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RANDOM INTEGRAL MATRICES AND THE COHEN-LENSTRA
HEURISTICS

By MELANIE MATCHETT WOOD

Abstract. We prove that given any ε> 0, random integral n×nmatrices with independent entries that
lie in any residue class modulo a prime with probability at most 1−ε have cokernels asymptotically (as
n→ ∞) distributed as in the distribution on finite abelian groups that Cohen and Lenstra conjecture
to be the distribution for class groups of imaginary quadratic fields. This shows the Cohen-Lenstra
distribution is universal for finite abelian groups given by generators and random relations—that the
distribution of quotients does not depend on the way in which we choose (sufficiently nice) relations.
This is a refinement of a result on the distribution of ranks of random matrices with independent
entries in Z/pZ. This is interesting especially in light of the fact that these class groups are naturally
cokernels of square matrices. We also prove the analogue for n× (n+u)matrices.

1. Introduction. The Cohen-Lenstra heuristics are conjectures made by
Cohen and Lenstra [CL84] on the distribution of class groups of quadratic number
fields. For a prime p, we write Gp for the Sylow p-subgroup of an abelian group
G. We write Cl(K) for the class group of a number field K .

CONJECTURE 1.1. (Cohen and Lenstra [CL84]) Let S−
X be the set of negative

fundamental discriminants D ≥ −X. Let p be an odd prime and B be a finite
abelian p-group. Then

lim
X→∞

#
{
D ∈ S−

X | Cl(Q(
√
D)p

)�B
}

∣∣S−
X

∣∣ =

∏∞
k=1

(
1−p−k

)
∣∣Aut(B)

∣∣ .

Friedman andWashington [FW89] show that ifH(n)∈Mn×n(Zp) is a random
matrix drawn with respect to Haar measure on the space of n×n matrices over the
p-adics Zp, then

(1) lim
n→∞

P
(
cok

(
H(n)

)�B
)
=

∏∞
k=1

(
1−p−k

)

|Aut(B)| .

In other words, cokernels of random p-adic square matrices drawn with respect to
Haar measure are distributed according to Cohen and Lenstra’s conjectured distri-
bution of class groups (asymptotically as the size of the matrices grows).
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Let K = Q(
√
D) for some D ∈ S−

X , and S be any finite set of primes of K
that generate Cl(K). We write O∗

S for the S-units in the integers OK , and ISK for
the abelian group of fractional ideals generated by the elements of S. Then

(2) Cl(K) = cok
(O∗

S → ISK
)
,

where the map takes α to the ideal (α). So Cl(K)p = cok(O∗
S⊗ZZp → ISK⊗ZZp).

Since ISK and im(O∗
S) ⊂ ISK are both free abelian groups of rank |S|, we have

written Cl(K)p as a cokernel of a p-adic square matrix RD ∈ Mn×n(Zp). If we
choose a random D uniformly in S−

X , we have a random p-adic square matrix
RD ∈Mn×n(Zp) (where n depends on D) and Conjecture 1.1 is a statement about
the distribution of the cokernels of the random matrices RD as X → ∞. This per-
spective on the class group as a cokernel of a random matrix is due to Venkatesh
and Ellenberg [VE10, Section 4.1].

One might thus imagine that there could be some sense in which the RD

become equidistributed with respect to Haar measure, and that this would imply
Conjecture 1.1. However, in this paper we show that in fact having cokernels dis-
tributed according to Cohen and Lenstra’s conjectured distribution of class groups
is a rather robust feature of random matrix regimes, and so much weaker statements
(than Haar equidistribution) about the distribution RD would also imply Conjec-
ture 1.1.

As a particular example, if q ∈ (0,1) is any real number, p is a prime, and
random matricesM(n)∈Mn×n(Zp) have random entries that are independent and
are 0 with probability q and 1 with probability 1− q, then Equation (1) holds with
H(n) replaced byM(n). TheseM(n), with their entries concentrated in {0,1}, are
nowhere near Haar equidistributed in any Zp, yet they still have the same cokernel
distributions as Haar equidistributed random matrices. More generally, we have the
following.

THEOREM 1.2. Let p be a prime and ε > 0 a real number, and for each positive
integer n, let M(n) be a random matrix valued in Mn×n(Zp) with independent
entries. Further, for any entryM(n)i,j of anyM(n) and any r ∈Z/pZ, we require
that P(M(n)i,j ≡ r (mod p))≤ 1− ε. Then for any finite abelian p-group B,

lim
n→∞

P(cok(M(n))�B) =

∏∞
k=1(1−p−k)

|Aut(B)| .

