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Abstract. We present a heuristic that suggests that ranks of elliptic curves E over Q are bounded.
In fact, it suggests that there are only finitely many E of rank greater than 21. Our heuristic is based
on modeling the ranks and Shafarevich—Tate groups of elliptic curves simultaneously, and relies on
a theorem counting alternating integer matrices of specified rank. We also discuss analogues for
elliptic curves over other global fields.
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1. Introduction

1.1. A new model

The set E(Q) of rational points of an elliptic curve E over Q has the structure of an
abelian group. Mordell [Mor22] proved in 1922 that E(Q) is finitely generated, so its
rank rk E(Q) is finite. Even before this, in 1901, Poincaré [PoiO1, p. 173] essentially
asked for the possibilities for tk E(Q) as E varies. Implicit in this is the question of
boundedness: Does there exist B € Zsxq such that for every elliptic curve E over Q one
has rk E(Q) < B?

In this article, we present a probabilistic model providing a heuristic for the arithmetic
of elliptic curves, and we prove theorems about the model that suggest that rk E£(Q) < 21
for all but finitely many elliptic curves E.

Our model is inspired in part by the Cohen—Lenstra heuristics for class groups [CL84],
as reinterpreted by Friedman and Washington [FW89]. These heuristics predict that for
a fixed odd prime p, the distribution of the p-primary part of the class group of a vary-
ing imaginary quadratic field is equal to the limit as n — oo of the distribution of the
cokernel of the homomorphism Zj, A Z;, given by a random matrix A € M, (Zp); see
Section 4 for the precise conjecture. In analogy, and in agreement with conjectures of De-
launay [Del0O1, Del07, DJ14], Bhargava, Kane, Lenstra, Poonen, and Rains [BKLPR15]
predicted that for a fixed prime p and r € Zs, the distribution of the p-primary part of
the Shafarevich-Tate group III(E) as E varies over rank r elliptic curves over Q ordered
by height equals the limit as n — oo (through integers of the same parity as r) of the dis-
tribution of coker A for a random alternating matrix A € M,,(Z,) subject to the condition
tkz,, (ker A) = r; see Section 5 for the precise conjecture and the evidence for it.

If imposing the condition rkz, (ker A) = r yields a distribution conjecturally asso-
ciated to the curves of rank r, then naturally we guess that if we choose A at random
from the space M, (Zp)ay of all alternating matrices without imposing such a condition,
then the distribution of rkZ,, (ker A) tends as n — oo to the distribution of the rank of
an elliptic curve. This cannot be quite right, however: since an alternating matrix always
has even rank, the parity of n dictates the parity of rkz, (ker A). But if we choose n uni-
formly at random from {[%1, [n] + 1} (with n — o00), then we find that rkz, (ker A)
equals 0 or 1 with probability 50% each, and rkz, (ker A) > 2 with probability 0%; for
example, when n is even, we have rkzp (kerA) = O unless det A = 0, and detA = 0
holds only when A lies on a (measure 0) hypersurface in the space M, (Zp )1, of all alter-
nating matrices. This 50%-50%—-0% conclusion matches the elliptic curve rank behavior
conjectured for quadratic twist families by Goldfeld [Gol79, Conjecture B] and Katz and
Sarnak [KS99a, KS99b].

So far, however, this model does not predict anything about the number of curves of
each rank > 2 except to say that asymptotically they should amount to 0% of curves. In-
stead of sampling from M,,(Z,), we could sample from the set M, (Z),1;, <x of alternating
integer matrices whose entries have absolute values bounded by X, and study

Xlim Prob(rk(ker A) =7 | A € My(Z)ait, <x),
—> 00
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but this again would be O for each r > 2. To obtain finer information, instead of taking the
limit as X — oo, we let X depend on the height H of the elliptic curve being modeled,
similarly, we let n grow with H so that the random integer n grows too. Now for each
r > 2, the event rk(ker A) = r occurs with positive probability depending on H, and we
can estimate for how many elliptic curves of height up to H the event occurs.

To specify the model completely, we must specify the functions n(H) and X (H);
actually, it will turn out that specifying X (H)"#) is enough for the conclusions we want
to draw. We calibrate X (H)") so that the resulting prediction for the expected size
of III(E) for curves of height up to H agrees with theorems and conjectures about this
expected size; this suggests requiring X (H)"#) = g1/12+o(D)

Our model is summarized as follows. Fix increasing functions n(H) and X (H) such
that X (H)"H) = g1/12+0() a5 H — oo. (For technical reasons, we also require 1 (H)
to grow sufficiently slowly.) To model an elliptic curve E of height H:

1. Choose n uniformly at random from the pair {[n(H)1, [n(H)] + 1}.
2. Choose Ag € M,,(Z)a1; with entries bounded by X (H) in absolute value, uniformly at
random.

Then (coker A g)iors models ITT(E), and rk(ker A g) models rk E (Q).

Thus, heuristically, for an elliptic curve E of height H, the “probability” that rk E(Q)
> r should be Prob(tk(ker Ag) > r). We prove that for any fixed r > 1, the latter
probability is H~—D/24+0() a5 H — oo (Theorem 9.1.1). In other words, for each
increase in rank beyond 1, the probability of attaining that rank drops by a factor of
about H'/?*. Summing the probabilities H~"~1/24+o(1) gyer all elliptic curves E over
Q yields a prediction for the expected number of curves of rank > r. It turns out that the
sum diverges for r < 21 and converges for r > 21. The latter suggests that there are only
finitely many E over Q with tk E(Q) > 21.! Summing instead over elliptic curves of
height up to H leads to the prediction that for 1 < r < 20, the number of E of height up
to H satisfying rk E(Q) > r is H?17/24+0() a5 H — o0,

In order to separate as much as possible what is proved from what is conjectured, we
express the model in terms of random variables serving as proxies for the rank and III
of each elliptic curve, and prove unconditional theorems about these random variables
before conjecturing that the conclusions of these theorems are valid also for the actual
ranks and ITI. (This methodology is analogous to that of the Cramér model, which models
the set of prime numbers by a random set P that includes each n > 2 independently with
probability 1/logn; see, e.g., the exposition by Granville [Graa].)

For example, we prove the following unconditional result (Theorem 7.3.3).

Theorem 1.1.1. For each elliptic curve E over Q, independently choose a random ma-
trix Ag according to the model defined above, and let 1Ky denote the random variable
rk(ker Ag). Then the following hold with probability 1:

(a) All but finitely many E satisfy rky < 21.

(b) For1 <r <20, we have #{E : ht E < H and 1K, > r} = H?1=n/24+o(D),

(c) #{E : htE < H and 1k, > 21} < H°W.

I On the other hand, Elkies [EIk06] proved that there exist infinitely many E of rank at least 19.
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Remark 1.1.2. Our heuristic explains what should be expected if there are no signif-
icant phenomena in the arithmetic of elliptic curves beyond those incorporated in the
model. It still could be, however, that there are special families of elliptic curves that
behave differently for arithmetic reasons, just as there can be special subvarieties in the
Batyrev—Manin conjectures on the number of rational points of bounded height on vari-
eties [BM90]. When we generalize to global fields in Section 12, we will need to exclude
some families of curves.

Remark 1.1.3. In fact, the known constructions of elliptic curves over QQ of high rank
proceed by starting with a parametric family with high rank generically, and then finding
specializations of even higher rank. As Elkies points out, one cannot say that our heuristic
for boundedness (let alone 21) is convincing until one refines the model to predict the rank
distribution in such parametric families. One plausible heuristic is that for a family with
generic rank 7o and varying root number, the probability that a curve of height about H in
the family has rank ro + s is comparable (up to a factor H°1) to the probability that an
arbitrary curve of height about H has rank s. Although we cannot justify this directly, we
can argue by analogy: the distribution of p-Selmer rank in certain families with generic
rank rq is conjecturally obtained simply by shifting the Selmer rank distribution for all
elliptic curves by ro [PR12, Remark 4.17].

Remark 1.1.4. Venkatesh and Ellenberg [VE10, Section 4.1] observed that from the
arithmetic of an imaginary quadratic field one can naturally construct an integer square
matrix whose cokernel is the class group; see Section 4.1. In contrast, we do not know
of any structure in the arithmetic of elliptic curves that suggests the model above for
rk E(Q); in particular, we do not yet see a natural alternating matrix in the arithmetic
of an elliptic curve. Our reason for using an alternating matrix is instead in the spirit of
Occam’s razor: the model of alternating matrices over Z, proposed in [BKLPR15] is the
simplest model we know of that models simultaneously the rank of an elliptic curve E
and ITT (more precisely, III(E)[p°°]).

Remark 1.1.5. Deninger too has conjectured that rk £ (Q) is naturally the dimension of
the kernel of an alternating linear map [Den10, Example 5]. Specifically, in an attempt to
explain the Riemann hypothesis for L(E, s), he conjectured the existence of an infinite-
dimensional R-vector space Hg and an endomorphism 6 € End Hg such that

e forany p € C, the endomorphism 6 — p € End(Hg ®r C) satisfies dimc ker(6 — p) =
ordg—, L(E, s), and
e the endomorphism 6 — 1 is alternating with respect to an inner product on Hg.

If these exist and the Birch and Swinnerton-Dyer conjecture is true, then rk E(Q) =
dimker(6 — 1).

1.2. Outline of the paper

Section 2 introduces some notation that will be used throughout the rest of the paper.
Section 3 surveys some of the history regarding ranks of elliptic curves. Sections 4 and 5
discuss heuristics for class groups and Shafarevich—Tate groups, respectively, in terms of
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cokernels of matrices; the former heuristics are not logically necessary for our arguments,
but they serve as the basis for an analogy. In Section 6 we prove theorems to help us pre-
dict the average size of I1I; the idea, due to Lang [Lan83], is to solve for this size in the
Birch and Swinnerton-Dyer conjecture. These theorems will guide the setting of parame-
ters in our model. Section 7 presents the model itself, and proves unconditional theorems
about the random variables in it, while Section 8 conjectures that the conclusions of these
theorems are valid also for the actual ranks and III. One of the statements in Section 7
depends on Theorem 9.1.1, whose proof is postponed to Section 9 so as not to interrupt
the flow leading to the main conclusions and conjectures in Sections 7 and 8. Section 10
presents some computational evidence for our heuristic. Section 11 discusses some fur-
ther questions. Finally, in Section 12 we discuss analogues of our heuristic for number
fields K larger than Q and for global function fields such as IF,,(¢). In particular, we in-
vestigate whether our heuristic predicts a value for Bx := limsupg g tk E(K). Also,
using either Heegner points in anticyclotomic extensions of imaginary quadratic fields, or
recent work of Bhargava, Skinner, and Zhang [BSZ] combined with the multidimensional
density Hales—Jewett theorem, one can prove the existence of number fields K for which
Bk grows at least linearly in [K : Q].

2. Notation and conventions

We make many estimates of functions of several variables. If x = (x1,...,x,) and
a=(ai,...,an),wewrite f(x,a) <, g(x,a) to mean that there exists a positive-valued
function C(a) such that f(x,a) < C(a)g(x, a) for all values of (x, a) we consider. We
write f(x,a) =<, g(x,a) to mean f(x,a) <, g(x,a) and g(x,a) <, f(x,a). When
“o(1)” appears in a sentence with a variable H going to infinity, our interpretation is that
there exists a function f(H), tending to 0 as H — 00, such that replacing the o(1) by
f (H) makes the entire sentence true.

Let G be an abelian group. For n € Z>1, let G[n] := {x € G : nx = 0}. For p prime,
define G[p*°] := Umzl G[p™], and define the p-rank of G to be dimFP Glpl.

Let R be a commutative ring. For n € Zx¢, let M, (R) be the set of n x n matrices
with entries in R. For X € R.g, let M,,(Z)<x € M, (Z) be the subset of matrices whose
entries have absolute value less than or equal to X. A matrix A € M,,(R) is alternating if
AT = — A and all the diagonal entries are O (if 2 is not a zero divisor in R, then the skew-
symmetry condition AT = — A suffices). Let M, (R),y; be the set of alternating matrices,
and let My, (Z)ait, <x = My (Z)ae " My (Z) <x.

For asubset S € M,,(Z),), define Prob(S) = Prob(S | A € M,,(Z),)) as the probability
of § with respect to the normalized Haar measure on the compact group M, (Z),).

