
physica status solidi

Quasi-particle self-consistent GW

study of (Ga1−xAlx)2O3 alloys in the
monoclinic and corundum structure
Amol Ratnaparkhe and Walter R. L. Lambrecht

Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7079, USA

Key words: wide band gap semiconductor, alloy, Ga2O3

∗ Corresponding author: e-mail: amol.ratnaparkhe@case.edu

The relative stability and energy of formation of the monoclinic and corundum structures which are respectively the
lowest energy phases of Ga2O3 and Al2O3 are evaluated for mixed Ga-Al alloys. It is found that in the monoclinic
structure, the Al has a strong preference for occupying the octahedral sites. The effects of alternate sites on the band
structure and total energy are investigated. The band structures are calculated in the quasi-particle self-consistent GW
approach.
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1 Introduction β- Ga2O3 has drawn a lot of attention
over the last few years as an emerging ultra-wide band gap
semiconductor. It has a band gap of about 4.8±0.1 eV but
nevertheless is usually found to be n-type rather than in-
sulating. This makes it attractive as a transparent conduc-
tive oxide (TCO) in photodiodes and photodetectors[1–3]
in the UV region. Because a high band gap also leads to
a high breakdown field, it has even more important poten-
tial applications in the area of high power electronics[4].
Many semiconductor devices require tailoring the band gap
in a closely related material, to construct heterostructures.
Thus it is of great interest to consider (AlxGa1−x)2O3 al-
loys. Such alloys were already grown and incorporated in
transistor devices,[5,6] and computationally studied.[7]

Both Ga2O3 and Al2O3 occur in different phases, among
which the corundum structure or α-phase has the lowest
energy for Al2O3 while the monoclinic β-phase has the
lowest energy in Ga2O3. Thus the question naturally arises:
what is the preferred structure in the alloy system as func-
tion of Al concentration? This question was already studied
by Peelaers et al. [7] using hybrid functional [8,9] calcula-
tions. Here we re-investigate the question using the simpler
generalized gradient approximation (GGA) functional in
the Perdew-Burke-Ernzerhof (PBE) parametrization[10] to
check to what extent their results are sensitive to the func-
tional used. We find excellent agreement with their results.

Another important question for any alloys system is
how to model the disordered arrangement of the two dif-

ferent cations on the cation sublattice. In the present case,
it is important to note that in the corundum structure all
cations are octahedrally coordinated, while the the mono-
clinic phase both octahedral and tetrahedrally coordinated
sites occur. We will thus focus primarily on the occupation
of these differently coordinated sites by Ga and Al atoms
and their effects on the energy of formation and the band
structure.

Finally, in order to obtain the most accurate band gaps,
in a parameter free approach, we use here the quasiparticle
self-consistent QSGW method.[11,12] Although the hy-
brid functional method also gives excellent band gaps they
are to some extent adjusted to the experiment by choos-
ing the fraction of exact exchange. In a previous study of
β-Ga2O3[13] we found that the QSGW method signifi-
cantly overestimates the gaps and required corrections for
the missing electron-hole interactions in the calculation of
the screened Coulomb interaction W as well as a lattice-
polarization correction (LPC). Here we briefly revisit this
question with better converged calculations in terms of k-
point convergence and find the LPC effect is smaller than
found in our previous work and essentially negligible.

2 Computational method The lattice constants and
internal coordinates of the atoms in the cell were optimized
within density functional theory (DFT) in PBE-GGA us-
ing the ABINIT plane wave pseudopotential approach. We
used the Hartwigsen-Goedeker-Hutter (HGH)[14] pseudopo-
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tentials from the ABINIT website and a plane wave cut-off
of 50-70 Hartree and a 4× 4× 4 mesh to sample the Bril-
louin zone.

Keeping the structures fixed, we then recalculated the
total energies in the all-electron full-potential linearized
muffin-tin orbital (FP-LMTO) method, [15,16] which has
the advantage to be free of pseudopotential choices. Fur-
ther relaxation of the internal coordinates was found not
to change the structure or total energy. A well converged
double-κ smoothed Hankel function basis set was used with
angular momentum cut-offs of spdfspd and augmentation
cut-off inside the sphere of lmax = 4. Ga-3d semicore or-
bitals are included in the basis set as local orbitals (defined
inside the muffin-tin sphere only). The Brillouin zone in-
tegrations of the total energy and self-consistency used a
6 × 6 × 6 mesh. The band structures were calculated us-
ing the QSGW method[12] with most parameters chosen
as in Ref. [13] except that we found it necessary to use
a finer k-point mesh for the GW calculations in order to
obtain well-converged self-energy corrections to the band
gap. Specifically, we find that in order to have compara-
ble convergence in the α and the β-structures, a mesh of
5 × 5 × 3 is required for the latter and 4 × 4 × 4 in the α
structure. This gives the QSGW gaps converged to better
than 0.1 eV.

