potentially sensitive to
temporal resolutions. Fig. 7(b) shows their hit-precision of
under different temporal resolution (spatial resolution is set
to default 1km). The result shows that HMM and MSQ
algorithms achieve their highest hit-precision under our
default temporal resolution of 1 hour, while POIS and ME
achieve their highest hit-precision under the temporal reso-
lution of 30min. Our proposed algorithms still outperform
existing algorithm, e.g., performance gap of GM and GM-B
algorithms are 21.6% and 69.9% relative to the best existing
algorithm respectively.

Validation using Weibo Check-in Trajectories. To vali-
date our observations, we further evaluate the performance
of our proposed algorithms using Weibo’s check-in trajec-
tories as external information. This experiment corresponds
to the attack of individual-level adversaries. We firstly focus
on the 503 check-in trajectories that have at least 1 records
at the same time-window with the ISP dataset. The hit-
precision is shown as the function of the number of records
of check-in trajectories in Fig. 8(a). Not too surprisingly,
we can observe that individual-level adversaries are not as
powerful as company-level adversaries, i.e., the hit-precision
of de-anonymization using Weibo’s check-in trajectories
shown in Fig. 8(a) is obviously worse than that of using
Weibo’s app-level trajectories shown in Fig. 6(a). In addition,
more records in check-in trajectories help to improve the
de-anonymization accuracy. Our proposed GM and GM-B
algorithm outperform other algorithms. The largest perfor-
mance gap between our proposed algorithms and existing
algorithms achieves about 20% when there are 8 records in
the check-in trajectories.

Fig. 8(b) shows the mean hit-precision of de-
anonymization based on synchronized and historical Weibo
check-ins. The mean hit-precision is very low because the
synchronized check-ins are extremely sparse. For example,
as shown in Fig. 1, over 80% users have less than 2 records.
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Fig. 8. Hit-precision of different de-anonymization algorithms using Weibo Check-in trajectories (individual-level attacker) and Dianping (company-
level attacker) as the external information.

The historical check-ins have more data points but can no
longer use the “encountering event” to match with the ISP
data, leading to a low hit-precision. In addition, the his-
torical check-ins can help to improve the de-anonymization
accuracy for certain algorithms (e.g., WYCI, HIST, LRCF and
our proposed GM, GM-B algorithms). Therefore, we only
show their mean hit-precision of using historical check-ins
versus not using them. Clearly, utilizing the historical check-
in improves the hit-precision of all the algorithms. Intu-
itively, historical check-ins can greatly mitigate the sparsity
issues of synchronized check-in trajectories.

Validation using Dianping Trajectories. Finally, we
apply our algorithms to de-anonymize the ISP dataset us-
ing the 45,790 app-level trajectories from Dianping as the
external information, which represents another company-
level adversary. This experiment has two purposes. First, to
use Dianping’s dataset to evaluate the performance of our
algorithms. Second, to simulate the scenario where ground-
truth is not available to train the GM-B algorithm. Here, we
assume the attacker does not have the ground-truth data
from Dianping to estimate the parameters for the GM-B
algorithm. Instead, we transfer the parameters estimated
from the Weibo dataset to the Dianping experiment (trans-
ferred GM-B). As shown in Fig. 8(c) and (d), the transferred
GM-B has a competitive performance with the best existing
algorithm and GM algorithm with parameters learnt from
Dianping trajectory data. The result shows the robustness of
our proposed algorithm.

In summary, we demonstrate that de-anonymization at-
tack can be more effective by tolerating spatial and tem-
poral mismatching (GM algorithm), and modeling the user
behavior in terms of time context of the given service (GM-B
algorithm). Specifically, the total performance gain in terms
of hit-precision is more than 17% compared with the exist-
ing algorithms. Further, by adding historical check-ins and
location context, another 30% to 150% relative gain can be
achieved. In addition, the result suggests that even without
ground-truth data to estimate parameters, our proposed al-
gorithms will stay robust using parameters transferred from
other external datasets. We also show that the proposed
algorithms are robust against other parameter settings of
the models, which can be found in Sec. 9. Overall, all these
results confirm the usefulness of our insights.

