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Muon electron scattering experiments such as the proposed MUonE experiment offer an opportunity for

an improved measurement of the leading-order hadronic running of α, denoted Δαhad. Such a measurement

could be utilized to reduce the theoretical uncertainty on the prediction of the anomalous magnetic moment

of the muon, g − 2. Currently, there is a discrepancy between theory and data for this observable, which

could potentially be explained by beyond the Standard Model (BSM) physics. Here we investigate the

possible impact of missing Standard Model (SM) higher-order corrections and BSM physics on the

proposed measurement of Δαhad. In principle, either could be indirectly fitted into Δαhad, causing

inconsistencies if used in a g − 2 application. The literature suggests a target of 10 ppm on the cross section

for the theoretical accuracy. We assess the validity of this target in detail using a variety of methods, finding

that a 1 ppm target is a more conservative estimate to ensure that missing higher orders do not dominate the

theoretical uncertainty. For the potential BSM contributions, we study various models which contribute

first at tree and loop level. Of particular interest is the impact from dark photon models, which can

potentially affect the measurement of Δαhad at the desired accuracy. At loop level, there exists in general a

kinematic suppression adequate to reduce the BSM contributions to a level which can be neglected for the

extraction of Δαhad.
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I. INTRODUCTION

The quest to conclusively establish the nature of physics

beyond the Standard Model (BSM) has driven high-energy

physics for several decades. Extensions to the Standard

Model (SM) are well motivated, since the SM lacks a

suitable dark matter candidate, as well as a description of

gravity, and has some unappealing features—for instance,

in relation to the hierarchy problem. However, recent

results from collider experiments [predominantly the

Large Hadron Collider (LHC)] paint a picture which is

remarkably consistent with the predictions of the SM.

Barring any major surprises in the current LHC Run II data

set, the quest to derail the SM will enter into a precision

regime. That is, BSM physics will be hunted not through

searches for the direct production of new particles, but

through subtle deviations made manifest in the coupling of

SM particles to each other and themselves.

Excitingly, precision tests already put the SM under

significant tension. There has been a long-standing deviation

between the prediction from the SM for the anomalous

magnetic momentum of the muon g − 2 and various exper-

imental measurements of the same quantity. Excitement is

building for the upcoming update from the Muon g − 2

experiment at Fermilab [1], which will present first results

this summer. The Fermilab experiment should be able to

improve upon the current measurement from Brookhaven

National Laboratory (BNL) [2], ultimately aiming to make

the experimental uncertainties small enough to claim a five-

standard-deviation discrepancy with the SM. A challenge in

making such a monumental statement is that one must

attempt to quantify the theoretical uncertainty in a robust

way so as to ensure thevalidity of the comparison. There is no

100% infallible method of estimating theoretical uncertain-

ties in the SM. This is particularly the case for calculations of

g − 2, which rely on a delicate mixture of perturbative and

nonperturbative ingredients. Nevertheless, several indepen-

dent calculations and methodologies have been performed,

resulting in predictions which all agree within 1σ [3–5],

with the most recent result corresponding to aSMμ ¼

11659182.04" 3.56 × 10−10. Compared to this prediction,

the current (BNL) observation is 3.7 standard deviations

different: aSMμ ¼ 11659209.1" ð5.4Þð3.3Þ × 10−10. For a

review of the theoretical predictions for g − 2, we refer the
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reader to Ref. [6], and a recent review of potential BSM

explanations can be found in Ref. [7].

While the perturbative piece of g − 2 is under very good

control [8–12], the nonperturbative components are the

largest contributors to the theoretical error budget.

Currently the leading-order (LO) hadronic contributions

and light-by-light scattering dominate the uncertainty:

broadly speaking, both contribute approximately 3 × 10−10

to the total error estimate [3–5,13–16].

The most precise predictions for the LO hadronic

contributions are currently extracted from the ratio R ¼
σðeþe− → hadronsÞ=σðeþe− → μþμ−Þ coupled with the

optical theorem. This extraction is made difficult by the

copious amount of low-energy QCD bound states [5,17],

which have to be integrated over. Efforts are underway to

improve the situation. On the one hand, lattice QCD

provides the means to calculate the hadronic contributions

independently from experimental data [18–27]. On the

other hand, to avoid the complications from bound states

a new measurement of Δαhad, in an alternate kinematic

regime, has been proposed [28,29], known as the MUonE

experiment.

This experiment plans to use a precision measurement of

low-energy μe scattering to probe the running of α, as

shown in Fig. 1. Since the running is now probed in the

spacelike t-channel regime, the integrand is a smooth

function and no longer suffers from the complications

due to the production (and decay) of QCD hadrons.

However, the extraction of such an accurate measurement

of Δαhad (corresponding to an uncertainty of around 0.3%

[30]) represents a significant experimental and theoretical

challenge. In order to obtain the theoretical accuracy

needed, a dedicated effort to provide differential calcula-

tions and Monte Carlo codes has begun. In particular, the

next-to-leading-order (NLO) QED and EW effects have

been calculated [31], as well as the NLO and next-to-next-

to-leading-order (NNLO) hadronic contributions [32].

Furthermore, significant progress has been made towards

a full NNLO QED calculation [33,34].

While significant attention has been given to the pre-

dictions for μe scattering in the SM, thus far, to the best of

our knowledge, no study has been performed which

investigates the sensitivity of MUonE to BSM physics.

That is to say, if BSM physics exists and contributes around

Δaμ ¼ 20 × 10−10 to g − 2, what is the subsequent impact

on a scattering experiment (also involving muons) which

seeks to measure the hadronic contributions at the level of

2 × 10−10? One may naturally worry that any BSM con-

tribution could be present in both to such an extent as to

invalidate the methodology. In the worst-case scenario,

BSM physics would be fitted intoΔαhad, and the agreement

between the “SM” and data would be artificially enhanced.

This paper aims to answer this question. In order to do so,

we will study situations in which BSM enters at both tree

and loop level and classify the overall impact in a

reasonably broad and model-independent manner. Before

doing so, we will first reassess the impact of theoretical

uncertainties from the SM itself and compare them to the

targeted accuracy of 2 × 10−10.

