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1 Introduction

The top quark is the heaviest elementary matter particle. Its large production rate at

the CERN LHC enables precision studies, thereby testing the Standard Model of particle

physics at an unprecedented level, and potentially uncovering indirect evidence for new

physics effects. Precision measurements of top quark observables [1–4] must be confronted

with equally precise theory predictions, thereby requiring the perturbation theory descrip-

tions of these observables to be extended to high orders.

The available second-order (next-to-next-to-leading order, NNLO) QCD corrections to

the top quark pair production process (initially for the total cross section [5] and subse-

quently for differential distributions [6–9]) deliver a competitive level of theory predictions,

and are enabling a multitude of precision studies with top quark pairs. A key ingredient

to these calculations are the two-loop QCD corrections to the matrix elements for top pair

production in quark-antiquark annihilation and gluon fusion. While numerical represen-

tations of these two-loop matrix elements were derived already some time ago [10, 11],

only partial analytical results are available for them up to now [12–15] (and used in partial

validations [16, 17] of the total NNLO cross section calculation). Such analytical results

allow in-depth investigations into the structure of the matrix elements, enabling to inves-

tigate limiting behaviors and analyticity structures, as well as providing an independent

approach to their numerical evaluation. Up to now, full results for the two-loop top quark
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production matrix elements could not be derived due to incomplete knowledge on the rel-

evant two-loop Feynman integrals. Important steps towards the evaluation of the missing

two-loop functions have been recently undertaken in [18–21].

In this work, we complete the task of determining all the non-planar two-loop functions

that are needed for the evaluation of the scattering amplitudes for the quark initiated

channel qq̄ → tt̄ at NNLO in QCD. Owing to the large value of the top mass compared to

the mass of the two incoming quarks, which we suppose to have different flavor, we treat

the latter as massless.

The results of this paper represent an additional milestone of the research program

dedicated to the two-loop QCD and QED corrections to the interaction of two fermionic

currents, that was initiated with the study of the muon-electron scattering, in the context

of the MUonE experiment [22, 23], which is currently under evaluation at CERN.

By following the same the path of the calculation of two-loop integrals for µe → µe and

the crossing-related processes considered in [24, 25], we adopt a consolidated strategy [26,

27], which was proven to be particularly effective in the context of multi-loop integrals

that involve multiple kinematic scales [24, 25, 27–31]. By means of integration-by-parts

identities (IBPs) [32–34], we identify a set of 52 master integrals (MIs) that we evaluate

analytically, through the differential equations method [35–38]. In particular, we consider

an initial set of MIs that obey a system of first-order differential equations (DEQs) in two

independent kinematic variables that is linear in the space-time dimensions d. The system

is subsequently cast in canonical form [26] by means of the Magnus exponential matrix [27].

The matrix associated to the canonical system, where the dependence on (d−4) is factorized

from the kinematics, is a logarithmic differential form, which — once parametrized in terms

of suitable variables — has a polynomial alphabet, constituted of eleven letters. Therefore,

the canonical MIs are found to admit a Taylor series representation around d = 4, whose

coefficients are combinations of generalized polylogarithms (GPLs) [39–42]. The otherwise

unknown integration constants are determined either from the knowledge of the analytic

expression of the MIs in special kinematic configurations or by imposing their regularity

at the pseudo-thresholds of the DEQs. Finally, we show how the MIs, that we initially

compute in an unphysical region, can be analytically continued to the top-pair production

region. Due to the non-trivial structure of their branch-cuts, the analytic continuation of

the two-loop functions considered in this paper represents a paradigmatic case, that can be

useful for the study of other planar and non-planar diagrams that involve massive particles.

As a byproduct of the current analysis, we obtain the analytic continuation to the physical

region of the functions required for the µe → µe and ee → µµ scattering in QED [24, 25].1

In the completion of this calculation, we benefited from publicly available software ded-

icated to multi-loop calculus. The IBPs decomposition and the generation of the dimension-

shifting identities and DEQs obeyed by the MIs have been performed with the packages

Kira [44], LiteRed [45, 46] and Reduze [47, 48]. The analytic expressions of the MIs, which

we evaluate numerically with the help of GiNaC [49], were successfully tested against the

1The evaluation of the master integrals for the di-muon production in lepton-pair scattering, within the

physical region, has been recently considered in [43].
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Figure 1. Representative non-planar diagrams contributing at two-loops to q(p1) + q̄(p2) →
t(p3)+ t̄(p4) (top row), and the associated integral families (bottom row). Massive propagators and
external legs are depicted using thick lines. The diagrams have been drawn with axodraw2 [52].

numerical values provided either by SecDec [50] or, for the most complicated 7-denominator

topologies, by an in-house algorithm.

Beside these important validations, our results have been successfully compared against

the computation of the master integrals relevant to the same integral topologies expressed

in a different basis set, independently obtained by Becchetti, Bonciani, Casconi, Ferroglia,

Lavacca and von Manteuffel [51], published in tandem to the current manuscript.

The remainder of the paper is organized as follows: in section 2 we set our notation

and conventions for the non-planar two loop functions. In section 3, we present the system

of DEQs obeyed by the MIs and their solutions in the unphysical region. In section 4, we

study the analytic continuation of the MIs to the physical region. Finally, in section 5, we

discuss the numerical evaluation of the 7-denominator integrals. Appendix A contains the

coefficients of the linear combinations of MIs that satisfy a canonical system of DEQs.

The analytic expressions of the considered MIs are given in the Supplementary Material

attached to this paper, and in the ancillary files accompanying the corresponding arXiv

version.

2 The non-planar four-point topology

In this paper, we complete the determination of the Feynman integrals for the qq̄ → tt̄

scattering process

q(p1) + q̄(p2) → t(p3) + t̄(p4) , (2.1)
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with kinematics specified by

p21 = p22 = 0 , p23 = p24 = m2 ,

s = (p1 + p2)
2 , t = (p2 − p3)

2 , u = (p1 − p3)
2 = 2m2 − t− s , (2.2)

where m is the top quark mass. The full set of two-loop three-point integrals that are

involved in the process has been known for some time [53–60], as well all the relevant planar

four-point functions [12, 13, 24]. On top of these contributions, the evaluation of the full

double-virtual matrix element requires the computation of two-loop non-planar Feynman

diagrams. Representative non-planar diagrams are shown in the top row of figure 1. In the

bottom row, we also show the integral families onto which we map those diagrams. Massive

propagators and external legs are depicted using thick lines. The MIs for the QED-like

family A1 are already available in the literature, as they have been studied in the context of

the NNLO QED corrections to eeµµ processes (with suitable redefinitions of the momenta

and of the Mandelstam invariants). In particular, they have been first computed in [25]

(in an unphysical region, to be analytically continued), and later in [43] (directly in the

heavy-fermion-production kinematic region). As for the genuine QCD contributions, the

MIs for family N1 have been computed in [61], while the MIs for family N2 are the subject

of the present publication.