Let R be an integral domain, and let K := Frac R be the field of fractions. If M is a
finitely generated module over R, define tk M := dimg (M ®p K). For A € M, (R), let
rank A denote the rank of the matrix, so rank A = n — rk(ker A).

Finally, because both proven statements and conjectured statements play an important
role in this paper, in order to distinguish the two, any unproven or conjectural (in)equality

)
in a displayed equation comes with a question mark over the symbol, as in =.



2864 Jennifer Park et al.

3. History

3.1. Brief history of boundedness guesses

Many authors have proposed guesses as to whether ranks of elliptic curves over Q are
bounded, and the consensus seems to have shifted over time.

Early researchers guessed that ranks were bounded. In 1950, Néron wrote “L’exis-
tence de cette borne est ...considérée comme probable” [Poi50, p. 495, end of foot-
note (3)], even though he himself proved the existence of elliptic curves of rank > 11
[Nér56]. Honda conjectured in 1960 that for any abelian variety A over Q, there is a con-
stant c4 such that tk A(K) < c4s[K : Q] for every number field K [Hon60, p. 98]2%; this
would imply that ranks are bounded in the family of quadratic twists of any elliptic curve
over Q.

But from the mid-1960s to the present, it seems that most experts conjectured un-
boundedness. Cassels in a 1966 survey article [Cas66, p. 257] wrote “it has been widely
conjectured that there is an upper bound for the rank depending only on the groundfield.
This seems to me implausible because the theory makes it clear that an abelian variety can
only have high rank if it is defined by equations with very large coefficients.” Tate [Tat74,
p. 194] wrote “I would guess that there is no bound on the rank.” Mestre, who developed a
method for finding elliptic curves of high rank, wrote “Au vu de cette méthode, il semble
que I’on puisse sérieusement conjecturer que le rang des courbes elliptiques définies
sur Q n’est pas borné” [Mes82], and proved a rank bound depending on the conductor N
of E, namely O(log N) unconditionally [Mes86, I1.1.1], and O (log N /loglog N) condi-
tionally on the Riemann hypothesis for L(E, s) [Mes86, I1.1.2]. Silverman [Sil09, Con-
jecture 10.1] wrote that it is a “folklore conjecture” that ranks are unbounded. In 1992
Brumer [Bru92, Section 1] wrote “Today, it is believed that the rank is unbounded,” and
noted that the available numerical data was “not incompatible with the possibility that,
for each r, some positive proportion of all curves might have rank at least r.”

Here are two possible reasons for this opinion shift towards unboundedness:

1. Tate and Shafarevich [TS67] and Ulmer [UlmO02] constructed families of elliptic
curves over [F, (¢) in which the rank is unbounded.

2. Every few years, the proved lower bound on the maximum rank of an elliptic curve
over QQ increased: see [RS02, Section 3] for the history up to 2002. The current record
is held by Elkies [Elk06], who found an elliptic curve E over Q of rank > 28, and an
infinite family of elliptic curves over QQ of rank > 19.

Some authors have even proposed a rate at which rank can grow relative to the con-
ductor N:

o Ulmer’s examples over I, (¢) attained Brumer’s (unconditional) function field analogue
[Bru92, Proposition 6.9] of Mestre’s conditional upper bound O (log N/loglog N).
This led Ulmer [UIm02, Conjecture 10.5] to conjecture that Mestre’s conditional bound

2 Honda wrote = instead of <, but almost certainly < was intended.
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would be attained over Q, that is,
. k E(Q) ?
limsup ———— >
Nooo logN/loglog N
e On the other hand, Farmer, Gonek, and Hughes [FGHO7, (5.20)], relying on conjectures

for the maximal size of critical values and the error term in the number of zeros up to a
given height for families of L-functions, suggest that

. tk E(Q) ?
lim sup =

N—oo /log Nloglog N

in contradiction to Ulmer’s conjecture.

1, 3.1.1)

3.2. Previous heuristics for boundedness

(a) Rubin and Silverberg [RS00, Remarks 5.1 and 5.2] gave a heuristic based on the
expected size of squarefree parts of binary quartic forms. They showed that if certain
lattices they define were randomly distributed, then ranks in a family of quadratic
twists of a fixed elliptic curve E would be bounded by 8. As they knew, however, the
conclusion is wrong for some curves E, e.g., any E of rank greater than 8. Presumably
this explains why they did not conjecture boundedness of rank based on this heuristic.

(b) Granville gave a heuristic, discussed in [Wat™* 14, Section 11] and further developed
in [Watl5], based on estimating the number of integer solutions of bounded height
to the equation defining a family of elliptic curves. His observation was that a single
elliptic curve of high rank would by itself contribute more integer solutions than
should be expected for the whole family. Watkins [Wat™ 14, Section 11.4] writes that
similar ideas would lead to the conclusion that all but finitely many elliptic curves E
satisfy rk £(Q) < 21. See also comments by Conrey, Rubinstein, Snaith, and Watkins
[CRSWO7, Section 1.3].

These two approaches seem completely unrelated to ours.

3.3. Conjectures for rank 2 asymptotics
For each elliptic curve E over Q, let L(E, s) be the L-function of E, and let w(E) €
{1, —1} be the sign of its functional equation, or equivalently, the global root number. The

Birch and Swinnerton-Dyer conjecture would imply the parity conjecture, that w(E) 2
(_ l)rk EQ) .

Much of the literature on the distribution of ranks of elliptic curves focuses on
quadratic twist families. Fix an elliptic curve E| over Q. Let d range over fundamen-
tal discriminants in Z. For each d, let E4 denote the twist of E; by Q(+/d)/Q. Given
r € Z=o and D > 0, define

N>y (D) :=#{d :|d| = D, ik Eq(Q) = r},
Neyeven(D) = #{d : |d] < D, tk E4(Q) = r, and w(Eg) = +1},
N=roaa(D) :=#{d : |d| < D, tk E4(Q) = r, and w(Eg) = —1).
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There are many different approaches for estimating N>2 even(D), listed below, but

they all lead to the conjecture that

Ns2.even(D) = D34+, (3.3.1)

In other words, the prediction is that for d such that w(E;) = +1, the probability that
tk E4(Q) > 2 should be about d~'/4. Since ht E; =< d®, this prediction corresponds to a
probability of H~1/2* for an elliptic curve of height H.

()

(b)

Let E be an elliptic curve over Q with w(E) = +1. Then Waldspurger’s work
[Wal81, Corollaire 2, p. 379] combined with the modularity of E yields a weight 3/2
cusp form f = Y a,q" such that for all odd fundamental discriminants d < 0
coprime to the conductor of E, we have a4y = 0 if and only if L(E;,1) = 0
(see also Ono and Skinner [OS98, Section 2, Proof of (2a,b)] and Gross [Gro87,
Proposition 13.5]). When w(E;) = +1, the condition L(Ey, 1) = 0 is equiva-
lent to ords—; L(Eg,s) > 2, which is equivalent to rk E4(Q) > 2 if the Birch
and Swinnerton-Dyer conjecture holds. The Ramanujan conjecture [Sar90, Conjec-
ture 1.3.4] predicts that a|4) is an integer satisfying |a|q|| < |d|'/4+°(M) 50 one might
expect that a|4) = 0 occurs with “probability” |d|~1/4+°M 1 we ignore the condi-
tions on the sign, parity, and coprimality of d, then summing over |d| < D suggests

the guess N>2 even(D) 2 D3/4to()  Thig heuristic argument has been attributed to
Sarnak [CKRS02, p. 302].

Conrey, Keating, Rubinstein, and Snaith [CKRS02] used random matrix theory to
obtain a conjecture more precise than (3.3.1), namely that there exist cg,ep € R
such that

2 3/4 er.
N>3 even(D) = (cg + 0(1)) D" (log D)°F;

later, Delaunay and Watkins [DWO07] explained how to predict eg in terms of the
2-torsion of E. The starting point is the Katz—Sarnak philosophy [KS99a, KS99b],
based on a function field analogy, that L(E, s) should be modeled by the charac-
teristic polynomial of a random matrix from SO,y (R) for large N (these random
matrices seem unrelated to the p-adic and integral matrices in our heuristics). Mo-
ment calculations of Keating and Snaith determined the distribution of the values at 1
of the characteristic polynomials [KS00, Section 3.2]. Conrey, Keating, Rubinstein,
and Snaith obtained their conjecture by combining this with a discretization heuristic
(interpreting sufficiently small L-values as 0).

Watkins [Wat08a] developed a variant for the family of all elliptic curves over Q: he
conjectured that there exists ¢ > 0 such that

#ME htE < H, wE) = +1, and 1k E(Q) > 2} = (c + o(1)) H'*** (log H)*/8,

which is a refined version of what our heuristic predicts. (Watkins counts by dis-
criminant instead of height, but one of his assumptions is that the two counts are
comparable [Wat08a, Section 3.4].)
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(c) Watkins [Wat08a, Section 4.5] also gave another argument for H 19/24+0(1). gince the
number ITIy(E) defined in Section 6.4 is expected to be a square integer of size at
most H1/12+o(1) (see Theorem 6.4.2(b)), one can guess it is 0 about H~V/2440() of
the time, and there are =< HZ20/24 elliptic curves in total.

(d) Granville’s heuristic (see Section 3.2) would again suggest H 19/24+0(1) according to
Watkins [Watl5, Section 6] (see also [Wat08a, Section 4.5]).

Our model introduced in Section 1.1, based on yet another approach, again pre-
dicts (3.3.1).

3.4. Conjectures for rank 3 asymptotics

While the conjectures for N>2 even (D) are in agreement, the conjectures in the literature
for N3 04a(D) are not.

(a) Rubin and Silverberg [RSO1, Theorem 5.4], building on work of Stewart and Top
[ST95], showed that the parity conjecture implies the lower bound N>3 odd(D)
> D'/3 for many E.

(b) Conrey, Rubinstein, Snaith, and Watkins [CRSWO07] used random matrix theory as
in [CKRS02], but the discretization depends on a lower bound L' (E4, 1) > d —% for
analytic rank 1 twists Eg4, and it is not clear what the best 6 is. In fact, they proposed
three approaches to suggest a value for 6:

(1) The Birch and Swinnerton-Dyer conjecture implies a lower bound with § = 1/2,
which leads to N3 04q(D) being only about D'/4, contradicting the conditional
theorem of Rubin and Silverberg above [CRSWO07, p. 3].

(2) An analogy with the class number problem suggests that the lower bound is valid
for any 6 > 0 [CRSWO7, p. 2]; this leads to N>3 0dd(D) = DM more than
what is conjectured for N>2 even(D)!

(3) A model involving Heegner points (attributed “largely to Birch” [CRSWO07, Sec-
tion 1.2]) again suggests that any 6 > 0 is valid, and hence again that N3 oqa(D)
— pl-o(h).

(c) Conrey, Rubinstein, Snaith, and Watkins suggest another heuristic at the beginning of
[CRSWO07, Section 1.3], namely that the connection between rank 1 and rank 3 twists
should be the same as between rank 0 and rank 2, at least to first approximation; this
suggests N>3 oqd(D) = D3/4+oM),

(d) Granville’s heuristic, discussed at the end of [CRSWO07, Section 1.3], suggests that
N23(D) « D2/3+0(1).

(e) Delaunay and Roblot give heuristics on the moments of regulators that suggest
N>3.0dd(D) = D'=°() [DROS, p. 608]. (See also [Del05] for related conjectures
on the regulators.)

There is also numerical data [Elk02, DD03, Wat08b]. According to Rubin and Sil-
verberg [RS02, p. 466], the numerical data of Elkies suggests that N>3 odq(D) is
about D3/, Watkins writes in [WatO8b, Section 3.2], however, that fitting more exten-
sive data suggests an exponent for Nx>3 o4q(D) noticeably smaller than the 3/4 exponent
for NzZ,even(D)~
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Our model, using a single approach that also reproduces the well-known rank 2 con-
jecture, predicts that N>3(D) = DY/Zto) gnd N>30dd(D) = D'/2+0() This prediction
is different from all those above, but it is consistent with the conditional lower bound of
Rubin and Silverberg and with the heuristic upper bound of Granville.

4. Cohen-Lenstra heuristics for class groups

In this section, we give a brief exposition of heuristics for class groups, to motivate
Section 5 by analogy. The conjectures are due originally to Cohen and Lenstra [CL84]
(with extensions by Cohen and Martinet [CM90]). Following Friedman and Washing-
ton [FW89] and Venkatesh and Ellenberg [VE10, Section 4.1], we reinterpret these con-
jectures in terms of random integer matrices.