Note that the matrix entries are not required to be identically distributed and
can vary with n. Of course, some condition that the matrix entries are not too con-
centrated, like P((M(n))i,j ≡ r (mod p)) ≤ 1− ε, is certainly necessary, since if
the matrices had even two rows whose values were all r (mod p), then cok(M(n))

could never be the trivial group.
In fact, in Corollary 3.4, we prove a statement about random integral matri-

ces that implies Theorem 1.2, determining not only the Sylow p-subgroups of their
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cokernels for a single p, but rather the Sylow p-subgroups of their cokernels si-
multaneously for any finite set of primes p. We see that the Sylow p-subgroups for
different primes p are independent, which agrees with the prediction of Cohen and
Lenstra [CL84] for class groups.

The cokernel of an n×nmatrix over Zp is the quotient of the free abelian pro-
p group on n generators modulo the n relations given by the columns of the matrix.
In this light, Theorem 1.2 is a universality result for random abelian p-groups, as it
says we get the same universal limiting distribution on cokernels almost no matter
how we choose independent relations with independent coefficients to define our
group. The universality here is analogous to that in the Central Limit Theorem,
which tells us that asymptotic averages of i.i.d. random variables have a Gaussian
distribution as their limiting distribution.

Of course, the independence of the matrix entries in Theorem 1.2 is a sig-
nificant hypothesis (and not true in such a form for class groups), and one might
wonder to what extent it is necessary. In [Woo14], it is shown that if one takes the
matricesM(n) to be symmetric, but with otherwise independent entries, their cok-
ernels have a different distribution than that in Theorem 1.2. The work in that paper
was to determine the distribution of Jacobians (a.k.a. sandpile groups) of random
graphs, which are a more accessible analogue of class groups. That application
also required dealing with the fact that each diagonal entry of the relevant matrix
(the graph Laplacian) is dependent on all the entries in its column, and this “small”
dependence of the diagonal did not have an effect on the cokernel distribution.

In fact, Cohen and Lenstra [CL84] also make conjectures about class groups
of real quadratic (and other totally real abelian) number fields. In particular, if S+

X

is the set of positive fundamental discriminants D ≤ X, they conjecture that for
every odd prime p and every finite abelian p-group B, we have

lim
X→∞

#
{
D ∈ S+

X | Cl(Q(
√
D)p

)�B
}

∣
∣S+

X

∣
∣ =

∏∞
k=1

(
1−p−k−1

)

|B|∣∣Aut(B)
∣
∣ .

We see from equation (2) that these class groups are cokernels of n× (n+1) ma-
trices, since O∗

S will have rank |S|+1 when the number field K is real quadratic.
We in fact prove the following, which follows from Corollary 3.4.

THEOREM 1.3. Let u be a non-negative integer. For every positive integer n, let
M(n) be a random matrix valued inMn×(n+u)(Zp) with entries as in Theorem 1.2.
Then,

lim
n→∞

P
(
cok

(
M(n)

)�B
)
=

∏∞
k=1

(
1−p−k−u

)

|B|u∣∣Aut(B)
∣∣ .

These distributions on finite abelian groups for other u also arise in the general
theory Cohen and Lenstra build to formulate their conjectures.
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While the results of this paper are particularly notable for their connection
to the Cohen-Lenstra heuristics, the proofs in this paper and the history of pre-
vious work lie in the fields of additive combinatorics and probability. If M(n) ∈
Mn×n(Zp), then cok(M(n)) is trivial if and only if M(n) is a non-singular ma-
trix when reduced mod p. More generally, the corank of the reduction of M(n)

modulo p is the rank of the cokernel of M(n). There is a long history of work on
singularity and ranks of the random matrices we consider above mod p, includ-
ing results of Kozlov [Koz66], Kovalenko and Levitskaja [KL75], Charlap, Rees,
and Robbins [CRR90] (first proving Theorem 1.2 in the case that B is the trivial
group), Kahn and Komlós [KK01], and Maples [Map10]. However, even our result
on ranks (Corollary 3.5), that forM(n) as in Theorem 1.2,

lim
n→∞

P
(
rank

(
M(n)

)
= n−k

)
= p−k2

k∏

i=1

(
1−p−i

)−2∏

i≥1

(
1−p−i

)

appears to be new with our hypotheses. The realization that the cokernel distribu-
tion, and not just the ranks, should also be insensitive to the distributions of the
entries of the matrices is due to Tao and Maples (see [Map13] for some interesting
work towards Theorem 1.2).

This universality of certain statistics of random matrices under changes to the
entry distribution of the matrices is an important theme in the study of random ma-
trices. For example, the best upper bounds on the singularity probability of discrete
random matrices with independent entries in characteristic 0, due to Bourgain, Vu,
and Wood [BVW10], are insensitive to the actual values the entries take (as long
as they are not too concentrated).