All our reported gaps here include a fixed 0.8Σ cor-
rection. As discussed in detail in Bhandari et al. [17] and
based on previous work, detailed in that paper, it is found
that the QSGW method underestimates the macroscopic
dielectric constants of semiconductors typically by 20 %
and as a result overestimates the W and hence Σ self-
energy or the gap correction betweenGW and LDA. Specif-
ically, for a whole range of semiconductors, the experimen-
tal vs. calculated dielectric constants are linearly related
but the slope is off by 20 % from exact agreement with each
other. The origin of this underestimate of the screening has
been clearly established to be the lack of electron-hole in-
teraction diagrams in the calculation of the polarization
propagator[18,19] and can, among other, be corrected by
including an exchange correlation kernel, schematically,
W = [1− (v+fxc)P ]

−1v, or,[20,21] more approximately
by only including 80 % of the Σ̃−vLDA

xc in calculating the
final band structures. Here Σ̃ij = Re{Σij(εi)+Σij(εj)}/2
is the energy independent and hermitian approximation to
the Σ(ω) that is made self-consistent in QSGW . We note
that this is quite different from the mixing of a fraction
of exact exchange with LDA or GGA exchange used in
hybrid functionals. The lattice polarization corrections are
discussed in Sec. 4.1

3 Modeling of disorder Here we discuss the treat-
ment of disorder. In principle, in an alloy one would need
to consider an ensemble average over many different local
configurations of the two different cations. One way to ac-
complish this is the special quasirandom structure (SQS)
approach[22] in which one constructs the placement of the

different A and B atoms of a chosen size supercell such that
various correlation parameters, such as different distance
pair correlations and other local motifs all are as close as
possible to the random ones. The idea is then that the en-
ergy of formation or other properties of interest can be ex-
panded in a cluster expansion in terms of these correlations
or local structural motifs and the random average is then
well represented by this one carefully chosen structure. In
metallic alloys, one typically needs to include various pair
correlation functions in this treatment. However, in a semi-
conductor, one can argue that what matters most both for
the total energy of bonding and for the band gap is the local
coordination. For example, in a tetrahedrally coordinated
semiconductor alloy with cation alloying, one could fo-
cus on the different tetrahedral environments of each anion,
such as A4, A3B, A2B2, etc. Here we take this idea even
one step further and assume that the properties will depend
only on the relative occupation by the two atoms of the
octahedral vs. tetrahedral sites. Within the 10 atom primi-
tive cell of the β-structure, two cation sites are octahedral
and two tetrahedral. Thus, we need to average in princi-
ple only over the probabilities that each site is occupied by
Al or Ga. We hence calculate the total energies and band
gaps for all possible occupations and then average them ac-
cording to a Boltzman factor e−E/kBT . Now, if the energy
differences between different sites are high compared even
to the growth temperature, then it means the higher energy
configurations will be strongly suppressed and we might as
well assume only the lowest energy configuration occurs
in the alloy. On the other hand, if the growth method is far
from equilibrium, one could assume at the other extreme
limit that the occupations are completely random. Specifi-
cally, for 25 % Al, the Al has then equal probability to be
on a tetrahedral(t) or octahedral (o) site. Similar for 75 %
the single Ga has equal probability to be on the tetrahedral
or octahedral site. For 50 % there are 4 different config-
urations for the Al, tt, oo and two different to configura-
tions. The two different to configurations differ depending
on whether the two Al are next to each other or separated
by a Ga in between. We thus need to check whether these
have different energies (and gaps) or not. Assuming that
they are close or that we neglect their difference than we
would average the tt, to, oo configurations for the Al occu-
pation with probabilities 1/4, 1/2, 1/4 respectively. Our
approach of considering all alloy configurations in a 10
atom cell is similar to Ref. [7] but somewhat more detailed
analysis is provided here.

