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Three-nucleon (BN) forces are an indispensable ingredient for accurate few-body
and many-body nuclear structure and reaction theory calculations. While the direct
implementation of chiral 3N forces can be technically very challenging, a simpler
approach is given by employing instead a medium-dependent NN interaction Vineg that
reflects the physics of three-body forces at the two-body normal-ordered approximation.
We review the derivation and construction of Vg from the chiral 3N interaction
at next-to-next-to-leading order (N2LO), consisting of a long-range 2m-exchange
term, a mid-range 17-exchange component, and a short-range contact-term. Several
applications of Vineq t0 the equation of state of cold nuclear and neutron matter,
the nucleon single-particle potential in nuclear matter, and the nuclear quasiparticle
interaction are discussed. We also explore differences in using local vs. non-local
regulating functions on 3N forces and make direct comparisons to exact results at low
order in perturbation theory expansions for the equation of state and single-particle
potential. We end with a discussion and numerical calculation of the in-medium NN
potential Vineg from the next-to-next-to-next-to-leading order (N3LO) chiral 3N force,
which consists of a series of long-range and short-range terms.

Keywords: chiral effective field theory, three-body forces, nuclear matter, equation of state, nuclear reaction theory

1. INTRODUCTION

Three-nucleon forces are essential to any microscopic description of nuclear many-body systems,
from the structure and reactions of finite nuclei [1-4] to the equation of state and transport
properties of dense matter encountered in core-collapse supernovae and neutron stars [2, 5-13].
Three-body forces have been shown to dramatically improve the saturation properties of nuclear
matter [6, 7, 14], though there are still large uncertainties compared to the empirical saturation
energy and density. Three-nucleon forces are now also routinely implemented in a number of ab
initio many-body methods such as the no-core shell model [15], coupled-cluster theory [16, 17],
self-consistent Green’s function theory [18], the similarity renormalization group [19, 20], and
quantum Monte Carlo [3] to study nuclear ground-state and excited states up to medium-mass
nuclei. In particular, three-body forces have been shown to be especially relevant for understanding
the properties of neutron-rich nuclei out to the drip line [16, 18, 21, 22].
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In the past, it has been challenging [5] to obtain nuclear
two- and three-body forces that simultaneously fit well the
properties of finite nuclei and nuclear matter, but in recent
years, much progress has been achieved within the framework
of chiral effective field theory [23-27] to construct three-body
forces consistent with the employed two-body force, all within
a systematic power series expansion involving the ratio of the
physical scale Q to the chiral symmetry breaking scale A, ~
1 GeV. In chiral effective field theory with explicit nucleon
and pion degrees of freedom only, three-nucleon forces appear
first at third order in the chiral expansion (Q/A X)S, or next-
to-next-to-leading (N2LO) order. These leading contributions
to the chiral three-nucleon force (3NF) are now routinely
employed in nuclear structure and reaction theory calculations,
but many-body contributions at N3LO [28-31] are expected to
be important.

In the present work, we will review how to implement three-
nucleon forces via medium-dependent two-body interactions
[6, 7, 32] in nuclear many-body calculations of the equation of
state, single-particle potential, and quasiparticle interaction. We
will show that this approach provides an excellent approximation
at first order in many-body perturbation theory by comparing
to exact results from three-body forces. At higher orders
in perturbation theory, the use of medium-dependent NN
interactions fail to reproduce all topologies, however, residual
three-body interactions have been shown [33] to give relatively
small contributions (~ 1 MeV) to the nuclear equation of state
at saturation density up to second order in perturbation theory.
We also consider several commonly used high-momentum
regulating functions for three-body forces and study their impact
on the density-dependent interaction Vyq. In particular, we
find that local regulators introduce large artifacts compared to
nonlocal regulators when the same value of the cutoft scale A is
used in both cases.

2. FROM THREE-BODY FORCES TO
MEDIUM-DEPENDENT TWO-BODY
FORCES

2.1. Chiral Three-Body Force at
Next-to-Next-to-Leading Order

The nuclear Hamiltonian can generically be written in the form
i 1 1
H=) i ta Vit gVt O

where p; is the momentum of nucleon i, Vj; represents the two-
body interaction between particles i and j, and Vij represents the
three-body interaction between particles i, j, k. Three -body forces
emerge first at N2LO in the chiral expansion and comprise three
different topologies represented diagrammatically in Figure 1.
The two-pion-exchange three-body force (Figure 1A), consists of
three terms proportional to the low-energy constants ¢, c3, and
C4:
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FIGURE 1 | Diagrammatic contributions to the chiral three-nucleon force at
next-to-next-to-leading order (N2LO) in the chiral expansion: (A)
two-pion-exchange interaction, (B) one-pion-exchange interaction, and (C)
contact interaction.

where g4 = 1.29 is the axial coupling constant, m, = 138 MeV is
the average pion mass, f; = 92.2 MeV is the pion decay constant,
gi = ki — k; is the change in momentum of nucleon i (i.e., the

momentum transfer), and the isospin tensor Pz’f is defined by
Fgf = §%P (- dcymi + 2¢3 ;- i) +ca e“ﬂ”l’{ ok (qi x ;). (3)

The three low-energy constants ci, ¢3, and ¢4 can be fitted to
empirical pion-nucleon [34, 35] or nucleon-nucleon [36, 37]
scattering data.

The one-pion exchange term (Figure 1B), proportional to the
low-energy constant cp, has the form

gACD i qi . oo

(1) -
Viy = - Gi-gjTi T, (4)
f4 5 q]2 721 ] )

i#j#k

where the high-momentum scale is typically taken as
Ay = 700MeV. The three-nucleon contact force (Figure 1C),
proportional to cg reads:

ct)_ Z

i#j#k

f4Ax T (5)

There are several different experimental observables commonly
used for fitting the low-energy constants ¢p and cg. Most
approaches fit the binding energies of A = 3 nuclei together
with one of the following observables: (a) the neutron-deuteron
doublet scattering length [38, 39], (b) the radius of “He [40], (c)
the properties of light and medium-mass nuclei [41, 42], and (d)
the triton lifetime [43, 44].

Since the three-nucleon force V3y is symmetric under the
interchange of particle labels, there are only three independent
terms from the i,j,k permutations, which allows us to write
Wi + W, + W3, For instance, W%Ct) =

The antisymmetrized three-body interaction Van can be written
in terms of two-body antisymmetrization operators Pj; as follows:

Vsn = f4 T2 - T3.

Van = (1 — P1o)(1 — P13 — P23) Vay, (6)

l—l—a,- 1—|—T1- >
P,’j: 5 5 5 k,’(—)

where

7)
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2.2. Density-Dependent NN Interaction at
Order N2LO

In second quantization, a three-body force V3y can be written as

1 = AtATATA A A
Vay = — Z (123|V3N|456)a1a;a§a6a5a4 (8)
123456

where V3y denotes the antisymmetrized three-body matrix
element, and a:.r (a;) are the usual creation (annihilation)
operators associated with state |i). A medium-dependent two-
body interaction can then be constructed by normal ordering
the three-body force with respect to a convenient reference state,
such as the ground state of the noninteracting many-body system,
rather than the true vacuum as in Equation (8). Normal ordering
with respect to the noninteracting ground state then produces a
three-body force of the form

1 _ 1 - A
Vi = = D (kI Vanligk) + 2 i1 Vanlija) :a] as:
ijk ijl4

1 - .
+ 5 > (i12|Van|i45) :a]ab asas:
11245

1 L aatata a a
+3¢ Y (123|V3n456) :alalalagasay:, (9)
123456

where :O: denotes normal ordering of operator O. In practice the
construction of the medium-dependent two-body force

1 . S ata s
i > " (i12|Vani45) :a]ab asas: (10)

11245

then amounts to summing the third particle over the filled
states in the noninteracting Fermi sea, involving spin and isospin
summations as well as momentum integration:

) (11)

3

Vined = Z/ s O (ks — k3)(1 — P13 — P23) V3,

s3t3

where k; is the Fermi momentum and we have absorbed the
particle exchange operator (1 — Pj3) into the definition of
the antisymmetrized medium-dependent NN interaction V4.
In general, there are nine different diagrams that need to be
evaluated independently: (1 — P13 — Pp3)(W; + W3 + W3), which
correspond to different closings of one incoming and outgoing
particle line.