To prove our main result, we first determine the moments of the cokernel dis-
tributions, and from that determine the distributions themselves. Our specific ap-
proach was developed in [Woo14] for the case of symmetric matrices. In this paper,
we are able to use a much simplified version of that in [Woo14] since the entries of
our matrices are independent. To find the moments E(#Sur(cok(M(n)),G)), we
prove inverse Littlewood-Offord theorems (Lemmas 2.1 and 2.7). These both say
that if values of several linear functions of our n independent variables are not close
to equidistributed, then the linear functions are close to having extra structure. The
extra structure is analogous to having a linear dependence in rows of a matrix after
deleting a small number of columns, but since our linear algebra is not always over
a field there are many layers to the type of dependence we can have, which are
captured by our notion of δ-depth. Inverse Littlewood-Offord Theorems are a key
component in the most recent work on singularity probability of discrete random
matrices in characteristic 0, both [BVW10] mentioned above and the earlier work
of Tao and Vu [TV07]. (See the papers of Tao and Vu [TV10] and Nguyen and Vu
[NV11] for the most recent inverse Littlewood-Offord Theorems in characteristic
0, as well as a guide to the extensive previous work on the problem.) However, there
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are significant differences in the actual mathematics of these theorems in character-
istic 0 versus characteristic p, since in characteristic 0 one doesn’t expect any kind
of equidistribution, but rather just a good upper bound on the probabilities. Maples
[Map13] proves a Littlewood-Offord Theorem in characteristic p that is not strong
enough for our purposes for fixed p, but does have the advantage of uniformity in
p.

To finally determine our cokernel distribution from the moments, we can’t
rely on the usual probabilistic methods such as Carleman’s condition (since our
moments are too big—our kth moment is of order pk

2/2). However, we use a
specifically tailored result from [Woo14] that in our cases shows that the moments
we obtain determine a unique distribution. This situation of needing to show that
fast growing moments of random abelian groups determine the distribution of the
groups has arisen before in number theory, both in Cohen-Lenstra problems, e.g., in
the work of Fouvry and Klüners [FK06] and Ellenberg, Venkatesh, and Westerland
[EVW09], and in a related problem about Selmer groups in work of Heath-Brown
[HB94]. Ellenberg, Venkatesh, and Westerland [EVW09] make progress towards
proving the function field analogue of the Cohen-Lenstra heuristics by proving new
homological stability theorems that determine some of the moments of the relevant
class groups.

1.1. Further notation. We use [n] to denote {1, . . . ,n}. We write
Hom(A,B) and Sur(A,B) for the set of homomorphisms and surjective ho-
momorphisms, respectively, from A to B. We write P for probability and E for
expected value. We write exp(x) for the exponential function ex.

Acknowledgments. The author thanks Nathan Kaplan, John Voight, and the
referee for useful comments on an earlier draft of this paper.

2. Finding themoments. Wewill study integral matrices by reducing them
mod a for all integers a≥ 2 (and analogously matrices over Zp by reducing them
mod pk for all positive integers k). Throughout this section, we work with an in-
teger a ≥ 2, and let R = Z/aZ. Further, throughout this section, we work with a
fixed non-negative integer u. For each positive integer n, we will study random
n× (n+u) matrices M with entries valued in R. These are the reductions mod a

of the matrices M(n) in the introduction, but we will drop the n in the notation
when it is possible to do so without causing confusion. We let M1, . . . ,Mn+u be
the columns of M (which are random vectors valued in Rn), and Mij the entries
of M (so that the entries of Mj are Mij).

The following definition captures the two hypotheses of Theorem 1.2: inde-
pendence of entries and entries not too concentrated.

Definition 1. Let ε > 0 be a real number. Let T be either Z, or a completion or
quotient of Z. A random variable y valued in T is ε-balanced if for every maximal
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ideal ℘ of T and for every r ∈ T/℘ we have P(y≡ r (mod ℘))≤ 1−ε (e.g., y ∈R

is ε-balanced if for every prime p | a and r ∈ Z/pZ we have P(y ≡ r (mod p))≤
1− ε). A random vector or matrix with entries in T is ε-balanced if its entries are
independent and ε-balanced.

Throughout this section we will use the following notation. We let V = Rn

with standard basis vi and W = Rn+u with standard basis wj . Note that for each
σ ⊂ [n], V has a distinguished submodule V\σ generated by the vi with i �∈ σ.
(So V\σ comes from not using the σ coordinates.) We view M as an element of
Hom(W,V ), and its columnsMj as elements of V so thatMj =Mwj =

∑
iMijvi.

Let G be a finite abelian group with exponent dividing a. We have cokM =

V/MW .
To investigate the moments E(#Sur(cokM,G)), we recognize that each such

surjection lifts to a surjection V →G and so we have

(3) E(#Sur(cokM,G)) =
∑

F∈Sur(V,G)

P(F (MW ) = 0).

IfM is ε-balanced, then by the independence of columns, we have

P(F (MW ) = 0) =
n+u∏

j=1

P(F (Mj) = 0).

So we aim to estimate these probabilities P(F (Mj) = 0). We will first estimate
these for the vast majority of F , which satisfy the following helpful property.

