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Afirst-principlescomputationalstudyoftheElectronParamagneticResonance(EPR)parameters
ofLiandGavacanciesinLiGaO2ispresented.IntheEPRactivechargestatesoftheneutrallithium
vacancy(V0

Li)anddoublynegativeionizedgalliumvacancy(V2−
Ga ),thespinislocalizedononeofthe

Oneighborsofthevacancy. WecomparethecalculatedEPRparametersforspindensitylocalized
ondifferentOneighbors. Goodagreementwithexperimentisobtainedforboththeg-tensorvalues
andprincipalaxesorientationsandthesuperfhyperfineinteractionparameterssupportingtheprior
experimentalidentificationofwhichOthespinislocalizedon. Theg-tensororientationsarefound
tobeclosetothebondratherthanthecrystallineaxes. ThehighenergyofformationofVGa

comparedtoVLi alsoexplainswhyVGa wereonlyobservedafterhighenergyirradiationwhileVLi

werefoundinasgrownsamples. Ontheotherhand,thetransitionlevelsandFermilevelposition
explainwhyVLi requiredionizationfromthe 1to0chargestatetobecomeactivewhileVGa were
alreadyfoundintheq= 2EPRactivestate.

LiGaO2 isanultra-wide-band-gap material witha
wurtzite-likecrystalstructure1,2andexperimentalband
gapof∼5.3–5.7eVatroomtemperature.3–6 Itcanbe
growninbulkformbytheCzochralskymethod1andhas
beensuggestedasausefulsubstrateforGaNbutcanalso
begrownbyepitaxial methodonZnOandviceversa.
MixedZnO-LiGaO2alloyshavealsobeenreported.7,8In
fact,this materialcanbeviewedasaI-III-VI2 analog
oftheII-VImaterialZnObysubstitutingtheII-element
ZnbyagroupI(Li)andagroupIII(Ga)inanordered
fashiononthewurtzitelattice.Ithasbeenconsideredfor
piezoelectricproperties9–11inthepastandisforthemost
partconsideredaninsulator. However, Boonchunand
Lambrecht12suggestedit mightbeworthwhileconsider-
ingasasemiconductorelectronicmaterialandshowedin
particularthatitcouldpossiblyben-typedopedbyGe.
Inviewoftherecentinterestinβ-Ga2O3 asultra-wide
semiconductorforpowerelectronics,whichisalson-type
bydopingwithSi,Snor Ge,this makesLiGaO2worth
revisiting,inparticularfromthepointofviewofdefects
anddoping.

Recently,ElectronParamagneticResonance(EPR)ex-
perimentsonirradiatedsamplesofLiGaO2werereported
byLenyketal.13andreportedEPRsignalsforboththe
VGa andVLi. Here wepresentacomputationalstudy
oftheEPRparametersofthesedefectsandinpartic-
ularcomparethecalculatedg-tensorsandsuperhyper-
fine(SHF)interactionswithboth GaandLineighbors
oftheOonwhichthespinislocalizedfordifferentpos-
siblelocalizationsitesofthespin. We willshowthat
thisconfirmstheexperimentallydeduced modelsforthe
spin-localization.

Theg-tensoriscalculatedusingthe GaugeIncluding
ProjectorAugmented Wave(GIPAW)method.14–17This
isa Density Functional Perturbation Theory(DFPT)
methodtocalculatethelinear magneticresponseofa

periodicsystemontoanexternalmagneticfield.Itisim-
plementedinthecodeQE-GIPAW,18whichisintegrated
withintheQuantumEspressopackage.19Atpresentthe
QE-GIPAWcodeisnotyetcapableofdealingwithor-
bitaldependentdensityfunctionalssuchasDFT+U20–22

orhybridfunctionals.23,24Thelatterarerequiredtoen-
sureastronglocalizationofthespin-densityonasingle
O.Theon-siteCoulombinteractionterminthepoten-
tialfororbitali,Vi=U(1

2−ni)shiftsoccupiedorbital
energiesdownbyU/2andemptyonesupbyU/2,thus
helpingtolocalizetheholestate. WethususeDFTwith
on-siteCoulombcorrectionsU onO-porbitalswiththe
Perdew-Burke-Ernzerhof(PBE)generalizedgradientap-
proximation(GGA)torelaxthestructureandalsocal-
culatetheSHFinteractionsatthis GGA+Ulevelbut
calculatetheg-tensorusingwavefunctionsatthePBE-
GGAlevelwhilekeepingthestructurefixed.Thisproce-
durewasfoundtobeadequateinpriorworkonEPRpa-
rametersinβ-Ga2O3.25,26TheGGA+Ustructureswere
ingoodagreement withapreviousstudyofthesame
defects27 usingthe Heyd-Scuseria-Ernzerhof(HSE)hy-
bridfunctional.