II. OVERVIEW

The MUonE experiment proposes to measure Δαhad via

t-channel scattering of muons and electrons. Once Δαhad is

defined, its subsequent contribution to g − 2, denoted aHLO,
is obtained via the following integration [35–37]:

aHLO ¼
α

π

Z

1

0

dxð1 − xÞΔαhad½tðxÞ'; ð1Þ

where t is defined in the spacelike region as a function of x
in the following way:

tðxÞ ¼
x2m2

μ

x − 1
< 0: ð2Þ

In this work, we will use the HADR5N12 program [4,38,39]
1

to generate Δαhad [and subsequently a
HLO via Eq. (1)]. The

results from the code for Δαhad as a function of x are shown
in Fig. 2, where we have highlighted the MUonE signal

region, which corresponds to x ∈ ½0.3; 0.932'. The region

x < 0.3 is an area of phase space in which the contribution

from Δαhad is rather small, and thus is proposed as a

normalization window to aid in the reduction of exper-

imental systematic uncertainties. The region x > 0.932 is

not kinematically accessible for the proposed experiment.

In the signal region, Δαhad can be modeled by a cubic

polynomial, a quadratic Padé approximant, or a leptonic-

running-like function (see Ref. [40] for a more detailed

comparison). In this work, we choose a cubic polynomial

Δαfithad ¼ c1tþ c2t
2 þ c3t

3 as a fitting function, which is

also displayed in the figure. We note that Δαhadð0Þ ¼
c0 ¼ 0; as such, there is no constant term in the fit. Over the

MUonE data range, with around 30 data points and 3 free

parameters, it is possible to obtain fitting errors on aHLO at

the level of 0.3% [40].

αhad

µ

e

FIG. 1. Feynman diagram corresponding to the “signal”for the

MUonE experiment.
1
Specifically, the 9 September 2009 version.
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We can relate the extraction of Δαhad to the perturbative

expansion in theory. The differential cross section (in t)
expanded to NLO in α can be written as

dσSMfull
dt

¼ α2
dσLO

dt
þ α3

dσNLO

dt
þ 2α2

d

dt
ðσLOΔαhadÞ

¼
dσSMpert

dt
þ 2α2

d

dt
ðσLOΔαhadÞ: ð3Þ

The first two terms can be readily computed in perturbation

theory and are therefore considered a “background” in the

MUonE setup, which will be subtracted from the data.

Access to Δαhad can be found by equating the following

ratio:

d

dt

!

dσExp

dσSMpert

"

¼
d

dt

!

dσSMfull
dσSMpert

"

; ð4Þ

where σExp would correspond to the experimental data.

Expanding the right-hand side to OðαÞ, we see

d

dt

!

dσExp

dσSMpert

"

¼ 1þ 2Δαhad þOðα2Þ: ð5Þ

Implicit in the above expansion is that any physics not

accounted for in dσSMpert but present in the data will be

absorbed into the definition of Δαhad. It is therefore

mandatory to calculate dσSMhad as accurately as possible in

order to minimize unwanted inclusion of known physics

(for example, the inclusion of NNLO effects in α from

perturbative physics). Specifically, the MUonE literature

frequently quotes an error target of 10 ppm ð10−5Þ on the

cross section as the desired goal for the theoretical accuracy

[28–32]. This value is motivated by considering the

degradation of the fitting function by the inclusion of a

systematic uncertainty. Studies have been performed which

suggest that including systematic shifts proportional to LO,

included as parameters in the fit, do not significantly

degrade the results beyond the initial 0.3% value [40].

This can be easily understood, since the essential change is

to include a fourth parameter in the fitting model; however,

with 30 well-measured points, this does not lead to a

significant decrease in the fitting ability.

The aim of this paper is to study in greater detail the

nature of the theoretical quantity which would be fit using

the proposed experimental procedure above. In general,

there are two types of missing theoretical components to

Eq. (5). First, as indicated above, there are missing higher-

order corrections in the SM itself. Second, in the case where

physics BSM exists, the theoretical expansion of the

differential cross section could be modified at OðαÞ or

Oðα2Þ. We therefore capture all missing theoretical infor-

mation in the following equation:

d

dt

!

dσExp

dσSMpert

"

¼ 1þ 2ðΔαhad þ ΔαHO þ ΔαBSMÞ; ð6Þ

where ΔαHO defines all unsubtracted pieces of the SM (for

instance, electron mass effects, N3LO, etc.) and ΔαBSM
corresponds to a model-dependent BSM correction. The fit

to experimental data will therefore simultaneously fit the

target signal, Δαhad, and the additional pieces. When

integrated to obtain aHLO, the unsubtracted terms modify

the result as follows:

aHLO → aHLO þ δaHLO; ð7Þ

where δaHLO captures the integrated pieces which do not

arise from the hadronic running of α:

δaHLO ¼ δaHLOHO þ δaHLOBSM ð8Þ

¼
α

π

Z

0.932

0.3

dxð1 − xÞðΔαHO þ ΔαBSMÞ: ð9Þ

We have also specifically included the integration bounds

of the MUonE fiducial volume. The accuracy on the

extraction of aHLO is thus intimately related to the size

of δaHLO, which should be compared to the 0.3% (fitting)

error target. In the subsequent sections, we will estimate the

impact of δaHLOHO using estimates of higher-order calcula-

tions, and δaHLOBSM for general tree-level and loop-induced

new physics scenarios.

FIG. 2. The upper panel shows the leading-order hadronic

contributions Δαhad to the running of α in the MUonE signal and

normalization region (computed using the HADR5N12 program

[4,38,39]), and in red we show a cubic fit to Δαhad in the signal

region. The lower panel shows the ratio of the cubic fit over

Δαhad.
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III. RESULTS

A. Impact of missing higher-order corrections

We begin by studying the impact of missing higher-

order terms in the SM. Formally, these are well defined

by their inverse (since we know which terms of the SM

are included). For practical definitions, until the comple-

tion of higher calculations becomes available, one can

only construct some approximate form of missing higher-

order corrections. The simplest function to define is a

flat correction relative to LO, i.e., ΔαLOHO ¼ c, and corre-

spondingly

δaHLOLO ¼ c
α

π

Z

0.932

0.3

ð1 − xÞdx: ð10Þ

This integral can be readily computed, yielding

δaHLOLO ðcÞ ¼ 0.243
αc

π
: ð11Þ

The stated theoretical accuracy of 10 ppm would corre-

spond to c ¼ 5 × 10−6 [accounting for the factor of 2 in

Eq. (6)]; this results in δaHLOLO ð5 × 10−6Þ ¼ 28 × 10−10,

which is approximately equal to Δaμ, the current difference

between theory and experiment for the g − 2 measurement,

and is far too large for a useful extraction of aHLO. In order

to reduce the impact of the missing higher-order corrections

to the level of the current uncertainty on aHLO of ∼2 ×

10−10 (adjusted from the full error for the fiducial volume

of MUonE), c would have to be 3.5 × 10−7, corresponding

to a theoretical accuracy of 0.7 ppm on the differential cross

section. In principle, missing higher orders of this form

(proportional to LO) enter the fit as a constant term, and

therefore generate a nonzero value of c0 in the expansion

in t. These terms could therefore be treated as a theoretical

systematic uncertainty in much the same way as other

systematic uncertainties are handled.