Definition 2. Given integers a ≥ 2 and n ≥ 1, let V = (Z/aZ)n. Let G be a
finite abelian group with exponent dividing a. We say that F ∈ Hom(V,G) is a
code of distance w if for every σ ⊂ [n] with |σ| < w, we have FV\σ =G. In other
words, F is not only surjective, but would still be surjective if we throw out (any)
fewer than w of the standard basis vectors from V . (If a is prime, so that R is a
field, then this is equivalent to the transpose map F : Hom(G,R) → Hom(V,R)

being injective and its image im(F ) ⊂ Hom(V,R) being a linear code of distance
w in the usual sense.)

LEMMA 2.1. Let a be an integer with a ≥ 2. Let G be a finite abelian group
with exponent dividing a. Let ε > 0 and δ > 0 be real numbers. Let n be a positive
integer. Let X be an ε-balanced random vector valued in V = (Z/aZ)n. Let F ∈
Hom(V,G) be a code of distance δn and let A be an element of G. We have

∣∣P(FX =A)−|G|−1
∣∣≤ exp

(− εδn/a2
)
.

To prove Lemma 2.1, we will use the discrete Fourier transform and the fol-
lowing basic estimate.
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LEMMA 2.2. Let ε > 0 be a real number, and a ≥ 2 an integer. Let ζ be a
primitive ath root of unity. Let y be an ε-balanced random variable valued inZ/aZ,
and let m be an integer such that ζm �= 1. Then |E(ζmy)| ≤ exp(−ε/a2).

Proof. This is proven in [Woo14, Proof of Lemma 4.1]. Briefly, the greatest
|E(ζy)| could be was if ζy was one ath root of unity 1− ε of the time, and a
consecutive (around the unit circle) ath root of unity the rest of the time. �

Proof of Lemma 2.1. Let ζ be a primitive ath root of unity. Let Xi be the en-
tries of X. We have, by the discrete Fourier transform,

P(FX =A) = |G|−1
∑

C∈Hom(G,R)

E
(
ζC(FX−A)

)

= |G|−1+ |G|−1
∑

C∈Hom(G,R)\{0}
E
(
ζC(−A)

) ∏

1≤i≤n

E
(
ζC(F (vi))Xi

)
.

Since F is a code, for C ∈ Hom(G,R) \{0} there must be at least δn values of i
such that F (vi) �∈ kerC . For these i, we have C(F (vi)) �= 0. So using Lemma 2.2,
we have for each C ∈Hom(G,R)\{0},

∣
∣∣
∣∣
E
(
ζC(−A)

) ∏

1≤i≤n

E
(
ζC(F (vi))Xi

)
∣
∣∣
∣∣
≤ exp

(− εδn/a2
)
.

The lemma follows. �

We then put these estimates for columns together using a simple inequality.

LEMMA 2.3. If we have an integer m≥ 2 and real numbers x≥ 0 and y such
that |y|/x≤ 21/(m−1)−1 and x+y ≥ 0, then

|(x+y)m−xm| ≤ 2mxm−1|y|.
Proof. We wish to show

xm−2mxm−1|y| ≤ (x+y)m ≤ xm+2mxm−1|y|.
We can assume x= 1 by homogeneity. If y ≥ 0, then the left inequality is trivial.
Then note the middle and right expressions are equal when y= 0 and the derivative
in y of the middle is at most the derivative of the right when 0≤ y ≤ 21/(m−1)−1.
Thus for 0≤ y≤ 21/(m−1)−1, the lemma follows. If y≤ 0, then the right inequality
is trivial. For all −1≤ y ≤ 0, the derivative in y of the left expression is at least the
derivative of the middle expression, and the two expressions are equal when y = 0.
Thus for −1≤ y ≤ 0, the lemma follows. �

LEMMA 2.4. Let a be an integer with a ≥ 2. Let G be a finite abelian group
with exponent dividing a. Let u be a non-negative integer. Let ε > 0 and δ > 0
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be real numbers. Then there are real numbers c,K > 0, depending on a,G,u,ε,

and δ, such that, for every positive integer n, every ε-balanced random matrix
M valued in Hom(W,V ), every code F ∈ Hom(V,G) of distance δn, and every
A ∈ Hom(W,G), we have

∣
∣P(FM =A)−|G|−n−u

∣
∣≤ K exp(−cn)

|G|n+u
,

where V = (Z/aZ)n and W = (Z/aZ)n+u.

Proof. We are given a,G,u,ε and δ, and throughout the proof we will take
n sufficiently large given these values. Let wi be the standard basis of W . Note
that P(FM = A) =

∏n+u
i=1 P(FMi = A(wi)) since M has independent columns.

In particular

(4) min
i

P(FMi =A(wi))
n+u ≤ P(FM =A)≤max

i
P(FMi =A(wi))

n+u.

For 1≤ i≤ n+u, from Lemma 2.1 we have

∣∣P(FMi =A(wi))−|G|−1
∣∣≤ exp(−εδn/a2).