7 MISMATCH-AWARE LOCATION-PRIVACY PRE-
SERVING MECHANISM

In the last section, we have demonstrated that by con-
sidering the spatio-temporal mismatches between the ISP
trajectories and external trajectories, we can bridge the gaps

between theoretical bound and practical attacks for the lo-
cation trajectory de-anonymization problem. Then, the com-
ing question is whether we can utilize the spatio-temporal
mismatches to better protect users’ privacy. In this section,
we focus on protecting users’ location privacy by utilizing
the spatio-temporal mismatches. Specifically, we develop a
mismatch-aware perturbation mechanism in Sec. 7.1. Then,
we develop a mismatch-aware location hiding mechanism
in Sec. 7.2. Finally, we evaluate our proposed location-
privacy preserving mechanisms in Sec. 7.3.

7.1 Mismatch-Aware Perturbation Mechanism

We aim to design a perturbation mechanism that utilizes
the spatio-temporal mismatches to better protect users’ pri-
vacy against de-anonymization attacks. For ISPs, obtaining
the external trajectories Su(t) of all users is unrealistic in
practice. Thus, we assume that ISPs only know the distribu-
tion of the spatio-temporal mismatches between users’ ISP
trajectories and external trajectories, which can be obtained
based on the external information of a small part of users.

Specifically, we still use the Gaussian mixture model
as in (14) to model the distribution of spatio-temporal
mismatches, which can be characterized by parameters
(π(p), σ(p)) for p ∈ {−Hl, ..., Hu}. In addition, users’ lo-
cation records are unevenly distributed in time dimension
for both the ISP dataset and the external dataset. Thus,
we define pS(t) as the probability that the timestamp of a
random location record is t in the external dataset, which
can be calculated by

pS(t) = NS(t)/
T
∑

i=1

NS(i), (20)

where NS(t) = |{u ∈ U |Su(t) 6= ∅}| is the number of non-
empty location records at time t in the external dataset. Sim-
ilarly, we define pL(t) as the probability that the timestamp
of a random location record is t in the ISP dataset.

Based on these definitions, we now design the mismatch-
aware perturbation mechanism. A direct idea is to add
larger noise to spatio-temporal points in ISP trajectories with
smaller mismatches between external trajectories, while
keeping the perturbation strength unchanged. Here, we add
random noise to spatio-temporal points of the ISP dataset at
different time t with different standard deviation ξt. Then,
our goal is to minimize the correlation between the ISP
trajectory and external trajectory belonging to the same user.
We use similarity score (15) of our propose GM algorithm
to characterize this correlation. Then, the problem can be
expressed by an optimization problem as follows:

min E(p(Su(t)|Lu + εu))

s.t.

{

E(|εu(t)|
2) = ξ2t , t = 1, ..., T,

∑T
t=1 pL(t) · ξ

2
t = ξ20 ,

(21)
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(a) GM algorithm (b) MSQ algorithm

Fig. 9. Performance of our proposed mismatch-aware perturbation
mechanism.

where E(·) denotes the expectation. In addition, εu =
(εu(1), εu(2), ..., εu(T )) is the added noise, where εu(t) ∼
N (0, ξ2t I2). In addition, based on (14), we have:
p(Su(t)|Lu + εu)

=
Hu
∑

p=−Hl

π(p)

2πσ2(p)
exp(−

|Su(t)− (Lu(t− p) + εu(t− p))|2

2σ2(p)
)).

Since solving this optimization problem relies on the
value of all the external spatio-temporal points Su(t), which
is not available in practice, we make some simplifications to
(21) and try to eliminate the influence of Su(t).

Specifically, we use the approximation exp(x) ≈ 1 + x
based on Taylor series in the target function of (21). In
addition, since E(εut ) = 0, we only need to consider the
term with |εut |

2. Finally, by removing terms irrelevant to the
optimization variables εut and ξt and utilizing the first con-
straint in (21), the target function of (21) can be simplified as
follows:

E(p(Su(t)|Lu + εu)) =E(−
Hu
∑

p=−Hl

π(p)

σ4(p)
|εu(t− p)|2)),

= −
T
∑

t=1

Hu
∑

p=−Hl

pS(t)pL(t− p)
π(p)

2σ4(p)
ξ2t−p.

Then, we can obtain the simplified optimization problem
as follows:

max
∑T

t=1

∑Hu

p=−Hl

pS(t)π(p)
σ4(p) ξ2t−ppL(t− p)

s.t.
∑T

t=1 ξ
2
t · pL(t) = ξ20 .