A more worrisome class of corrections are missing terms

with a dynamic t dependence across the fiducial volume of

the MUonE experiment, which cannot simply be absorbed

into a constant term in the fit. In order to investigate the

potential impact of these types of terms, we estimate the

size of various higher-order corrections by computing

the leptonic running of α raised to the appropriate power:

Δα
approx
i;HO ðtÞ ¼ κiΔα

i
lepðtÞ; ð12Þ

where ΔαilepðtÞ is defined in the Appendix. We note that

these pieces correspond to a single diagram (rescaled by

LO) from the ith-order correction in the perturbative series

(namely, the equivalent topology of Fig. 1 with i bubble
insertions along the photon line). While this diagram

gives an idea of the order of magnitude of a missing

ith-order correction, the full result could be smaller (due to

cancellations with other diagrams) or larger. Therefore, we

vary our estimate over some set range, by multiplying it

with a factor of κi. A reasonable range for κi can be best

determined upon completion of the NNLO computation,

but for now we will take κi in the range f1=5–5g. We can

validate our estimate at NLO (i ¼ 1) by comparing it to the

available NLO calculation. We find that the exact value

δaexact1;HO ¼ 1.4 × 10−6 lies well within our estimated range

δa
approx
1;HO ¼ ð0.6 − 16Þ × 10−6, where the former was

obtained by interpolating the data points presented in

Ref. [31] and adjusting the lower integration bound to

be x ¼ 0.373, due to the restricted range of the NLO data.

Using this approximate form, we compute δa
approx
i;HO using

Eq. (12) in Eq. (9). As a result, we estimate that the

unknown higher-order contributions to δaHLO have the

following sizes:

jδaapproxi¼2;HOj ¼ ð0.5 − 13Þ × 10−8; ð13Þ

jδaapproxi¼3;HOj ¼ ð0.4 − 9Þ × 10−10; ð14Þ

jδaapproxi¼4;HOj ¼ ð0.3 − 6Þ × 10−12: ð15Þ

Our estimates corroborate current beliefs that an NNLO

(i ¼ 2) calculation is essential for the success of the

experiment. However, the impact on aHLO from the

i ¼ 2 contribution is estimated to be around 100 times

the target uncertainty of 2 × 10−10. It is not until i ¼ 3,

(corresponding to an approximate N3LO calculation) that

the estimated corrections are around the desired accuracy of

2 × 10−10. These statements are in line with those outlined

in the recent MUonE letter of intent (LOI), Ref. [29], which

(using the 10 ppm target) determined the need for both

NNLO and resummation effects to achieve the theoretical

error target. Both the current literature and our analysis

above suggest that precision significantly beyond NNLO

will be required. Before attempting to quantify what terms

are needed, we first determine the impact of the higher-

order estimate on the differential distribution in terms of

ppm accuracy on the cross section.

To do so, we perform the following analysis: We

generate data for Δαhad using HADR5N12 and for Δα
approx
i;HO

with a given value of κi. We then proceed to fit the sum of

these two terms together with a flat statistical uncertainty of

10 ppm using a third-order polynomial fit:

Δαfithad ¼ Δαhad þ κiðΔα
i
lepÞ

3 ¼
X

3

i¼1

cit
i; ð16Þ

which is then integrated through Eq. (1). We obtain fitting

uncertainties of 2.3 × 10−10, which match those found in

previous MUonE studies. Our results obtained for various

values of κ3 are shown in Fig. 3, which includes the pure

hadronic contribution (κ3 ¼ 0). We observe that the errors
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arising from the fit do not depend on κ3, but that the central

value of aHLO can be significantly shifted. Especially if

κ3 ≥ 2, the shift exceeds the fitting error of the purely

hadronic data with κ3 ¼ 0 and therefore is the dominant

theoretical uncertainty. For κ3 ¼ 1.5, the shift in aHLO is

2 × 10−10, and we find that the mean value of Δα
approx
3;HO is

0.62 × 10−6 and the maximum value is 1.5 × 10−6. This

indicates that a function which contributes at the level of

around 1.2 ppm is sufficient to induce a change in aHLO

greater than 2 × 10−10.

The two estimates presented thus far in this section

suggest that a precision of around 1 ppm will be required in

order to ensure that the extracted value of aHLO is not

altered by the presence of missing higher-order corrections

at the level of 2 × 10−10 or greater. Further, our second

approximate form suggests that this precision occurs

around the N3LO level. Since an N3LO calculation

remains a daunting task, it is natural to investigate whether

a suitable approximation could be constructed to capture

the dominant impact of this term in the perturbative

expansion. Such approximate forms were discussed in

the LOI [29] and compared to the 10 ppm standard.

Here we reinvestigate the issue, in light of the results of

the previous section. In order to do so, we decompose the

perturbative expansion in α to order n as follows:

σðnÞ ¼ σð0Þ
X

n

m¼0

#

X

m

i¼0

X

m

j¼0

κmi;jðtÞ

!

α

π

"

m

Li
l
j

$

; ð17Þ

where we have used the notation of Ref. [29], parametrizing

the cross section in terms of two IR logarithms, L ¼
logð−t=m2Þ and l ¼ −2 log ð2Δω=sÞ. κmi;jðtÞ defines the

coefficient of the logarithms, which is in general a function

of the kinematic variables (of which we are primarily

concerned with the t dependence). Δω is related to the

experimental definition of photons or leptons, and its

discussion is beyond the scope of this paper. Steps outlining

the resummation of these logarithms are discussed in

Ref. [29]. Rather, we take as a starting point the stated

theoretical uncertainty from Ref. [29] after the proposed

resummation techniques have been applied, which is given

by the term

κ32;0

!