In arbitrary d dimensions, we parametrize the integrals of family N2 as

I [d](n1, . . . , n9) ≡
∫

d̃dk1d̃dk2
1

Dn1
1 . . . Dn9

9

, (2.3)

where Di are the inverse scalar propagators

D1 = k21, D2 = k22 −m2, D3 = (k2 − p3)
2, D4 = (k1 − p2)

2,

D5 = (k1 − p3 − p4)
2, D6 = (k1 − k2)

2 −m2, D7 = (k1 − k2 − p4)
2,

D8 = (k1 − p3)
2, D9 = (k2 − p2)

2 , (2.4)

with k1 and k2 denoting the loop momenta.

The analytic calculation described in section 3 is performed by expanding the MIs

around d = 4, while the numerical evaluation presented in section 5 as a check of our

results is carried over around d = 6. Therefore, we set ϵ ≡ (d∗ − d)/2, where d∗ = 4 and

d∗ = 6 according to the case. In addition, we define our integration measure as

d̃dk =
ddk

iπd/2 Γ (1 + ϵ)

(
m2

µ2

)ϵ

, (2.5)

where µ is the ’t Hooft scale of dimensional regularization. In this convention, the two-loop

tadpole integral ϵ2I [4−2ϵ](0, 2, 0, 0, 0, 2, 0, 0, 0) is normalized to 1.

3 Solution of the system of differential equations

From the IBP reduction of the two-loop integrals belonging to the family defined in

eqs. (2.3)–(2.4) we identify a basis of 52 MIs. We determine the analytic expressions
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of the MIs by solving their DEQs in the Mandelstam invariants s, t and the top quark

mass m2. IBPs and DEQs have been derived by requiring the external legs to be on-

shell. The solution of the DEQs in terms of known functions is facilitated by the following

reparametrization of the kinematics:

u−m2

t−m2
= −z2

w
,

s

m2
= −(1− w)2

w
, (3.1)

where the constraint on the Mandelstam invariants s + t + u = 2m2 is understood. The

dimensionless variables w and z appearing in eq. (3.1) were already introduced in [25] for

the computation of the MIs of the non-planar family A1 (modulo the relabeling s ↔ t).

Also in this case, the above change of variables rationalizes the coefficients of the canonical

DEQs, hence allowing to express the MIs in terms of GPLs.

3.1 Differential equations for master integrals

We determine a canonical basis of MIs in d = 4 − 2ϵ through the Magnus exponential

algorithm described in [27, 28]. As a starting point, we identify a set of 52 independent

integrals Fi, whose DEQs depend linearly on the dimensional regularization parameter ϵ,

F1 = ϵ2 T1 , F2 = ϵ2 T2 , F3 = ϵ2 T3 ,
F4 = ϵ2 T4 , F5 = ϵ2 T5 , F6 = ϵ2 T6 ,
F7 = ϵ2 T7 , F8 = ϵ2 T8 , F9 = ϵ2 T9 ,
F10 = ϵ2 T10 , F11 = ϵ3 T11 , F12 = ϵ2 T12 ,
F13 = ϵ3 T13 , F14 = ϵ2 T14 , F15 = ϵ3 T15 ,
F16 = ϵ2 T16 , F17 = ϵ2 T17 , F18 = ϵ3 T18 ,
F19 = ϵ3 T19 , F20 = ϵ4 T20 , F21 = ϵ2 T21 ,
F22 = ϵ3 T22 , F23 = ϵ2 T23 , F24 = ϵ3 T24 ,
F25 = ϵ2 T25 , F26 = ϵ4 T26 , F27 = ϵ3 T27 ,
F28 = ϵ3 T28 , F29 = ϵ4 T29 , F30 = ϵ3 T30 ,
F31 = ϵ3 T31 , F32 = ϵ4 T32 , F33 = ϵ3 T33 ,
F34 = ϵ4 T34 , F35 = ϵ3 T35 , F36 = ϵ4 T36 ,
F37 = (1 + 2ϵ)ϵ2 T37 , F38 = ϵ4 T38 , F39 = ϵ3 T39 ,
F40 = ϵ3 T40 , F41 = ϵ3 T41 , F42 = ϵ4 T42 ,
F43 = ϵ4 T43 , F44 = ϵ4 T44 , F45 = ϵ4 T45 ,
F46 = ϵ4 T46 , F47 = ϵ4 T47 , F48 = ϵ4 T48 ,
F49 = ϵ4 T49 , F50 = ϵ4 T50 , F51 = ϵ4 T51 ,
F52 = ϵ4 T52 , (3.2)

where the Ti are the integrals graphically represented in figures 2 and 3.

In particular, the numerators of integrals F49,...,52, are found by following the ideas

in [62], i.e. by determining a set of canonical integrals through the inspection of their
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Figure 2. The first 25 MIs T1,...,25 for the two-loop non-planar topology N2 of figure 1. Massless
propagators are represented by think lines and massive propagators by thick ones. Each dot in-
dicates an additional power of the corresponding propagator. Numerator insertions are indicated
explicitly on top of each diagram.

four-dimensional maximal-cuts. To this aim, we first localize the integral over k2, which

corresponds to the non-planar part of the diagram specified by D2,3,6,7. By enforcing the

additional constraints k21=0 and s = 2k1 · (p3 + p4) (which originate from the cut of the

propagators depending on k1), we obtain

∫
d4k1

N(k1)

D1D4D5

∫
d4k2δ2δ3δ6δ7 =

∫
d4k1

N(k1)

D1D4D5

1

((k1 − p3)2 −m2)((k1 − p4)2 −m2)
,

(3.3)

– 6 –



J
H
E
P
0
6
(
2
0
1
9
)
1
1
7

p1

p2 p3

p4

T26.

p1

p2 p3

p4

T27.