WefocusontheEPRactivestates V2−
Ga andV0

Li which
bothcorrespondtoaS=1/2singleunpairedelectron
state. WefindthatintheDFT+Uapproachwithavalue
ofU =4eVon O-porbitals,thespin-densitybecomes
welllocalizedonasingle Op-orbitalbutdependingon
theinitialdisplacementsgiventotheO,wecangetitto
localizeondifferent Oneighbors. Keepingthisrelaxed
structure,thespinthenstayslocalizedonthesingle O
evenwhenrecalculatingitin GGA. Weneedtodistin-
guishthefollowingO-sites.Firstinthecrystalstructure,
the OI sitsontopofLiandthe OII sitsontopof Ga
inthecdirection.Secondly,wecallanOapicalifitsits
rightabovethevacancy(inthec-direction)andbasalif
itliesintheab-planebelowit. Thebasalplane Ocan
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TABLE I. Calculated g-tensor for Li and Ga vacancies using
the GIPAW approach. In the calculated results, the g-tensor
is given in terms of three principal values followed by the θ
(polar) and φ (azimuthal) angles in degrees measured from
c and a respectively. The experimental values are along the
directions indicated.

Model g-tensor
VLi (a) OI 2.0373 2.0288 2.0078

θ 89 89 2
φ -34 56

VLi (b) OII 2.0302 2.0119 2.0356
θ 69 71 29
φ 17 -65 64

VLi (b) OI 2.0403 2.0125 2.0301
θ 90 73 17
φ -27 64 62

Expt.13 2.0088 2.0205 2.0366
a b c

VGa (a) OII 2.0220 2.0514 2.0078
θ 84 88 6
φ -35 55

VGa (b) OI 2.0081 2.0228 2.0449
θ 88 85 5
φ -16 74

Expt.13 2.0155 2.0551 2.0032
a b c

still be either OI or OII . Our results for all the cases
considered are summarized in Fig. 1, the g-tensors are
summarized in Table I and the SHF tensors are given in
Table II.

For the VGa we examine both the apical and basal plane
OI as atom for the hole to localize on. As shown in Fig. 1
(lower-left) and in Table I we find the g-tensor for the api-
cal OII has its smallest g along the direction of the spin
density, which is along c. This agrees with experiment.13

The largest principal axis (principal axis corresponding
to largest ∆g) in the ab-plane is 55◦ from a so closer to
b which also agrees with experiment. In fact it is close to
the OII -Ga direction. The ∆g themselves are in agree-
ment to about ±0.005. For the basal plane OI location
of the spin, (Fig. 1 lower-right) on the other hand the
main principal axis of the g tensor is along c. In both
cases it is perpendicular to the spin direction of the spin
density p-orbital which corresponds to the lowest ∆g di-
rection. The SHF interaction (given in Table II) in both
cases is with one Ga atom because obviously the O on
which the spin has localized has already lost one of its
Ga neighbors and each O is coordinated with two Ga and
two Li. It is called a SHF interaction because the nucleus
with which the electron spin is interacting is not on the
atom on which the spin is localized but one of its neigh-
bors. The hyperfine tensor A is nearly isotropic with a
value of about 33 G in excellent agreement with the ex-
perimental values of about 37 G. Our values are about
10% underestimated. In agreement with experiment we
find a slightly larger A component in the c direction for

the apical O. The hyperfine with O is not observed be-
cause O is more than 99.9 % isotopically in a form which
does not carry a nuclear spin. The hyperfine principal
axes are indicated by the small arrows in Fig. 1 and are
seen to be close to the bond directions rather than the
overall crystal axes. While the Li SHF interactions were
not observed we give the calculated values for them in
Table II in case future measurements would be able to
measure them. The reason why they are much smaller is
that the atomic wavefunction on the Li nuclear sites are
much smaller than on the Ga.