(22)

This problem can be easily solved. However, the so-
lution only has one non-zero element ξt0 , where t0 =

argmaxt
∑Hu

p=−Hl

pS(t+p)π(p)
σ4(p) . In practice, adding noise only

to a small part of spatio-temporal points is not reasonable.
Thus, we let ξ2t be proportional to this coefficient, which can
be represented as follows:

ξ2t ∝





Hu
∑

p=−Hl

pS(t+ p)π(p)

σ4(p)





γ

, (23)

where γ is a tunable parameter, and we set γ as 1 by default.

7.2 Mismatch-Aware Location Hiding Mechanism

In order to design a mismatch-aware location hiding mech-
anism, we consider eliminating ISP location records with
more contribution to (14) with higher probability, while
keeping the total number of eliminated location records un-
changed, of which the corresponding optimization problem
can be represented as follows:

min E(p(Su(t)|Lu + εu))

s.t.
∑T

t=1 pL(t)λt = λh.
(24)

(a) GM algorithm (b) NFLX algorithm

Fig. 10. Performance of our proposed mismatch-aware location hiding
mechanism.

Based on (14), the target function of (24) can be calculated
as follows:

E(p(Su(t)|Lu)) ∝ −
T
∑

t=1

Hu
∑

p=−Hl

λt−ppL(t−p)pS(t)π(p)C(t, p),

where C(t, p) = E(N (Su(t)|Lu(t−p), σ2(p)I2)) is indepen-
dent of optimization variable λt. Considering that C(t, p)
describes the distribution of spatial mismatches, we assume
it does not change much with time t and temporal mismatch
p. Thus, location records at time t will be eliminated with the
probability of λt expressed as follows:

λt ∝





Hu
∑

p=−Hl

π(p)pS(t+ p)





δ

, (25)

where δ is a tunable parameter, and we set δ as 1 by default.

7.3 Performance Evaluation

In this section, we evaluate the performance of our pro-
posed mismatch-aware perturbation mechanisms against
de-anonymization attacks.

7.3.1 Baseline Methods

We compare our proposed mismatch-aware location hiding
mechanism with the baseline location hiding mechanism
that eliminates each location record with the same proba-
bility, where λt = λh for all t ∈ T . We first implement
these mechanisms on the ISP trajectories, and then calcu-
late the mean hit-precision of previous de-anonymization
algorithms. A lower mean hit-precision indicates better
performance of the location hiding mechanisms. Specifi-
cally, we consider two de-anonymization algorithms with
the best performance including GM and NFLX algorithms.
Similarly, as for our proposed mismatch-aware perturbation
mechanism, we compare it with the baseline perturbation
mechanism that adds noise with equal standard deviation
to each location record, where ξt = ξ0 for all t ∈ T . Different
with experiments of location hiding mechanisms, NFLX
algorithm is based “co-located” events, and the performance
of perturbation mechanisms against this algorithm is greatly
influenced by the spatial granularity. Thus, we evaluate
perturbation mechanisms against MSQ algorithm instead.
Further, we define relative improvement of our proposed

LPPMs as γ = (ĥB− ĥMA)/ĥB, where ĥMA is the median of
hit-precision of the given de-anonymization algorithm with

our proposed mismatch-aware LPPMs, and ĥB is that of the
baseline.

7.3.2 Experimental Settings

We compare the performance of different location-privacy
preserving mechanisms on the ISP trajectory dataset with
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Weibo’s app-level trajectories as external information. Dif-
ferent with previous experiments of de-anonymization at-
tacks, of which the results are deterministic, the per-
formance of location-privacy preserving mechanisms is
stochastic. For example, it is influenced by the randomly
drawn Gaussian noise. Thus, we repeat our experiments
for 100 times with different random noise, and show the
statistical results. On the other hand, since one external
trajectory might have “encountered” with thousands of
ISP trajectories, in order to reduce the computational time,
for each external trajectory, we random select 50 negative
ISP trajectories from those who have “encountered” with
it as the candidate trajectory set, which is different from
experiments in Sec. 6.4.

7.3.3 Experiment Results
Due to the randomness of added noise, the obtained mean
hit-precisions in different times of experiments are differ-
ent. Thus, we show the boxplots of mean hit-precision of
the repeated 100 times of experiments. Boxplots of GM
algorithm and MSQ algorithm under the two perturbation
mechanisms with different perturbation strength ξ0 are
shown in Fig. 9, where the box plots quartiles, and the
band inside the box is the median. Larger reduction of de-
anonymization performance (hit-precision) indicates better
performance of the location-privacy preserving mechanism.
From the results, we can observe that a large perturba-
tion strength helps to protect users’ privacy, i.e., reducing
the hit-precision of de-anonymization attack. In addition,
the mismatch-aware perturbation mechanism outperforms
the baseline in most situations. Specifically, it reduces the
hit-precision of GM algorithm by relative improvement
γ = 1.6% with the perturbation strength of 8.0 km, demon-
strating the correctness of the above theory. In addition,
the proposed mismatch-aware perturbation mechanism also
works on MSQ algorithm. It reduces the hit-precision of
MSQ algorithm by relative improvement γ = 5.0% with
the perturbation strength of 8.0 km.