As a simple example, we compute the density-dependent NN
interaction arising from the three-body contact term at N2LO
shown diagrammatically in Figure 2 (f). We begin by evaluating
the spin and isospin traces in Equation (11):

Troyey[(1 = P13 — Py3)(Ty - T34+ 71 - T3+ 71 - 1) | (12)
=TT’U31_—3(‘F2~?3+?1-?3+‘?1~?2)—T76313
1+61-0314+7 -3\ - - - - . .
S LS )@ B+ B4 h)
2 2
1403631 +T-T3\ - - - - - -
— Ttros, |:< 5 3 ) L w+n-G+70- Tz)]

- - 1 . o -
=41 — 1T7a313(fl T+ (T BT )+ (T )T T3)
1 oo o o o o o o
— Tron(m o+ (0 B)(0 6) + (@ B)E - 5)
I .
= 2‘[1 < Ty — E(4T1 - Ty + 12) = —6,
where we have used the well known properties of Pauli matrices:

Tré =0, Trl = 2, Tr3(T; - 13)(%j - T3) = 2T; - T and 7; - T; = 3.
The integration over filled momentum states is trivial:

d3k3 CE 1 k; CE
—— 0k —k3)—— = — = , 13
/(2;1)3 ks 3)f7$AX 22 3 fAA, (13)
which gives a final result of

CEk3

(ct) f
\%4 = — . 14
med HZf;rLAX ( )

This particularly simple three-body contact interaction gives
rise to a momentum-independent effective two-body interaction.
For the more complicated 17- and 2m-exchange topologies,
it is convenient to consider the on-shell scattering (|p| =
[p’) of two nucleons in the center-of-mass frame: Nl(f)) +
No(—p) — Ni(p') + Ny(—p’). This assumption results in a
medium-dependent 2N interaction with the same isospin and
spin structures as the free-space 2N potential, which allows for a
simple decomposition of V.4 into partial-wave matrix elements
as we show in section 4.1. In the more general case N} (1) +
Na(p2) — Ni(p3) + Na(ps), the in-medium 2N interaction
will contain operator structures depending on the center-of-mass
momentum P = p; + p, = p3 + pa. Such contributions have
been shown to be small in practice [45]. In the applications
discussed below, higher-order perturbative contributions to the
ground state energy and single-particle energies involve also
off-shell matrix elements of the interaction (p’|V[p), where
[p| # |p’|. In such cases we use as an approximation the
substitution p?> — %(p2 +p'?) in the formulas derived below. The
resulting interaction can then be straightfowardly implemented
into modern nuclear structure codes. We will explicitly test some
of the approximations noted above by comparing exact results
at low order in perturbation theory using the full three-body
force to the results using instead the medium-dependent 2N
interaction.

Note that in the above derivation of the density-dependent

2N interaction associated with Vg};\?, we have not applied a high-
momentum regulator, which would be necessary to eliminate
the components of the nuclear interaction that lie beyond the
breakdown scale of the effective field theory. In the case of
nucleon-nucleon potentials, the cutoff scale is typically chosen
A < 700MeV, beyond which the introduction of a new
dynamical degree of freedom (the p meson with mass m, =
770 MeV) would be required. On the other hand, in order to
fit empirical nucleon-nucleon scattering phase shift data up to
laboratory energies of Ej,, = 350 MeV, the cutoff is normally
chosen A 2 414 MeV (the relative momentum in the center-
of-mass frame corresponding to Ep,, = 350 MeV). In practice,
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FIGURE 2 | Diagrammatic contributions to the density-dependent NN interaction derived from the N2LO chiral three-nucleon force: (A) one-pion-exchange
propagator correction, (B) one-pion-exchange vertex correction, (C) Pauli-blocked two-pion exchange correction, (D) short-range one-pion-exchange vertex
correction, (E) contact interaction vertex correction, and (F) two-body contact interaction.

it is found that relatively low values of the momentum-space
cutoff A < 500MeV lead to perturbative nucleon-nucleon
potentials, which are suitable for a wide range of methods to solve
the quantum many-body problem. Such low-cutoff potentials,
however, exhibit larger artifacts in calculations of the density-
dependent ground state energy of nuclear matter and single-
particle potential as we will discuss explicitly below. While the
choice of cutoft scale is well motivated, the regulating function
can take various forms. Traditionally, an exponential regulator in
the incoming and outgoing relative momenta is chosen:

fp'sp) = expl=(p'/ 0" = (p/ A)™"), (15)
where p = %(]31 —py)andp’ = %(‘53 — pg) for the general two-
body scattering process N(p;) + N(p2) — N(p3) + N(p4), and
n is an integer chosen such that the regulator affects only high
powers in the chiral expansion. More recently [27, 46], the pion-
exchange components of the nucleon-nucleon interaction have
been regularized in coordinate space according to

V@) [1 e, (16)
where 0.8fm < R < 1.2fm, while the contact terms in
the nuclear potential were regularized according to Equation
(15) above. In previous calculations [47, 48] of the medium-
dependent 2N force V.4, we have imposed the nonlocal
regulating function above only after the momentum-space
integration over k3 is performed. This choice led to simplified
analytical expressions for the density-dependent NN interaction
in cold nuclear matter. A three-body regulator that treats all
particles symmetrically can be defined by [49]

W3 —> W3F(q1,q2) = Wi exp[—(q1/A)* — (92/A)*],  (17)

where §; = p; —p1 and g, = p;—p, are the momentum transfers
for particles 1 and 2 in W3. Analogous expressions hold for the
contributions W, —> W F(q2,¢q3) and W, — W1 F(q1,g3).
This choice of regulating function leads to more complicated
expressions for the density-dependent 2N interaction since now
the regulator in general can involve the momentum k3 over
which we integrate. More importantly, the local regulator in
Equation (17) leads to much stronger cutoff artifacts for the
same choice of scale (Ajoc = Aponloc) as we will demonstrate in
the following. Additional discussion regarding the role of cutoff
artifacts on nuclear many-body calculations can be found in
Dyhdalo et al. [50].

To start, when we employ the local regulator in Equation
(17), we now find for the density-dependent NN interaction in
isospin-symmetric nuclear matter:

$$=:iﬁiiglgﬁ?r?ﬂﬂw%A)—za-%Fw%AﬁMW)
—3T4(p, 9], (18)
where
F(g% A) = e 0'/A%, (19)
. ke !
T4(p) = /0 dk [ 1 dxk* F(p* + K + 2pkx, A), (20)

kf 1 27 K2
TL(p.q) = /O dk[ldx/O do EF(pz + K2

+kx\/ﬂ + qkﬂcos o, A)
xF(p* + k* + kx\/ﬂ —akv/1 =2 cos ¢, A).

1)

In the limit of large A we find that F(qz,A) — 1, f4(p) —

2k} 22
Tf, and Ty (p,q) — Tf Thus, in this limit we clearly recover
Equation (14).

Previously, for the in-medium pion self-energy correction
(Figure 2A), with no regulator we found

&k . 5353

Vmed,l — A
W52 P+ )2

(ZClmfr + C3q2) . (22)

With the local regulator in Equation (17) we now find

213

8ak; G162
ymedl _ -7 201m2 + c3%) FA (g%, A).
NN 3712f,‘r‘1 z(m%-i-qz)z( i+ esq”) P )

(23)
Previously, for the Pauli-blocked vertex correction (Figure 2B),
we found

2 - g -

8a z - 014024
1° T2

24 2 2

87%f7 my +q

( —4cym? [To + Ty — (c3 + ca)[q*(To + 2Ty + '3) + 41

med,2 __
VNN -

Frontiers in Physics | www.frontiersin.org

April 2020 | Volume 8 | Article 100


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Holt et al.