4.1. Class groups as cokernels of integer matrices

Let K be a number field. Let I be the group of nonzero fractional ideals of K. Let P be
the subgroup of I consisting of principal fractional ideals. The class group C1K :=1/P
is a finite abelian group.

Let Ok be the ring of integers of K. Let So, be the set of all archimedean places of K.
The Dirichlet unit theorem states that the unit group O is a finitely generated abelian
group of rank u 1= #S,, — 1.

Let S be a finite set of places of K containing Sx. Let n := #(S — Sx). Let Ok s be
the ring of S-integers of K. By the Dirichlet S-unit theorem, O,X(’ g 1s a finitely generated
abelian group of rank #S — 1 = n + u.

Let Is be the group of fractional ideals generated by the (nonarchimedean) primes
in S. Let Ps be the subgroup of Ig consisting of principal fractional ideals, so we obtain
an injective homomorphism Is/Ps — I/P = CIK. If S is chosen so that its primes
generate the finite group C1 K, then Ig/Ps ~ I/P = CIK.

The group Is is a free abelian group of rank n. Since Pg is the image of the ho-
momorphism le(’ ¢ — Is, whose kernel is the torsion subgroup of (’)}é! g» the group Pg
is a free abelian group of rank n 4 u. If we choose bases, then we represent C1 K as
the cokernel of a homomorphism Z"™* — Z". We write this cokernel as coker A for
some n x (n + u) matrix A over Z. If we view this same A as a matrix over Zj, then
coker(A: ZZ*“ — Zy) = (CLK)[p*™].

Remark 4.1.1. Friedman and Washington [FW89] were the first to model (the Sylow p-
subgroups of) class groups as cokernels of matrices, but they arrived at such a model via
a different argument. Specifically, they considered the function field analogue, in which
case (C1K)[p°] for p # char K can be understood in terms of the action of Frobenius
on the Tate module 7),J of the Jacobian J of a curve over a finite field. It was only
later that Venkatesh and Ellenberg [VE10, Section 4.1] noticed the connection with the
presentation of the class group given above.
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4.2. Heuristics for class groups

Let ¢ be the family of all imaginary quadratic fields up to isomorphism. What is the
distribution of C1 K as K varies over .# ? To formulate this question precisely, we order
the fields by their discriminant D := disc K. For X > 0, let X<y = {K € % :
|disc K| < X}. Define the density of a subset S C 2 by

. #(SNHx)
u(S) =ulS| K ex) ._Xll_)mOo A ox
when this limit exists.

Hecke, Deuring, and Heilbronn proved that #C1 K — oo as |D| — o0, and soon
thereafter Siegel proved #Cl K = |D|'/>*°(); see the appendix to Serre [Ser97] for the
history. Therefore, for any finite abelian group G, the set {K € .# : C1 K ~ G} is finite,
so u(Cl1K ~G) =0.

To get subsets of positive density, we instead examine the p-Sylow subgroup
(CI1K)[p®°] for a fixed prime p # 2. (The case p = 2 is different because of genus
theory; Gerth [Ger87] formulated analogous conjectures by considering (C1 K)2[2°°] in-
stead, and Fouvry and Kliiners [FKO7] proved that (Cl K )2[2] is distributed as Gerth
conjectured.) For each finite abelian p-group G, the density u((Cl K)[p*>°] >~ G) is con-
jecturally positive, and there are two conjectures for its value, as follows.

(4.2.1) The density is inversely proportional to # Aut G:

s (#AutG)~!
w((CLK)[p®] ~ G) = (#AutG)
n(p)

where the normalization constant n(p) needed for a probability distribution is
given by Hall [Hal38] as

’

00
np)= Y, @AwG) ' =[Ja-pH"
finite abelian i=1
p-groups G

(4.2.2) Inspired by Section 4.1, with unit rank u = #S,,—1 = 0, one models (Cl K)[p*°]
as (coker A)[p°°] for a “random” n x n matrix A over Z or Z,:

LK) [p®] ~ G) & Tim Tim A€ Mn@)<x : (coker A)[p™] = G}

n—00 X —00 #Mn(Z)fX
= lim Prob(cokerA ~ G | A € M, (Z))).
n— o0

(Recall our conventions in Section 2 for these probabilities; the equality of the
probabilities in the last two expressions follows from the asymptotic equidistri-
bution of Z in Z,. The equality of the limits in the last two expressions is very
robust; it holds when we replace A € M, (Z) by drawing A from much more
general distributions of integral matrices [Woo19].)
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Conjecture (4.2.1) is due to Cohen and Lenstra [CL84]; they were motivated by nu-
merical data and the general principle that an object should be counted with weight in-
versely proportional to the size of its automorphism group. Conjecture (4.2.2) in the sec-
ond form

w((C1K)[p*™] ~ G) 2 nlglgo Prob(coker A >~ G | A € My (Zp))

is due to Friedman and Washington [FW89].
In fact, Conjectures 4.2.1 and 4.2.2 are equivalent:

Theorem 4.2.3 (Friedman and Washington [FW89]). For every finite abelian p-group G,

#AutG)! | R—— .
HAWG) T]a-»r.
i=1

nlgrgo Prob(coker A >~ G | A € My (Z))) = ) = S AuiC

1

If instead we consider the family of real quadratic fields, then the unit rank u is 1, so
Section 4.1 suggests that Cl K should be modeled by the cokernel of an n x (n + 1)
matrix, in which case there is a similar story to that above.

5. Heuristics for Shafarevich-Tate groups

In this section, we consider heuristics for the Shafarevich—Tate group of an elliptic curve
over Q, analogous to the heuristics for class groups in the previous section.

5.1. Elliptic curves

An elliptic curve E over Q is isomorphic to the projective closure of a curve y? = x3 +
Ax + B for a unique pair (A, B) of integers such that there is no prime p such that p* | A
and p®| B. Conversely, any such pair (A, B) with 4A3 + 27B% # 0 defines an elliptic
curve over Q. Let & be the set of elliptic curves of this form, one in each Q-isomorphism
class.

Define the (naive) height of E € & by

ht E := max(|4A3|, |27B?)).

Let &<y :={E € & : ht E < H}. An elementary sieve argument [Bru92, Lemma 4.3]
shows that
#E-y = (k +o(1)HY®, (5.1.1)
where k := 2%/3373/2£(10)~1.
For a subset S C &, we define densities
. #SNE<y)
S):= 1 _
M( ) H]—r>noo #é"SH
. #MEeSN&y |TkEQ) =1}
lim =

S IkE@Q) =r): H—oo #E €&y |kEQ) =r}

3

when the limits exist.
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Remark 5.1.2. If for some r, there are no E € & such that rk E(Q) = r, then the density
w(S | rk E(Q) = r) does not exist!

Remark 5.1.3. Elliptic curves can be ordered in other ways, such as by minimal dis-
criminant or conductor. It is still true that the set of £ € & of minimal discriminant or
conductor up to X is finite, but there is no unconditional estimate for its size, even though
for most E (ordered by height), the minimal discriminant and conductor are of the same
order of magnitude as the height. See Watkins [Wat08a, Section 4] for further discus-
sion. Hortsch [Hor15] recently succeeded in counting elliptic curves of bounded Faltings
height, however.

Associated to an elliptic curve E € & are other invariants: the n-Selmer group Sel,, E for
each n > 1 and the Shafarevich-Tate group 11I(E); see Silverman [Sil92, Chapter 10].
These invariants are related by an exact sequence

0— E(Q)/nE@Q) — Sel, E — II(E)[n] = 0

for each n > 1. Taking the direct limit as n ranges over powers of a prime p yields the
exact sequence

0— EQ ®Q,/Z, — Sel,x E — LI(E)[p™] — 0. (5.1.4)

Instead of trying to predict a distribution for rk £ (Q) in isolation, we model all three
invariants at once. This lets us check our model against other theorems and conjectures in
the literature.

5.2. Symplectic finite abelian groups

We will soon focus on III(E), which is an abelian group with extra structure that we now
describe.

Definition 5.2.1. A symplectic finite abelian group is a pair (G, [ , ]), where G is a finite
abelian group and [ , ]: G x G — Q/Z is a nondegenerate alternating pairing.

An isomorphism of symplectic finite abelian groups is an isomorphism of groups that re-
spects the pairings. It turns out that if two symplectic finite abelian groups are isomorphic
as abstract groups, there is automatically an isomorphism that respects the pairings. Let
& be a set of symplectic finite abelian groups containing exactly one from each isomor-
phism class. If J is a finite abelian group, then J x J" equipped with a natural pairing is
a symplectic finite abelian group, and every symplectic finite abelian group is isomorphic
to one of this form. In particular, symplectic finite abelian groups have square order.
Let &, be the set of G € & such that #G is a power of p.
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5.3. Distribution of the Shafarevich—Tate group

It is widely conjectured that ITI(E) is finite. Cassels [Cas62] constructed an alternating
pairing
(,): II(E) x III(E) —> Q/Z.

He proved also that if III(E) is finite, then ( , ) is nondegenerate. In this case, III(E)
equipped with ( , ) is a symplectic finite abelian group, and in particular #I1I(E) is
a square. This already shows that the distribution of III(E) will be different from the
conjectural distribution of class groups in Section 4.2.

The distribution of class groups conjecturally depended on the unit rank of the number
field; analogously, the distribution of ITI(E£) should depend on the rank of E.

Question 5.3.1. Fix a prime p. Givenr > 0 and G € &, what is the density
p(I(E)[p™] ~ G | Tk E(QQ) =1)?
There are three conjectural answers to this question:

(2,) Delaunay [Del01, Del07, DJ14], in analogy with the Cohen—Lenstra heuristics for
class groups, made conjectures on the distribution of III(E) as E varies over elliptic
curves of rank r. He ordered elliptic curves by conductor; but if we modify his
conjectures to order by height, they imply that the answer to Question 5.3.1 is given
by the probability measure &, = ., on &, defined by

#G1-r Y
Probg (G) := || 1 — pl=2, 532
robg, (G) AL i>r+1( P (5.3.2)

where Aut G denotes the group of automorphisms of G that respect the pairing.

() Work of Poonen and Rains [PR12] and Bhargava, Kane, Lenstra, Poonen, and Rains
[BKLPR15] predicted the distribution of the isomorphism type of Sel, E and the
short exact sequence (5.1.4), respectively, and these were shown to be compatible
with some known properties of the arithmetic of E. From these, one extracts a
probability measure 7 on &, conjectured to model LII(E)[p*°].

(<) The article [BKLPR15], in analogy with the Friedman—Washington interpretation
of class group heuristics, proposed also another probability measure, <7, inspired
by the observation that if A € M, (Zp)ar, then coker(A : ZZ — Zg)tors is naturally
a symplectic finite abelian p-group. Specifically, for n = r (mod?2), there is a
canonical probability measure on the set

{A eM,(Zp)a : rkZp (ker A) = r},
and if G € &, we let &7, ,(G) be the measure of
{A € My (Zp)an : tkz, (ker A) = r and (coker A)iors >~ G}.

Then the formula
A (G) = lim < ,(G)
n—oo
n=r (mod2)

defines a probability measure <7, on &,.
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Theorem 5.3.3 ([BKLPRI15, Theorems 1.6(c) and 1.10(b)]). The probability measures
D, T, o, coincide.

Remark 5.3.4. Conjecturally, III(E) is large on average when r = 0 and small when
r > 1, just as class groups of quadratic fields are large if the field is imaginary (v = 0) and
conjecturally small if the field is real (u = 1). More precisely, it follows from Delaunay’s
conjectures on III(E) mentioned above that u(#ILI(E) < B | tk E(Q) = 0) = 0 for all
B > 0,but foreachr > 1, u(#II(E) < B | t/kE(Q) =r) — 1 as B — oo. In fact,
for fixed r > 1, Delaunay’s conjectures predict for each G € & that u(III(E) ~ G |
rk E(Q) = r) is an explicit positive number, and these numbers define a measure on &
that agrees with the product over all primes of the measures Z,. See also [BKLPR15,
Section 5.6] for further discussion.