In addition, from Fig. 9, we can observe that GM has
worse performance than MSQ. The reason is that adding
noise to the ISP trajectories by the perturbation mechanisms
changes the distribution of spatio-temporal mismatches be-
tween the ISP trajectories and external trajectories, which is
more destructive to GM algorithm. This performance degra-
dation can be reduced by re-estimating parameters π and
σ based on trajectories after the perturbation mechanisms.
However, we mainly focus on the upper bound of the per-
formance of the perturbation mechanisms. Thus, we keep
parameters in GM algorithm unchanged in the experiments.
Overall, results demonstrate the effectiveness of the utilizing
spatio-temporal mismatches in location-privacy preserving
mechanisms.

Then, boxplots of the obtained hit-precision of GM al-
gorithm and NFLX algorithm under two different location
hiding mechanisms with different location hiding level λh

are shown in Fig. 10. As we can observe, a large location
hiding level also helps to reduce the hit-precision of de-
anonymization attack. The mismatch-aware location hiding
mechanism outperforms the baseline in most situations.
The performance gain of the proposed mechanism is larger
for higher location hidden level. Specifically, when location
hiding level is 0.8, the relative improvement γ given GM al-
gorithm and NLFX algorithm is 8.0% and 1.1%, respectively,
indicating the effectiveness of the proposed location hiding
mechanism.

In summary, we demonstrate that by considering spa-
tial and temporal mismatches, location-privacy preserving
mechanisms can be more effective. Specifically, our pro-
posed mismatch-aware perturbation mechanism and loca-
tion hiding mechanism can reduce the performance of de-
anonymization attacks by over 8.0%, demonstrating the
usefulness of our insights. Though the relative improvement
of 8.0% dose not solve the problem of protecting users’
privacy essentially, it provides a new idea for designing
location-privacy preserving mechanisms. With equal de-
anonymization risk, based on our insights, we can add
smaller perturbation or hide less location to the trajectory
datasets to keep more utility of them.

8 RELATED WORK

De-anonymization Methods: Overview. There have
been a number of de-anonymization algorithms proposed
in recent years. These algorithms seek to re-identify users
from anonymized datasets leveraging external information
(not all the algorithms are applicable to location traces). We
classify them into three main categories based on the uti-
lized user data: content (user activities such as timestamps,
location), profile (user attributes such as username, gender,
age), and network (relationship and connections between
users) [40]. Location trajectory data belongs to the “content”
category.

De-anonymization of Location Trajectories. Focusing on
the user content, a number of de-anonymization algorithms
have been proposed [9], [11], [12], [26], [31], [32], [37]–
[39], [49]. Most of these algorithms can be directly applied
or easily adapted to trajectory datasets. However, due to
the lack of large scale ground-truth datasets (matched the
ISP dataset and the external traces), existing works either
focus on theoretical privacy bound [11], [49] or simulat-
ing de-anonymization attacks on synthetically generated
datasets [11], [26], [38], [49]. Our work seeks to use a
large scale ground-truth dataset to explore their empirical
performance and identify practical factors (if any) that are
often neglected by algorithm designers.

Specifically, some algorithms are designed to toler-
ate mistakes in the adversary’s knowledge such as tem-
poral mismatching [32] and spatial mismatching [26].
Other algorithms [12], [16], [31], [38], [39] implement de-
anonymization attacks based on individual user’s mobil-
ity patterns [31], [39]. Finally, researchers also develop
de-anonymization algorithms based on “encountering”
events [9], [37]. By considering the location context (e.g., user
population density), it achieves a better performance [37].
However, no algorithm performs well under spatial and
temporal mismatches simultaneously. In particular, no algo-
rithm simultaneously considers both spatial and temporal
mismatches.