p1

p2 p3

p4

T28.

p2

p1 p3

p4

T29.

p2

p1 p3

p4

T30.

p2

p1 p3

p4

T31.

p1

p2

p3

p4

T32.

p1

p2

p3

p4

T33.

p2

p1

p3

p4

T34.

p2

p1

p3

p4

T35.

p1

p2 p3

p4

T36.

p1

p2 p3

p4

T37.

p1

p2 p3

p4

T38.

p1

p2 p3

p4

T39.

p1

p2 p3

p4

T40.

p1

p2 p3

p4

T41.

p1

p2 p3

p4

T42.

p2

p1 p3

p4

T43.

p1

p2

p3

p4

T44.

p1

p2

p3

p4

(k1-p3-p4)
2

T45.

p1

p2

p3

p4

(k1-p3)
2

T46.

p1

p2

p3

p4

(k2-p2)
2

T47.

p1

p2 p3

p4

T48.

p1

p2

p3

p4

(k1-p3)
2-m2

T49.

p1

p2

p3

p4

(k1-p4)
2-m2

T50.

p1

p2

p3

p4

(k1-p4)
2-m2

(k1-p3)
2-m2

T51.

p1

p2

p3

p4

(k1-p3)
2-m2

(k2-p2)
2

T52.

Figure 3. The remaining 27 MIs T26,...,52 for the two-loop non-planar topology N2 of figure 1. The
conventions are the same as in figure 2.

where we have denoted δi = δ(Di) and assumed the integral to contain some arbitrary

numerator depending on k1. From eq. (3.3), we observe that the maximal-cut of the one-

loop subdiagram exposes two hidden propagators, D10 = (k1 − p3)2 − m2 and D11 =

(k1 − p4)2 − m2. The latter, together with the residual uncut propagators D1,4,5, form a

one-loop pentagon integral, known to obey non-canonical DEQs around four dimensions.

Therefore, we choose the numerator factor N(k1) such that it cancels one or both the hidden

propagators, resulting in either a box or triangle integral, which both satisfy canonical

DEQ. In this way, we determine three out of the four numerators corresponding to the

integrals F49,...,51, as they are displayed in figure 3. The last numerator F52 is defined to
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contain, besides the factor D10, also the auxiliary denominator D9, which, depending on k2,

ensures the linear independence from the other three basis integral of the sector, without

spoiling the properties of the DEQs.

Once a basis of MIs with ϵ-linear DEQs has been determined, the integrals of eq. (3.2)

can be rotated into a canonical basis of MIs Ii by means of the Magnus exponential matrix.

Through this procedure, we find that the integrals

I1=F1 , I2=−sF2 ,

I3=m2F3 , I4= tF4 ,

I5=−2m2F4−(m2−t)F5 , I6=−uF6 ,

I7=2m2F6−(u−m2)F7 , I8=−sF8 ,

I9=−s

2
F8+λs

(
1

2
F8+F9

)
, I10=−sF10 ,

I11=−(m2−t)F11 , I12=−m2
(
m2−t

)
F12 ,

I13=−(u−m2)F13 , I14=−m2
(
u−m2

)
F14 ,

I15=λsF15 , I16=m2λsF16 ,

I17=(s−λs)

(
3

2
F15+m2F16

)
−m2sF17 , I18=λsF18 ,

I19=λsF19 , I20=λsF20 ,

I21=(s−λs)
(
F15+2m2F16+F18−2F20

)
−m2sF21

I22=−stF22 , I23=m2s
(
F22+(m2−t)F23

)
,

I24=usF24 , I25=−m2s
(
F24−(u−m2)F25

)
,

I26=−(u−m2)F26 , I27=−(m2−t)

(
m2F27+

2m2+λs−s

2
F28

)
,

I28=−(m2−t)λsF28 , I29=−(m2−t)F29 ,

I30=−(u−m2)

(
m2F30+

2m2+λs−s

2
F31

)
, I31=−λs(u−m2)F31 ,

I32=−(m2−t)F32 , I33=−m2sF33 ,

I34=−(u−m2)F34 , I35=−m2sF35 ,

I36=λsF36 , I37=(λs−s)

(
1

2
F19−2F36

)
−m2sF37 ,

I38=λsF38 , I39=−m2(m2−t)F39 ,

I40=−m2(u−m2)F40 , I41=(m2−t)(u−m2)F41 ,

I42=(m2−t)sF42 , I43=(u−m2)sF43 ,

I44=−
√

m2(m2−t)(u−m2)(−s)F44 ,

I45=−λsF38−(m2−t)
(
(m2−s)F44+F45−F46

)
,

I46=(u−m2)
(
F38+m2F44−F46

)
, I47=−(u−m2)F34−λs(F34+F44−F47) ,

I48=−sλsF48 , I49=(u−m2)sF49 ,
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I50=(m2−t)sF50 , I51=−λsF38+s(F38−F51),

I52=
8∑

i=2

ci,52Fi+c10,52F10+c11,52F11+c13,52F13+c15,52F15+c17,52F17

+c18,52F18+
35∑

i=20

ci,52Fi+
41∑

i=38

ci,52Fi+
46∑

i=44

ci,52Fi+
52∑

i=49

ci,52Fi (3.4)

obey canonical DEQs in both kinematic variables w and z. In eq. (3.4) we have used

the compact notation λs =
√
−s

√
4m2 − s. The analytic expression of the coefficients

ci,52, that are here omitted for brevity, can be found in appendix A, as well as in the files

attached to this paper (both in the published and in the arXiv version of the manuscript),

which contain eq. (3.2) and eq. (3.4) in electronic format.

By organizing the 52 MIs into a vector I(ϵ, w, z) and by combining the DEQs in w

and z obeyed by the latter into a single total differential, we can write the canonical DEQs

compactly as

dI = ϵdAI , (3.5)

where dA is the 1-form

dA =
12∑

i=1

Mi d log(ηi) , (3.6)

with Mi being constant matrices (that are provided as Supplementary Material attached

to this paper, and as ancillary files in the corresponding arXiv submission). The alphabet

of the DEQs, i.e. the set of arguments ηi of the d log-form in eq. (3.6), can be taken to be

formed by the same 12 letters that appear in the calculation of the MIs for the QED-like

topology A1 presented in ref. [25]:

η1 = w , η2 = 1 + w ,

η3 = 1− w , η4 = z ,

η5 = 1 + z , η6 = 1− z ,

η7 = w + z , η8 = z − w ,

η9 = z2 − w , η10 = 1− w + w2 − z2 ,

η11 = 1− 3w + w2 + z2 , η12 = z2 − w2 − wz2 + w2 z2 .