α

π

"

3

L2; ð18Þ

i.e., L2 with no enhancement by an l power and with κ32;0 of

Oð1Þ. Our aim is thus to relate the uncertainty induced by

this term to the findings of our previous analyses. It is

straightforward to relate this expansion to our previous

estimate of the missing higher-order corrections. Our

estimate was constructed from one-loop bubble integrals,

which contain logarithms of the form

L0 ¼ log

!

−
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t=ð4m2
eÞ

p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t=ð4m2
eÞ

p

"

ð19Þ

(see the Appendix for the full form). Over the range of

phase space available to MUonE, one can write to a good

approximation

L0 ≈ L ¼ log

!

−
t

m2
e

"

¼ log

!

x2

1 − x

m2
μ

m2
e

"

∼ 10: ð20Þ

Hence, our previous estimation was of the form

aðtÞL3 þ bðtÞL2 þ cðtÞLþ dðtÞ, which we note contains

cubic powers of L, and is therefore of higher order than

Eq. (18). Motivated by our previous study and the error

estimate of Ref. [29], we study the functions

ΔαLj;n;HO ¼
1

2

!

α

π

"

n

κnj;0L
j; ð21Þ

where 0 ≤ j ≤ n, and for simplicity we take κ to be an

unknown constant. The factor of 1=2 is inserted to ensure a
consistent definition of ΔαHO in Eqs. (7) and (17), which

allows us to quickly relate κ to the expansion coefficient of

a particular term in the cross section. This then resembles

our previous estimate in terms of the logarithmic structure

(with all rational functions of t dropped) and the stated error
estimate from Ref. [29], which starts at j ¼ 2 (for n ¼ 3).

We perform the same analysis as the previous estimate,

namely performing a combined fit to Δαhad and ΔαLj;n;HO,

and integrating the total to obtain a modified aHLO. We

present the difference from the Δαhad-only result (in units

of 10−10) in Table I, where we have set κnj;0 ¼ 1 for

FIG. 3. Different values of the leading hadronic contribution,

depending on the size of κ3 multiplying the approximate N3LO

correction, defined according to Eq. (12).

TABLE I. jδaj × 1010 values for various powers of α and Lwith

κna;b ¼ 1 for all contributions.

ðα=πÞnLn ðα=πÞnLn−1 ðα=πÞnLn−2 ðα=πÞnLn−3

n ¼ 2 980 88 8 ( ( (
n ¼ 3 26 2.3 0.21 0.019

n ¼ 4 0.67 0.059 0.0053 0.00048
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simplicity. We present results for n ¼ 2, 3, 4 and 0 ≤ j ≤ n.
Of particular interest is the comparison between our

previous third-order estimate and that obtained here. We

see that the shift induced by the α3L3 term is significantly

larger than the third-order approximate constructed from

the leptonic running (∼25 compared to 1). This is primarily

since the leptonic running scales like 1=3 compared to

ΔαL3;3;HO; when raised to the third power, this causes a

suppression of 27. In the leptonic running, there is also a

partial cancellation between the L3 and L2 terms, which

suppresses the contribution by roughly a factor of 2. This

partial cancellation is mimicked by the factor of 1=2
in Eq. (21).

We observe that the α3L2 term (with a coefficient of 1)

contributes around 2 × 10−10 to δa. This strongly suggests

that this term will be required in order to achieve the desired

accuracy of MUonE (unless for some reason the coefficient

were significantly smaller than 1). The α3L term contrib-

utes around 0.2 × 10−10 to δa and is therefore extremely

sensitive to the true value of κ as to whether or not is

contribution is mandated. The coefficient of α4L3 is of a

similar (albeit smaller) size; its presumed importance (or

lack thereof) should be easier to quantify once more is

known about the perturbative expansion.

In order to present this information in a more usable

format (after the completion of future higher orders), we

compute the value of κ required for each term (taken

individually) to be sufficient to alter the fitted aHLO by

greater than or equal to 2 × 10−10. These values of κ are

summarized in Table II. For example, we see that if the α3L
term has a coefficient greater than 10, it will need to be

included in the theoretical calculation. If the coefficients are

of Oð1–10Þ, then α3L2 and α3L should be included. Upon

understanding of the perturbative structure at n ¼ 2 and

n ¼ 3, it may be possible to predict more accurately

whether the α4L3 terms are needed. Presumably, if the

technology exists to determine the third order up to single

logarithmic accuracy, similar techniques may be utilized to

determine the α4L3 term. We recall that in reality the

coefficients of these subleading logarithms are themselves

functions of the external kinematics, and therefore model-

ing them as a constant is somewhat risky. Needless to say,

once more is known about the lower-order terms in the

expansion, it will be easier to make more predictive

comments about exactly which coefficients are needed.

In summary, it seems that the knowledge of α3L2 is

mandatory, and that the α3L and α4L3 terms need a more

robust argument so as to judge the maximum size of their

coefficient in the full perturbation theory (ideally with an

actual calculation).

As a final issue, we comment on the role of fitting in

determining our results above. We recall that the numbers

computed in this section were obtained by integrating

Δαfithad, which corresponded to the combination of Δαhad
and the chosen higher-order correction with an error given

by 5 × 10−6 in the fit. It is interesting to compute the

unfitted corrections to δa arising from Eq. (21) integrated

term by term, i.e.,

δani ¼
1

2

!

α

π

"

nþ1
Z

0.932

0.3

ð1 − xÞ log

!

x2

1 − x

m2
μ

m2
e

"

i

dx; ð22Þ

where we have set κni;0 ¼ 1. Focusing on n ¼ 3 and

i ¼ 2, 1, we find

δa32 ¼ 3.7 × 10−10; δa31 ¼ 0.36 × 10−10; ð23Þ

which should be compared to 2.3 and 0.21 × 10−10

(Table I) for the respective fitted values. We observe that

fitting the logarithms onto a cubic polynomial reduces

the “pure”impact of the pieces by around a factor of 2.

Other fitting functions have been investigated for Δαhad
(and are beyond the scope of this work), but it would be

an interesting study to investigate if these terms could

be further suppressed by modifications to the fitting

procedure.