De-anonymization of Network/Profile Data. Since
we focus on the de-anonymization of location trajectory
datasets, we only briefly introduce the algorithms designed
for network datasets [20], [22], [33], [36], [44] and profile
datasets [17], [30] for completeness. Mudhakar et al. [44]
and Ji et al. [20], [22] focused on de-anonymization based
on users’ graph/network structures. Zhang et al. [50] de-
anonymized multiple social networks simultaneously by
minimizing the friendship inconsistency of users. Nilizadeh
et al. [34] proposed an enhanced de-anonymization al-
gorithm by utilizing the community structure of social

Authorized licensed use limited to: University of Illinois. Downloaded on May 15,2020 at 16:01:04 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2952774, IEEE

Transactions on Mobile Computing

16

network. Qian et al. [36] focused on the theoretical de-
anonymization gain with different background knowledge
for social network de-anonymization. These algorithms can
be adapted to de-anonymizing location trajectories by con-
structing a “contact graph” to model users’ encountering
with each other. However, these algorithms require using
social network graphs as the external information, which
are not available in our scenario. Thus, their approaches
cannot be applied to solving our problem. On the other
hand, algorithms designed for profile datasets [17], [30] (e.g.,
age, gender, language) are also not applicable to location
trajectories.

Privacy Protection Mechanisms. Researchers have inves-
tigated different ways to anonymize user data to preserve
privacy. The most common privacy models are k-anonymity
[45], l-diversity [27] and t-closeness [24]. Related to these
three models, a number of specific techniques have been
proposed to anonymize location trajectory data. Osman et
al. [2] proposed a technique to protect privacy by shifting
trajectory points in space that are close to each other in
time. Marco et al. [19] proposed an algorithm named GLOVE
to grant k-anonymity of trajectories through specialized
spatio-temporal generalization. Another work from Osman
[1] developed a time-tolerant method. Simon et al. [35]
provided two metrics, conditional entropy and worst-case
quality loss, to evaluate the privacy protection mechanisms.
Ji et al. [21], [23] systematically investigated existing graph
data anonymization algorithms, utility metrics, and de-
anonymization attacks. Based on these techniques, they
further proposed a uniform and open-source secure graph
data publishing system. Meyerowitz et al. [29] developed a
system to anonymize location data in real time by sending
the predicted future locations of multiple users simultane-
ously to location-based services. Recently, researchers also
explore to apply differential privacy to location trajectory
datasets [3], [5], [14]. For example, Andrés et al. [5] in-
troduced geo-indistinguishability, which used criteria of
differential privacy to make sure the user’s exact location is
unknown while keeping enough utility for certain desired
service. Gergely et al. [3] studied an anonymization scheme
to release spatio-temporal density data based on differential
privacy. In our work, the definition of privacy is based on
the uniqueness of user trajectories, whose privacy model is
based on k-anonymity.

9 DISCUSSION

Validation of Assumptions. We first examine the impact
of parameter π and σ in the GMM. In Fig. 8(c) and (d),
we have shown that our proposed algorithms stay robust
using parameters transferred from other external datasets.
The reason is that a number of intrinsic factors leading to
spatio-temporal mismatches are similar with different ex-
ternal trajectory datasets, e.g., GPS errors, GPS unreachable
locations, or even repeated user mobility. Thus, parameters
that well capture these common factors are useful when
transferred between different external datasets. In addition,
instead of using parameters produced by the EM algorithm,
we also try to apply different parameters from the empirical
distribution fitting: σ(p) is set to be 0.5km for all p, and
π(p) is set to be the power-law or exponential distribution.
Then, we compare their hit-precision in Fig. 11(a). From the
results, we find that GM algorithm using power-law em-
pirical parameters outperforms the one using exponential

empirical parameters. The result is consistent with our prior
observation that Weibo’s mismatches follow a power-law
distribution. In addition, the hit-precision of using power-
law empirical parameters is very close to that of the ground-
truth parameters estimated by the EM algorithm. This indi-
cates that our algorithm is robust — the performance does
not depend on an accurate parameter estimation as long as
the suitable distribution model is selected.

Next, we first examine the impact of the order of Markov
model and the dependence between external records, which
is ignored in Sec. 6. We show the hit-precision of using 0-
order Markov, 1-order Markov, and 0-order Markov with
ignored dependency between external records in Fig. 11(b).
Specifically, we use 0-order (simplified) to represent the GM
algorithm with 0-order Markov mobility model and ignored
dependency between external records. Parameters of π and
σ are all set to be the value estimated by EM algorithm. As
shown in Fig. 11(b), very small difference of hit-precision
can be observed between different settings, indicating that
the order of Markov and dependency between external
records have small impact on the hit-precision. The main
reason is that external trajectories are very sparse so that
we can ignore the dependence of different records of each
external trajectory.