For n sufficiently large we have

exp(−εδn/a2)|G| ≤ log2/(n+u−1).

For n+ u− 1 > 0, we have log2/(n+ u− 1) ≤ elog2/(n+u−1) − 1. Thus, for n
sufficiently large we have

exp(−εδn/a2)|G| ≤ 21/(n+u−1)−1.

Thus, for n sufficiently large we can apply Lemma 2.3 with m = n+u, x =

|G|−1 and y = P(FMi =A(wi))−|G|−1 to obtain

∣
∣
∣P
(
FMi =A

(
wi

))n+u−|G|−n−u
∣
∣
∣

≤ 2(n+u)|G|−n−u+1
∣
∣P
(
FMi =A

(
wi

))−|G|−1
∣
∣.

Thus
∣∣
∣P
(
FMi =A

(
wi

))n+u−|G|−n−u
∣∣
∣≤ 2(n+u)|G|−n−u+1 exp

(− εδn/a2
)
.

From Equation (4) and the fact that |z − |G|−n−u| is a convex function in z, it
follows that

∣
∣P(FM =A)−|G|−n−u

∣
∣≤ 2(n+u)|G|−n−u+1 exp(−εδn/a2).
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So for any c such that 0< c< εδ/a2, for n sufficiently large (now also given c) we
have

(n+u)exp
(− εδn/a2

)≤ exp(−cn),

and thus

(5)
∣
∣P(FM =A)−|G|−n−u

∣
∣≤ 2|G|exp(−cn)

|G|n+u
.

We let K be the maximum of 2|G| and |P(FM =A)−|G|−n−u|/(exp(−cn)/

|G|n+u) for all the finitely many values of n such that Equation (5) does not hold.
The lemma follows. �

So far, we have dealt with F ∈ Hom(V,G) that are codes. Unfortunately, it is
not sufficient to partition Hom(V,G) into codes and non-codes. We need a more
delicate partition of Hom(V,G), indexed by the subgroups of G. This division
can be approximately understood as separating the F based on what largest size
subgroup they are a code for. For a positive integer D with prime factorization∏

i p
ei
i , let �(D) =

∑
i ei. The following concept was introduced in [Woo14]. Since

V\σ is a subgroup of V , for F ∈Hom(V,G), the image F (V\σ) is a subgroup of G.

Definition 3. For a real δ > 0, the δ-depth of an F ∈Hom(V,G) is the maximal
positive integer D such that there is a σ ⊂ [n] with |σ| < �(D)δn such that D =

[G : F (V\σ)], or is 1 if there is no such D.

Remark 2.5. In particular, if the δ-depth of F is 1, then for every σ ⊂ [n] with
|σ|< δn, we have that F (V\σ) =G (as otherwise �([G : F (V\σ)])≥ 1), and so we
see that F is a code of distance δn. Further, if the δ-depth of F is greater than 1,
since �(D)≥ 1, we see that F is not a code of distance δn.

We have a bound for the number of F ∈Hom(V,G) that are of δ-depth D.

LEMMA 2.6. (Count F of given δ-depth, Lemma 5.2 of [Woo14]) Let a be
an integer with a ≥ 2. Let G be a finite abelian group with exponent dividing a.
There is a constant K, depending on a and G, such that for all positive integers n,
all integers D > 1, and all real numbers δ > 0, the number of F ∈ Hom(V,G) of
δ-depth D is at most

K

(
n


�(D)δn�−1

)
|G|n|D|−n+�(D)δn,

where V = (Z/aZ)n.

Now for each δ-depth, we will get a bound on P(FM = 0) for F of that δ-
depth. For smaller δ-depths, we will have better bounds.



392 M. M. WOOD

LEMMA 2.7. (Bound probability for column given δ-depth) Let a be an integer
with a ≥ 2. Let G be a finite abelian group with exponent dividing a. Let ε >
0 and δ > 0 be real numbers. Let n be a positive integer and V = (Z/aZ)n. If
F ∈ Hom(V,G) has δ-depth D > 1 and [G : F (V )] < D, then for all ε-balanced
random vectors X valued in V ,

P(FX = 0)≤ (1− ε)
(
D|G|−1+ exp

(− εδn/a2
))

.

Proof. Let V have standard basis vi. Pick a σ ⊂ [n] with |σ| < �(D)δn such
that D = [G : F (V\σ)]. Let F (V\σ) =H . Since [G : F (V )] <D, the set σ is non-
empty. We have FX =

∑
i�∈σF (vi)Xi+

∑
i∈σF (vi)Xi. So

P(FX = 0) = P

(
∑

i∈σ
F (vi)Xi ∈H

)

×P

⎛

⎝
∑

i�∈σ
F (vi)Xi =−

∑

i∈σ
F (vi)Xi|

∑

i∈σ
F (vi)Xi ∈H

⎞

⎠ .