4 Results

4.1 Lattice polarization correction analysis Before
addressing the alloys, we briefly review the accuracy of the
QSGW method for the band gap of pure β-Ga2O3. Since
our previous paper on β-Ga2O3, where we estimated the
lattice polarization correction to the band gap to be as large
as 0.5 eV, new insights were gained in Ref. [23]. Essen-
tially the lattice polarization correction is now understood
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as being a polaronic effect on the conduction band min-
imum (CBM) and valence band maximum (VBM) sepa-
rately and depends on the effective masses of the latter,
which sets the polaron length scale over which the effect is
active, aP =

√
~/(2m∗ωL), where ωL is the longitudinal

optical phonon. In a complete theory for multiple phonons,
each phonon would come in with a contribution depending
on the longitudinal projection of the corresponding eigen-
vector. Here we only wish to make an estimate of the up-
per limit of this effect. Assuming only the highest optical
phonons matter (because they have the shortest aP ), these
are of order 760 cm−1 in Ga2O3 [24] and using a hole
effective mass of 2me, the polaron length scale for holes
is about 8.5 a0. The estimated effect on the VBM shift is
then (e2/4aP )(ε

−1
∞ −ε−10 ) which amounts to about 0.07 eV

with the factor (ε−1∞ − ε−10 ) being about 0.17. The corre-
sponding shifts of the CBM is smaller because the mass is
much smaller (∼0.2-0.3) and the polaron length is about 22
a0. Thus we estimate the total effect must be smaller than
0.1 eV because this assumed the highest phonon fully con-
tributed the maximal effect. Alternatively we can calculate
the effect explicitly by adding a Lyddane-Sachs-Teller cor-
rection factor ε0/ε∞ to the macroscopic dielectric constant
at the q = 0 point singularity of the screened Coulomb in-
teraction. However, because we apply this correction only
at q = 0, that point must represent a region of q-space
of size 1/aP . In fact, 1/aP (averaged over electrons and
holes) gives a q-point spacing of about 0.04 a−10 and this
amounts to about 1/10 -th of the Brillouin zone in the ab
plane. We find that with a 5×5×3 mesh, adding this correc-
tion factor to theW at q = 0 reduced the gap by 0.1 eV. But
clearly this must still be an overestimate because an even
finer mesh is required to make ∆q ≈ 1/aP . Hence, both
estimates show clearly that the Fröhlich electron-phonon
coupling effect on the gap must be less than 0.1 eV. It
shows that in our previous work[13] where an insufficient
k-point sampling (4×4×2) was used, the effect was over-
estimated. Thus we conclude that we can safely neglect the
electron-phonon effects on the gap but need a sufficiently
fine GW k-point mesh. This then indeed gives a gap of 4.9
eV, for pure β-Ga2O3 in good agreement with experiment
and no further corrections are needed for the alloys from
this effect.

4.2 Lattice constants We first show the calculated
pseudocubic lattice constants V 1/3 where V is the volume
per formula unit of the alloys as function of Al concentra-
tion x in Fig. 1 for both structures. Here we used the struc-
ture with lowest energy in terms of the different Al occupa-
tions. We can clearly see that the lattice constants vary lin-
early with composition, in other words, they obey Vegard’s
law. Secondly, we see that the lattice constant is system-
atically smaller for the corundum than for the monoclinic
phase. This is related to the octahedral only and mixed oc-
tahedral/tetrahedral coordination in corundum/monoclinic
structures respectively.
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Figure 1 Pseudocubic lattice parameter of (AlxGa1−x)2O3 as
function of x for both crystal structures.
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Figure 2 Energy of formation per formula unit for the alloys in
the two structures across compositions. Solid data points show
Al atoms occupying the octahedral positions while the higher en-
ergy hollow data points show the energies for configurations with
increasing number of Al occupying tetrahedral sites. The × and
∗ show the average formation energies assuming random proba-
bility of the different configurations. The dotted lines show the
corresponding interpolation while the solid lines assume the min-
imum energy configuration at each composition.

4.3 Energy of formation Next, we present the ener-
gies of formation, which are defined by

Ef [(AlxGa(1−x))2O3] = E[(AlxGa(1−x))2O3]

− xE[αAl2O3]

− (1− x)E[βGa2O3]

(1)

in Fig. 2. Please note that the reference energies of pure
Ga2O3 and pure Al2O3 here are each calculated in their
own lowest energy phase, whereas the alloy either can be
in the α or β-phase. This ensures that at the end points
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Table 1 Energy of formation per formula unit and band
gaps in different configurations as function of concentration in
(AlxGa1−x)2O3 alloys. In the monoclinic structure the configu-
ration is specified by which atoms go in the octahedral (o) and
tetrahedral (t) sites In the corundum structure, the sites are all oc-
tahedral but we can still distinguish the corner (c) and middle (m)
sites in the structure.
x Config. ∆Ef (meV) Eg (eV)