We present a summary of our various findings in

Table III. The three different types of functions all paint

a broadly similar picture. That is, extracting aHLO with a

systematic uncertainty from missing higher-order correc-

tions less than or equal to 2 × 10−10 requires control of the

differential t distribution at around the 1 ppm level. We

classify the size of the coefficients needed in a perturbative

expansion of α and log ð−t=m2
eÞ. Anticipating the size of

the coefficients at around Oð1–10Þ mandates terms up to

order α3L and possibly α4L3. As more theoretical work is

TABLE II. κ values for the individual coefficient at which jδaj
exceeds the desired accuracy of 2 × 10−10.

ðα=πÞnLn ðα=πÞnLn−1 ðα=πÞnLn−2 ðα=πÞnLn−3

n ¼ 2 0.002 0.02 0.3 ( ( (
n ¼ 3 0.08 0.9 10 100

n ¼ 4 3 30 400 4000

TABLE III. Average and maximal sizes of different contribu-

tions in ppm ð10−6Þ, which induce a theoretical systematic

uncertainty that is larger then the targeted accuracy of 2 × 10−10.

Function

Mean

½×10−6'
Maximum

½×10−6'
δσ=σð0Þ

[ppm]

ΔαL3;2;HO½κ ¼ 0.9' 0.67 1 1.3

ΔαL3;1;HO½κ ¼ 10' 0.67 0.83 1.3

ΔαL4;4;HO½κ ¼ 3' 0.66 1.4 1.3

ΔαLOHO 0.35 0.35 0.7

1.5 × Δα3lepðtÞ 0.62 1.47 1.2
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completed, it will be possible to determine the likely size of

missing coefficients more accurately. Finally, we can

estimate the theoretical systematic uncertainty arising from

a function which has a mean value corresponding to the

10 ppm target (as originally proposed [29]). Performing the

same analysis as above (using the α3L2 template function)

results in a shift of δaHLOHO ¼ 16 × 10−10, with other choices

of template functions resulting in similar values.

B. Tree-level BSM contributions

The previous section discussed the precision needed in

the SM to enable an accurate extraction of Δαhad. There is a

second component to Eq. (6) arising from putative BSM

physics. In this section we analyze the potential impact of

different types of models. We begin by discussing BSM

contributions which may enter first at tree level. A tree-

level exchange connects the two lepton lines, and therefore

corresponds to an example like the rightmost diagram in

Fig. 4. In order to have avoided detection, the new boson

exchanged between the leptons must either be very heavy

or have suppressed couplings to SM matter. The simplest

examples correspond to the exchange of either a spin-0

scalar or spin-1 gauge boson. For the case of a scalar (or

pseudoscalar), the couplings scale with lepton masses. This

assumes minimal flavor violation, in which case the only

flavor-violating spurions are the Yukawa matrices. Given

the smallness of the electron Yukawa, we focus instead on

the exchange of a spin-1 gauge boson. In order to study a

(simple) relevant example, we consider a vector gauge

boson arising from an additionalUð1ÞX symmetry [referred

to as a secluded Uð1Þ] that mixes with the Standard Model

photon (a dark photon). Originally such models were

proposed as good candidates to explain the difference in

g − 2 [41]; however, much of the desired parameter space is

now excluded by other measurements [42]. However, there

is still an unconstrained region of parameter space in which

the models could have some impact on g − 2.

A secluded Uð1Þ Lagrangian includes a new gauge

boson Xμ which couples to the hypercharge gauge boson

of the SM [41,42]:

L ¼ −
1

4
F̂μνF̂

μν
−
ϵ0

2
F̂μνX̂μν −

1

4
X̂μνX̂

μν

− g0yYμ B̂
μ þ

1

2
M̂2

XX̂μX
μ; ð24Þ

where B̂μ defines the hypercharge gauge boson, with

corresponding field strength tensor F̂μν and gauge coupling

g0, and the hypercharge current jYμ defines the coupling to

SM fermions. The hats on the fields indicate that the

relevant fields are not canonically normalized and require

rotation to the mass basis. This results in a redefinition of

the SM Z-boson mass, a massless photon, and a massive

dark photon (denoted by A0). The dark photon couples

universally to all SM quark and lepton flavors with a

suppression given by ϵ ¼ ϵ0 cos θw.
Recalling Eq. (6), we see that unaccounted BSM physics

would be absorbed into the hadronic running of α. For tree-

level BSM physics we find a contribution of the form

ΔαBSM ¼
ℜ½MQEDMBSM'

jMQEDj2
; ð25Þ

which corresponds to the interference term between the SM

and BSM contributions. We neglect the BSM-squared term,

assuming that it remains small.

For the dark photon model described above, the LO

interference is simple to compute—indeed, since the only

modifications are to the t-channel propagator and the

coupling, the ratio is given by

ΔαDP ¼
ϵ2t

t −m2
A0
; ð26Þ

where mA0 is the mass of the new boson. We note that

formally, the width of the dark photon ΓA0 enters into the

above expression. The width, however, is suppressed by an

additional factor of ϵ2. As a result, the effects of the width

enter at the same level as the BSM contribution squared

(ϵ4), which we neglect consistently.

Our results are presented in Fig. 5, where we present

Δα
½mA0 '
DP as a function of x. We have chosen ϵ2 ¼ 2 × 10−7,

which is close to the current exclusion limits for the

secluded Uð1ÞX model [42], and we present curves for

three different mass choices, mA0 ¼ f0.01; 0.1; 1g GeV. It

is clear that both the shape and the relative importance

compared to Δαhad are strongly dependent on mA0 . Since in

the spacelike region t is negative, the denominator of

Eq. (26) never diverges, and therefore increasing the mass

lowers the overall impact. As jtj > mA, the ratio approaches

an asymptotic value of ϵ2.

FIG. 4. Topologies illustrating the possible insertion of BSM physics.
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We present results for the integrated contribution to

δaHLOBSM in Table IV. Assuming that the MUonE experiment

can reach their expected sensitivity of 2 × 10−10, we see

that the lightest dark photon model contributes at the level

of this uncertainty. Since this relevant parameter space is at

the edge of the current exclusion limits [42], future dark

photon searches will have likely excluded all relevant

parameter space by the time the MUonE experiment is

performed.

In contrast, if the BSMsector is expanded to includeBSM

matter content, e.g., by including a dark matter candidate

[43,44], the incorporated potential decays to light dark

sector fermions (or scalars) can alter the width of the dark

photon. As a result, the decays to SM matter can be

suppressed, causing an overall lowering of the ability of

direct searches to constrain the dark photon parameter space.