Implementing Chiral Three-Body Forces

+4C4[§k; —m2Ty ). (24)

When the local regulators are employed, we now find that the
p-dependent auxiliary functions I'; must be replaced by

5 kf 1 K2
r = dk dx
o) [0 /71 m2 + p? + k? + 2pkx
F(p? + K2
p°+k°+2pkx, A),

~ kf 1
Fl(p)=/0 dkfl
(26)
~ kf 1 k4(1 _xz)/z 5 ,
ralr = F 2pkx, ),
2(p) /0 dk/_ldx w2+ 2 K+ 2pke (p”+ k™ + pkx( ))
27
F3(p) = v 1 2,42
S T F(p* +Kk* +2pkx, A),
0 -1
(28)

where the versions of these functions without the superscript
tildes in Equation (24) can be obtained by setting A — o0. In

F(p* +K* +2pkx, A),
(25)

k3x/p
A G R
ms 4 p* + k= 4 2pkx

K 3x? — 1)/(2p?)
m2 + p? + k? + 2pkx

2k}
addition, the term 4cy [Tf] in V22 must be replaced with
the quantity
Zka kf 1
4cy 5 — 4C4f dkf dx k? F(p2 +iE2+ 2pkx, A)
0 -1
= 4C4f‘4(p). (29)

Then the revised Pauli-blocked vertex correction has the form

VmedZ gA 7 qGZ q
Wt g

—(c3 + ca)[q*(To + 2Ty + T'3) + 41]
ey [Ty = m2 o |) Fa? A). (30)

(—461m721[f0 + 1]

Previously, we found for the Pauli-blocked two-pion-exchange
interaction (Figure 2C),

med, 3
NN 16 2f4

- C3[8kf - 12(2mn + qz)Fo - 6q21"1 + 3(2mi + qz)zGo]

{— IZClm [21"0 - (2m +q )Go]

+4csT) - (01 - 024" — 51§02 - 9)Ga
— (3¢c3 + caTy - 1)i(01 + G2) - (§ X P)
x[2Tg +2T' — 2m3, + ¢°)(Go + 2G)1)]
—12¢;m%i(51 + 32) - (§ x p)[Go + 2G1]
+4c4T1 - 1201 - (§ X )02 - (§ % p)[Go + 4Gy + 4G3]}.(31)

When substituting in the local regulator functions we obtain

med, 3 _
NN 16 2f4

—c3[12T) — 122m2 + ¢H)T) — 64°T}

{—12c;m2 [2Tf — 2m2 + ¢*)Gy]

+32m2 + @)*Gyl + 4c4T) - 12(61 - 5247 — 61 - 452 - G,
—(3¢3 + caTy - 1)i(01 + 52) - (§ X )

[2Tf + 2T — (2m2 + ¢*)(Gy + 2G))]

—12c;m2i(G1 + 72) - (§ x P)[Gy + 2G}]

+4c4Ty - 101 - (4 X P)a2 - (@ % P)[Gy + 4G; +4G51} (32)

In the above expressions we encounter

q-dependent functions
21 2 14 16
{k k*, K>}/ Q2)
O *ykok (P’ q) / dk/ / d¢ — B2 cos? ¢
F(p? + K + kxy/4p? — ¢* + gkv/1 — x2 cos ¢, A)
F(p* + k* + kx,/4p% — ¢?
— gkyv'1 — x2cos ¢, A), (33)
where A = m2 + p? + k* + kx\/4p*> — ¢* and B = gkv/1 — x2.
In Equation (33), the functions Go .« (p,q) are obtained from

Equation (33) by substituting A — oo. In addition we encounter
the following p- and g-dependent functions

the p- and

Ty — (m2 +p*G, — G,

/ 0
Gilpg) = ppeg , (34)
, 30+ pT — (m +p*)G, — G,
Gl*(p’ q) - 4P2 _ qz > (35)
Gy(p,q) = (m% + pH)Gy + G, + G|, (36)
30— 2(m3, +p2)G/ —2G;, -G,
where
kf 1 2
To(p,q) = / dk/ dxf de
0 —1 0
k?/(27)

m2 + p? + k2 + kx\/4p? — ¢* + gkv/1 — x2 cos ¢

xF(p* + K + kx\/m +akv/1 = 22 cos g, A)
xF(p? + k* + kx\/ﬂ— qkﬂCosaﬁ,A), (38)

kf 1 2
(. q) =/ dk/ dx/ do
0 -1 0

Klx/4p? — ¢* + qv/1 — ¥ cos ¢] /(47 p?)
m2 + p2 + k2 + kx/4p? — @ + gkv/1 — x2 cos ¢

XEQ? + K+ key4? — @ + kT — 2 cos b, A)
XF(p* + I + kx\/ﬂ— qkﬂCOS%A), (39)
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kf 1 2
I (. ) :/ dk/ dxf dp
0 -1 0

K4 |:4p2 - (96\/4}72 — @ +qVl—x2 cosqb)z:I /(167 p?)
m2 + p? + k2 + kx/4p> — q* + qk/1 — X% cos ¢

xF(p* + k* + kx\/ﬂ +gkv/1 — x2 cos ¢, A)

XE(p + K+ ke [4p? — ¢ — gkv/T — 2 cos, A),  (40)

kf 1 2
I, ) =/ dk/ dx/ dg
0 -1 0

K [3 (x\/4P2 — q* + qv/'1 — x? cos ¢)2 - 4p2} /(167p*)
4§+ R+ kx/Ap? — @ + qk/1— 7 cos¢

xF(p* + K + kx\/ﬂ +qky/'1 — x2 cos ¢, A)

xF(p* + k> + kx\/ﬂ — gky'1 — 2 cosg, A),  (41)

Additionally, we have replaced the quantity Sk; in Equation (21)
with 12I') defined in Equation (31). The term Sk; in Equation

(31) as well as all unprimed I' and G functions can be obtained
by setting A — oo. For the ¢p vertex correction to one-pion
exchange (Figure 2D), we previously had

613524 -
1° 9% q'L’l-‘L'z. (42)

3
Vmed,4 - _ gAchf
NN 1272f4N, m2 + ¢

Including the local regulators we find

Vmed,4 _ 8ACD

) G136 (4
NN 8m2fr Ay m3 + ¢

D gkf3F(q2, A) — FQ) .

(43)
For the cp vertex correction to the 2N contact term (Figure 2E),
we previously had

2

{71 - %2[261 - 6212 + (61 - 62 (20" — %)

ymeds _ _ 8ACD
NN 1672f4A
+61-462-q(1 - 2;22) - %51 (G x p)32 - (q x p))
(Fo + 2T +I'3)] + 4k} — 6m2 To . (44)
Including the local regulators we obtain
ﬁ;.]d,s = 167‘2;;1\)({?1 '?2[231 AP

2

2
L Lol L2
+<ol-oz<2p2—%>+m~qoz- (1—,;%)

2L o aie e o
—761-(q><p)crz-(q><p))
q

=

(To + 2 + f3)] + 60y — 6m2 f'o}F(qz, A).  (45)

We reiterate that the above expressions are obtained in
the center-of-mass frame assuming on-shell scattering
conditions. In all cases, the expressions for the in-medium
2N interaction above are well-behaved (no poles) and involve
only elementary integrations.

3. APPLICATIONS OF DENSITY-
DEPENDENT 2N INTERACTIONS TO
NUCLEAR MANY-BODY SYSTEMS

3.1. Equation of State of Cold Nuclear
Matter

The equation of state of nuclear matter gives important insights
into many properties of finite nuclei, including the volume and
symmetry energy contributions to the binding energy in the
semi-empirical mass formula, the saturated central density of
medium-mass and heavy nuclei, as well as nuclear collective
excitation modes and giant resonances. The equation of state
is also essential for modeling neutron stars [51-59], including
their birth in core-collapse supernovae, their radii as a function
of mass, their tidal deformabilities in the presence of compact
binary companions, and their moments of inertia. For relatively
soft equations of state, the central densities of typical neutron
stars with mass M =~ 1.4 Mg reach n =~ 3ny [60], where
ng = 0.16fm~ is the nucleon number density in the saturated
interior of heavy nuclei. At such densities, three-body forces give
a large contribution to the pressure and are therefore critical for
understanding neutron star structure.

The first-order perturbative contribution (Hartree-Fock
approximation) to the ground state energy of isospin-symmetric
nuclear matter is given by

1 _
BN = 5 (121 Vanl12)mm, (46)

12

for the antisymmetrized two-body force V5 and

1 _
c > (123|Van|123)nynyns, (47)

123

) _
Eyn =

for the antisymmetrized three-body force Vin. In the above
equations, n; = O(kf — |Ei|) is the zero-temperature Fermi-Dirac
distribution function with Fermi momentum ky, and the sum
is taken over the momentum, spin, and isospin of the occupied
states in the Fermi sea.