monoclinic structure
t-o-o-t

0.00 Ga-Ga-Ga-Ga 0 4.91
0.25 Ga-Ga-Al-Ga 20 5.48
0.25 Al-Ga-Ga-Ga 88 5.64
0.50 Ga-Al-Al-Ga −7 6.16
0.50 Al-Ga-Ga-Al 122 6.30
0.50 Al-Al-Ga-Ga 95 6.20
0.50 Ga-Al-Ga-Al 116 6.25
0.75 Al-Ga-Al-Al 122 6.82
0.75 Al-Al-Al-Ga 61 6.87
1.00 Al-Al-Al-Al 75 7.74

corundum structure
c-m-m-c

0.00 Ga-Ga-Ga-Ga 129 5.28
0.25 Al-Ga-Ga-Ga 108 5.74
0.25 Ga-Ga-Al-Ga 108 5.74
0.50 Al-Ga-Ga-Al 79 6.72
0.50 Ga-Al-Al-Ga 79 6.72
0.50 Al-Ga-Al-Ga 75 6.41
0.50 Al-Al-Ga-Ga 122 6.79
0.75 Al-Al-Ga-Al 54 7.40
0.75 Al-Al-Al-Ga 54 7.40
1.00 Al-Al-Al-Al 0 8.88

x = 0 the monoclinic energy of formation is zero while
at x = 1 the corundum one is equal to zero. All of the to-
tal energies are per formula unit. We first consider only the
lowest energy configuration at each composition, which for
the β structure amounts to placing Al preferentially on oc-
tahedral sites. The results are in excellent agreement with
those of Peelaers et al. [7] if we assume that the latter con-
tains a typo in that the energies of formation here are per
formula unit and not per cation. It is clear from the results
that the Al strongly prefers to occupy the octahedral site.
The energy difference per Alt going on a tetrahedral site
however is not constant. The energy difference at the 50 %
concentration ∆Eto = Eto − Eoo is not equal to that of
Et − Eo at 25 %, where only one Al needs to choose be-
tween a tetrahedral and octahedral site and the energy dif-
ference Ett − Eto 6= Eto − Eoo. This indicates that other
aspects of the local configuration do play a role besides the
nearest neighbor coordination.

The fact that the energy of formation in the monoclinic
structure has a non-monotonic, bimodal distribution is in-
teresting, in particular that the energy of formation even
has a slightly negative value at 50 % is remarkable. The
lower energy for adding two Al instead of one may in part
be because this is a more symmetricstructure. The two Al

both on octahedral sites are related by the mirror plane
symmetry perpendicular to the b-axis. The low energy of
formation is clearly related to the optimum octahedral sur-
rounding of Al combined with tetrahedral surrounding for
Ga. Strictly speaking, the negative value of the energy of
formation for this configuration indicates that the 50 %
compound with all Al occupying octahedral sites is a sep-
arate crystalline phase distinct from a disordered alloy and
would constitute a new compound on the convex hull in the
ternary phase diagram.

To further study the effects of the Al distribution, we
calculated the energy of formation and the band gaps for
different configurations as shown in Table 1. These results
are also shown as open symbols in Fig.2. We can see here
that for the 50 % composition, four different Al distribu-
tions can be considered in the unit cell. Both Al on octahe-
dral site, both on tetrahedral site and two different ways of
one Al octahedral and one tetrahedral. The latter two differ
in that in one case, the octahedral and tetrahedral are next
to each other along the b-direction, while in the other case,
there is Ga in between them. We can see that both of these
have an energy of formation in between the fully tetrahe-
dral or fully octahedral one but are still slightly different.
Also, the energy cost of moving one Al from an octahedral
to a tetrahedral site is not equal to half the energy for mov-
ing two of them. This again indicates that other aspects in
the Al distribution play a role in the energetics, such as how
close the Al containing octahedra or tetrahedra are to each
other.

In the corundum structure, we have only octahedral
sites but nonetheless we can define different sites in the
unit cell and consider the effects of which ones are occu-
pied by Al or Ga. The differences in energy of formation as
well as band gap between the different configurations are
much smaller in this case. The only exception is the case
of two Ga atoms next to each other in the 50 % case, which
has a 43 meV/formula unit higher energy. This may be be-
cause the two larger atoms are next to each other causes
more distortion in the structure.