6. Average size of the Shafarevich-Tate group

Section 7 will propose a model for ranks and III. To set the parameters in that model, we
will need to know the typical size of #I11(E) for a rank O elliptic curve of height about H.
Our approach to estimating #III(E) is similar to that in Lang [Lan83]; see also work
of Goldfeld and Szpiro [GS95], de Weger [dW98], Hindry [Hin07], Watkins [Wat0O8a],
and Hindry and Pacheco [HP16]. Although more precise results are known, we provide a
streamlined version of these estimates that is sufficient for our purposes.

6.1. Size of the real period

Lemma 6.1.1. Let A, B € R satisfy 4A3 4+ 27B% # 0, so that the equation y> = x> +
Ax + B defines an elliptic curve E over R. Let A := —16(4A3 + 27B?), let H =
max(|4A3|, |27B2)), and let Q := fE(R)yg_;|. Then

H V1?2 « 9« H V" 1og(H/|A)).

Proof. Changing (A, B) to (A*A, A°B) with some A € R~ changes (H, A, Q) to
(AIZH, AM2ZA, 271Q), so we may assume that (A, B) lies on the rectangle boundary
where H = 1. By compactness, the bounds hold on this rectangle boundary except pos-
sibly as (A, B) approaches one of the two corners where A = 0. Up to scaling by a A
bounded away from 0 and oo, these are the curves :I:y2 = 4x3 — g4(t)x — ge(t) for
T =itort = 1/2+ it ast — oo (in the part of the fundamental domain outside a
compact set, these are the 7 such that Zt + Z is homothetic to its complex conjugate). In
these families, each of the Eisenstein series g4 and g¢ tends to a finite nonzero limit, so
H remains bounded, while |A| =< |¢| = [*7T| = ¢~ >*IMT and Qis l orimz up to a
bounded factor, so 1 < Q2 < log(1/]A]). O

Corollary 6.1.2 ([Wat08a, Section 6.2]). Under the hypotheses of Lemma 6.1.1, we have
Q < |A|_1/12.

Proof. We have |A| < H.Then H™Y/21og(H/|A|) <« |A|7'/12 since x'/1%log(1/x)
remains bounded as x — 07, O
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Corollary 6.1.3 (cf. [Hin07, Lemma3.7]). IfE€&, then H~'/1? « Q« H~ /2 log H.

Proof. If E € &, then A is a nonzero integer, so |A| > 1. Substitute this into Lemma
6.1.1. O

Remark 6.1.4. Corollary 6.1.3 is similar to the theorem relating the naive height to the
Faltings height [Sil86, second statement of Corollary 2.3], except that the Faltings height
is defined using the covolume of the period lattice instead of just the real period.

Remark 6.1.5. The bounds in Corollary 6.1.3 are best possible, up to constants. For ex-
ample, for large a € Z- ¢, the curve y2=(x—a)(x —a—1)(x +2a+1) has H < a
and Q =< a~'?loga =< H™'/"?1og H this shows that the upper bound is sharp.

Remark 6.1.6. If instead of a short Weierstrass model we use the minimal Weierstrass
model y? +ajxy+azy = x> +arx> + asx + ag and a Néron differential @ := Mﬁlﬁ
then w differs from ‘21—; by bounded powers of 2 and 3. So if we define €2 using the Néron
differential in place of 42 the estimates in Corollary 6.1.3 are still valid. It is this €2 that
appears in the Birch and Swinnerton-Dyer conjecture.

Remark 6.1.7. Some authors define the real period as the integral of a Néron differential
over only one component of E(R).

6.2. The product of the Tamagawa factors

Consider E € & of height about H. Let £ be the Néron model of E over Z. For each
prime p, let ), be the component group (scheme) of the special fiber &, and define the
Tamagawa factor cj, = #®,(F)).

Lemma 6.2.1. We have [],c, = H*.

Compare this lemma with work of de Weger [dW98, Theorem 3], Hindry [Hin07, Lem-
ma 3.5], and Watkins [Wat08a, pp. 114-115].

Proof. Forn > 1, let og(n) denote the number of positive divisors of n. Factor the min-
imal discriminant A of E as ]_[p p¢r. Whenever e, > 0, Kodaira and Néron proved that
¢p < 4orc, = ey [Sil09, Theorem VIL.6.1], so in any case ¢, < (e + 1)2 = ao(pei’)2.
Thus
]_[cp < oo(A)? = (A°D)?2 = go), O
P

Remark 6.2.2. If instead of op(n) = n° we used the more precise bound op(n) <
nO/loglogn) " \we would get a direct proof of [dW98, Theorem 3], which states that
Hp cp < AO(l/loglogA).

6.3. Average size of L(E, 1)

The Riemann hypothesis for the L-functions L(E, s) would imply the corresponding Lin-
delof hypothesis [IS00, p. 713], which in turn would imply

L(E,1) < H°D. (6.3.1)
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For our calibration, however, we need only estimate averages of L(E, 1), so we conjec-
ture the following.

Conjecture 6.3.2. We have Averagep s , L(E, 1) Z HoW as H — oo.

In quadratic twist families, the following stronger (unconditional) variant of Conjec-
ture 6.3.2 is known.

Lemma 6.3.3. Let E| be an elliptic curve over Q. Let Eq be its twist by Q(+/d)/Q.

Given D > 0, let d range over fundamental discriminants satisfying |d| < D. Then

Average y<p L(Eq, 1) < 1 as D — 0.

Proof. This is a consequence of work of Kohnen and Zagier [KZ81, Corollaries 5 and 6].
O

Remark 6.3.4. Lemma 6.3.3 makes plausible the conjecture that
Average L(E, 1) ; 1 (6.3.5)
EEé()SH

as H — oo. This conjecture, slightly stronger than Conjecture 6.3.2, would not affect
the calibration of our heuristic here, but is interesting in its own right. Young [You06]
proved that (6.3.5) holds under the Riemann hypothesis for Dirichlet L-functions and the
equidistribution of the root number of elliptic curves.

6.4. Average size of the Shafarevich-Tate group

Let E € &. Define
#II(E) ifrk E(Q) =0,
0 ifrk E(Q) > 0.
Then the “rank O part” of the Birch and Swinnerton-Dyer conjecture states that
Io(E) T, ¢
L(E,1) = ¢-
#E(Q)IOTS

see Wiles [Wil06] for an exposition and Stein and Wuthrich [SW13, Section 8] for a
summary of some more recent advances towards it.

Iy(E) := {

(6.4.1)

Theorem 6.4.2 (cf. [Lan83, Conjecture 1]). Assume the Birch and Swinnerton-Dyer

conjecture. Then the following hold.

(a) For E € & of height H, we have IIIo(E) = HY/12te W L(E 1).

(b) For E € & of height H, if the Riemann hypothesis for L(E, s) holds, then I11o(E) <
H1/1240(1).

(c) If Conjecture 6.3.2 holds, then Average s, Io(E) = H'/12H0W) a5 H — oo

Proof. By Mazur [Maz77], we have #E (Q)rs < 16. By Corollary 6.1.3 and Remark

6.1.6, we have @ = H~1/12+°() By Lemma 6.2.1, we have [Te, = H°WD  Substitute

all this into (6.4.1) to obtain (a). Combine (a) with (6.3.1) to obtain (b). Combine (a) with

Conjecture 6.3.2 to obtain (c). ]
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Remark 6.4.3. Theorem 6.4.2(c) agrees with a conjecture of Heath-Brown and with nu-
merical investigations of Dabrowski, Jedrzejak, and Szymaszkiewicz [DJS16, Section 7].

Remark 6.4.4. In a family of quadratic twists E4, we have ht E; = d®, so Theorem

2
6.4.2(b) would imply IIIg(Ey) < d'/?t°(D as d — +o0. This is consistent with the work
of Waldspurger [Wal81, Corollaire 2, p. 379] relating «/I11o(Ey) to the dth coefficient ay
of a weight 3/2 modular form, since for such a form we expect |ag| < d'/4+o(,

7. The basic model for ranks and Shafarevich—-Tate groups

The construction of the measure 7 in Section 5.3 involved alternating matrices that
modeled Shafarevich-Tate groups of elliptic curves of rank r. Specifically, the matrices
were required to have corank r. Inspired by this model and interested in the distribution of
ranks among all elliptic curves, we propose the following model for the arithmetic of an
elliptic curve E over Q of height H. Informally, to each elliptic curve E we will associate
a random matrix A € M, (Z)ai, <x such that rk(ker A) models rk E(Q) and (coker A)ors
models ITII(E). A more precise version of our model depends on increasing functions
n(H) and X (H) to be calibrated later, with n(H), X (H) — oo as H — oo.

7.1. The random model

We now define a collection of independent random variables (tk’;, IIT};) g s taking val-
ues in Z>q x &. These random variables will be defined as functions of random matrices,
and the only input from the elliptic curve E will be its height.

To define the random variable with index E, let H := ht E, choose n uniformly at
random from Z N [n(H), n(H) + 2), choose A € M,,(Z)a1, <x () uniformly at random,
define rk’; := rk(ker A), and define ITI’; to be (coker A)ors equipped with its canonically
defined nondegenerate alternating pairing [BKLPR15, Sections 3.4 and 3.5].

Remark 7.1.1. Replacing [n(H), n(H) + 2) with any other interval of length o(n(H))
containing n(H) would not affect our results as long as the parity of n becomes equidis-
tributed as H — oo.

In the rest of this section, we will prove unconditional theorems about random integral
alternating matrices, in particular about the statistical behavior of rk’E and HI’E as F
varies. These will inform our conjectures about rk E(Q) and ITI(E).

7.2. First results on random matrices

Define the random variable

#II1". ifrk’, =0,
I = BT
0 if rk}; > 0.

We first prove a theorem about the individual random variables (rk’E, HI’E).
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Theorem 7.2.1. If the function X (H) grows sufficiently quickly relative to n(H), then
the following hold for E € & as H :== ht E — oo:

(a) (0) The probability that 1k, = 0is 1/2 — o(1).
(1) The probability that rk’E =1is1/2—-o0().
(2) The probability that rk’E > 2iso(l).

(b) Letr € {0, 1} and G € &,. Then

Prob(Il;[p>®]1 >~ G | tky = 1) = Probg, ,(G) + o(1).

(See (5.3.2) for an explicit formula for Prob@r‘p G).)
(¢) (1) Let G € &. Then

Prob(Ill; ~ G | 1K), = 1) = [ [ Probg,  (GIp™1) + o(1).
p

(2) More generally, if G C G, then

Prob(Ill, € G | 1k); = 1) = Z HProb_@lyp(G[poo]) +o(1).
GeGg p

(d) (1) Let G € &. Then Prob(Ill, >~ G | 1k, = 0) = o(1).
(2) If G is the set of squares of cyclic groups, then

Prob(IlT}, € G | tk}; = 0) = ]‘[(1 — iz + %) +o(1).
p* P

p

(e) (1) We have 11T}, p < (X (H)"H)yl+o(D),
(2) The probability that 111, ;. > (X (H)"™)1=0(W) is at least 1/3.
(f) For fixed r > 1, we have Prob(rkly > r) = (X (H)"U)=(r=1/2+o(D),

The proof of (f) will require the main theorem of Section 9, while the proofs of (a)—(e)
are comparatively straightforward (although some of them require the Ekedahl sieve). The
constant 1/3 in (e)(2) could be improved to any constant less than 1/2, as will be clear
from the proof.

Proof. Let X := X(H) and n := n(H). Any constant depending on # can be assumed to
be X°W) if X grows sufficiently quickly relative to 7.

(a) Since we choose n uniformly in Z N [, n + 2), it is even half of the time and odd
half of the time. Any alternating matrix has even rank, and a generic alternating matrix of
rank n has rank n or n — 1 according to whether 7 is even or odd. As X — oo for fixed n,
the probability that an integer matrix A € My, (Z)a1, <x has the generic rank tends to 1 (it
fails on integer points in a proper Zariski-closed subset). It follows formally that the same
holds if X tends to oo sufficiently quickly relative to . Thus Prob(rk; = 0) = 1/2—0(1)
as H — o0, and the other statements follow similarly.

(b) For a fixed k, and any n, the set M, (Z)a,<x becomes equidistributed in
M, (Z/p*Z) as X — oo. When n is even, the same holds for the subset of A €
M,,(Z) a1, <x satisfying dim(ker A) = O (these are the ones in a nonempty Zariski-open
subset). Given G, there exists a positive integer k such that the condition III’;[p*>] >~ G
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depends only on A modulo p¥. Thus, if X is sufficiently large relative to 7, then
Prob(Ill;[p™] =~ G | tkly = 0) = Prob;, (G) + o(1)

as H — oo. By Theorem 5.3.3, .2 coincides with %y = %, ,. An analogous argument
applies if we condition on rk’; being 1.