In Figure 3, we show the density-dependence of the Hartree-
Fock contribution to the ground state energy of isospin-
symmetric nuclear matter from the N2LO chiral three-nucleon
force in different approximations. As a representative example,

we consider the low-energy constants ¢; = —0.81 GeV~1,
¢z = —34GeV7l ¢4 = 34GeVl ¢p = —0.24, and
cg = —0.106 obtained in Coraggio et al. [61] and associated

with the N3LO NN chiral interaction with cutoft scale A =
450 MeV. We see that in all cases the first-order perturbative
contribution from three-body forces in isospin-symmetric matter
is strongly repulsive. The exact treatment of the Hartree-Fock
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contribution to the ground state energy arising from the N2LO
three-nucleon force is shown in Figure 3 as the thick black line
labeled “Vé\N_))eiict.” Employing instead the density-dependent
NN interaction V.4 with A — 00 we obtain the contribution
shown with the thin blue line and labeled “VA-+°” Note that
in order to avoid triple-counting when the density-dependent
NN interaction V4 is used in Equation (46), we must replace
Von — %Vmed. From Figure 3, we observe that at the Hartree-
Fock level the density-dependent NN interaction accurately
reflects the physics encoded in the full three-body force. This
is not a trivial observation since several approximations were
employed to derive the density-dependent NN interaction from
Vin. In Figure 3, we see that the largest deviation in the two
curves is only 1 MeV (or >~ 3%) at n = 0.32 fm 3.

Imposing the nonlocal regulator in Equation (15) leads to
the red dot-dashed line labeled “Vrﬁe dnonloc- As expected, the
presence of the momentum-space cutoff reduces the Hartree-
Fock contribution to the ground-state energy, particularly at
high densities. However, the cutoff artifacts introduced are rather
small and amount to only 0.8 MeV (or 2~ 2%) relative to the result
from Vxﬁe_d)oc at n = 0.32fm 3. We note that since the Hartree-
Fock contribution to the ground state energy E/A is always
finite and probes only the characteristic physical energy scale of
the system, the differences between Vgejoo and V2 d nonloc aT€
true regulator artifacts. We next impose the local regulator in
Equation (17), which is shown as the dotted green line in Figure 3
and labeled “ Vﬁe d.loc- For this choice of regulator we find severe
cutoff artifacts, even at low densities where one would expect the

role of the regulating function to be minimal. For example, at

n = 0.10fm™3, there is a 19% relative error between Vrfn\e_d)Oo
and Vrﬁe dloc From Equation (17), we expect the regulator to

introduce corrections at order (Q/A)* ~ (kf/A)4. The Fermi
momentum at this density is ky = 225MeV, which for the
A = 450 MeV chiral potential implies an error of (kf/A)4 ~ 6%.
One key difference between the non-local and local regulators of
Equations (15) and (17) is that the relative momentum ranges
from 0 < k < ky while the momentum transfer ranges from 0 <
q < 2k¢. Therefore, one naturally expects larger cutoff artifacts
for the local regulating function in Equation (17). Indeed, when
the value of the momentum-space cutoff is increased to 24, as
can be seen from the dashed green curve of Figure 3, the results
from employing the local regulator are now comparable to those
using the non-local regulator.

In Figure 4, we show the density-dependence of the Hartree-
Fock contribution to the ground state energy of pure neutron
matter from the N2LO chiral three-nucleon force in different
approximations. Again we consider the low-energy constants
= —081GeV™!, ¢ = —34GeV!, ¢4 = 34Gev !,
cp = —0.24, and cg = —0.106 associated with the N3LO NN
chiral interaction with cutoff scale A = 450 MeV. However, in
pure neutron matter the Hartree-Fock contribution from three-
body forces is independent of ¢4, cp, and cg. We show as the
thick black line labeled “ V3AN4,)e§§ct” in Figure 4, the Hartree-Fock
contribution to the ground-state energy of pure neutron matter.
Employing the density-dependent NN interaction Vi,.q with
A — oo we obtain the contribution shown with the thin blue line

‘l(’||’I|IIll|lll|||l||||||'|l|l||l
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FIGURE 3 | Hartree-Fock contribution to the ground-state energy of
isospin-symmetric nuclear matter as a function of density due to the N2L.O
chiral three-nucleon force with cutoff scale A = 450 MeV.

labeled “Vrﬁ;o".” Again, at the Hartree-Fock level the density-
dependent NN interaction very accurately reproduces the result
from the full three-body force.

Inserting the nonlocal regulator in Equation (15) we find
the red dot-dashed line labeled “VA dnonloc- L he non-local
regulator preserves the property that none of the three-body
force terms proportional to ¢4, cp, and cg contribute to the
ground-state energy of pure neutron matter. We find that the
momentum-space cutoff reduces the Hartree-Fock contribution
to the ground-state energy even more than that in isospin-
symmetric nuclear matter. This is due to the larger neutron
Fermi momentum (compared to the nucleon Fermi momentum
in isospin-symmetric nuclear matter at the same density). The
cutoff artifacts introduced are nevertheless relatively small and
amount to 2 MeV at n = 0.32 fm~>. Finally, we impose the local
regulator in Equation (17) to obtain the dotted green line labeled

« Vr/n\e dloc in Figure 4. Again, the cutoff artifacts are very large.

For example, at n = 0.10 fm 3, there is now a 34% relative error
between VQ;O" and Viped loc- At this density, the maximum
momentum transfer is g = 2k; =~ 570 MeV, which is clearly
problematic for the chosen cutoff A = 450 MeV. In addition
to larger artifacts, the local regulator also induces contributions
to the density-dependent NN interaction in pure neutron matter
that now depend on the low-energy constants cs, ¢p, and cg. In
the case of pure neutron matter, diagrams (d), (e), and (f) in
Figure 2 produce VIed* — ymeds — ymedé _ ¢ yith either
the nonlocal regulator or no regulator at all. Instead, for the local
regulator we find

ymedd _ 8D 514627
N 8 fihy mi+q

2
(gk;F(qz, A) — rg) , (48)

which indeed vanishes when the local regulators are replaced by
1. For the ¢p vertex correction to the 2N contact term with local
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FIGURE 4 | Hartree-Fock contribution to the ground-state energy of pure

neutron matter as a function of density due to the N2LO chiral three-nucleon
force with cutoff scale A = 450 MeV.

regulators we obtain

2
D O S o q

Vmed,5= 8A 251 -6+ (516 202 —

NN len2fin, |01 2T\ T

L. o 2p?
+o1-qo2-q(1— —
q
I W - -
—?01 (g x p)oz - (q x P))(Fo +2I'1 +I'3)
+2Ty — me,l:o}F(qz,A), (49)

where T4 (p) is defined in Equation (20). Finally, the three-body
contact term with the local regulator leads to

2 -
Vmed,6 — CiE 7k3 F2 2,A _9JF 2,A r
NN 2772][;?1\)( 3 f (q ) (q ) 4(P)
4
~Ti(pq) + SkpF(g, A)] : (50)

Again, this term vanishes when the regulating functions are set
to 1. These additional terms have been included in the present
calculation of the dotted green line in Figure 4. Substituting A —
2A into the nonlocal regulator again reduces the cutoff artifacts,
as seen in the dashed green curve of Figure 4.

The inclusion of three-body forces in the nuclear equation
of state beyond the Hartree-Fock approximation remains
challenging. While several recent works [33, 62] have computed
the exact second-order contribution to the equation of state from
three-body forces, the use of derived density-dependent two-
body interactions allows for an approximate treatment up to
third order in perturbation theory [61, 63]:

R IV AE A L (51)
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FIGURE 5 | Equation of state of isospin-symmetric nuclear matter from chiral
two- and three-body forces with different choices of the momentum-space
cutoff A and at different orders in many-body perturbation theory. The label £0)
denotes the i-th order in perturbation theory, and £ denotes the n-th order
treatment of the self-energy. The shaded region below n = 0.08 fm—3
represents the approximate location of the spinodal instability.

s i} i} i}
ES) = . D (12| Ve| 34) (34| Vo] 56) (56 | Vegr| 12)
123456
N1y N3M4N516 (52)
(e3+es—e1 —ex)(es+es— el —er)
1 ) _ i}
EY) = . D (12| Ve| 34) (34| Vo] 56) (56 | Vegr| 12)
123456
n11131M4M5M6 (53)
(e14+ex—e3s—es)(er +e—es —es)
s g _ i}
E;h) = — Y (12| Veg| 349)(54 | Ver| 16)(36 | Vegt| 52)
123456
n1n2ﬁ3ﬁ4n5h6 (54)

(es+es—er—e)les+es—ex—es)

where 7j = 1 — nj and Ve = Von + Viped. The intermediate-
state single-particle energies e; in Equations (51)—(54) can be
treated in several different approximations. In the simplest case,
they are taken as the free-space energies: e(k) = k*/2M. More
generally, they can be dressed with interaction lines [64] in
which case e(k) = k*/2M + RX(e(k), k), where (e(k),k) is
the self-consistent energy- and momentum-dependent nucleon
self energy.