Such an extended dark sector was recently proposed as a

method of explaining g − 2 while evading some existing

searches [45]. Since theMUonE experiment is only margin-

ally dependent on the decay width of the dark photon, such

extended BSM models could make sizable contributions,

while evading bounds from direct searches. Consequently, a

careful examination of the current dark photon bounds will

be necessary, once the MUonE data are analyzed.

Finally, we note that models in which the BSM medi-

ating particle is heavy can also be interpreted using Eq. (26)

with the replacement ϵ2 → Oð1Þ for EW scale couplings. In

this instance, we see the suppression is given by t=ðt −m2Þ.
It is thus clear that heavy new physics will effectively look

like t=m2 in the fiducial region of the MUonE experiment.

LEP limits [46–50] on contact interactions already impose

m≳O TeV, which is sufficient to suppress heavy new

physics to such a level as to be neglected in the MUonE

analysis.

C. Loop-level BSM contributions

We now consider the possibility that the SM prediction is

modified at the one-loop level. This changes Eq. (5) to the

following:

d

dt

!

dσExp

dσSMpert

"

¼ 1þ 2Δαhad þ 2α
d

dt

!

dσBSM

dσLO

"

þOðα2Þ; ð27Þ

where dσBSM defines the BSM physics contribution. We

note that, due to the implicit insertion of a factor of α in the

definition of Δαhad, both terms in Eq. (27) are of the same

(formal) order in the perturbative expansion of the ratio. As

illustrated in Fig. 4, there are four possible insertions of

BSM interactions in the basic LO topology. They can be

included on either of the individual lepton lines, on the

photon propagator, or by connecting the two lines together.

We can thus expand dσBSM as follows:

dσBSM ¼

!

Δα
γ
BSM þ

X

l¼e;μ

ΔαlBSM þ Δα
e;μ
BSM

"

dσLO;

where ΔαiBSM corresponds to the correction associated with

particle content i factored onto the LO differential cross

section dσLO. In this work, we set Δα
e;μ
BSM ¼ 0—that is, we

neglect box-type contributions in which the new physics

connects the two lepton lines. This is primarily because

they either represent a QED correction to a tree-level

contribution (as discussed in the previous section) or

involve couplings that are heavily constrained by lepton

flavor violation, or are suppressed by the smallness of the

electron Yukawa coupling (for exchange of scalar par-

ticles). Contributions from heavy new physics which are

not flavor suppressed effectively reduce to a four-fermion

contact interaction, which falls under the discussion of

the previous section. Before detailing the calculation in

specific models [the MSSM and a gauged Uð1ÞLμ−Lτ

model] in the next section, we first outline the character-

istics of the remaining contributions.

The contributions from one-loop BSM corrections to the

photon propagator can be written as

Δα
γ
BSM ¼ ℜ½ΣrðtÞ'; ð28Þ

where Σ
rðtÞ defines the renormalized photon self-energy,

which in the on-shell scheme is given by Σ
rðtÞ ¼ ΣðtÞ−

Σð0Þ. The equation above was obtained by expanding the

photon propagator in α,

FIG. 5. The plot shows the leading-order hadronic contribu-

tions Δαhad in comparison with various dark photon models

Δα
½mA0 '
DP .

TABLE IV. Integrated contributions to δaHLOBSM stemming from

three different dark photon models.

ϵ2 2 × 10−7

mA0 ½GeV' 0.01 0.1 1

δaHLOBSM 1.1 × 10−10 4.6 × 10−11 1.3 × 10−12
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Dμν ¼ −i
gμν

t
ð1þ ΣðtÞ þO½α2'Þ; ð29Þ

and introducing the form factor ΣðtÞ as

Σ
μνðtÞ ¼ iðtgμν − ðp2 − p3Þ

μðp2 − p3Þ
νÞΣðtÞ: ð30Þ

In addition, we introduced the outgoing four-momenta of

the electron and muon as ðp2 − p3Þ
2 ¼ q2 ¼ t. In general,

heavy new physics will act much like the top-quark

contribution to the self-energy. For t ≪ m2
t , which corre-

sponds to the majority of the range in x (and includes the

fiducial detector volume), these terms scale like t=m2
t , so in

general we do not expect a significant contribution from

heavy BSM physics from self-energy-type corrections.

The corrections to the lepton-photon vertex lead to

contributions of the form

ΔαlBSM ¼ Fr;l
e ðtÞ þ Kl

bF
r;l
m ðtÞ: ð31Þ

The projection onto the tree-level matrix is obtained by first

computing the unrenormalized electric and magnetic form

factor in terms of its constituent Lorentz structures:

Γ
μ
l
¼ −ie

!

γμFl
eðtÞ þ

iσμνqν
2ml

Fl
mðtÞ

"

; ð32Þ

with σμν ¼ i=2½γμ; γν'. The renormalization at one loop in

the on-shell scheme is given by Fr;l
e ðtÞ ¼ Fl

eðtÞ − Fl
eð0Þ

and Fr;l
m ðtÞ ¼ Fl

mðtÞ. We recall that g − 2 for a lepton is

defined as the magnetic form factor at zero momentum,

Fr;l
m ð0Þ ¼ al. We can therefore quantify the impact on

Δαhad from a BSM theory which contributes aBSMμ to g − 2

using the following order of magnitude estimate:

ΔαlBSM ∼ Kl

ba
BSM
μ ; ð33Þ

where we suppress the electric contribution for the follow-

ing discussion. It is apparent that, depending on the size of

K, BSM physics may induce a change in aHLO comparable

to the BSM contribution to g − 2. The kinematic factor K
thus plays a critical role in determining the overall impact

of the BSM physics contribution to the interpretation of

aHLO. It can be computed by taking the interference of the

magnetic part of the form factor (along the fermion line l)

with the rest of the amplitude defined as in the SM, with the

pure SM amplitude, and is

Kl

b ¼
ð2m2

b þ tÞt

2ðm2
e þm2

μ − sÞ2 þ 2stþ t2
; ð34Þ

where b is the mass of the “spectator fermion,” which

couples via the SM vertex in the diagram. We plot the

magnitude of the kinematic factor in Fig. 6 for both muon

and electron vertices. It is clear that the kinematic factor,

for the center-of-mass energy proposed by the MUonE

Collaboration,
ffiffiffi

s
p

¼ 0.4055541 GeV, results in a signifi-

cant suppression of the magnetic part of the form factor over

the majority of the available phase space. Therefore, we can

see thatΔαlBSM ≪ aBSM, and in general amodelwhich seeks

to explain g − 2 by introducing a loop-level contribution of

the form aBSM ∼ 20 × 10−10 will contribute a negligible

amount to the extraction of Δαhad in μe scattering.