(c) (1) We apply the Ekedahl sieve as adapted by Poonen and Stoll [PS99, Section 9.3].
Consider a large odd integer n. Let Uso = M, (R) 1. For each prime p, let U), be the set of
A € M, (Zp)ar such that (coker A)rs[p>°] # G[p™°]. Let s, be the Haar measure of U,.

The image of Up, in M, (F,)a¢ is contained in the set of IF,-points of the subscheme of A’g
parametrizing matrices of corank > 3, and this implies that s, = O(1/ p?) uniformly in n.
Now, [PS99, Lemma 21] implies that hypothesis (10) in [PS99, Lemma 20] holds. The
conclusion of [PS99, Lemma 20] for S := @ implies that the density of A € M,,(Z)a1
satisfying (coker A)iors =~ G equals ]_[p(l — 5p). Because of the uniform estimate on s,,,
we may take the limit as n — oo inside the product, in which case 1 — s, tends to
Prob@”, (G[p®>]) by Theorem 5.3.3, so (1) follows.

(2) follows formally from (1) and the fact that " o ]_[p Probg, ,(G[p™]) = L.

(d) (1) Since rk% = 0, we have #LH’E = |det A|. By the same reasoning as in the
proof of (a), the probability that an integer matrix A € M, (Z)a1;, <x has |det A| equal to a
fixed value tends to 0 if X tends to oo sufficiently quickly relative to 7.

(2) follows from the Ekedahl sieve as in the proof of (c)(1) above, since the “square
of cyclic” condition can be checked on the p-primary part one p at a time, and for each p
the reductions modulo p of the A € M,,(Z),); such that (coker A)[p®°] is not cyclic lie in
the IF,-points of a subscheme of A%z of codimension > 2.

(e) By (a), we have Prob(tk, = 0) = 1/2 — o(1). If tk}; > 0, then Hlé),E = 0.
If rk/E = 0, then IIIE), g is the absolute value of the determinant of a random A €
M,,(Z) a1, <x, which is the absolute value of a degree n polynomial evaluated on a box
of dimensions very large relative to n. This implies that there are constants m,, M,, > 0
depending only on n such that Il ; < M,X" and such that Prob(Illj ; > m,X" |
rk’; = 0) is at least 9/10. Since (1/2 — o(1))(9/10) > 1/3 and X"+ = (xm)l+o),
the results follow.

(f) We have

#HA €M, (Z - tk(ker A
Prob(rk(ker A) > r [ n = r (mod2)) = A € Mn@an<x : kker 4) = r}

# Mn (Z)alt, <X

Xn(n—r)/2+0(l)

= Xn@—1/240()
- (Xn)*(rfl)/erO(l)

(by Theorem 9.1.1)

= (X")~=DFW (since n =+ o(n) = n(1 +o(1))),
as H — oo. On the other hand,
Prob(rk(ker A) > r | n # r (mod2)) = Prob(rk(ker A) > r + 1| n # r (mod?2))
— (Xﬂ)—r/2+0(1)’

by a similar calculation. Combining these yields the result. O
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Remark 7.2.2. See [WS17] for related work applying the Ekedahl sieve to study coker-
nels of not-necessarily-alternating integral matrices.

Remark 7.2.3. The conclusion of Theorem 7.2.1(b) is likely robust. The analogous con-
clusion for symmetric matrices is proved in [Woo17] without requiring any kind of uni-
form distribution of matrix entries. For instance, it holds even if X (H) is always 1.

Remark 7.2.4. The proof of (b) implicitly used the fact that the Z-points on the moduli
space of matrices (isomorphic to A”z) are equidistributed in the Z,-points. For r > 2, this
affine space gets replaced by a subvariety V defined by the vanishing of certain minors,
and it is not clear that V (Z) is equidistributed in V (Z,). In fact, heuristics inspired by the
circle method suggest that this might be false, and numerical experiments also suggest
this. In this case, perhaps the three conjectural answers to Question 5.3.1 are wrong for
r > 2. In particular, perhaps the “canonical probability measure” from [BKLPR15, Sec-
tion 2] on the set
{A € My (Zp)ar : 1kz, (ker A) = r}

used to define <7 (the measure proportional to p-adic volume) should be replaced by the
measure that reflects the density of integer points.

Next we will pass from Theorem 7.2.1, which concerns the random variable associated to
one E, to Corollary 7.2.6, which concerns the aggregate behavior of the random variables
associated to all E € &<y, as H — oo. To do this we will apply the following standard
result, a version of the law of large numbers in which the random variables do not have
to be identically distributed.

Lemma 7.2.5 ([Durl0, Theorem 2.3.8]). Let By, Bz, ... be a sequence of independent
events. For i > 1, let p; be the probability of B;. If Y, p, diverges, then with probabil-
ity 1,

m
#{i <m : B; occurs) = (1 4+ o(1)) Zl’i
i=1

asm — OQ.

Corollary 7.2.6. If X (H) grows sufficiently quickly relative to n(H), then the following
hold with probability 1:

(a) We have

W(E 1Ky = 0) = n({E s 1K) = 1) = 1/2,
W({E : 1K > 2}) = 0.

(b) Foreachr € {0,1} and G € &),
W(E : I[p™] ~ G} | K = r) = Probg, (G).
(¢) (1) Foreach G € 6,
u((E : Ty ~ G} | 1k = 1) = [ [Probgy,  (G[p™)).
p
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(2) More generally, for each G C S,

p(E Wl € G) |1k = 1) = ) [[Probg, (GIp™).
GeG p

(d) (1) Foreach G € &, we have pn({E : 11", ~ G} | 1k, = 0) = 0.
(2) If G is the set of squares of cyclic groups, then

1 1
w({E : 1Ty € G} | 1K, =0):1_[<1__2+_3>.
) 4 p
(e) We have

Average IT1}) . = (X (H)"H))!+o)
EE(ggH ’

as H — oo, assuming that the function f(H) = X (H)"H) satisfies f(2QH) <
f(H)l+0(1).

Proof. For E € &, let Bg be the event rk’; = r, and let Cg be the event that rk); = r and
I [p™] ~ G.

(a) Apply Lemma 7.2.5 to (BEg), and use Theorem 7.2.1(a).

(b) Apply Lemma 7.2.5 to (Bg) and (Cg), and use Theorem 7.2.1(a, b) to compute
the denominator and numerator in the definition of L.

(c) Again apply Lemma 7.2.5, and use Theorem 7.2.1(c).

(d) For (1), apply Lemma 7.2.5 to the event rk}; = 0 and ITI}; % G, and use Theo-
rem 7.2.1(d)(1); for (2) apply Lemma 7.2.5 to the event rk’E = 0and IH/E € G, and use
Theorem 7.2.1(d)(2).

(e) By Theorem 7.2.1(e)(1),

Average H16 g < max III6 g < (X(H)’?(H))Ho(l)
EEé"EH ’ Eeé’sH ’

as H — oo. By Theorem 7.2.1(e)(2) and the law of large numbers, with probabil-
ity 1, as H — oo, at least 1/4 of the elliptic curves with height in (H/2, H] satisfy
I, , > (X (ht E)1®E)1=0M) We have (X (ht E)7®tE)1=e() = (x (H)1(H))1=o() by
the growth hypothesis on f(H). Since a positive fraction of the elliptic curves in &<p
have height in (H/2, H], this implies Averagegcs_, H_IE)’E > (X (H)"H)yl=o(l), m]

7.3. Consequences for coranks of random matrices

Comparing Theorem 6.4.2(c) and Corollary 7.2.6(e) suggests choosing X (H) and n(H)
so that
X(H)"H) = gt/12+o) 5 g o0, (7.3.1)

Remark 7.3.2. Alternatively, matching the conditional upper bound of Theorem 6.4.2(b)
with an upper bound for det A would have also suggested (7.3.1).

We now prove a theorem about the asymptotic aggregate behavior of the rk’z.
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Theorem 7.3.3. If n(H) grows sufficiently slowly relative to H, and X (H)") =
H/1240) then the following hold with probability 1:

(a) All but finitely many E € & satisfy rkly < 21.
(b) For1 <r <20, we have #{E € &<p 1 1K); > r} = H @1=r)/2440(D),
(c) #{E € &p 1Ky > 21} < HOW,

Proof. Fixr > 1.For E € &, let pg, := Prob(rk’E > r). By Theorem 7.2.1(f), if E is
of height H, then

PEr = (X(H)U(H))*(rfl)/2+0(1) — g~ r=1/24+0(1)

It follows that
Y per= ) (htE)"UDAHeM - HEImDRAW i ] < r <21,
o= = ]
Ecé.p Ecép o) ifr > 21,

by summing over dyadic intervals, using the estimate #&<y = (k + o(1)) H?%/?* from
(5.1.1).

If Y pce PE,r converges, as happens for » > 21 and possibly also for » = 21, then the
Borel-Cantelli lemma implies that {E € & : rk}s > r} is finite. If > Eee PE,r diverges,
as happens for 1 < r < 20 and possibly also for » = 21, then Lemma 7.2.5 yields

#E € by ik =r) = +o0(1) Y. pg,=H/24e0, o
EEgSH

Remark 7.3.4. The conclusion that rk/; is uniformly bounded with probability 1 is ro-
bust. For example, if the assumption X (H)"H) = g1/12+0(1) in (7.3 1) is replaced by
X(H)"H) = geto) for a different positive constant ¢, then the same conclusion fol-
lows, but the bound beyond which there are only finitely many E might no longer be 21.
Another example: taking our matrix coefficients in a sphere instead of a box (as we actu-
ally do in Section 9) does not change Theorem 9.1.1, so it does not change Theorem 7.3.3
either.

Remark 7.3.5. Although it would have been nice to have specifications for X (H) and
n(H) individually, the specification of X (H y1H) alone sufficed for Theorem 7.3.3.

8. Predictions for elliptic curves

The results of Section 7 are unconditional theorems about random matrices. We now
conjecture that some statements about the statistics of (rk’y, IlI’E) as E varies are true
also for the actual (rk E(Q), III(E)).
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8.1. Theoretical evidence
Several consequences of this heuristic are widely believed conjectures for elliptic curves.

(i) Corollary 7.2.6(a) suggests the “minimalist conjecture” that ranks of elliptic curves
are 0 half the time and 1 half the time asymptotically, as has been conjectured by
others for quadratic twist families, including Goldfeld [Gol79, Conjecture B] and
Katz and Sarnak [KS99a, KS99b].

(i1) Corollary 7.2.6(b) predicts the distribution of III(E)[p°°] for elliptic curves E of
rank 7 in the cases r = 0, 1. This distribution agrees with the three distributions in
Section 5.3. More generally, for any finite set S of primes, our model predicts the
joint distribution of IIT(E)[p*°] for p € S as E varies among rank r curves in the
cases r = 0, 1, and these predictions agree with the conjectures in [DelO1, Del07,
DJ14] and [BKLPR15, Section 5.6].

(iii) Corollary 7.2.6(c) predicts that ITI(E) for E of rank 1 is distributed according to the
conjectures in [Del0O1, Del07,DJ14].

(iv) Given G € G, Corollary 7.2.6(d) predicts that the density of rank 0 curves E with
II(E) >~ G is zero, in agreement with the conjectures discussed in Remark 5.3.4,
and that the density of rank O curves E with III(E) the square of a cyclic group is
the density conjectured by Delaunay [DelO1, Example E].

8.2. Predictions for ranks

Our heuristic predicts also that the three conclusions of Theorem 7.3.3 hold if rk/; is
replaced by rk E (Q). Specifically, it predicts:

(a) All but finitely many E € & satisfy rk E(Q) < 21.

(b) For 1 < r < 20, we have #{E € &y | tk E(Q) > r} = H1=n/24+o()
?

(c) HE € &<y : Tk E(Q) > 21} < HD,

In particular, (a) would imply that ranks of elliptic curves over Q are bounded.

The prediction (b) for r = 1 was discussed in (i) in Section 8.1. The prediction of (b)
for r = 2 is consistent with all of the previous conjectures in Section 3.3. See Section 3.4
for a comparison of the prediction of (b) for r = 3 with the other conjectures for this
asymptotic.