Third-order diagrams [61] and fourth-order diagrams [33]
are found to give rather small contributions (~ 2MeV) to the
equation of state up to n = 1.5n¢ for potentials with momentum-
space cutoffs A ~ 400 — 500 MeV. However, the intermediate-
state energies in Equations (51)—(54) should be treated at least
to second order [63] in a perturbative expansion of the self-
energy. In Figure 5, we plot the equation of state of isospin-
symmetric nuclear matter for several different choices of the
cutoff scale A = 414,450, 500 MeV (represented by red, blue, and
green colors, respectively) and orders in many-body perturbation
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theory (denoted by the symbol). In all cases we employ an N3LO
chiral nucleon-nucleon interaction with only the N2LO chiral
three-body force with low-energy constants fitted to the binding
energies of >H and *He as well as the beta-decay lifetime of *H.
For the density-dependent three-body force we use the nonlocal
regulator in Equation (15). From Figures 3, 4, we see that the
local regulator in Equation (17) would be highly constraining
and only allow for a meaningful calculation of the nuclear
equation of state below saturation density. In Figure5, the
dotted lines denote the inclusion of second-order ground-state
energy diagrams (E®) with first-order self energies (=M) for
the intermediate-state propagators. The dashed lines denote the
inclusion of second-order ground-state energy diagrams (E@)
with second-order self energies (@) for the intermediate-state
propagators. From Figure 5, we see that the second-order self
energy diagrams contribute 2 —3 MeV to the ground state energy
per particle for densities n > 0.16 fm~3. Finally, the solid lines
denote the inclusion of third-order ground-state energy diagrams
[E®)] with second-order self energies [¥ @] for the intermediate-
state propagators. In general, the sum of all third-order diagrams
gives a relatively small contribution to the equation of state
around saturation density. However, below the critical density
for the spinodal instability (n, =~ 0.08 fm~3) [65], denoted by
the blue shaded region in Figure 5, the third-order diagrams give
somewhat large effects due to the breakdown of perturbation
theory. Nevertheless, the saturation of nuclear matter is robust
and both the empirical saturation density and energy are within
the uncertainties predicted from chiral nuclear forces. We note
that the ground state energy from the N3LO-414 and N3LO-
450 chiral potentials are very similar in all approximations. Both
potentials are known to converge very rapidly in perturbation
theory compared to the N3LO-500 potential [63], which may
partly explain the similarity of their results.

3.2. Nucleon-Nucleus Optical Potentials

The theoretical description of nucleon-nucleus scattering and
reactions can be greatly simplified through the introduction of
optical model potentials, which replace the complicated two- and
many-body interactions between projectile and target with an
average one-body potential. In many-body perturbation theory,
the optical potential can be identified as the nucleon self-energy,
which in general is complex, non-local, and energy dependent:

V(7' E)=UF 7, E) +iW(r,7'; E). (55)

While phenomenological optical potentials [66] are fitted to a
great amount of differential elastic scattering, total cross section,
and analyzing power data, microscopic optical potentials can be
constructed from high-precision two-nucleon and three-nucleon
forces [67-71]. In chiral effective field theory, three-nucleon
forces in particular have been shown [64, 72] to give rise to an
overall repulsive single-particle potential at all projectile energies
that increases strongly with the density of the medium. Three-
nucleon forces are therefore essential for an accurate description
of nucleon-nucleus scattering at moderate energies where the
projectile penetrates the target nucleus.
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FIGURE 6 | Hartree-Fock contribution to the nucleon self energy in symmetric
nuclear matter at saturation density ng from the N2LO chiral three-nucleon
force with cutoff scale A = 450 MeV. Results are shown for an exact treatment
as well as from the density-dependent interaction Vimeq with different choices
of regulating function (see text).

In the Hartree-Fock approximation, the contribution to
the non-local (but energy-independent) nucleon self energy is
given by

2;}\)7(4) = Z(Z]hlsslttl|V2N|éh1$$1tt1)n1,
1

(56)

where V,n denotes the antisymmetrized NN potential, n; =
0(ks — Ilel) is the zero-temperature Fermi-Dirac distribution
function, and the sum is taken over the momentum, spin, and
isospin of the intermediate hole state |l;1,51,t1). The Hartree-
Fock contribution from three-body forces is given by

Eé}\}(q) = % Z(éhlhz; ss182; thta| Van |G hihos ssisa; thita)ning,
12

(57)
where Vsy is the fully-antisymmetrized three-body interaction.
We have computed the Hartree-Fock contribution to the single-
particle energy exactly [64] from Equation (57) as well as from
Equation (56) using the density-dependent NN interaction Vipeq.
Note that in order to avoid double-counting we must replace
Von — %Vmed in Equation (56).

In Figure 6, we demonstrate the accuracy of using the density-
dependent NN interaction in place of the full three-body force
when computing the Hartree-Fock contribution to the nucleon
self energy. Specifically, we plot the momentum-dependent
nucleon self-energy (note that both the 2N and 3N Hartree-
Fock contributions are real and energy independent) in isospin-
symmetric nuclear matter at saturation density ny. The thick
black curve labeled “ V?N’exact” is the exact result without a high-
momentum regulator. The thin blue curve labeled “Vrﬁezoo” is
obtained from the density-dependent NN interaction without
regulator. We see that there is a systematic difference of 1—2 MeV
(or about 5%) between the two results across all momenta. This
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FIGURE 7 | Hartree-Fock contribution to the nucleon self energy at the Fermi
momentum (o = k¢) in symmetric nuclear matter as a function of density from
the N2LO chiral three-nucleon force with cutoff scale A = 450 MeV. Results
are shown for an exact treatment as well as from the density-dependent
interaction Vineq With different choices of regulating function (see text).

difference represents the inherent error introduced through the
approximations employed in constructing the density-dependent
NN interaction. Except for this systematic reduction in the
nucleon self energy, we see that overall Vo4 faithfully reproduces
the exact Hartree-Fock self-energy across all momenta.

Introducing the non-local regulator in Equation (15) results
in the red dash-dotted line of Figure 6. The artifacts associated
with the nonlocal regulator grow rapidly for momenta beyond
p =~ 400MeV and by p ~ 600 MeV the three-nucleon force
contribution to the self energy is reduced by ~ 25%. This
corresponds to a lab energy of about Ep, =~ 175MeV [72]
beyond which a description of nucleon-nucleus scattering in
terms of chiral optical potentials becomes highly questionable.
Introducing the local regulator in Equation (17) leads to the
dotted green curve in Figure 6. We see that this regulator
generates artifacts (of at least 15%) even for low-momentum
particles in isospin-symmetric nuclear matter at saturation
density. This is due to the already large nucleon Fermi
momentum (kf 2~ 270 MeV) in nuclear matter at this density.
Finally, if we double the value of the momentum-space cutoff
in the local regulating function, we find the results given by
the dashed green curve in Figure 6. Again, this choice of
cutoff leads to artifacts that are on par with those from the
nonlocal regulator but which are noticeably smaller at the largest
momenta considered.

In Figure 7, we plot the value of the Hartree-Fock single-
particle potential at the Fermi momentum (p ks) from
chiral three-body forces for densities up to n =~ 2ngy. This
contribution to the single-particle energy from the chiral 3NF
grows approximately quadratically with the density. Again we
find that the density-dependent NN interaction from the leading
chiral three-nucleon force reproduces well the exact Hartree-
Fock result. The artifacts introduced through the nonlocal

regulator in Equation (15), the local regulator in Equation (17),
and the local regulator with Aj,c = 2Aon10c follow the same
trends already observed in the Hartree-Fock contribution to the
equation of state.