The argument above assumes that both Fr;l
e ðtÞ and

Fr;l
m ðtÞ do not become sufficiently large at any point in

the MUonE phase-space regime probed. In order to

demonstrate the suppression in a realistic setting, we

provide an example calculation in the MSSM and a gauged

Uð1ÞLμ−Lτ
model in the next section.

IV. MSSM

Supersymmetric (SUSY) theories offer a compelling

UV-complete extension to the SM, of which the minimally

supersymmetric Standard Model (MSSM) provides a

relatively simple realization of SUSY by introducing a

limited number of new parameters [51]. In general, while

the MSSM is by now severely constrained by the LHC, it is

rather easy in this model to introduce new contributions to

the muon anomalous magnetic moment, which can be

utilized to explain the current 3.7σ derivation [52–55]. The

same contributions also arise for muon-electron scattering,

and therefore the MSSM is an excellent theory for us to

demonstrate the argument presented in the previous section

applied to a full model. For this purpose, we use the

framework of the previous section and compute the

corrections from the muon vertex form factors [Eq. (31)]

and the photon propagator [Eq. (28)] arising from smuons

and charginos. We neglect any corrections to the electron-

photon vertex, since they are constrained by the electron

g − 2 and generally suppressed due to the small mass of the

electron. We follow the notation set up in Refs. [7,51] with

the chargino mass matrix defined as follows:

FIG. 6. The kinematic factor K, evaluated for electron and

muon vertices for the kinematics of the MUonE experimental

setup.

INTERPLAY BETWEEN SM PRECISION, BSM PHYSICS, … PHYS. REV. D 100, 035030 (2019)

035030-9



Mχ0 ¼

0

B

B

B

@

M1 0

0 M2

MOD

MT
OD

0 −μ

−μ 0

1

C

C

C

A

; ð35aÞ

MOD ¼

!

−cbsWMZ sbsWMZ

cbcWMZ −sbcWMZ

"

; ð35bÞ

Mχ" ¼

!

M2

ffiffiffi

2
p

sbMW
ffiffiffi

2
p

cbMW μ

"

; ð35cÞ

and

M2
μ̃ ¼

!

m2
L;μ −mμμ tan β

−mμμ
) tan β m2

R;μ

"

; ð35dÞ

where m2
L;μ ¼ m2

L þ ðs2W −
1
2
Þm2

Z cos 2β, m2
R;μ ¼ m2

R−

s2Wm
2
Z cos 2β, and the abbreviations sb ¼ sin β, cb ¼

cos β, sW ¼ sin θW , and cW ¼ cos θW . We neglect the soft

SUSY-breaking term Aμ̃ in the smuon mass matrix, since it

only amounts to small corrections in the smuon mass. The

mass of the muon sneutrino is given through the left-

handed smuon mass parameter

m2
ν̃ ¼ m2

L þ
1

2
M2

Z cos 2β: ð36Þ

The real and positive masses of the neutralinos, charginos,

and smuons can be found by diagonalizing the correspond-

ing mass matrix:

N)Mχ0N
† ¼ diagðmχ0

1
; mχ0

2
; mχ0

3
; mχ0

4
Þ; ð37aÞ

U)Mχ"V
† ¼ diagðmχ"

1
; mχ"

2
Þ; ð37bÞ

XM2
μ̃X

† ¼ diagðm2
μ̃1
; m2

μ̃2
Þ: ð37cÞ

Under the assumption that the gaugino masses unify at

some GUT scale

M1 ¼
g21M2

g22
≈
5

3
tan2WM2; ð38Þ

we end up with five relevant MSSM parameters: M2, μ,

tan β, mL;μ, and mR;μ.

The calculation of the relevant Feynman diagrams was

performed in the following manner: the diagrams were

generated with QGraf [56] and projected onto form factors

defined in Eqs. (29) and (32). Scalar integrals were reduced

to master integrals using integration-by-parts identities,

generated by LiteRed [57]. The master integrals were then

computed using QCDloop [58]. Finally, we renormalized

our calculation in the on-shell scheme [59].

Our results are shown in Fig. 7, where we choose three

sets of MSSM parameters as defined in Table V, which

are compatible with the current g − 2 discrepancy. The

individual parameters are varied so as to preferentially

select different loop diagrams. Regardless of the para-

meter choice, we observe that the MSSM corrections are

sufficiently small such as to effect δaHLOBSM at the level of

Oð10−13Þ and therefore can be safely neglected. This

validates with a specific model the more general statements

made in the previous section regarding the overall impact

of heavy-loop-induced new physics.

V. A U(1)Lμ −Lτ
MODEL

As a final example, we consider a loop-induced BSM

correction which corresponds to a dark photon gauged

under the difference of muon and tau lepton numbers

Lμ − Lτ [60,61]. Since there is no tree-level coupling to

electrons, this model is harder to constrain experimentally

[62] and thus still has an available window of parameter

space compatible with g − 2 [42]. For our discussion it

represents an interesting test case, since the light mediating

particle invalidates the argument given in the previous

section regarding the smallness of self-energy-style cor-

rections (the kinematic suppression from the vertex dia-

grams is still present). These models therefore present a test

of loop-induced BSM physics in a regime different from the

MSSM example considered previously. In principle, this

FIG. 7. The plot shows the leading-order hadronic contribu-

tions Δαhad in comparison with different parameter selections for

the MSSM.

TABLE V. Definitions of parameter choices used for the

MSSM calculation.

Set M2 [GeV] μ [GeV] tan β mL;μ [GeV] mR;μ [GeV]

L 200 200 4 100 100

Hχ 700 700 30 300 100

Hμ̃ 200 200 30 600 600
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model can be captured by an effective tree-level interaction

by integrating out the loop, and thus could be constrained

using the tree-level model (with a replacement ϵ2 → ϵϵ0e).
Here, however, we will use the full one-loop machinery to

ensure a full comparison (also including vertex corrections)

is made.