The VLi with spin localized on an apical OI has its
main ∆g-tensor component at about 30◦ from the a-axis
and its lowest component and spin density along c as can
be seen in Fig. 1 (upper left). This, however does not
agree with the experimental data of Lenyk et al.13 who
find the ∆g tensor to be oriented with its highest value
along c. We have calculated two distinct configurations
with spin localized on a basal plane OI and OII (See
Table I). For the OII case we find that the lowest ∆g is
coincident with the direction of the spin density and is
close to the bond direction from VLi to the OII . So, it is
tilted away from the ab-plane by about 30◦ and close to
60◦ degrees from the a-axis. Note, however, that there
is an equivalent OII along the a axis in the ab-plane
projection, which is simply 120◦ rotated from the one
reported in Table I. The highest g-component principal
axis has to be perpendicular to this and indeed we find it
to be tilted about 30◦ from the c-axis. This model agrees
closely with the one proposed by Lenyk et al.13 with the
sole difference that they consider the equivalent OII in
the a-direction. As the authors mention, the occurrence
of several distinct magnetic orientations prevents them
from carrying out a full study of the angular variation
with magnetic field because of the overlap of different
signals. As for the OI basal plane, neighbor, in that
case the lowest g-component is along the corresponding
VLi−OI direction at about 60◦ from the a axis. However,
the largest g is then found at about −30◦ from a and
tilted toward the basal plane. This does not agree with
the center identified by Lenyk et al.13

The SHF splitting in VLi with spin localized on OII

is with two nonequivalent Ga. Although all Ga atoms
are equivalent in the perfect crystal, the local symme-
try is broken. The Ga with smaller SHF A tensor lies
closer to the VLi than the other which lies opposite to
it from the OII on which the spin is localized. In the
experiment, also a slightly nonequivalent Ga-SHF split-
ting was reported but they estimated the A’s to differ by
only 4% whereas we find them to differ by about 20%.
In agreement with experiment the A tensors are found to
be nearly isotropic. The experimental value for the SHF
splitting is closer to the larger of the two calculated A
and is in good agreement with experiment. For the api-
cal OI case, one would expect the two Ga neighbors to
be equivalent but in the calculation, they are still found
to differ by about 20%, which may result from the sym-
metry breaking in the relaxation calculation.
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FIG. 1. EPR models for various localizations of the spin density near VLi (top) and VGa (bottom) obtained in GGA+U. The
spin density is shown as the yellow isosurfaces, the g-tensor (calculated using GIPAW) is shown as large green, red, and blue
double arrows with size proportional to ∆g and direction indicating the principal axes, green spheres indicate Ga with strong
hyperfine interaction, silver spheres indicate Li, red spheres OI , and orange spheres OII . The small arrows on each atom
indicate the principal axes and sizes of the hyperfine tensor A. The light blue tetrahedron and blue dots indicate the vacancy
site.

TABLE II. Calculated A-tensors of Li and Ga vacancies (in Gauss) calculated using the GIPAW code within GGA+U. The
principal values and principal axes directions are given in spherical angles θ and φ (θ is measured from c and φ from a). The
experimental results give the values along specific crystallographic directions as indicated and the two Ga neighbors are not
distinguished because in principle equivalent. The Li hyperfine A were not yet measured.

Model Ga1 Ga2 Li1 Li2
VLi (a) OI -19.93 -18.91 -18.67 -23.56 -22.54 -22.30 0.42 -1.75 -1.40

θ 80 61 31 80 61 31 81 90 9
φ -51 33 57 -51 33 57 62 -28 60

VLi (b) OII -18.82 -18.64 -19.30 -23.51 -25.05 -24.00 -1.66 0.52 -1.44
θ 80 88 10 68 48 51 34 68 66
φ -34 56 -48 -85 27 -14 62 9 -70

VLi (b) OI -16.17 -16.73 -15.75 -21.89 -21.86 -22.33 1.27 -2.00 -1.86
θ 34 88 57 33 58 83 12 89 78
φ 81 -12 77 34 49 -46 65 -31 59

Expt.13 24.30 25.00 25.30 24.30 25.00 25.30
a b c a b c

VGa (a) OII -33.11 -33.28 -34.00 -1.89 0.60 -1.51 0.68 -1.89 -1.53
θ 67 90 23 89 80 10 80 88 10
φ 67 -23 68 90 0 -62 28