From Fig. 2, we can see that the (Alx-Ga(1−x))2O3

prefers to be in the monoclinic phase up to 70% Al con-
centration and the corundum phase thereafter. This how-
ever corresponds to the assumption that at each alloy com-
position the Al distribution is relaxed so the Al find their
lowest energy configuration. If a random occupation would
occur, modeled by the average energies of each possible
configuration in the 10 atom cell the dotted lines are ob-
tained in Fig. 2. Under that assumption the crossing to
corundum phase would occur at lower concentration of Al.
Nonetheless, from a thermodynamic point of view when
comparing the relative stability of the two structures on the
basis of energy, the assumption of minimizing the energy
among different configurations is the more natural assump-
tion. Since the total energy differences between the differ-
ent configurations in Fig. 2 is of order 0.1 eV/formula unit,
the Boltzmann factors for the higher energy configurations
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Figure 3 Direct band gap for the alloys as function of composi-
tion for each of the crystal structures. The solid symbols corre-
spond to the lowest energy structure. The lines are a fit to these
points with the parabolic equation definint the bowing coefficient.
The open symbols to different configurations as detailed in Table
1.

with tetrahedral Al occupations would be about e−1 =
0.37 for a growth temperature of 1200K. This means the
higher energy configurations are not expected to make a
sizable contribution to the energy of formation.

4.4 Band gaps Next, we consider the band gaps as
function of concentration in each phase in Fig. 3. In this
plot we show the band gap in the alloy configuration with
the lowest energy of formation as solid symbols and the
line is interpolated through them. We can see that the gaps
are systematically higher in the α than in the β structure but
the difference increase with Al-concentration x. The band
gaps do not vary linearly but the amount of band gap bow-
ing is moderately small. Using the usual bowing equation
Eg(x) = xEAl

g +(1−x)EGa
g − bx(1−x), the bowing co-

efficient b is 0.8±0.1 eV for the β-phase, and 2.1±0.3 eV
for the α-phase by fitting this equation to the data points
for the lowest total energy configuration.

Next we consider the band gap differences for differ-
ent Al sites reported in Table 1. These are indicated as
open symbols in Fig. 3 and show the slight variation of the
gaps due to fluctuations in the local configuration. For the
β phase, we can see that the gap is the smallest in the low-
est energy structure of fully octahedrally coordinated Al
but differs only by 0.14 eV from the highest energy con-
figuration of both tetrahedral Al. The same is true for the
25 % Al case. In the 75 % case, the gaps are within 0.05
eV for both configurations. At 50 % we can see that when
the two Al are adjacent to each other the gaps are slightly
lower than when they are separated by a Ga. This is true
both when the two Al are on adjacent tetrahedral sites and
when they are on adjacent tetrahedral-octahedral sites.

Thus the band gaps differ only very slightly depending
on the precise configuration. This is even more so for the

corundum structure. Hence the band gap bowings in Fig.3
obtained from the minimum energy configuration are ade-
quate and a more random distribution will not lead to sig-
nificantly larger or smaller bowing. Even when assuming
completely random, non-equilibrium distribution of the Al,
the band gaps will at most differ by 0.1 eV.

Overall, our band gaps are in good agreement with those
of Ref. [7] obtained using a hybrid funtional with adjusted
exact exchange fraction for the two end compounds. They
are thus also in good agreement with the available experi-
mental data.[7]

5 Conclusions In this paper we have studied the en-
ergy of formation and structural preference of (AlxGa1−x)2O3

alloys in both corundum and monoclinic structures. In agree-
ment with previous work based on hybrid functionals, we
find that also with GGA the monoclinic structure is pre-
ferred up to about 70 % when the Al is allowed to find its
lowest energy configuration. The energy of formation re-
ferred to the two end compounds each taken in their own
lowest energy phase is bimodal in the monoclinic structure
when assuming that the Al preferentially occupy the lowest
energy octahedral sites when substituting for Ga. At 50 %
it leads even to a slightly negative energy of formation indi-
cating a new stable compound at 50 %. Other coordinations
of Al have significantly higher energy in the β structure, in
fact higher than in the corundum structure. Such configu-
rations might nonetheless occur in case of non-equilibrium
growth. Further study of the different configurations of how
the Al are distributed in the primitive cell of the β or corun-
dum structure, show that other factors may play a role in
the energetics than simply octahedral vs. tetrahedral co-
ordination. Depending on whether the growth the alloy is
equilibrated or random, the concentration at which corun-
dum becomes the preferred structure could vary from about
70 % to 50 %. Nonetheless, the band gaps here calculated
at the QSGW level vary only within about 0.1 eV due to
these different configurations. The band gaps show moder-
ate bowing in both structures and are systematically higher
and have a stronger bowing in the corundum structure. The
QSGW method is here shown to give accurate band gaps
without adjustable parameters for both end compounds and
does not require a significant electron-phonon correction
due to lattice polarization. This conclusion results from a
re-evaluation of this effect and using a better converged k-
point mesh in calculating the GW self energy compared
with our previous work on β-Ga2O2.[13]
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