For the first factor, we note that since [G : F (V )] < D, there must be some i ∈ σ

with the reduction F (vi) �= 0 ∈G/H . Thus conditioning on all other Xk for k �= i,
by the ε-balanced assumption on X, we have that P(

∑
i∈σF (vi)Xi ∈H)≤ 1− ε.

Then, we note that the restriction of F to V\σ is a code of distance δn in
Hom(V\σ ,H). (If it were not, then by eliminating σ and < δn indices, we would
eliminate < (�(D)+ 1)δn indices and have an image whose index is strictly di-
visible by D, contradicting the δ-depth of F .) So conditioning on the Xi with
i ∈ σ, we can estimate the conditional probability above using Lemma 2.1 on
F ∈ Hom(V\σ ,H):

P

⎛

⎝
∑

i�∈σ
F (vi)Xi =−

∑

i∈σ
F (vi)Xi|

∑

i∈σ
F (vi)Xi ∈H

⎞

⎠≤ |H|−1+ exp
(− εδn/a2

)
.

The lemma follows. �

LEMMA 2.8. (Bound probability for matrix given δ-depth) Let a be an integer
with a ≥ 2. Let G be a finite abelian group with exponent dividing a. Let u be a
non-negative integer. Let ε > 0 and δ > 0 be real numbers. Then there is a real
number K, depending on a,G,u,ε, and δ, such that for every positive integer n,
every F ∈ Hom(V,G) of δ-depth D > 1 with [G : F (V )] < D (e.g., the latter is
true if F (V ) =G), and every ε-balanced random matrixM valued inHom(W,V ),
we have

P(FM = 0)≤K exp(−εn)Dn|G|−n,

where V = (Z/aZ)n and W = (Z/aZ)n+u.
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Proof. By the independence of the columns of M , we have

P(FM = 0) =
n+u∏

i=1

P(FMi = 0).

By Lemma 2.7 for all i with 1≤ i≤ n+u,

P(FMi = 0)≤ (1− ε)
(
D|G|−1+ exp

(− εδn/a2
))

.

Thus

P(FM = 0)≤ (1− ε)n+u
(
D|G|−1+ exp

(− εδn/a2
))n+u

.

We apply Lemma 2.3 with x =D|G|−1 and y = exp(−εδn/a2), and as long as n
is sufficiently large given a,G,u,ε and δ we have |y|/x≤ 21/(n+u−1)−1 as in the
proof of Lemma 2.4. Thus for n sufficiently large, Lemma 2.3 gives

(
D|G|−1+ exp

(− εδn/a2
))n+u−Dn+u|G|−n−u

≤ 2(n+u)exp
(− εδn/a2

)
Dn+u−1|G|−n−u+1.

Thus, for n sufficiently large, we have

P(FM = 0)

≤ (1− ε)n+u
(
Dn+u|G|−n−u+2(n+u)exp(−εδn/a2)Dn+u−1|G|−n−u+1)

≤ exp(−ε(n+u))
(
Dn+u|G|−n−u+2Dn+u−1|G|−n−u+1) .

We takeK to be the maximum of exp(−ε(u)Du|G|−u)(1+2|G|/D) and P(FM =

0)/(exp(−εn)Dn|G|−n) over all the finitely many n such that the above does not
hold. The lemma follows. �

Now we can combine the estimates we have for P(FM = 0) for F of various
δ-depth with the bounds we have on the number of F of each δ-depth to obtain our
main result on the moments of cokernels of random matrices.

THEOREM 2.9. Let a be an integer with a≥ 2. Let G be a finite abelian group
with exponent dividing a. Let u be a non-negative integer. Let ε > 0 be a real num-
ber. Then there are c,K > 0, depending on a,G,u, and ε, such that the following
holds. Let n be a positive integer and let M be an ε-balanced n× (n+u) random
matrix with entries valued in Z/aZ. We have

∣∣E(#Sur(cok(M),G))−|G|−u
∣∣≤Ke−cn.

Proof. By Equation (3), it suffices to estimate
∑

F∈Sur(V,G)P(FM = 0). First,
we will pick some parameters that will be needed in the proof. We choose a pos-
itive real d < min(ε, log(2)). Given G and d, we will pick a real number δ > 0
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sufficiently small, such that there is a real number K > 0, such that for all positive
integers n

(
n


�(|G|)δn�−1

)
|G|�(|G|)δn exp(−εn)≤Ke−dn

and
(

n


�(|G|)δn�−1

)
2−n+�(|G|)δn ≤Ke−dn.