(3.7)

For the MIs of the topology N2 under consideration, the matrix M11 vanishes identically.

Nevertheless, we adopted the above notation for consistency with ref. [25].

The analytic expression of the MIs is first derived in the region of the wz-plane where

the whole alphabet is real and positive (the operator ∧ denotes the logical “and”),

0 < w < 1 ∧
√
w < z <

√
1− w + w2 , (3.8)

which corresponds to the unphysical kinematic region

t < 0 ∧ s < 0 . (3.9)

The analytic continuation to the full kinematic plane is discussed in section 4.
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By definition, the integrals given in eq. (3.4) are finite in the ϵ → 0 limit. Therefore,

the vector I(ϵ, w, z) can be expanded as a Taylor series around ϵ = 0 as

I(ϵ, w, z) =
∞∑

n=0

I(n)(w, z)ϵn . (3.10)

The n-th order coefficient of eq. (3.10) is given by

I(n)(w, z) =
n∑

i=0

∆(n−i)(w, z;w0, z0)I
(i)(w0, z0), (3.11)

where the I(i)(w0, z0) are constant vectors and ∆(k) is the operator

∆(k)(w, z;w0, z0) =

∫

γ
dA . . . dA︸ ︷︷ ︸

k times

, ∆(0)(w, z;w0, z0) = 1 , (3.12)

that represents k path-ordered iterated integrations of dA along a piecewise-smooth path γ

in the wz-plane. As the roots of the rational alphabet given in eq. (3.7) are purely algebraic,

the iterated integrals of eq. (3.12) can be directly mapped into combinations of GPLs,

Ga⃗n(x) ≡ Ga1 ,⃗an−1(x) ≡
∫ x

0
dt

1

t− a1
Ga⃗n−1(t), (3.13)

G0⃗n
(x) ≡ 1

n!
logn(x) . (3.14)

The length n of the vector a⃗n is commonly referred to as the transcendental weight ofGa⃗n(x)

and it amounts to the number of repeated integrations defining the GPL. We found it con-

venient to determine the solution of the DEQs in terms of GPLs, up to O(ϵ5) terms, by inte-

grating first in w and then in z. Consequently, the GPLs that appear in the analytic expres-

sion of the MIs fall into two classes: GPLs with argument w and weights drawn from the set

⎧
⎨

⎩0 , ±1 , ±z , z2 ,
z
(
z ±

√
4− 3z2

)

2 (z2 − 1)
,
1

2

(
1±

√
4z2 − 3

)
⎫
⎬

⎭ , (3.15)

and GPLs with argument z and with weights drawn from the set {0,±1}. Due to the

positivity of the alphabet, the combinations of GPLs that appear in the solution I(ϵ, w, z)

are real-valued in the region defined by eq. (3.8). It therefore follows that all the imaginary

parts associated to the MIs whose physical thresholds are overstepped in this region are

made explicit in the integration constants I(i)(w0, z0).

3.2 Boundary conditions

In order to completely specify the analytic expression of the MIs, a suitable set of boundary

conditions must be imposed on the general solution of the system of DEQs. Boundary

conditions are determined by imposing the regularity of the MIs at the pseudo-thresholds

of the DEQs, that entails, order by order in ϵ expansion, a linear relation between the MIs.

Such regularity conditions are complemented by the knowledge of the analytic expression
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of a limited number of input integrals in special kinematic configurations. In the case under

study, the boundary constants of all the MIs can be expressed as combinations of GPLs

of argument 1 and complex weights, the latter arising from the specific kinematic limits

imposed on the alphabet of eq. (3.7). With the help of GiNaC, we were able to numerically

verify that, at each order in ϵ, such combinations of constant GPLs are proportional to

uniform combinations of the transcendental constants π, ζk and log 2.

The boundary constants of each integral have been determined as follows:

• the integrals I1,...,7,10,...,14,32,...,37 are either common to the two-loop topologies dis-

cussed in reference [24, 25] (to which we refer the reader for the discussion of the

boundary value fixing procedure) or related to them by simple kinematic crossing,

i.e. by some interchange of the Mandelstam invariants;

• the boundary constants of I8,9,18 have been fixed by demanding finiteness of the MIs

in the limit s → 0;

• the boundary constants of I15,16,17,20,21,38,47 have been obtained by demanding finite-

ness of the MIs in the limit s → 4m2. Additional constraints for the integrals

I15,16,17,20,21 have been obtained by requiring their corresponding boundary constants

to be real-valued;

• the boundary constants of I22,...,25,39,...,44,46 have been fixed by imposing the finiteness

of the MIs in the limit t → m2
√
4m2−s−

√
−s√

4m2−s+
√
−s

;

• the boundary constants of I26,...,31 have been determined by demanding the finiteness

of the MIs the limits s → 0 and t → m2
√
4m2−s−

√
−s√

4m2−s+
√
−s

;

• the boundary constants of I49,...,52 have been obtained by requiring the finiteness of

the MIs in the limits s → 4m2 and t → m2
√
4m2−s−

√
−s√

4m2−s+
√
−s

;

• the boundary constant of I45 has been fixed by demanding the finiteness of the integral

the limit t → m2
√
4m2−s−

√
−s√

4m2−s+
√
−s

;

• the boundary constant of I48 has been fixed by taking the massless limit, as described

in [24].

We provide the analytic expressions of the MIs in electronic form in the files attached to

both the journal and the arXiv versions of the paper.