Recently, several works [64, 72] have included the second-
order contributions to the nucleon self energy (both in isospin-
symmetric and asymmetric nuclear matter):

1 |(Brpssisstits| Veglg hassatta) >
23\?)(%@) == Z PP il - ninon3
2123 w-+e —e —e3+in
(58)
and
b 1 [(mihssisstits | Veglq Passatta)*
23\7)(%0)) =3 Z cftdp ; nihans,
2123 w+e —e —e3—in
(59)

with the antisymmetrized potential Vog = Vin + Vipeq that
includes the density-dependent interaction from the N2LO chiral
three-body force. The single-particle energies in Equations (58)
and (59) are computed self-consistently according to

e
+ RX(e(q), q)-

M (60)

e(q) =
Generically, Equations (58) and (59) give rise to complex and
energy-dependent single-particle potentials. This allows for the
construction of nucleon-nucleus optical potentials that have been
shown [73] to reproduce well differential elastic scattering cross
sections for proton projectiles on a range of calcium targets up to
about E = 150 MeV.
The general form of phenomenological optical potentials for
nucleon-nucleus scattering is given by

U(r,E) = Vy(r,E) + iWy(r, E) + iWp(r, E) + Vso(r, E)¢ - §
+iWso(r, E)E -5+ Ve(r), (61)

consisting of a real volume term, an imaginary volume term,
an imaginary surface term, a real spin-orbit term, an imaginary
spin-orbit term, and finally a central Coulomb interaction. In
Equation (61), ¢ and 3 are the single-particle orbital angular
momentum and spin angular momentum, respectively. To
construct a microscopic nucleon-nucleus optical potential from
the nuclear matter approach, one can employ the local density
approximation (LDA):

V(E: 1) +iW(E: 1) = V(E: k(). K} () +iW(E; K/ (1), K} (),
(62)
where k}) (r) and k}‘(r) are the local proton and neutron Fermi
momenta. This approach can be improved by taking account of
the finite range of the nuclear force through the improved local
density approximation (ILDA):

- |2

X _ 1 L = 3./
V(E s = o [ VEDEE, ()
which introduces an adjustable length scale t taken to be the

typical range of the nuclear force. In previous works [73, 74], this
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FIGURE 8 | Differential elastic scattering cross sections for proton projectiles on “°Ca and “Ca targets at the energies £ = 25, 35, 45 MeV. The cross sections
computed from microscopic chiral optical potentials including two- and three-body forces are shown as the blue band. The cross sections from the Koning-Delaroche
“KD” phenomenological optical potential are given by the green dashed curves, and experimental data are shown by red circles.

Guassian smearing factor was chosen to be t ~ 1.2 fm and varied
in order to estimate the introduced theoretical uncertainties.

The ILDA approach starts by defining the isoscalar and
isovector density distributions for a given target nucleus. In
our previous works [73, 75], we have employed for this
purpose Skyrme energy density functionals fitted to the equation
of state of isospin-asymmetric nuclear matter [76] calculated
from the same chiral two- and three-body forces used to
compute the nucleon self energy in Equations (56)—(59). The
Gaussian smearing factor ¢ in the ILDA was chosen in the
range 1.15fm < t < 1.25fm. The real part of the optical
potential is found [73] to be in excellent agreement with that
from phenomenological optical potentials [66], however, the
microscopic imaginary part exhibits a surface peak that is too
small and a volume contribution that grows too strongly with
energy. This leads to larger total reaction cross sections [73]
compared to phenomenology and experiment. This is in fact
a general feature of the microscopic nuclear matter approach
[77, 78] independent of the choice of nuclear potential, and
previous works [74, 79] have attempted to mitigate this deficiency
by introducing scaling factors for the imaginary part.

In Figure 8, we plot the differential elastic scattering cross
sections for proton projectiles on *°Ca and *8Ca isotopes from
microscopic optical potentials derived in chiral effective field
theory. In this study we employ the N3LO nucleon-nucleon
potential with momentum-space cutoff A = 450 MeV together
with the density-dependent NN interaction using the nonlocal
regulator in Equation (15). From Figure8, we see that the

predictions from chiral effective field theory (shown in blue)
reproduce well the elastic scattering cross section data (red dots)
from E = 25 to 45 MeV. The small uncertainty band associated
with the blue curve is due entirely to variations in the ILDA
Gaussian smearing factor. In some cases, the results from chiral
nuclear optical potentials give better agreement with experiment
than the Koning-Delaroche phenomenological optical potential
(shown as the green dashed line in Figure 8). In contrast to
semi-microscopic approaches [74, 79] that introduce energy-
dependent scaling factors for the real and imaginary parts of
the optical potential, our calculations are not fitted in any way
to scattering data. Qualitatively similar results have been found
[73] for proton energies as low as E >~ 2MeV and as high as
E =~ 160 MeV. Moreover, the construction of neutron-nucleus
optical potentials is in progress [75] and preliminary results for
differential elastic scattering cross sections are found to be of
similar quality to the case of proton-nucleus scattering.

3.3. Quasiparticle Interaction in Nuclear
Matter

Landau’s theory of normal Fermi liquids [80, 81] remains a
valuable theoretical framework for understanding the excitations,
response, and transport coefficients of nuclear many-body
systems [82, 83]. Fermi liquid theory is based on the concept
of quasiparticles, i.e., dressed single-particle excitations of a
(potentially) strongly-interacting many-body system that retain
key properties of the bare particles in the analogous non-
interacting system. In this way, Fermi liquid theory allows for
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a convenient description of the low-energy excitations of the
interacting system and in the context of the nuclear many-
body problem helps justify the nuclear shell model and the
independent-particle description of nuclei and nuclear matter.
The theory is made quantitative through the introduction of
the quasiparticle interaction F, defined as the second functional
derivative of the energy with respect to the quasiparticle
distribution function n(f) ):

E= E()-FZ €5, (Snﬁlslfl—i_% Z }'(ﬁlsl t1; Z)232t2)8nﬁ151t18nﬁ232t2’
1 12

(64)
where Ep is the ground state energy, €2 is a normalization
volume, and 8., is the change in occupation number of
state i. In Equation (64), the quasiparticle interaction F in
momentum space has units fm?, s; labels the spin quantum
number of quasiparticle i, and #; labels the isospin quantum
number. Enforcing the symmetries of the strong interaction and
assuming that the quasiparticles lie exactly on the Fermi surface
leads to the general form of the quasiparticle interaction:

Fp1,p2) = AP, p2) + A (p1,p2)71 - T, (65)

where [84]

AP1,p2) = f(p1,p2) + g(P1,p2)01 - 52 + h(p1,p2)S12(p)
+k(P1, 2 )S12(P) + £(P1,p2)(G1 X &2) - (p x P), (66)

and likewise for A’ except with the replacement {f, g, h, k, £} —>
{f’.g/, W, K, ¢'}. The relative momentum is given by p = p; — p2,
the center-of-mass momentum is defined byl3 = p1+ P, and the
tensor operator has the form S;,(¥) = 361 - V6, - ¥ — 57 - Ga.

For two quasiparticle momenta on the Fermi surface (|p;| =
b2l = k¢), the scalar functions {f,g,h.k ¢ f'.g" W K '}
depend only the angle & between and p; and p;. The
quasiparticle interaction can therefore be written in terms of
Legendre polynomials:

f@1.p2) = Y _ fulkp)PL(cos 6),

L=0

f'®B1.p2) = Y _fi(kp)Pr(cos ),

=0
(67)

where cos@ = p; - pa, 9 = 2kgsin(0/2), and P = 2kf cos(6/2).
The coefficients f,f/,... are referred to as the Fermi liquid
parameters. Dimensionless Fermi liquid parameters Fp,F},...
can be defined by multiplying f,f/,... by the density of states,
e.g., for symmetric nuclear matter:
No = 2M*kg/m?, (68)
where M* the effective nucleon mass.
Originally, Fermi liquid theory was treated as a
phenomenological model [82] in which the lowest-order Fermi

liquid parameters would be constrained by select experimental
data. From the Brueckner-Goldstone linked diagram expansion
for the ground-state energy [see e.g., Equations (46)—(54)],
a diagrammatic expansion for the quasiparticle interaction
in terms of the nuclear potential can be obtained [85] by
performing functional derivatives with respect to the occupation
probabilities. Up to second order in perturbation theory one
obtains for a general two-body interaction V-

FiNGrsiti: prsata) = (12|Van12) (69)

AP Goh = DEENETE o

FRW Brsitr; pasaty) = % Z m (71)

FaPBrsiti; asats) = = M, (72)
J

e1t+e —ex—ey

which correspond, respectively to Figures 9A-D. The first-order
contribution in Equation (69) is just the antisymmetrized two-
body potential for two nucleons restricted to the Fermi surface. It
contains only the four central terms f,f’,g,¢" as well as the two
relative momentum tensor interactions h, h’. The second-order
contributions in Equations (70)—(72) give rise generically to the
center-of-mass tensor interactions k, k', but only the particle-hole
term Equation (72) can generate the cross-vector interactions
I,I' through the interference of a spin-orbit interaction with any
other nonspin-orbit component in the bare nucleon-nucleon
potential [86].