(This is possible because
(
n
αn

) ≤ 2H(α)n, where H(α) is the binary entropy of α
and goes to 0 as α → 0.) Below, we will let the value of K change in each line,
as long as it is a positive real number depending only on a,G,u,ε,δ and d. Using
Lemmas 2.6 and 2.8 we have, for every positive integer n,

∑

F∈Sur(V,G)
F not code of distance δn

P(FX = 0)

=
∑

D>1
D|#G

∑

F∈Sur(V,G)
F δ-depth D

P(FX = 0)

≤
∑

D>1
D|#G

K

(
n


�(D)δn�−1

)
|G|nD−n+�(D)δn exp(−εn)Dn|G|−n

≤
∑

D>1
D|#G

K

(
n


�(D)δn�−1

)
D�(D)δn exp(−εn)

≤K

(
n


�(|G|)δn�−1

)
|G|�(|G|)δn exp(−εn)

≤Ke−dn,

by our choice of δ.
Also, from Lemma 2.6, we have, for every positive integer n,

∑

F∈Sur(V,G)
F not code of distance δn

|G|−n−u =
∑

D>1
D|#G

∑

F∈Sur(V,G)
F δ-depth D

|G|−n−u

≤
∑

D>1
D|#G

K

(
n


�(D)δn�−1

)
|G|n|D|−n+�(D)δn|G|−n

≤K

(
n


�(|G|)δn�−1

)
2−n+�(|G|)δn

≤Ke−dn.
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We also have, for every positive integer n,

∑

F∈Hom(V,G)\Sur(V,G)

|G|−n−u =
∑

H proper s.g ofG

∑

F∈Hom(V,H)

|G|−n−u

≤
∑

H proper s.g ofG

|H|n+u|G|−n−u

≤Ke−dn.

Using Lemma 2.4 we have a real number c > 0 and can further choose a real
K > 0, both depending only on a,G,u,ε,δ, and d, such that for every positive
integer n, we have

∑

F∈Sur(V,G)
F code of distance δn

∣
∣P(FX = 0)−|G|−n+u

∣
∣≤Ke−cn.

If necessary, we take c smaller so c≤ d. In conclusion, for every positive integer n,

∣∣
∣
∣∣
∣

⎛

⎝
∑

F∈Sur(V,G)

P(FX = 0)

⎞

⎠−|G|−u

∣∣
∣
∣∣
∣

=

∣
∣
∣∣
∣∣

⎛

⎝
∑

F∈Sur(V,G)

P(FX = 0)

⎞

⎠−
⎛

⎝
∑

F∈Hom(V,G)

|G|−n−u

⎞

⎠

∣
∣
∣∣
∣∣

≤
∑

F∈Sur(V,G)
F code of distance δn

∣
∣P(FX = 0)−|G|−n−u

∣
∣+

∑

F∈Sur(V,G)
F not code of distance δn

P(FX = 0)

+
∑

F∈Hom(V,G)
F not code of dist. δn

|G|−n−u

≤Ke−cn. �

3. Moments determine the distribution. We use the following theorem to
determine the asymptotic distribution of cok(M) as n→ ∞ from the moments in
Theorem 2.9.

THEOREM 3.1. (cf. Theorem 8.3 in [Woo14]) Let {Xn}n≥1 and {Yn}n≥1 be
sequences of random finitely generated abelian groups Xn and Yn as n ranges
over positive integers. Let a be a positive integer and A be the set of (isomorphism
classes of) abelian groups with exponent dividing a. Suppose that for every G ∈A,
we have a real number MG ≤ |∧2G| such that

lim
n→∞

E(#Sur(Xn,G)) =MG.
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Then for every H ∈ A, the limit limn→∞P(Xn ⊗Z/aZ � H) exists, and for all
G ∈ A we have

∑

H∈A
lim
n→∞

P(Xn⊗Z/aZ�H)#Sur(H,G) =MG.

If for every G ∈ A, we also have limn→∞E(#Sur(Yn,G)) = MG, then, we have
that for every every H ∈ A

lim
n→∞

P(Xn⊗Z/aZ�H) = lim
n→∞

P(Yn⊗Z/aZ�H).

Let a≥ 2 be an integer and u be a non-negative integer. We construct a random
abelian group according to Cohen and Lenstra’s distribution for each u as follows.
Let Pa be the set of primes dividing a. Independently for each p, we have a random
finite abelian p-group Yp(u) given by taking each finite abelian p-group B with

probability
∏∞

j=1(1−p−j−u)

|B|u|Aut(B)| . We then form a random group Ya(u) by taking Ya(u) =∏
p∈Pa

Yp(u).

LEMMA 3.2. Let a ≥ 2 be a positive integer. Let u be a non-negative integer
and Ya(u) the random group defined just above. For every finite abelian group G

with exponent dividing a, we have

E(#Sur(Ya(u),G)) = |G|−u.

In particular, the proof of Lemma 3.2 in the case that G is the trivial group
shows that the probabilities given to define Yp(u) sum to 1.