Finally, we discuss the impact of quantification to spatio-
temporal mismatches. In the process of data collecting and
publishing, the quantified effect is an important cause of
spatial mismatches. As we mentioned in Sec. 5.1, when
using the connected base stations to estimate the user’s
location, the sparser deployment of base stations will cause
larger spatial mismatches. However, in the process of data
processing for de-anonymization, the quantified effect in
turn reduces the spatial mismatches. With larger spatial
granularity, more users’ location records of different tra-
jectory datasets at the same time will be mapped into the
same spatial region. Thus, more spatial mismatches are de-
structed. However, this process also reduces the information
contained in each location record. Thus, as we can observe
from Fig. 7(a), when the spatial granularity is small, spatial
mismatches are the main bottleneck of de-anonymization,
and the hit-precision of all algorithms increases with the
spatial granularity. However, when the spatial granularity is
too larger (larger than 1km in Fig. 7(a)), spatial mismatches
are not the main bottleneck any more. In addition, larger
spatial granularity will reduce the information contained
in each location record. Thus, the hit-precision decreases
with the spatial granularity. It also exhibits similar trend for
temporal mismatches shown in Fig. 7(b). Overall, mismatch
ubiquitously exists in user generated data. Even for other
types of external data, e.g., fake age and gender in user
profile can be regarded as another type of mismatches. Thus,
designer of de-anonymization method should keep vigilant
about the impact of mismatches when dealing with practical
problems.

Implications for Future Work. The main reason
of neglecting the spatio-temporal of existing algorithms
is the lack of such large-scale real-world ground truth
dataset. Without it, the distribution of spatio-temporal
mismatches cannot be characterized correctly. In addition,
noise and mismatch ubiquitously exists in user gener-
ated data. The existence of spatio-temporal mismatches
makes the de-anonymization attack harder, and existing de-
anonymization algorithms that neglected spatio-temporal
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mismatches actually suffer from under-performance based
on our analysis. However, our study also demonstrates
the damage of spatio-temporal mismatches to the de-
anonymization performance is not irreversible. By elabo-
rately modelling the spatio-temporal mismatches, the de-
anonymization performance can be significantly improved.
Our work has key implications to de-anonymization algo-
rithm designers by highlighting the key factors that matter
in practice. For example, we show that temporal mismatches
are more damaging than spatial mismatches. The intuition
is that spatial mismatches are naturally bounded by the
strong locality of human movements. To this end, having
the algorithm tolerating temporal mismatches (or both) is
the key. Overall, further work of de-anonymization method
should keep vigilant about the impact of spatio-temporal
mismatches when dealing with practical problems.

On the other hand, in order to provide better loca-
tion privacy protections, practical factors should also be
considered. Our result shows that user mobility patterns,
location context, and time context all have helped the de-
anonymization. This means it might be no longer sufficient
to use simple mechanisms to manipulate the time and
location points in the original trajectories. Privacy protection
algorithms should consider the user, location, and time
context to provide stronger privacy guarantees. We also
show that the distribution of spatio-temporal mismatches
can be utilized to better protect users’ privacy against the
de-anonymization attack. Future work of location-privacy
preserving mechanisms can utilize the spatio-temporal mis-
matches to better preserve users’ location privacy and keep
more utility of the trajectory dataset at the same time.

10 CONCLUSIONS

In this work, we use two sets of large-scale ground truth
mobile trajectory datasets to extensively evaluate commonly
used de-anonymization methods. We identify a significant
gap between the algorithms’ empirical performance and the
theoretical privacy bound. Further analysis then reveals the
main reasons behind the gap: the algorithm designers often
under-estimate the spatio-temporal mismatches in the data
collected from different sources and the significant noises
in user-generated data. Our proposed new algorithms that
are designed to cope with these practical factors in both
de-anonymization attack and location-privacy preserving
mechanisms have shown promising performance, which
confirms our insights. In future work, we plan to investigate
de-anonymization attacks by considering other types of
external information, e.g., social graphs [20], [22], [33], [44]
or users’ profile [17], [30], and the impact of other types of
mismatches (e.g., fake user profile) on them.
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Fig. 11. Impact of assumptions to the performance of our proposed de-
anonymization algorithms.
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