The expressions in Equations (69)—(72) can be decomposed
into partial wave matrix elements of the bare nucleon-nucleon
potential or the derived medium-dependent 2N interaction. In
section 4.1 below, we give explicit expressions for the partial-wave
matrix elements of the density-dependent 2N interaction derived
from the N2LO [47] and N3LO [87, 88] chiral three-body force.
To date, the contributions from the N2LO chiral three-body
force have been included [86, 89, 90] exactly in the calculation
of the quasiparticle interaction in isospin-symmetric nuclear
matter and pure neutron matter. At first order in perturbation
theory, the second functional derivative of Equation (47)
leads to

Faw(Brsitipasata) = ) nitin2] Vanlit2),

1

(73)

where Viy is the fully antisymmetrized three-body force.
This is equivalent to the definition of the density-dependent
NN interaction in Equation (11) but restricted by the
kinematics of quasiparticles lying on the Fermi surface.
Moreover, the use of the in-medium 2N interaction constructed
assuming on-shell scattering in the center-of-mass frame is
not appropriate [in particular, it would give no center-of-mass
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FIGURE 9 | Diagrammatic contributions to the quasiparticle interaction up to second order in perturbation theory: (A) first-order contribution, (B) second-order
particle-particle contribution, (C) second-order hole-hole contribution, and (D) second-order particle-hole contribution. Wavy lines denote the antisymmetrized nuclear

V]

1
1

dependence at leading order in Equation (73)]. Explicit and
exact expressions (in the absence of a momentum-space cutoff)
for the Landau Fermi liquid parameters in Equations (65)—(67)
from the N2LO chiral three-nucleon force have therefore been
derived in Holt and Kaiser [90]. Only the higher-order
perturbative contributions to the quasiparticle interaction (where
medium effects are included through normal Pauli blocking
of intermediate states) utilize the in-medium 2N interaction
derived in the center-of-mass frame. In the following we highlight
their qualitative significance on the different terms of the
quasiparticle interaction.

In Figure 10, we plot the dimensionless Fermi liquid
parameters associated with the L = 0,1 Legendre polynomials
(black and red dotted lines, respectively) in isospin-symmetric
nuclear matter from the N2LO chiral three-body force as a
function of the nucleon density (up to n = 0.4 fm~3). Although
one may be skeptical of results from chiral effective field theory
beyond n =~ 2ny, the Landau parameters must obey stability
inequalities, e.g.,

QL > —(QL+1), (74)

where Q € ({F,F,G,G}, for the central components of
the quasiparticle interaction. Therefore, we find it informative
to speculate on the high-density behavior of the Landau
parameters, since they might give hints toward possible
instability mechanisms in dense matter. We note that complete
stability conditions involving all spin-dependent interactions
H,K,L (and H,K',L’) that couple to G (and G') have not
yet been worked out. To date only the effect of the relative
tensor quasiparticle interaction has been considered [91].
We have found that in the presence of such Pomeranchuk
instabilities, perturbation theory itself can be poorly behaved. For
instance, in symmetric nuclear matter with density n < ng/2
(where Fy < —1 and nuclear matter is unstable to density
fluctuations), we have computed also the third-order particle-
particle contributions to the Fermi liquid parameters and found
that F is of comparable size to the second-order particle-particle
diagrams. For other Fermi liquid parameters, however, the
third-order particle-particle contributions are generally small at
low densities.

The dotted lines in Figure 10 are obtained from only the
leading contribution due to three-body forces in Equation (73).
The solid lines represent the Fermi liquid parameters obtained
from the sum of two- and three-body forces up to second order

in perturbation theory. For the second-order contributions in
Equations (70)—(72) we have replaced the two-body interaction
Von with Von + Viped> where Vay is the N3LO-450 potential and
Vmed is the consistent density-dependent interaction constructed
from the N2LO three-body force with nonlocal regulator. For
several Fermi liquid parameters, we see that three-body forces
provide the dominant contribution at high density. For instance,
the strong increase in the Fy Landau parameter (top left panel of
Figure 10) as a function of density is a direct result of the first-

order contribution from three-body forces. The nuclear matter
2 9(E/A)

Gn s related to

incompressibility XC = 99P/dp, where P = p
the Fy Landau parameter through

3k?

K:W(l—i-Fo), (75)
where M* is the nucleon effective mass, and therefore three-
body forces play a central role in the saturation mechanism [7]
of nuclear matter with chiral nuclear forces. On the other hand,
in some cases three-body forces play only a minor role, such as
for the Landau parameters F; and F;,. The former is related to the
nucleon effective mass through

F
14—,

3 (76)

and the latter is related to the nuclear isospin-asymmetry
energy through

2

6M*

S (14 Fp), (77)
where S, is defined as the first term in a power series
expansion of the nuclear equation of state about the isospin-

symmetric configuration:

= () = (,0) + 2+ 79)
ny—np
ny,-&-np'

In general, we see from Figure 10, that the noncentral
components K and L of the quasiparticle interaction that depend
explicitly on the center-of-mass momentum P are small at
nuclear saturation density. However, several of the associated
Fermi liquid parameters, such as K{, Lo, and L} begin to grow
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FIGURE 10 | Density-dependent dimensionless Fermi liquid parameters in isospin-symmetric nuclear matter. Dotted lines symbolize the first-order perturbative
contribution from three-body forces, while solid lines represent the sum of all second-order contributions including two- and three-body forces.

rapidly for higher densities. Therefore, even though there has 4. CHIRAL THREE-NUCLEON FORCE AT
been little motivation to include such terms in modern energy NEXT-TO-NEXT-TO-NEXT-TO-LEADING
density functionals fitted to the properties of finite nuclei, such ORDER

novel interactions may become more relevant in applications

related to neutron star physics. The full quasiparticle interaction Up to now we have considered only the chiral three-body
in pure neutron matter has already been computed [86] with  force at N2LO. At order N3LO in the chiral power counting,
modern chiral two- and three-nucleon forces. One finds again  additional three- and four-nucleon forces arise without any
an enhanced role of three-body forces on the incompressibility ~ additional undetermined low-energy constants. However, except
of pure neutron matter and therefore the stability of neutron  in the case of pure neutron matter, the inclusion of the N3LO
stars against gravitational collapse. The more general case of the  three-body contributions requires a refitting of the three-body
quasiparticle interaction in nuclear matter at arbitrary isospin-  low-energy constants ¢p and cg. The N3LO three-body force is
asymmetry is in progress. written schematically as
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FIGURE 11 | Schematic representation of the diagrammatic contributions to the chiral three-nucleon force at next-to-next-to-next-to-leading order (N3LO): (A)
17 -contact interaction, (B) 27 -contact interaction, (C) 2 interaction, (D) 2z -1x interaction, and (E) ring interaction.

(4) (4) (4) (4) (4) (4) 4)
V3N - Vln —cont. + V27T —cont. + VI/M + V27r + V27r 1 + Vrmg
(79)

corresponding to the 1t — contact, 271 — contact, relativistic 1/M,
27, 2w — 1, and ring topologies, respectively. All contributions
have been worked out and presented in Ishikawa and Robilotta
[28] and Bernard et al. [29, 30]. Although we will not consider
their specific effects in the present work, we note that the leading
four-nucleon forces have been calculated in Epelbaum [31]. In
deriving the density-dependent 2N interaction at N3LO, we take
the expressions from Bernard et al. [29, 30] based on the method
of unitary transformations.

The density-dependent 2N interaction from the short-range
terms and relativistic corrections, shown diagrammatically in
Figures 11A,B, was computed first in Kaiser and Niessner [87].
Results were derived in the absence of a regulating function
depending explicitly on the value of the intermediate-state
momentum k3 in Equation (11). The resulting expressions for
Vimed obtained from the N3LO 3N force could therefore be
simplified to analytical expressions involving at most a one-
dimensional integration. In Kaiser and Niessner [87], it was
found that the 1lm-exchange contact topology proportional
to the 2N low-energy constant Cr gives rise to a vanishing
contribution to Vi, in isospin-symmetric nuclear matter.
The density-dependent 2N interaction derived from the long-
range contributions to the N3LO three-body force, shown
diagrammatically in Figures 11C-E, was calculated in Kaiser and
Singh [88]. Again, the integration over the three-dimensional
filled Fermi sphere could be performed up to at most one
remaining integration. The formulas for the density-dependent
NN interaction from the N3LO three-body force are quite
lengthy, and we refer the reader to Kaiser and Niessner [87] and
Kaiser and Singh [88] for additional details.