4 Analytic continuation

The results of section 3 have been obtained in the unphysical region s, t < 0. Therefore,

the analytic continuation of such expressions to the tt̄ production kinematics must be

performed. In terms of the Mandelstam invariants, this region is defined by

s ≥ 4m2 ∧m2 − s

2
− 1

2

√
s− 4m2

√
s ≤ t ≤ m2 − s

2
+

1

2

√
s− 4m2

√
s , (4.1)
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where the boundaries of the allowed interval for t are in one-to-one correspondence, in the

center-of-mass frame, with the minimum and maximum scattering angles of the tt̄ pair with

respect to the beam line. For completeness, we also quote the physical region for elastic

scattering, corresponding to the crossed t-channel process:

t ≥ m2 ∧ −t

(
1− m2

t

)2

≤ s ≤ 0 ∧ 2m2 − t ≤ u ≤ m4

t
. (4.2)

In the case of non-planar four-point integrals, the analytic continuation of the GPLs

is quite non trivial. As originally noted in [63, 64], thresholds associated with all the

Mandelstam invariants appear simultaneously, and s, t, u should be treated as independent

variables when discussing the analytic continuation of the expressions for the MIs. On the

other hand, the approach we follow enforces the constraint s+ t+u = 2m2 from the outset,

yielding a system of DEQs in two variables, e.g. s and t. One way out could be to enforce

the Mandelstam constraint only at a later stage (see e.g. [65]), at the price of considerably

complicating the problem to be solved due to the presence of an extra scale.

In this paper we address the analytic continuation in a different way by exploiting

the iterated-path-integral nature of our canonical MIs, together with the so-called first-

entry condition [66, 67], in order to devise an effective prescription. Our approach allows

to analytically continue the MIs everywhere in the kinematic plane, and in particular to

evaluate our results in the tt̄ production region. As a byproduct of our analysis, we also

obtain the analytic continuation of the MIs for µe scattering, presented in [25], both to the

di-muon production region and to the elastic scattering region.

We already observed in section 3 that our canonical basis of MIs can be expressed, order

by order in ϵ, as a linear combination of GPLs and constants of uniform weight. From the

first-entry condition it follows that only the innermost integration contributes to the dis-

continuities of the MIs. Strong restrictions on the analytic structure of the MIs are imposed

already at the level of the canonical DEQs (by the coefficient matrices in the d log form), but

knowledge of the boundary conditions is essential to fully pin it down. By inspection of our

result (computed up to weight 4 in the region s, t < 0), we find that the GPLs originating

from the innermost integration are the following: G0(z), G0(w), G1(w), Gz2(w). This can

be traced back to the fact that, of all the letters ηi that appear in dA (see eq. (3.7)), only

four contribute to the first integration, namely η1,3,4,9. Quite remarkably, one can build

four combinations of the η1,3,4,9 that correspond to simple functions of the Mandelstam

invariants, whose logarithms exhibit the branch cuts expected from the normal thresholds

of the four sunrise sub-topologies. If we define

η1 ≡ θ1 =

√
4m2 − s−

√
−s√

4m2 − s+
√
−s

, (4.3)

η23/η9 ≡ θ2 = 1− t/m2 , (4.4)

η23/η1 ≡ θ3 = −s/m2 , (4.5)

(η3η4)
2/(η1η9) ≡ θ4 = u/m2 − 1 , (4.6)
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Figure 4. In the plot we show a representative portion of the kinematic phase space, parametrized
in terms of (s, t). The region in which we solved the system of differential equations, s, t < 0, is
marked in green. The physical region for the s-channel production process, given in eq. (4.1), is
highlighted in blue. In orange we also show the physical region for the t-channel process, given
in eq. (4.2), which is relevant for µe scattering. The dashed lines indicate the thresholds of the
physical logarithms in eq. (4.7)–(4.10).

where use has been made of the relation s + t + u = 2m2, then one can easily find the

following GPL representations for the corresponding logarithmic differentials

d log θ1 = dG0(w) , (4.7)

d log θ2 = 2dG1(w)− 2dG0(z)− dGz2(w) , (4.8)

d log θ3 = 2dG1(w)− dG0(w) , (4.9)

d log θ4 = 2dG1(w)− dG0(w)− dGz2(w) . (4.10)

We refer to log θ1,2,3,4 as physical logarithms. In figure 4 we show the physical regions for

the s-channel production and the t-channel scattering processes, together with the region

in which we solved the system of differential equations, and the thresholds of the physical

logarithms. For completeness we also give a more transparent rearrangement of the other
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letters:

η12/(η1η9) ≡ θ5 = u/m2 , (4.11)

η10/η9 ≡ θ6 = −t/m2 , (4.12)

η22/η1 ≡ θ7 = 4− s/m2 , (4.13)

η23η5η6η7η8/(η1η
2
9) ≡ θ8 = 1− tu/m4 , (4.14)

η6
η5

≡ θ10 =
1−

√
u−m2√
m2−t

√√
4m2−s−

√
−s√

4m2−s+
√
−s

1 +
√
u−m2√
m2−t

√√
4m2−s−

√
−s√

4m2−s+
√
−s

, (4.15)

η8
η7

≡ θ11 =
1−

√
m2−t√
u−m2

√√
4m2−s−

√
−s√

4m2−s+
√
−s

1 +
√
m2−t√
u−m2

√√
4m2−s−

√
−s√

4m2−s+
√
−s

, (4.16)

η11/η9 ≡ θ12 = 2− t/m2 , (4.17)

One can prove that, in the region s, t < 0, eqs. (4.7)–(4.10) also hold if the total

differential operator is dropped, without adding any integration constants. By choosing

a suitable analytic continuation prescription on the Mandelstam invariants one can then

evaluate the integrated expressions in the full kinematic plane, in an unambiguous way.

One can then check whether those expressions reproduce the imaginary parts of the corre-

sponding physical logarithms. The simple prescription we adopt is defined in two steps:

1. As for the Mandelstam invariants, we express the real part of u in terms of the real

parts of s and t, for which we use the standard Feynman prescription, but we give u

an independent prescription (i.e. before using u(s, t) = 2m2 − s − t in the definition

of z, eq. (3.1))

s → s+ iε θ(s) , (4.18)

t → t+ iε θ(t−m2), (4.19)

u(s, t) → 2m2 − s− t− iε , (4.20)

where iε is an infinitesimal positive imaginary part, θ(x) is the Heaviside step func-

tion, and the presence of the constant iε term in the last equation guarantees that the

evaluation of the GPLs on spurious branch cuts (that are developed even for s, t < 0)

is always unambiguous. It can be shown, by repeated application of the identity

log ab = log a+ log b+ 2πi [θ(− Im a)θ(− Im b)θ(Im ab)

−θ(Im a)θ(Im b)θ(− Im ab)] , (4.21)

that the above prescription is sufficient to reproduce, with the GPL representation

in the variables (w, z) of eqs (4.7)–(4.10), the physical logarithms log θ1,2,3 (that, for

instance, completely determine the analytic structure of the s-channel sunrise MIs

and the t-channel sunrise MIs).
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2. It remains to be verified whether the above prescription allows to correctly repro-

duce also the imaginary part of log θ4 (the one that, for instance, determines the

discontinuity of the u-channel sunrise MIs across the one-particle branch cut). This

is not guaranteed since, as stressed at the beginning of this section, we only have

two independent variables at our disposal, while having to deal simultaneously with

thresholds in all the three channels. The virtue of our prescription (4.18)–(4.20) is

that the representation of log θ4 in terms of GPLs (corresponding to eq. (4.10))

• for u > m2 is always on the physical Riemann sheet;

• for u < m2 always ends up on the wrong side of the branch cut, i.e. the imaginary

part is always −iπ instead of +iπ.