Our results for this model are summarized in Fig. 8,

where we plot ΔαBSM for three different choices of the dark

photon mass (which would be broadly compatible with

g − 2). Although the contributions from the light new

physics are considerably larger than those from the

MSSM, they are still suppressed to a percent level con-

tribution to the error on Δαhad, and therefore can be

neglected in the MUonE analysis [δaHLOBSM ¼ Oð10−12Þ].
From a theoretical viewpoint, it is interesting to investigate

the predictions in slightly more detail, as they have some-

what unique features compared to the other examples we

have studied. For light mediators, the dominant contribu-

tion comes from the electric form factor [e.g., the first term

in Eq. (32)], which is negative (for this reason we plot the

absolute values in Fig. 8). On the other hand, the con-

tribution arising from the self-energy-type corrections has a

positive sign. The two terms compete, and in particular at

large x, the self-energy terms approach a constant value (for

fixed coupling) regardless of the dark photon mass, while

the renormalized electric form factor acts like an effective

coupling which decreases with increasing mass. As a result,

the shape of the vertex corrections as a function of x is not

sensitive to the mass of the dark photon. We note that the

magnetic form factor is subleading for all three choices

such that the total vertex correction is set by the electric

form factor.

For the two lighter cases studied (mA0 ¼ 0.01, 0.1 GeV),

the electric form factor dominates over the entire x range,

and the prediction remains negative. For our heaviest case,

mA ¼ 1 GeV, the vertex suppression is sufficient such that

at larger values of x, the self-energy term dominates; as a

result, the prediction changes sign at large x.

VI. CONCLUSIONS

A precision low-energy μe scattering experiment offers

the opportunity to perform an independent measurement of

the LO hadronic running of α (Δαhad) with the possibility of

producing a result with similar or improved uncertainties to

existing calculations or extractions. Such a measurement

would have an immediate application in the comparison

between data and theory for the anomalous magnetic

moment of the muon g − 2. Currently there is significant

tension (3.7σ) between data and the predictions of the SM

for this observable. Excitingly, this may be due to con-

tributions from as yet undiscovered BSM physics. New

results for g − 2 are expected from the Muon g − 2 experi-

ment at Fermilab this summer. Since aHLO represents the

second-largest single contributor to the theoretical error

budget, its extraction using an independent method, not

plagued by low-energy hadron resonances (a problem for

the current method relying on the optical theorem) is well

motivated. For this reason, the MUonE experiment has

been proposed as a means of achieving this measurement

through t-channel scattering of electrons and muons.

The desired accuracy on theMUonE experiment (in units

of the anomalous magnetic moment of the muon) is about

2 × 10−10; we studied the feasibility of obtaining this goal

given the presence of unknown higher-order corrections in

the SM.While it is clear that a precision of 0.3% on the fit is

realistic given the proposed experimental methodology,

there is an underlying dependence on missing terms in the

theory which may alter the mathematical definition of the

fitted function at a level much greater than this accuracy

(i.e., one is not determining purely Δαhad but instead the

combination of Δαhad þ higher-order perturbative terms).

We conclude that the target of 10 ppm for the theoretical

uncertainty is insufficient to obtain the desired accuracy on

aHLO. We demonstrated this using an estimate of the order

of magnitude of higher-order corrections constructed from

the leptonic running raised to the appropriate power, and by

investigating powers of logð−t=m2
eÞ which may enter into

the perturbative expansion. Both analyses suggest that

1 ppm is a more realistic target to achieve the 2 × 10−10

theoretical uncertainty.

A putative BSM contribution to g − 2 may be as large

∼25 × 10−10. One therefore should ask, if a BSM explan-

ation is employed to address the g − 2 discrepancy, what

would its impact be on a similar scattering experiment? A

natural worry is that BSM physics could be accidentally

fitted into an extraction of Δαhad at the MUonE experiment,

and lead to a misinterpretation of g − 2 data (in the worst-

case scenario, forcing artificial agreement with the “SM”).

It is, in our opinion, therefore crucial to understand how

different types of BSM signals would manifest themselves

FIG. 8. The plot shows the leading-order hadronic contribu-

tions Δαhad in comparison with various Uð1ÞLμ−Lτ
dark photon

models Δα
½mA0 '
Bμτ

.
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in the MUonE experimental setup. Providing such a study

was one of the principal aims of this paper.

Generic BSM physics capable of altering μe scattering

will enter first at either tree or loop level, and the potential

impact in the two scenarios is rather different. For tree-level

BSM physics, the landscape is rather strongly constrained

by previous collider experiments. This leaves two potential

windows in the generic BSM parameter space; first, the

mediating BSM particle could be sufficiently heavy to have

avoided direct production at LEP/LHC, etc.; or second, the

coupling of the mediating particle could be small enough

that it is sufficiently weakly produced at colliders to have

been observed. Heavy BSM physics essentially replaces the

tree-level diagram with a four-fermion vertex, and existing

constraints are sufficient to render this of no concern to the

MUonE operational procedure. Lighter weakly coupled

BSM physics is much more interesting from the MUonE

perspective. In particular, dark photon models with an

extended BSM matter sector might be able to make sizable

contributions, while evading exclusion limits set by dark

photon searches. Given the timescale of the experiment and

the current experimental interest in dark photons, the

available parameter space will be more tightly constrained

by the time the MUonE experiment takes data. However, if

a dark photon model is used to explain g − 2, its impact on

the MUonE result should be computed to avoid double

counting.

Physics which enters first at loop-level is more subtle; we

showed that in general there is a significant suppression

from the kinematics and that generic models will contribute

at a much smaller level than the anticipated error on Δαhad.

We demonstrated this with explicit calculations in the

MSSM or a dark photon arising from a gauged Uð1ÞLμ−Lτ
.

Given the importance of interpreting the g − 2 difference

as the breakdown of the SM, we suggest that if Δαhad
information is used from μe scattering, the BSM contri-

bution toΔαhad (as extracted from the data) is calculated for

the model to ensure that the contribution is not large in

both. Following the steps presented in this paper can

provide an estimation of the size of the BSM physics,

although a more rigorous analysis following the steps of the

experiment should be conducted if warranted.
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APPENDIX: FORM OF THE LEPTONIC

RUNNING

In this appendix, we give the analytic expression for the

leptonic running of α that was used to approximate the

higher-order corrections:

Δαlep ¼
X
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