There are many other predictions made by the model of Section 7, though in some
cases we are prevented from giving them explicitly because we do not know the cor-
responding fact about counting alternating matrices. We mention some of these in Sec-
tion 11.

8.3. Other families of elliptic curves

Instead of taking all elliptic curves over QQ, one could restrict to other families of elliptic
curves, such as a family of quadratic twists or a family with prescribed torsion subgroup,
and prove analogues of Theorem 7.3.3. The predictions given by such an analogue are
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summarized in the following two tables; under “rank bound” is an integer such that our
model predicts that the family contains only finitely many elliptic curves of strictly higher
rank.

First, we consider a family of twists. In some cases, these predictions are stronger
than the predictions coming from variants of Granville’s heuristic [Wat™* 14, Section 11].

# curves of height < H | rank bound | Granville
quadratic twists of a fixed Eq HY6 = g4/24 5 7
quartic twists of y2 =x3—x H/3 = g8/24 9 11
sextic twists of y2 =x3—-1 HYZ = g12/24 13 13
all elliptic curves HY/6 = g20/24 21 21

Next, we consider a family with prescribed torsion. Harron and Snowden [HS17]
prove that for each finite abelian group T that arises, #H{E € &<p @ E(Q)wors =~ T} =<
H'4 for some d € Q- depending on T'. For such a family, our heuristic suggests that the
expression by = limsup {rk E(Q) : E(Q)rs =~ T} is bounded above by 1+ |24/d]. On
the other hand, explicit families provide lower bounds on b7 [Duj]. These upper and lower
bounds are given in the last two columns of the table below. Remarkably, for each T, the
bounds are close and the conjectured upper bound is at least as large as the proven lower
bound. Moreover, whenever the rank bound meets the known lower bound, our heuristic
predicts that there should be H°(! curves meeting this bound; and again remarkably, the
known infinite families are over elliptic curves with positive rank, consistent with our
prediction!

torsion subgroup | # curves of height < H | rank bound | known lower bound

— H5/6 21 19
7.)27. H/? 13 11
7.)37 H1/3 9 7
747 H/4 7 6
VALY H/6 5 4
7./67 Hl/6 5 5
777 H/12 3 2
7./87 H/12 3 3
7./97Z H/18 2 1
Z/10Z Hl/18 2 1
7/127 HY/2 2 1
7)27. x 7.]27 H!/3 9 8
7.)27. x 7.JA7 HY/6 5 5
7.)27. x 7.]67 H/12 3 3
7.)27, x 7.]87 HY/2 2 1

9. Counting alternating matrices of prescribed rank

In this section we prove Theorem 9.1.1, which was used in the proof of Theorem 7.2.1(f).
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9.1. Statement and overview of proof

Theorem 9.1.1. If 1 <r <nandn —r is even, then
#{A € M, (Z)ar.<x : tk(ker A) > r} <, X""=1/2,

In fact, we will prove the same asymptotic for the count with > r replaced by = r; then
Theorem 9.1.1 follows by summing. Also, the £°°-norm of a matrix A = (a;;) is bounded
above and below by the £2-norm times constants depending on n, so we may instead
use the £2-norm, which is defined by |A|? = Zi’j aizj. Finally, we may use rk(ker A) =
n —rank A, and rename r as n — r. This leads us to define

Np(T) :=#{A € My(Z)a; : rank A = r and |[A| < T}.
Now the result to be proved is as follows.
Theorem 9.1.2. If 0 <r <n —1andr is even, then N, ,(T) =<, T2,

Theorem 9.1.2 is the analogue for alternating matrices of the Eskin—Katznelson theorem
counting integral symmetric matrices of specified rank [EK95, Theorem 1.2]. Our proof
of Theorem 9.1.2 follows the Eskin—Katznelson proof closely; indeed, the differences are
almost entirely numerical (though we have incorporated a few simplifications, notably
in the proofs of Lemma 9.3.5 and Theorem 9.5.1). The strategy is to count the matrices
(the rank r matrices A € M,,(Z); with |A| < T) by grouping them according to which
primitive rank r sublattice A C Z" contains the rows of A.

To obtain an upper bound on N, ,(T), first, we bound the determinant of the lattices A
that arise in the previous sentence (Corollary 9.4.4). Second, a theorem of Schmidt (The-
orem 9.2.5) bounds the number of A of bounded determinant. Third, the matrices A as-
sociated to one such A correspond to certain points in the lattice A(A) of matrices whose
rows are contained in A, so they can be counted by another result of Schmidt on lattice
points in a growing ball (Lemma 9.2.4).

To obtain a matching lower bound on N, ,(T), it will turn out that it suffices to count
lattices having a basis consisting of “almost orthogonal” vectors of roughly comparable
length (Theorem 9.5.1).

9.2. Lattices

Fixn > 0,and let ( , ) and | | denote the standard inner product and £2-norm on R”. By
a lattice in R", we mean a discrete subgroup A C R”; its rank » might be less than n. By
convention, each Z-basis {£1, ..., £,} of A is ordered so that [£{]| < --- < |[£,]|. A lattice
A C 7" is primitive if it is not properly contained in any other sublattice of Z" of the
same rank. The determinant d(A) € R~ of A is the r-dimensional volume (with respect
to the metric induced by | |) of the parallelepiped spanned by any Z-basis {{, ..., {,}
of A; then d(A)? = det (¢;, £i)1<i, j<r- Among all bases {£1, ..., £,} for A, any one that
minimizes the product |£1]|---|¢,| is called a reduced basis. (This is equivalent to the
usual definition of Minkowski reduced basis.)
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Theorem 9.2.1 (Minkowski). If {£1,...,¥¢,} is a reduced basis for A, then d(A) =,
1] €.

Theorem 9.2.1 can be interpreted as saying that a reduced basis is “almost orthogo-
nal”. The following lemma is essentially a reformulation of Minkowski’s theorem [EK95,
Lemma 2.1, comment after Lemma 2.2].

Lemma 9.2.2. Fix r and a positive constant C. Let A be a lattice with basis {uy, ..., u,}
satisfying d(A) > Cluy| - - - |uy|. Then foranyay, ...,ar € R,

r 5 r

2 2
E ajuj| >rc E ajluj| .
= =

The following lemma shows that different choices of reduced bases, or even bases within
a constant factor of being reduced, have very similar lengths.

Lemma 9.2.3 ([EK95, Lemma 2.2]). Fix r and a positive constant C. Let A be a rank r
lattice with reduced basis {€1, ..., L. }. If {uy, ..., u,} is another basis of A, and d(A) >
Clutl|---luy|, then |uj| <, c |£;| forall j.

For T € R, define the ball B(T) := {x € R" : |x| < T}. For any lattice A C R", let
N(T, A) :=#(A N B(T)).
Let V), denote the volume of the r-dimensional unit ball.

Lemma 9.2.4 ([Sch68, Lemma 2]). Let A be a rank r lattice with reduced basis
{€1,...,4;}. Then

V, T" =7
N(T,A) = ~— + 0, — ).
¢ ) d(N) (Z |131|~'|5j|)

Jj=0

Let P, ,(t) denote the number of primitive rank » sublattices of Z" of determinant at
most ¢. The following is a crude version of a more precise theorem of Schmidt.

Theorem 9.2.5 ([Sch68, Theorem 1]). If 1 <r <n — 1, then P, ,(t) =<, t".

9.3. Lattices of alternating matrices

From now on, A is a primitive rank r lattice in Z", and {{, ..., {,} is a reduced basis
of A. Define
A(A) == {A € M;(R)yy : every row of A isin A}.

View A(A) as a lattice in the space M, (R) ~ R"z. If A € A(A), thenrank A < r; we
write
N(T, A(A)) = Ni(T, A(N)) + Nao(T, A(N)),
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where N counts the matrices of rank exactly r, and N, counts those of rank < r. If A €
M,,(Z)41; and rank A = r, then there exists a unique primitive rank r lattice A C Z" such
that A € A(A); namely, A = (row space of A)NZ". Thus, as in [EK95, Proposition 1.1],

Nup(T) = > Ni(T, A(A)), 9.3.1)

tk A=r
where the prime indicates that A ranges over primitive rank r lattices in Z". We will use
this to estimate N, ,(T).
To apply Lemma 9.2.4 to count points in .A(A), we need good estimates on the size
of a reduced basis of A(A). Identify R” ® R" with M,,(R) by mapping u ® v to uv’ . For
1 <i<j<r,define

Rij =4 ®¢ —{;®¢ € M, (R).
Lemma 9.3.2 (Analogue of [EK95, Lemma 3.2]).

() Ifi < jands <t, then (R;j, Ry) = 2(¢;, £5) (€5, £r) — 2(4;, 1) (L5, £s).
(b) Forl <i < j <r,wehave |R;j| <, [£;|¢;].

Proof. (a) Distribute and use the identity (u ® v, u’ ® v') = (u, u’)(v, v') four times.
(b) Taking (i, j) = (s, t) in (a) yields

|Rij1> = 216 P16 1% — 2(6;, £;)* = 21¢;]*1¢;|* sin” 0,
where 6 is the angle between ¢; and £;. By Theorem 9.2.1, we have sin6 =<, 1. ]

Proposition 9.3.3 (Analogue of [EK95, Proposition 3.3]). The set {R;j : 1 <i < j <r}
is a basis of A(A).

Proof. The proof is analogous to that of [EK95, Proposition 3.3]. O
For g € GL,(R), let Fg: M,;(R)a;t — M,,(R)q be the linear map A +— gAgT.

Proposition 9.3.4 (Analogue of [EK95, Proposition 3.4]). We have det F, = (det o) !
forall g € GL,,(R).

Proof. Since g +— det Fy is an algebraic homomorphism GL,(R) — R*, the identity
det Fy = (det g)“ holds for some o € Z. Evaluating at g = ¢/ for any t € R* yields
Hrn=D/2 — 1y g0 =n — 1. o

Lemma 9.3.5 (Analogue of [EK95, Lemma 3.5]). We have d (A(A)) =2""—D/4g(A)—1.

Proof. View A(A) as the lattice generated by the R;; (Proposition 9.3.3). By Lemma
9.3.2(a), the square of the desired identity is a polynomial identity in the (¢;, £;). Thus
we may rotate £, ..., £, to vectors in R” with the same inner products; now n = r.

The basis of A(Z") provided by Proposition 9.3.3 consists of r(r — 1)/2 orthogonal
vectors of length +/2, so for A = Z”, both sides of the identity equal 2" ~1/4 Now let
A be any other rank r lattice in Z". Let g € GL,(R) be the linear map taking Z" to A.
Then F, takes A(Z") to A(A). Replacing Z" by A scales the two sides of the identity by
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|det F| and |det gl"™!, respectively; these factors are equal by Proposition 9.3.4, so the
identity is preserved. O

Combining Lemma 9.3.5, Theorem 9.2.1, and Lemma 9.3.2(b) yields

d(AA) =274 > TTIG >, [T IR 9.3.6)

i<j

9.4. Upper bound on Ny, ,(T)
Lemma 9.4.1. The map

M, (Z)ar > A(A),  (aij) = Y _aijRij.

i<j
is a bijection that preserves ranks of matrices.

Proof. 1t is a bijection by Proposition 9.3.3. If ¢y, ..., £, are the first r standard basis
vectors, then the bijection simply extends a matrix in M, (Z),; by zeros to a matrix in
M,,(Z)a1; this preserves rank. The general case follows: if for some g € GL,(R) we
replace ¢1, ..., ¢, by gl1, ..., g¢,, then A := ij a;j R;j is replaced by gAgT, which
has the same rank as A. m]

Lemma 9.4.2. Let B = (a;j) € M;(R)ay. If there existi < jwithi + j < r + 1 such
that for every pair s < t withs > i andt > j, we have ag; = 0, thenrtank B <r — 1.

Proof. The ith through the nth row are contained in the initial copy of R/~! in R”, so they
together with the first i — 1 rows span a space of dimension at most (i —1)+(j—1) <r—1.
Thusrank B <r — 1. O

Recall that N{ (T, A(A)) counts the matrices in A(A) of rank exactly » = rk A.

Lemma 9.4.3 (Analogue of [EK95, Lemma 4.1]). If Ni(T, A(A)) > O, then |¢;]|¢;]
& T for all pairs (i, j) such thati + j <r + 1.