We can therefore apply, as a second step, a simple correction to the combination of

GPLs corresponding to log θ4 (and not to the other three combinations) to bring our

GPL representation for the MIs to the correct Riemann sheet. At weight one, the

correction amounts to the replacement

2G1(w)−G0(w)−Gz2(w) → 2G1(w)−G0(w)−Gz2(w) + 2πiθ(m2 − u) , (4.22)

which is then propagated iteratively to higher weights.

All the explicit imaginary constants in our solution, as stated in section 3, originate from

the (iterated) integrations over d log θ4. Indeed we integrate our DEQs in the region where

s, t < 0, so that u > 2m2. The combinations of GPLs corresponding to such integrations

(at any weight) are then always accompanied by a constant term, namely an additional

−iπ. Therefore, the net effect of the correction (4.22) is to flip the sign of the imaginary

constants in our solution. In summary, our effective way of implementing the analytic

continuation of the result for the full set of MIs is

1. to use the prescription on the Mandelstam invariants of equations (4.18)–(4.20),

2 ′. to replace iπ → −iπ everywhere in the solution (amounting to the complex conjuga-

tion of all the integration constants), whenever the latter is evaluated for u(s, t) < m2.

Remarkably, once the analytic continuation of the four physical logarithms (i.e. of the

weight-1 contribution to the canonical MIs for the four sunrise topologies) is taken care of

explicitly [64], the first-entry condition guarantees that the analytic continuation of the full

set of MIs at all weights is also correctly obtained. In particular, it is not necessary to make

sure the GPL representation also reproduces the imaginary parts coming from the evalua-

tion close to the branch cuts of the logarithms of the unphysical letters, eqs. (4.11)–(4.17).

It is instead sufficient to always introduce an “auxiliary” iε prescription in order to avoid the

ambiguous evaluation on such branch cuts (in our case this is inherited from (4.18)–(4.20)).

Our strategy for the analytic continuation has been validated by thorough numerical checks

performed either with the help of SecDec or with the techniques outlined in section 5.

It is now clear that we can also obtain, by the same argument, the analytic continuation

of the results for the MIs of the QED-like topology A1 (see figure 1) presented in [25].
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The only difference with respect to the present case (besides a trivial relabeling of the

Mandelstam invariants s ↔ t to match the notations), is that the letter η11 contributes

to the d log form with a non-zero coefficient matrix (but never appears in the first entry),

and that η1 = θ1 is not a physical logarithm anymore (as expected due to the absence of

a two-massive-particles normal threshold). Since the analytic continuations of log θ1 and

log θ3 are not independent, in practice this difference does not change the situation, and

the same procedure described above can then be used for the analytic continuation of the

MIs from s, t < 0 to the physical regions for the µe → µe and e+e− → µ+µ− processes, as

confirmed also in this case by our numerical checks.

We stress that the method outlined above is fully general, as it only relies on the

analyticity properties of the canonical MIs, and on their iterated-integral representation. It

is in particular independent of the presence of massive propagators or massive external legs.

5 Numerical validation of the non-planar box integrals

Using the analytic continuation as described in the previous section, the expressions for

our MIs have been numerically evaluated in several points across the whole phase space,

including the unphysical region s, t < 0 and the region relevant for tt̄ production, eq. (4.1).

In order to cross-check our analytic calculation, we numerically computed the MIs (or

linear combinations of the latter) in some benchmark points with an alternative method,

namely by integrating directly their Feynman-parameter representation. In particular, the

integrals Ii with i = 1, . . . , 48 were computed with the package SecDec. For the most

complex topologies, corresponding to the non-planar box integrals Ii with i = 49, . . . , 52,

we used Reduze to identify an alternative set of independent MIs that are quasi finite [48]

in d = 6. On the one hand, the latter have been computed semi-numerically by means of an

in-house algorithm [25]. On the other hand, these integrals can be analytically related to

our set of MIs by dimension-shifting identities [68, 69] and IBPs, implemented in LiteRed,

therefore allowing for a numerical comparison.

The definition of the 4 non-planar 7-denominator MIs that are finite in d = 6 dimen-

sions, together with our results at the phase-space point s = −1/7, t = −1/3, m2 = 1,

are collected in table 1. In the next subsection, we use the first of those integrals as an

example to describe our evaluation strategy. Throughout this section, we set m2 = 1 and

u = 2− s− t.

5.1 The non-planar box in d = 6 dimensions

As an example, we consider the non-planar scalar integral

p1

p2 p3

p4

= I [d](1, 1, 1, 1, 1, 1, 1, 0, 0) , (5.1)

and we describe its numerical evaluation, which we carry out in two steps.
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graph I [d]−integral I [d=6−2ϵ](s = −1/7, t = −1/3)

p1

p2 p3

p4

I [d](1, 1, 1, 1, 1, 1, 1, 0, 0) −2.073498− i 0.4872188

p1

p2 p3

p4

I [d](1, 2, 1, 1, 1, 1, 1, 0, 0) 1.63816 + i 1.72217

p1

p2 p3

p4

I [d](1, 1, 2, 1, 1, 1, 1, 0, 0) 18.8765 + i 12.4507

p1

p2 p3

p4

I [d](1, 1, 1, 1, 1, 2, 1, 0, 0) 1.827588 + i 1.121664

Table 1. Numerical results for our set of quasi-finite non-planar MIs belonging to the 7-
denominator topologies (m2 = 1 and u = 2− s− t).

5.1.1 Analytic integrations

As a first step, we introduce the Feynman parametrization. By keeping track of the Feyn-

man prescription +iε, the integral can be written as

p1

p2 p3

p4

= Γ(7)

∫
d̃dk1d̃dk2

∫ 1

0
dx1. . .