4.1. Partial-Wave Decomposition

The analytical expressions for the medium-dependent 2N
potential V.4 obtained from the N3LO chiral three-body force
[87, 88] can be conveniently understood by examining their
attractive or repulsive effects in various partial waves. For
comparison we will show also the lowest-order partial-wave
contributions from the N2LO chiral three-body force, however,
we note that the values of the three-body contact terms will
need to be refitted in order to make a consistent comparison.
In all cases, we choose the values c; —0.81GeV~L, ¢3
—3.4GeV! ¢y = 34GeV !, cp = —0.24, and ¢z = —0.106,
which have been used in other calculations presented in this

work. We recall that the low-energy constants cp and cg of the
N2LO chiral 3N force are fitted (including the N3LO chiral 2N
interaction with cutoff scale A 450 MeV) to the binding
energies of *H and *He as well as the beta-decay lifetime of *H.
Comparing to the values of cp and ¢ fitted in combination with
the N2LO two-body force [see Table IT of [12]], we do not expect
qualitative differences in the results below coming from these
two different choices in the chiral order. For the leading-order
(LO) contact term Cr that appears in the 17- and 27 -contact
topologies, we use the value Cr = —2.46491 GeV 2 from the
N3LO-450 2N potential.

We follow the description in Erkelenz et al. [92] to obtain the
diagonal momentum-space partial-wave matrix elements of the
density-dependent NN interaction. With start with the form of a
general nucleon-nucleon potential:

V(Z),_é) =Ve+717 -5 W+ [Vs-‘r—‘?l -T Ws]gl
+[Vr+7 -2 Wr]61-402- g

+[Vso + 71 - T Wso] i(61 +52) - (§ x p)
+[Vo+n -2 Wq]o1-(@xp)ca-(@xp) (80)
where the subscripts refer to the central (C), spin-spin (S), tensor
(T), spin-orbit (SO), and quadratic spin orbit (Q) components,
each with an isoscalar (V) and isovector (W) version. The
diagonal (in momentum space) partial-wave matrix elements for
different spin and orbital angular momentum channels are then
given in terms of the functions Ux = Vk + (4] — 3) Wk, where
K € {C,S, T, SO, Q} and the total isospin quantum number takes
the values I = 0, 1. Explicit expressions can be found in Holt
etal. [47].

In Figure 12, we show the 1Sy, 38y, 3Dy, 38, — 3Dy diagonal
momentum-space matrix elements of V.4 from the N2LO
(blue circles) and N3LO (red diamonds) chiral three-nucleon
force in isospin-symmetric nuclear matter at the density n =
ng. Note that we have multiplied the matrix elements by the
nucleon mass M to obtain dimensions of [fm]. Interestingly, we
observe that the total N3LO three-body force in these partial-
wave channels is roughly equal in magnitude but opposite in
sign compared to the N2LO three-body force. Whereas, the
N2LO three-body force is largely repulsive in symmetric nuclear
matter at saturation density, the N3LO three-body force is
strongly attractive, except in the case of the coupled 3S; —
3Dy tensor channel. One should keep in mind, however, that
the low-energy constants c¢p and cg must be refitted after the
introduction of the N3LO three-body force. One might expect
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FIGURE 12 | Diagonal momentum-space matrix elements of Vneq associated with the total N2LO and N3LO three-body force in the 'Sy and 2S¢ — 3D partial-wave
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FIGURE 13 | Diagonal momentum-space matrix elements of Vineq associated with the total N2LO and N3LO three-body force in the 1Py, %Py, 3P4, and 3P»

from the above observations that the N2LO three-body force
would be enhanced in order to offset the opposite behavior
introduced from the N3LO three-body force in the lowest
partial-wave channels.

In Figure 13, we show the 1p,, 3Py, 3Py, and 3P, diagonal
momentum-space matrix elements of Vy;,.q from the N2LO (blue
circles) and N3LO (red diamonds) chiral three-nucleon force in
isospin-symmetric nuclear matter at the density n = ng. In both
the 'P; and 3Py channels, the N2LO and N3LO contributions

are approximately equal in magnitude but opposite in sign. In
the *P; channel, which is repulsive in the bare 2N potential,
we see that the combination of N2LO and N3LO contributions
enhances the repulsion. The 3P, channel, which is attractive in
the free-space 2N potential, also receives repulsive contributions
from the N2LO and N3LO in-medium interaction V,,.q. The
feature that N3LO loop corrections are not small compared to
N2LO tree contributions has been seen in several instances, e.g.,
in pion-nucleon scattering [93] as well as the three-nucleon force
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FIGURE 14 | Diagonal momentum-space matrix elements of the N3LO
three-bodly force for selected topologies in the 'Sy partial-wave channel at
saturation density ng in isospin-symmetric nuclear matter.
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FIGURE 15 | Diagonal momentum-space matrix elements of the N3LO
three-body force for selected topologies in the 3Py partial-wave channel at
saturation density ng in isospin-symmetric nuclear matter.

derivation [29] and its application [94]. The results presented
in Figures 12, 13 are state of the art and may change if the
effects of sub-sub-leading chiral 3N forces are included. For the
2w — 1m and ring topologies, the N4LO corrections are sizable
and dominate in most cases over the nominally leading N3LO
terms [95].

The long-range parts of the N3LO chiral three-body force
are expected [96] to give larger contributions to the equation of
state than the relativistic 1/M corrections and the 27 —contact
topologies. Due to the large number of contributions to
Vmed at N3LO, we only show selected results for individual
topologies. In Figure 14, we plot several of the dominant pion-
ring contributions to the 'Sy partial-wave matrix elements for
the density-dependent NN interaction derived from the N3LO
chiral three-body force. We see that individual long-range
contributions are large, but sizable cancelations lead to an overall

reduced attractive 1Sy partial-wave channel at low momenta. In
Figure 15, we plot several of the important 27, 27 -17, and ring
topology contributions to the Py partial-wave matrix elements
of the density-dependent NN interaction derived from the N3LO
chiral three-body force. We again find large cancelations among
individual terms, but the sum produces significant attraction in
this partial-wave channel.

5. SUMMARY AND CONCLUSIONS

We have reviewed the construction and implementation of
density-dependent two-body interactions from three-body forces
at N2LO and N3LO in the chiral expansion. We showed that at
leading order in many-body perturbation theory, the in-medium
2N interaction reproduces very well the exact contributions to
the nuclear equation of state and nucleon self energy from
the complete three-body force. The standard nonlocal high-
momentum regulator used in our previous works leads to simpler
analytical expressions for the density-dependent 2N interaction,
consistency with the bare 2N potential, and relatively small
artifacts in both the equation of state up to twice saturation
density and the single-particle potential up to p ~ 400 —500 MeV
at nuclear matter saturation density. Local 3N regulators with the
same value of the cutoff, Ajoc = Aponloc, have been commonly
used in previous studies of nuclear few-body systems, but these
are shown to produce very large artifacts, even in the nuclear
equation of state at saturation density. This could be remedied
by choosing a local regulating function with Ajpe = 2Ap0n10cs
which is well-motivated since the momentum transfer g can
reach values twice as large as the relative momentum for two
particles on the Fermi surface.

The use of medium-dependent two-body interactions has
been shown to facilitate the implementation of three-body forces
in higher-order perturbative calculations of the nuclear equation
of state, single-particle potential, and quasiparticle interaction. In
particular, nuclear matter was shown to saturate at the correct
binding energy and density within theoretical uncertainties when
computed up to third-order in perturbation theory. Moreover,
microscopic nucleon-nucleus optical potentials derived from
chiral two- and three-body forces have been shown to accurately
predict proton elastic scattering cross sections on calcium
isotopes up to projectile energies of E >~ 150 MeV. The use
of medium-dependent NN potentials derived from the N3LO
chiral three-body force for calculations of the nuclear equation
of state, single-particle potential, and quasiparticle interaction
remain a topic of future research. As a first step, we have
performed a partial-wave decomposition of Vi,.q at N3LO in
the chiral expansion and shown that the effective interaction is
expected to be attractive in symmetric nuclear matter around
saturation density.
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