Proof. By factoring over primes p ∈ P , we can reduce to the case when P =

{p}. LetA be the set of finite abelian p-groups. A proposition of Cohen and Lenstra
[CL84, Proposition 4.1 (ii)] (in the case k = ∞ and K = G) says that for every
positive integer i,

∑

B∈A, |B|=pi

|Sur(B,G)|
|Aut(G)||Aut(B)| =

∑

B∈A, |B|=pi/|G|

1
|Aut(G)||Aut(B)| .

We can multiply the above by |Aut(G)|p−iu and sum over all i to obtain

∑

B∈A

|Sur(B,G)|
|B|u|Aut(B)| = |G|−u

∑

B∈A

1
|B|u|Aut(B)| .

By another result of Cohen and Lenstra [CL84, Corollary 3.7 (i)] (in the case s =
u and k = ∞), we have

∑
B∈A |B|−u|Aut(B)|−1 =

∏
j≥1(1− p−j−u)−1, and the

lemma follows. �

We now find the distribution of our cokernels by comparing their moments to
those of Y .
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COROLLARY 3.3. (of Theorem 2.9 and Theorem 3.1) Let a ≥ 2 be a positive
integer. Let G be a finite abelian group with exponent dividing a. Let u be a non-
negative integer. Let ε > 0 be a real number. For every positive integer n, let M(n)

be an ε-balanced random matrix valued in Mn×(n+u)(Z). For the random group
Ya(u) defined just above Lemma 3.2, we have

lim
n→∞

P(cok(M(n))⊗Z/aZ�G) = P(Ya(u)⊗Z/aZ�G).

We have the same result if a is a power of p and M(n) is a random matrix valued
inMn×(n+u)(Zp).

In particular, we can conclude the following, which proves Theorems 1.2 and
1.3.

COROLLARY 3.4. Let u be a non-negative integer and ε > 0 be a real num-
ber. For every positive integer n, letM(n) be an ε-balanced random matrix valued
in Mn×(n+u)(Z) (resp, M(n) ∈ Mn×(n+u)(Zp) for a prime p). Let B be a finite
abelian group (resp., finite abelian p-group). Let P be a finite set of primes includ-
ing all those dividing |B| (resp., P = {p}). Let HP :=

∏
p∈P Hp be the product of

the Sylow p-subgroups of H for p ∈ P . Then

lim
n→∞

P(cok(M(n))P �B) =
1

|B|u|Aut(B)|
∏

p∈P

∞∏

k=1

(1−p−k−u).

Proof. Note that if B is a finite abelian group with exponent that has prime
factorization

∏
p∈P pep , then if we take a=

∏
p∈P pep+1, for any finitely generated

abelian group H , we have H⊗Z/aZ�G if and only ifHP �G.
So the corollary follows from Corollary 3.3 and the construction of Ya(u). �

As in [Woo14, Corollary 9.3], it follows that when u = 0, then for M as in
Corollary 3.4 and any finite abelian groupGwe have limn→∞P(cok(M)�B)= 0.
This agrees with the (known) prediction of the Cohen-Lenstra distribution for
imaginary quadratic fields that any particular group appears as a class group with
density 0. Also taking a = p for a prime p in Corollary 3.3, we conclude the fol-
lowing on the distribution of p-ranks.

COROLLARY 3.5. Let u be a non-negative integer, p be a prime and ε > 0 be
a real number. For every positive integer n, let M(n) ∈ Mn×(n+u)(Z/pZ) be an
ε-balanced random matrix. For every non-negative integer k, we have

lim
n→∞

P(rank(M(n))=n−k)=p−k(k+u)
k∏

i=1

(1−p−i)−1
k+u∏

i=1

(1−p−i)−1
∏

i≥1

(1−p−i).

Proof. We apply Theorem 2.9 with a = p and Theorem 3.1 with a = p

to cok(M) and Y (u,p). We can read off the rank distribution of Y from
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[CL84][Theorem 6.3]. (Alternatively, instead of Y (u,p) we could use cokernels
of Hn ∈ Mn×(n+u)(Z/pZ) from the uniform distribution and use the elementary
count of matrices over Z/pZ of a given rank.) �

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, 480 LIN-

COLN DRIVE, MADISON, WI 53705

E-mail:mmwood@math.wisc.edu

REFERENCES

[BVW10] J. Bourgain, V. H. Vu, and P. M. Wood, On the singularity probability of discrete random matrices,
J. Funct. Anal. 258 (2010), no. 2, 559–603.

[CRR90] L. S. Charlap, H. D. Rees, and D. P. Robbins, The asymptotic probability that a random biased matrix
is invertible, Discrete Math. 82 (1990), no. 2, 153–163.

[CL84] H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number Theory, No-
ordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer-
Verlag, Berlin, 1984, pp. 33–62.

[EVW09] J. S. Ellenberg, A. Venkatesh, and C. Westerland, Homological stability for Hurwitz spaces and the
Cohen-Lenstra conjecture over function fields, Ann. of Math. (2) 183 (2016), no. 3, 729–
786.
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