∫ 1

0
dx7

δ(1− x1234567)

D7
tot

, (5.2)

where

Dtot = x1D1 + x2D2 + x3D4 + x4D5 + x5D6 + x6D3 + x7D7 + iε . (5.3)

Next, we integrate over k1 and k2,

Γ2
ϵ

p1

p2 p3

p4

= −Γ(7− d)

∫ 1

0
dx1. . .

∫ 1

0
dx7

δ(1− x1234567)

A
3d
2 −7
0 ∆7−d

, (5.4)

A0 = x34x56 + x5x6 + x346x7 + x2x3457 + x1x2567 ,

∆ = x22x3457 + x1x
2
25 + x2x5(2x34 + x5) + x25x346 + (t− 1)(x3(−x5x6 + x2x7)

+ s(x2(−x4x5 + x3x7)− x1(x4x256 + x46x7))− iεA0 , (5.5)

where we used the notation xi1i2...in = xi1+xi2+. . .+xin and the abbreviation Γϵ ≡ Γ(1+ϵ).

Now we perform as many analytic integrations as possible. In particular, we eliminate the

δ-function by integrating over x3, and we make the change of variables x6 → x26 − x2,

x7 → x57 − x5. In this way, the polynomial ∆ becomes linear in x4, and eq. (5.4) is

– 17 –



J
H
E
P
0
6
(
2
0
1
9
)
1
1
7

rewritten as

Γ2
ϵ

p1

p2 p3

p4

= −Γ(7− d)

∫ 1

0
dx26

∫ 1−x26

0

dx57

A
3d
2 −7

∫ 1−x2657

0
dx1

∫ x26

0
dx2

∫ x57

0
dx5×

×
∫ 1−x12657

0

dx4
(C41x4 + C40)7−d

, (5.6)

where

A = x2657(1− x2657) + x26x57 ,

C41 = (t− 1)(x26x5 − x2x57)− s(x2x57 + x1x2657) ,

C40 = x22(1− x26) + x25(1− x57) + 2x2x5(1− x2657) + (t− 1)(1− x12657)(x26x5 − x2x57)

+ s(x57 − x5) (x2(1− x2657)− x1x26)− iεA . (5.7)

The integral over x4 in eq. (5.6) is finite for d → 6. In this limit, we get

Γ2
ϵ

p1

p2 p3

p4

d→6
= −

∫ 1

0
dx26

∫ 1−x26

0

dx57
A2

∫ x57

0
dx5

∫ x26

0
dx2×

×
∫ 1−x2657

0

dx1
f2 − g2x1

ln

(
g2x21 + g1x1 + g0

f3x1 + P6

)
,

(5.8)

with

f1 = (t− 1)x26x5 − (s+ t− 1)x2x57 − sx2657(1− x2657) ,

f2 = (t− 1)x26x5 − (s+ t− 1)x2x57 ,

f3 = (s+ t− 1)x26x5 + x2x57 − (tx2 + sx26)x57 ,

P6 = x22(1− x26) + x25(1− x57) + (2− s)x2x5(1− x2657)− f2(1− x2657)− iεA ,

g0 = P6 + f2(1− x2657) ,

g1 = s(x26x5 + x2x57 −A) ,

g2 = sx2657 ,

P2 =
g1 +

√
g21 − 4g0g2
2g2

,

P4 =
g1 −

√
g21 − 4g0g2
2g2

,

P1 = P2 + 1− x2657 ,

P3 = P4 + 1− x2657 ,

P5 = P6 + f3(1− x2657) = sx2657P1P3 . (5.9)
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Finally, we integrate over x1 and reduce eq. (5.8) to

Γ2
ϵ

p1

p2 p3

p4

d→6
= −

∫ 1

0

dx26
s

∫ 1−x26

0

dx57
x2657 A2

∫ x26

0
dx2

∫ x57

0
dx5 × (5.10)

×
(
Li2

(
Q1

R1

)
− Li2

(
Q2

R1

)
+ Li2

(
Q3

R2

)
− Li2

(
Q4

R2

)
− Li2

(
Q5

R3

)
+ Li2

(
Q6

R3

))
,

where

Q1 = Q3 = f1 , Q2 = Q4 = f2 , Q5 = f1f3 , Q6 = f2f3 ,

R1 = Q1 + P1sx2657 = Q2 + P2sx2657 ,

R2 = Q3 + P3sx2657 = Q4 + P4sx2657 ,

R3 = Q5 + P5sx2657 = Q6 + P6sx2657 = R1R2 . (5.11)

Differently from the case of the non-planar integral of the family A1, which was evaluated

with a similar strategy in [25], the integrand contains 6 distinct dilogarithms, whose ar-

guments depend of the algebraic functions P1, P2, P3, P4, R1 and R2 , which contain the

square root of the same polynomial.

5.1.2 Numerical integrations

We rescale the four remaining integration variables in eq. (5.10) in order to map them onto

a four-dimensional hypercube of unit side,

x26 = t1 , x57 = (1− x26)t2 , x2 = x26t3 , x5 = x57t4 . (5.12)

In this way, the new variables ti have to be integrated over [0, 1]. The six dilogarithms that

appear in eq. (5.10) have branch points, which correspond to the hypersurfaces defined by

the equations

Ri(t1, t2, t3, t4) = 0 , Pj(t1, t2, t3, t4) = 0, i = 1, . . .3 , j = 1, . . .6 . (5.13)

In order to obtain a fast convergence of the numerical integration, the integrands must be

sampled carefully in the neighborhood of these branch points. We start from the integration

over t4. We split the integration interval at the N4(t1, t2, t3) solutions z4j(t1, t2, t3) of

eq. (5.13), which satisfy 0 ≤ z4j ≤ 1.