VGa (b) OI -32.41 -31.91 -32.28 -1.68 -1.47 0.63 0.64 -1.68 -1.96
θ 72 55 41 89 80 10 66 72 31
φ 56 -47 -11 88 -2 -70 11 68

Expt.13 37.50 37.40 35.90
a b c
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Having identified the apical O as the location of the
spin density near a VGa and the basal plane O near a VLi
that best agree with experiment, we may ask whether
these indeed correspond to the lowest total energy. It
turns out, however, that the energy differences between
these different localization sites is quite small. We find
that the VGa has 0.01 eV higher energy per 128 atom cell
in the apical than the basal plane site within PBE0,28

(this is a hybrid functional with 25 % exact and un-
screened exchange) so opposite to the experimental iden-
tification. For the VLi it is the apical oxygen that was
found to have the lower energy by 0.002 eV. In the HSE
functional, the apical site was found upon automatic re-
laxation for both cases. Clearly these energy differences
are too small to trust within DFT or at least this is very
challenging for any level of theory. Therefore we expect
that several of these slightly different forms of the va-
cancy EPR centers with spin localized on different O-
neighbors could be present in experiment but the over-
lap of these signals would make it difficult to disentangle
them. The apical OII for VGa and basal-plane OII for
VLi agree best with the experimental observations but in
the VLi case, there would still be two differently oriented
forms of this same defect.

Finally, we address the question under what conditions
these EPR signals were observed. A hybrid functional
study of the native defects in LiGaO2 was recently pre-
sented by some of us.27 From that study, we find that
the V 0

Li has lower energy than the V 0
Ga for all chemical

conditions as restricted by the formation of competing
binary compounds and under Li-poor conditions can be
lower than 1 eV. The VGa usually has quite high en-
ergy (10 eV for Ga-rich conditions and ∼4.5 eV under
the most Ga-poor, Li-rich conditions allowed) and is not
expected to occur in significant concentration in equi-
librium. In contrast, the V −

Li is found to be the major

acceptor compensating the Ga2+Li antisite and is thus ex-
pected to be present in the as grown samples. The VLi
occurs in 0 and −1 charge states, the former of which con-
tains an unpaired spin and is hence EPR active. Its 0/−
transition level lies at 1.03 eV above the valence band
maximum (VBM). The Ga-vacancy accommodates four
charge states, 0, −1,−2, −3. The Fermi level is pinned
by the compensation of Ga2+Li antisites with V −

Li and to

some extent by Li2−Ga in Li-rich conditions. In both cases,
the Fermi level lies deep below the conduction band be-

tween 2.7-3.8 eV above the VBM straddling the 2− /3−
transition level of the VGa, which occurs at 3.3 eV. The
VGa, once it is formed, may thus be expected to be found
in the EPR active q = −2 charge state in particular for
the deeper Fermi level position, which occurs for more
realistic assumptions of the O-chemical potential.

The above findings agree with the observations of
Lenyk et al.13 that high-energy particle irradiation is re-
quired to create the VGa. However, the fact that they
do not require to be optically activated once formed in-
dicates a 2− charge state after irradiation. On the other
hand the Li-vacancies were found to be present already
in as-grown material. This however does not imply the
material was Li-poor. Even under both Li and Ga rich
conditions, the VLi has an energy of formation signifi-
cantly lower than that of Ga. However, the fact that
its 0/− level lies only 1.02 eV above the VBM clearly
explains why the Li must be activated optically by re-
moving an electron from it. In the experiments by Lenyk
et al.13 this is achieved by application X-rays.

In conclusion, our first-principles calculations confirm
the experimental assignment of the EPR centers of VGa

and VLi by Lenyk et al.13 For the VGa the spin is local-
ized on an apical OII and for the VLi it is on a basal
plane OII . The orientations of the principal axes of the
g-tensor and A-tensors are found to be closely related
to the bond directions and in the VLi case two differ-
ent orientations of the defect center with respect to the
crystal axis should exist with overlapping spectra. The
EPR parameters for alternative localizations of the spin
on different O-neighbors were also calculated and found
to be different. As these different forms of localization
of the spin have total energies close to each other they
might possibly occur in the real systems and we hope
that providing the associated parameters here could as-
sist in disentangling these different EPR centers. For the
cases observed so far, our g-tensor and SHF interaction
parameters are in good agreement with experiment. Our
calculations also explain why the VGa defects require high
energy radiation to be formed but no further optical ac-
tivation while the opposite is the case for the VLi.
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