Proof. Suppose that Ni(T, A(A)) > 0. Thus there exists A € A(A) of rank r with
|A] < T. By Lemma 9.4.1, we may write A = ij a;jR;j for some B = (a;j) €
M, (Z)a1; also of rank r. Lemma 9.4.2 yields a pair s < t with s > i and r > j such
that ag; # 0. By (9.3.6) and Lemma 9.2.2, |A|> >, a2 |Ry|> > |Ry|?. Thus |¢;] [¢;] <
[€s] 1€¢] <r |Rst| < |A] < T (the second step is Lemma 9.3.2(b)). m]

Corollary 9.4.4 (Analogue of [EK95, Corollary 4.2]). If Ni(T, A(A)) > 0O, then d(A)
& T2

Proof. By Theorem 9.2.1 (at the left) and Lemma 9.4.3 (at the right),

d(AY =, ()16 =[] 1alel < 1" O
i+j=r+1
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Theorem 9.4.5 (Analogue of [EK95, Theorem 4.1]). If 0 < r < n — 1 and r is even,
then
N (T) < T2,

Proof. Since N, o(T) = 1, we may assume that r > 2. Let E be the set of primitive
rank r lattices A C Z" for which N{(T, A(A)) > 0. Let ¢, be the implied constant
in Corollary 9.4.4, and let E* be the set of primitive rank r sublattices of Z" for which
d(A) < ¢, T™?. Thus E C E*. By (9.3.1),

Npr(T) =Y Ni(T, A(A)) < Y N(T, A(A)).

A€E A€E

By Lemmas 9.2.4 and 9.3.5,

_ —1)/2—1 k
Vegr—1y2TT =072 T T
N(T AW = S + O ]; ) (9.4.6)

where the L; are a reduced basis for A(A). By (9.3.6) and Lemma 9.2.3, we can order
the tuples (i, j) with 1 <i < j <ras (i1, j1),... sothat Ly =<, Ry j =, € |1€;], by
Lemma 9.3.2(b), where the /; are a reduced basis for A. Thus

re-D/2=1 ok 1_[ T
— & max(l, —) 9.4.7)
= LiLk l<i<j<r Zi | 141
@, ))#r—=1r)

Let £ be the sum over A € E of the right side of (9.4.7). If 4 < r < n — 1, then the proof
of [EK95, Proposition 7.1] yields £ <, T"r/2 (in [EK95, Proposition 7.1], the analogous
sum is instead over A for which there is a symmetric rank r matrix of size < T with rows
in A, but the only property used of the A there is the conclusion of Lemma 9.4.3; also each
summand in our & is at most the corresponding summand in [EK95, Proposition 7.1]).
If » = 2, then the right side of (9.4.7) is 1, s0 &; = #E < #E* <, T", by Schmidt’s
theorem (Theorem 9.2.5). Thus & <, T™/? in all cases.
It follows that

Ny (T) K TVD12 Z d(N)~=D /2, (9.4.8)
A€eE
We have
Y dy TV < Y am)y V= Y d) Y «, T2 9.4.9)
A€eE A€eE* d(A)<c, T"/?

by summing over dyadic intervals since for each ¢ € R,

Yo AW & P01 &
d(A)e(t/2,t]

by Theorem 9.2.5. Substituting (9.4.9) into (9.4.8) yields N, ,(T') <p /2, O
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9.5. Lower bound on Ny, ,(T)

Theorem 9.5.1 (Analogue of [EK95, Theorem 4.2]). If 0 < r < n — 1 and r is even,
then
N (T) > T2

Proof. Since N, o(T) = 1, we may assume that »r > 2. Let ¢ = c(n,r) be as in
[EKOS, Proposition 2.6]. Suppose that A is c-regular, i.e., has a reduced basis with |£1]| >
cd(A)V". By Theorem 9.2.1, |¢;] <, d(A)V/" for all i. By Lemma 9.3.2(b), |R;;| =<y
d(A)Z/r for all i < j. By Lemma 9.4.1, the matrix A := Z:/zzl Ros—1.2s € A(A) is of
rank r, and |A| =<, d(A)?". Thus we can fix € = €nr > 0sothatd(A) < eT"/? implies
|A| < T and hence N1(T, A(A)) > 1. By [EK95, Proposition 2.6], the number of c-reg-
ular A with d(A) < €T"/? is x,, T""/2, and each contributes at least 1 to Ny (T). ]

Theorems 9.4.5 and 9.5.1 imply Theorem 9.1.2, and hence Theorem 9.1.1.

10. Computational evidence

10.1. New evidence

There is a long history of computational investigations on the ranks of elliptic curves: see
[BMc90, Cre97, BMSWO7] and the references therein. In this section, we provide some
further experimental evidence for our conjecture on ranks, using the computer algebra
system Magma [Magmal; specifically, we use its algorithms developed by Steve Donnelly
and Mark Watkins for computing the 2-Selmer group, and by Tim Dokchitser and Mark
Watkins for computing the analytic rank.

We sample random elliptic curves at various heights. For a height H, we compute
uniformly random integers A, B with

Ae[—JH/4 JH/4, Bel-J/H/27,/H/2,

and keep the pair (A, B) if y2 = x3 + Ax + B defines an elliptic curve in &< — E<p 2.
By this procedure, we generate a uniformly random elliptic curve E € &<y — E<p 2.

Next, we compute the 2-Selmer group Sel, E assuming the Riemann hypothesis for
Dedekind zeta functions to speed up the computation of the relevant class groups and
unit groups. We also compute E(Q)ors. Let r 1= tkp Selr E — tky E(Q)tors- If ¥ < 1
(and III(E) is finite), then III(E)[2] = {0} and r = rk E(Q). Otherwise, we attempt to
compute the analytic rank ords— L(E, s), which equals rk E(Q) (assuming the Birch and
Swinnerton-Dyer conjecture). Computing the analytic rank is the most computationally
intensive step.

The table below displays our results. For each H shown, N denotes the number of
elliptic curves generated as above, with heights in (H/2, H]. The entries in the next
columns show what percentage of these N have rank 0, have rank 1, etc.; we expect
that each of these entries deviates from the true percentage (what we would see if we
averaged over all elliptic curves with heights in (H/2, H]) by at most O(1/+/N), by the
central limit theorem, so we list 1/ \/N in the final column.
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H N 0 1 >2 >3 | 1/JN
1010 | 279090 | 32.6% 47.3% 17.3% 2.7% | 0.2%
1011 | 66006 | 33.4 472 169 25 | 04
1012 | 20844 | 34.0 472 164 2.5 0.6
1013 | 20299 | 348 47.0 154 26 |07
1014 | 17836 | 350 474 153 22 |07
1015 | 5028 | 363 464 151 22 | 14

The proportion with rank > 2 is slowly but steadily decreasing; this seems consistent
with our model’s predicted proportion of H~!/2#+°(1)_The data for rank > 3 also seems
consistent with our prediction. The raw values predicted by our model using the functions
in the last row below are as follows:

H 0 1 >2 >3
1010 30.8% 42.7% 19.2% 7.3%
101! 32.6 43.9 17.4 6.0
1012 34.2 45.0 15.8 5.0
1013 35.6 45.9 14.4 4.1
1014 36.9 46.6 13.0 3.4
1013 38.1 472 11.9 2.8

H %(] _ H—1/24) %(l _ H—l/lZ) %H_1/24 %H—I/IZ

But these values should not be read too closely, since we are ignoring an implicit fac-
tor HoWD,

Further computations on the distribution of Selmer groups and ranks of elliptic curves
grouped by order of magnitude of height have been carried out recently by Balakrishnan,
Ho, Kaplan, Spicer, Stein, and Weigandt [BHK " 16]. Our more modest statistical sample
is in good agreement with theirs.

10.2. Biases in the counts of higher rank curves depending on the reduction modulo p

Fix a prime p and an elliptic curve E over QQ with good reduction at p. Define a,, € Z by
#E(F,) = p + 1 — a,. Inspired by random matrix theory, Conrey, Keating, Rubinstein,
and Snaith [CKRS02, Conjecture 2] conjectured that among even quadratic twists E4, the
ratio of the number of (analytic) rank > 2 twists with (%) = 1 to the number of (analytic)

rank > 2 twists with (%) = —1 tends to ,/ ZE—;Z}’Z.

We can give a different argument for this conjecture, based on the heuristic that
the “probability” that /T[Ty = 0 should be inversely proportional to the width of the
range in which the integer /Il lies. Specifically, when we solve for /Il in the
Birch and Swinnerton-Dyer conjecture, the only systematic difference depending on
(%) we expect is in the local L-factor L,(Eg4, s), which, for (%) = =+1, is L[f(s) =

(1Fayp~ +p'=2)"" Since L} (1)/L, (1) = ﬁj}fjﬁ , the probabilities that /ITT = 0
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p+1—-ay
ptltap
this ratio of probabilities.

The fact that such a rank count bias has been observed experimentally [CKRS02]
is further evidence that the methodology in Sections 6-8 of basing conclusions on the
distribution of #I11 is reasonable.

should be in the ratio . The ratio of the counts of rank > 2 curves should equal

11. Further questions

The model in Section 7.1 will yield more predictions about ranks and Shafarevich—Tate
groups of elliptic curves if we can prove the corresponding statements about the functions
(tky, III';) gee of random alternating integer matrices.

11.1. The density of rank 0 elliptic curves whose Shafarevich—Tate group belongs to a
specified class

For any subset G € &, Corollary 7.2.6(c)(2) determines the density u({E : IIT’; € G} |
tklz = 1) (with probability 1). The analogous problem for rk’; = 0 is of a different nature
since each G € G arises with density O (Corollary 7.2.6(d)), so it may be unreasonable to
expect the density to exist for all of the uncountably many G in this case, but one can still
ask about specific G.

When G is the set of squares of cyclic groups, Corollary 7.2.6(d)(2) gives the den-
sity of E with IIT}; € G (with probability 1). In contrast, consider G := {G € & :
V#G is squarefree}. The squarefree condition can again be checked one p at a time, but
this time the reductions modulo p lie on a codimension 1 subscheme unfortunately, and
the condition instead is about squarefree values of the Pfaffian. This means that in order
to apply the Ekedahl sieve, we would need results on squarefree values of a multivariable
polynomial. There is a well-known heuristic, that the density of squarefree values is the
product over p of the density of values not divisible by p?, but making this rigorous in
general seems to require the abc conjecture [Grab, Poo03] (and in the multivariable case
the results use a nonstandard way of counting, involving a nonsquare box). Thus, although
it is clear what to predict for the density of E such that /#ILI(E) is squarefree among all
rank O elliptic curves, it is not clear that we can prove the corresponding statement about
matrices.

11.2. Asymptotics for rank 0 elliptic curves with specified Shafarevich-Tate group

It is conjectured that for each G € &, the density of rank O curves E with III(E) ~ G
is 0: see Remark 5.3.4 and consequence (iv) of Section 8.1. But one can ask a more precise
question:

Question 11.2.1. Given G € &, what is the asymptotic growth rate of #{F € <p :
rk E(Q) =0and II(E) >~ G} as H — o0?
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The literature contains contradictory conjectures even on whether the set of rank 0 curves
with III(E) ~ G is finite:

(a) Elkies [Elk02, Section 3.2] (in a family of quadratic twists) and Hindry [Hin07, Con-
jecture 5.4] (in general) made conjectures implying that L(E, 1) > H~°() when-
ever L(E, 1) # 0. Combining these with Theorem 6.4.2(a) would imply condition-
ally that #ITII(E) > H'/127°0) for all rank 0 curves, so only finitely many rank 0
curves would have III(E) ~ G. (Hindry, however, no longer believes his conjecture:
see [HP16, Observations 1.15(b)].)

(b) Watkins [Wat08a, Section 4.5], on the other hand, considers it likely that among el-
liptic curves with root number +1, the outcome IIly = 1 is about as common as
Iy = O (that is, rk E(Q) > 2). The numerical data in [DJS16, Section 11] for a
family of quadratic twists supports this guess.

We suspect that (b) is the truth, and more precisely that for each G,

#HE € &-p 1k E(Q) = 0 and III(E) ~ G} = H'9/%+o0), (11.2.2)

Dabrowski, Jedrzejak, and Szymaszkiewicz have formulated an analogous conjecture for
their family of quadratic twists [DJS16, Conjecture §].