∫ 1

0
dt4 =

N4−1∑

j=0

∫ z4,j+1(t1,t2,t3)

z4j(t1,t2,t3)
dt4 , z40 = 0 , z4N4 = 1 . (5.14)

Now we consider the integration over t3. We split the integration interval at the N3(t1, t2)

zeros z3j(t1, t2) of the discriminants (polynomials in (t1, t2, t3)) that appear in the zeros z4j
and which satisfy 0 ≤ z3j ≤ 1. These are the points where the hypersurfaces of eq. (5.13)

are tangent to the hyperplane t4 = constant,

∫ 1

0
dt3 =

N3−1∑

j=0

∫ z3,j+1(t1,t2)

z3j(t1,t2)
dt3 , z30 = 0 , z3N3 = 1 . (5.15)
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Next, we consider the integration over t2. We split the integration interval at the N2(t1)

zeros z2j(t1) of the discriminants (polynomials in (t1, t2)) that appear in the zeros z3j and

which satisfy 0 ≤ z2j ≤ 1,

∫ 1

0
dt2 =

N2−1∑

j=0

∫ z2,j+1(t1)

z2j(t1)
dt2 , z20 = 0 , z2N2 = 1 . (5.16)

We proceed in a similar way for the last integration over t1, using

∫ 1

0
dt1 =

N1−1∑

j=0

∫ z1,j+1

z1j

dt1 , z10 = 0 , z1N1 = 1 . (5.17)

In order to carry out the integration over a generic interval [ta, tb], we perform the change

of variables ti → ui, with

ti = tai +
eu

3
i

eu
3
i + 1

(tbi − tai) , i = 1, . . ., 4 . (5.18)

This change of variable maps ta → −∞ and tb → ∞, so that possible singularities at the

endpoints are easily managed. The variable ui must be integrated in (−∞,∞): in practice

we truncate the integration domain to (−M,+M), with M suitably large according to the

desired precision of calculation: for instance, for 16-digits computation, the value M = 4 is

adequate. Finally, the integration interval in u is subdivided in 2n subintervals, and Gauss-

Legendre integration over 16 points in each subinterval is employed. All the singularities

in the integrands are integrable logarithmic singularities. Therefore, we can safely set a

very small value of ε, like 10−30, adequate for 16-digit calculations.

By using 16 subdivisions in each interval and in every variable, we find that our integral,

in the phase space point s = −1/7, t = −1/3, m2 = 1, has the value

p1

p2 p3

p4

d→6
= −2.073498− i 0.487218 . (5.19)

We adopt a similar procedure for the other integrals shown in table 1. In all cases,

after the analytic integrations the integrands, in the d → 6 limit, are found to contain

combinations of logarithms of ratios of the polynomials Pi. Henceforth, the decomposition

of the integration domain, as well as the numerical integration are carried out along the

same lines described above as for the scalar box integral.

6 Conclusions

In this paper, we presented the analytic expressions of the master integrals for a set of

non-planar two-loop Feynman graphs, with two quark currents exchanging massless gauge

bosons. Our results are the last missing ingredients required for the analytic evaluation of

the double-virtual contribution to the scattering amplitude for the process qq̄ → tt̄ at NNLO
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in QCD, which was so far known only numerically. The present computation completes the

calculation of all the required master integrals, hence proving that the analytic evaluation

of such amplitude is indeed feasible.

The two-loop integrals were evaluated by means of the differential equations method,

which, combined with the ideas of the Magnus exponential matrix and of the canonical ba-

sis, yielded a representation of the master integrals in terms of generalized polylogarithms.

The canonical systems of differential equations was conveniently solved in a non-physical

region. Subsequently, we studied, in the presence of massive internal lines and of a non-

trivial structure of branch cuts, the analytic continuation of the two-loop functions to the

physical region relevant for the process under consideration.

The results of this paper represent an important milestone of the research program

dedicated to the evaluation of integrals originating from the planar and non-planar two-

loop four-point diagrams that contribute to both QED and QCD processes, which include,

beside the top-pair production at hadron colliders, also di-muon production at lepton

colliders, as well as muon-electron elastic scattering, which is the investigation target of

the novel experiment MUonE, recently proposed at CERN.
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A The canonical master integral I52

In this appendix, we provide the expression of the kinematic coefficients that appear in the

definition of canonical basis defined by eq. (3.4). The coefficients of the integral I52 are
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given by

c2,52=
λs−s

2
, c3,52=

7m2(m2−t)λs

4(u−m2)s
,

c4,52=−(3m2+4t)(λs−s)

8s
, c5,52=−3(m2−t)(λs−s)

16s
,

c6,52 =− 1

24(u−m2)s

[
(λs−s)

(
33m4−45m2t+12t2+25m2s−4st−16s2

)

+14(m2−t)s(m2+2u)
]
,

c7,52=
(9m2−9t+5s)λs+5s(u−m2)

48s
, c8,52=−λs−s

4
,

c10,52=−(2m2−2t+s)λs+s(u−m2)

4(u−m2)
, c11,52=−(m2−t)(λs−s)

4s
,

c13,52=
(u−m2)(λs−s)

4s
, c15,52=λs−s,

c17,52=−m2(λs−s), c18,52=−λs−s

2
,

c20,52=λs−s, c21,52=m2λs−s

2
,

c22,52=(m2−2t)
λs−s

6
, c23,52=m2(m2−t)

λs−s

6
,

c24,52=−(3m2−4t+2s)λs−s(m2−2u)

6
, c25,52=−(5m2−5t+s)λs+s(u−m2)

6
,

c26,52=
(m2−2t+u)λs−s(u−m2)

4s
, c27,52=m2 (m

2−t)(λs−s)

4s
,

c28,52=
(m2−t)(2m2−s)(λs−s)

8s
, c29,52=−3(m2−t)(λs−s)

4s
,

c30,52=−m2 (m
2−t+s)λs+s(u−m2)

4s
, c31,52=−(2m2−s)

(m2−t+s)λs+s(u−m2)

8s
,

c32,52=(m2−t)
(2m2−2t+s)λs+s(u−m2)

(u−m2)s
, c33,52=

(3m2−3t+s)λs+s(u−m2)

2(u−m2)
,

c34,52=
(t−u)λs+s(u−m2)

s
, c35,52=m2λs−s

2
,

c38,52=−(m2−t)
λs−s

2s
, c39,52=m2(m2−t)

λs−s

4s
,

c40,52=m2 (m
2−u+2s)λs+3s(u−m2)

4s
, c41,52=(m2−t)

(m2−u+s)λs+2s(u−m2)

4s
,

c44,52=−(λs−s)(2m2u+st)

2s
, c45,52=−(m2−t)

λs−s

2s
,

c46,52=(u−t)
λs−s

2s
, c49,52=−(3m2−u)λs+u−m2

2
,

c50,52=(m2−t)
λs−s

2
, c51,52=

λs−s

2
,

c52,52=λs . (A.1)
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