This raises the question of whether the analogue of (11.2.2) for (1k, HJ’E) can be
proved. This has not been done, but [DRS93, Example 1.7] answer a closely related ques-
tion by counting A € M,,(Z)a1r, <x with #(coker A) equal to a given integer, instead of our
finer question about coker A being a given group.

11.3. The distribution of the normalized size of the Shafarevich-Tate group of rank 0
curves

Question 11.3.1. Does the uniform probability measure on the finite set
#IL(E)/H'/"? . E € &<y, Tk E(Q) = 0}
converge weakly to a limiting distribution on R>g as H — 00?

Our model would predict an answer if X (H) and n(H) were specified precisely instead
of requiring only X (H)"") = H1/12+o(1) Byt the limiting distribution, even if it existed,
would not be robust: for example, it would probably change if we sampled integer matri-
ces from a sphere instead of a box. We see no reason for favoring any particular shape, so
we view our model as being insufficient for answering Question 11.3.1.

11.4. The distribution of the Shafarevich—Tate groups of curves of rank r > 2

For r € {0, 1}, Corollary 7.2.6(b) determined that the distribution of III’;[p*>°] condi-
tioned on rkl; = r agrees with Delaunay’s predictions for the actual III(E)[p°]. Can
we refine the calculations of Section 9 to determine the distribution for » > 2? As men-
tioned in Remark 7.2.4, it may very well be that the distribution differs from Delaunay’s
prediction for r > 2.
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We can also ask about the whole group II1’; instead of only one p-primary part at a
time. Is it true that foreachr > 1l and G € G,

w{E € & : Iy ~ G} | 1Ky =r)
=[[r(E € & : ML[p™1 >~ G[p™} | Ky =r) > 0?
V4

We proved this for r = 1: see Corollary 7.2.6(c)(1).

11.5. Higher rank calibration

Question 11.5.1. Would using an upper bound on III(E) for rank r curves for some fixed
r > 1 instead of r = 0 have led to the same calibration of X (H)")?

The answer to this question is not necessary for our model, but a positive answer could
be viewed as further support for it. Many of the necessary ingredients are in place:

1. The Riemann hypothesis for L(E, s) implies L(’)(E, 1) <, N < go) where N
is the conductor (use the proof of [CG06, Theorem 1] to bound L(E, s) on a circle of
radius 1/log N containing 1, and apply the Cauchy integral formula for L") (E, 1)).

2. Lang’s conjectural lower bound for the canonical height of a non-torsion point [Lan90,
Section 7] implies that the regulator is > H°". Hindry and Silverman [Sil81, HS88]
have made significant progress towards this conjecture.

3. Bounds on the Tamagawa numbers, torsion, and real period are as in Section 6.

4. Substituting these into the Birch and Swinnerton-Dyer conjecture yields a conjectural

0
upper bound #II1(E) < H'/12+°M for all E of rank r.

5. On the matrix side, for fixed n and r, all A € M, (Z)a,<x of corank > r satisfy
#(coker A)iors K X" " as X — o0.

6. Matching these upper bounds with n — 0o would yield X (H)"H) = H1/12+0(1) 45
before.

But ITI(E) for r > 11isusually small (at least conjecturally, as discussed in Remark 5.3.4),
as is #(coker A) s for r > 1, so it is unclear whether the rare events of a large III(E) or
a large #(coker A)ors occur frequently enough to make these upper bounds sharp. Hence
the answer to Question 11.5.1 is not clear.

12. Generalizing to other global fields

Fix a global field K. Let &k be a set of elliptic curves over K representing each iso-
morphism class once. Let Bx = lim SUPEegy rk E(K). Thus Bk, if finite, is the small-
est integer such that {E € &k : tk E(K) > Bk} is finite. Section 8.2 suggests that
20 < Bg < 21 (in rank 21, the model could go either way depending on the sign of the
function implicit in the o(1) in the exponent). A naive generalization of our model (see
Section 12.2) would suggest that 20 < Bg < 21 for all global fields K.
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12.1. Subfield issues

But there is a problem. Some elliptic curves E over K may have extra structure that our
model did not take into account. For example, if E is a base change of a curve over a sub-
field Ko € K such that K /K is Galois, then the group G := Gal(K/Ky) acts on E(K)
and III(E). The exploitation of such curves E leads to the theorems of Section 12.4,
which show in particular that there exist number fields K making B arbitrarily large.

This makes it clear that separate models are needed to describe such curves. Analo-
gously, Cohen and Lenstra in [CL84, §9, III] observed that class groups of cyclic cubic
extensions are not just abelian groups but Z[¢3]-modules and should be modeled as such.
If E descends to a subfield K¢ such that K /K is not Galois, the relevance of the extra
structure is not as obvious, but it still may be that a separate model is needed as it is in the
Cohen-Lenstra—Martinet heuristics for class groups of arbitrary fields [CM90].

We will not attempt here to construct a model for every possible situation. Instead we
restrict attention to the set & consisting of E € &k such that E is not a base change of a
curve from a proper subfield. Let By := limsupg, &2 rk E(K).

12.2. Heuristic for global fields

If K is a number field, let S be the set of archimedean places. If K is a global function
field, let S be any nonempty finite set of places. In asymptotic estimates below, we view
K and § as fixed; e.g., X < 1 would mean that X is bounded by a constant depending
on K and S. Let Ok _s be the ring of S-integers in K. For simplicity, we assume that
Cl Ok s is trivial. (If one does not want to enlarge S to ensure this, one can use the
finiteness of C1 Ok s to verify that the estimates remain valid up to bounded factors.) If
v is a nonarchimedean place of K, let O, C K, be the valuation ring. For each place v
of K, we fix a Haar measure p,, on K, : if v is archimedean, let , be Lebesgue measure;
if v is nonarchimedean, choose (., so that u,(O,) = 1. For a € K,, let |a|, be the factor
by which multiplication-by-a scales u,. For simplicity we assume char K # 2, 3 from
now on; minor modifications would be needed to handle the general case.

Each E € &k is represented by an equation y> = x> + Ax + B with A, B € K
uniquely determined up to replacing (A, B) by (A*A, A°B) for » € K*. Choosing A
judiciously lets us assume that A, B € Ok _s. Since Cl Ok s = {1}, we may also assume
that for every v ¢ S we have v(A) < 4 or v(B) < 6. The only remaining freedom is to
scale (A, B) using a A in (’);;S. For v € S, define ht, E = H, := max{|4A3|,, |27B2|,)}.
By the product formula, the height ht E = H := [],.g Hy € R~ is independent of the
scaling. Our model for rk E(K) is the same as for QQ, with X" to be related to this new H.

Let A := —16(4A% +27B%) € Ok 5. Let w := ‘;—;‘. Let Q, := fA(KU) |wyly € Rag.
Let Q := [],cg ©2v. Essentially the same argument as in Section 6.1 shows that

H V2 « @, « H V2 10g(H, /|Aly). (12.2.1)

By the product formula, [],cglAl, > 1, s0 Y  glog(Hy/|Aly) < log H. By the
AM-GM inequality, [ [,cqlog(Hy/|Aly) < (log H )#S . Therefore, taking the product of
(12.2.1) over v € S yields Q = H~!/12+o(D),
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For v ¢ S, the Tamagawa factors ¢, may be bounded in terms of v(A), so []cy
< H°W as before. By [Mer96], #E (K )iors < 1.

Let Ls(E, s) be the L-series of E with the Euler factors at v € S omitted. We assume
that Lg(E, s) admits an analytic continuation to C with Ls(E, 1) > 0, and that the
average of Lg(E, 1) over E € &k is ; 1. Define 111 as before.

The Birch and Swinnerton-Dyer conjecture [Tat95, Conjecture (B)] implies that

H_I()(E) Q HU¢S Cy
HE(K)iors

Ls(E. 1) =35

where § is a constant depending only on K (and our choice of measures (). As before,

we obtain Averagegc g, _, llo(E) L g2 o g oo, which suggests the same
calibration X"/2 ~ HY12 5 for Q.

Next we argue that #8x <p =< H>% as H — o0o. For v € S, choose Cy, € Ry
such that ]_[Ue s Cy = H. Parallelotope estimates [Lan94, V.§2, Theorem 1] imply that
the number of A € Ok s satisfying |4A3|v < Cyforallv e Sisx HY3, and similarly
for B; combining these estimates with an elementary sieve constructs < H 5/6 curves,
but some of them may be equivalent under scaling by A € (92’ - If we fix suitably small
constants €, > 0 and remove the elliptic curves satisfying max{|443|,, |27B?|,} < ,C,
for all v € S, then the equivalence classes of those remaining are of bounded size; thus
#Ek <y > H>/S. On the other hand, for suitably large constants M, > 0, geometry
of numbers shows that every E € &k <y is represented by a pair (A, B) € O%’ s such

that max{|4A3|,, |27B?|,} < M,C, for all v € S, so parallelotope estimates imply that
#6x < < [1,(MyC)'P (M, C)' 2 < HOIC.

12.3. Number fields
Let éa;;‘H :={E € &g : htE < H}. If E € & is definable over some Ky C K, then

j(E) € Ky, and this implies nontrivial polynomial equations satisfied by the coefficients
of A and B relative to a basis for K over Q. The fraction of E € & <y for which these
equations hold is asymptotically 0, so #8¢ _,; < #6k <y < H 3/6,

Now the same arguments as for Q suggest 20 < By <21.

Remark 12.3.1. The upper bound By, < 21 must fail for many number fields K, how-
ever, because of certain special families of elliptic curves, as we now explain. Shioda
[Shi92] proves that the elliptic curve E: y> = x> + 3% 4 1 over C(¢) has rank 68. The
coefficients involved in the coordinates of generators of E(C(¢)) are algebraic; let K be
any number field containing them all. Then the rank of E over K () is at least 68. Next,
Néron’s specialization result [Nér52, IV, Théoréme 6] shows that for a in a density 1 sub-
set of K, setting + = a results in an elliptic curve E, € éa;; such that rk E,(K) > 68.
(Néron’s result states only that infinitely many such a exist, but its proof, based on the
Hilbert irreducibility theorem, gives a density 1 set of such a. In fact, by a refinement
of Silverman [Sil83, Theorem C], the specialization map is injective with only finitely
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many exceptions.) These E, fall into infinitely many isomorphism classes over K, so
B > 68.
K -

It still seems plausible that By and Bk are finite for each number field K.

12.4. Number fields with infinitely many elliptic curves of high rank

Using the results of Cornut [Cor02] and Vatsal [Vat03] on Heegner points over anticyclo-
tomic Zp-extensions of imaginary quadratic fields, one can prove the following.

Theorem 12.4.1. There exists an effectively constructible sequence of number fields K
in which [K : Q] — oo and Bg > [K : Q]/2.

Proof. Fix a prime p > 5. Choose an elliptic curve over I, whose trace of Frobenius a,
isnot 0, 1, or 2 (see [Maz84, p. 203] for the relevance of this condition), and lift it to an el-
liptic curve E over Q with good reduction at p. Let N be the conductor of E. By quadratic
reciprocity and the Chinese remainder theorem, we can find an imaginary quadratic field
K satisfying the Heegner hypothesis that all prime factors of N split in K. Let K+, be
the anticyclotomic Z,-extension of Ko, let K, be the degree p" subextension, and let
A = Zp[[Gal(K~/K)]] be the Iwasawa algebra [Maz84, Section 17]. The theorem on
page 496 of [Cor02] implies Mazur’s conjecture [Maz84, bottom of p. 203] that the Heeg-
ner module & (K ) [Maz84, p. 203] is nonzero, and hence is a free A-module of rank 1.
This implies that rk E(K,) > p". (The idea that Heegner points might yield unbounded
rank in anticyclotomic towers is due to Kurchanov [Kur77].) For any prime ¢ splitting in
Ko/Q such that (%) = +1, the twist E satisfies the Heegner hypothesis and its reduction
modulo p has the same a,, so 1k E¢(K,) = p" too. The base extensions to K, of these
twists cover infinitely many K,-isomorphism classes, so Bg, > p" = [K, : Q]/2. O

Call a number field multiquadratic if it is a compositum of quadratic fields. We can obtain
a faster rate of growth than in Theorem 12.4.1 by using multiquadratic fields instead of
anticyclotomic fields:

Theorem 12.4.2. For every n > 0, there exists a degree 2" multiquadratic field K such
that a positive proportion of E € & = &y satisfy tk E(K) > 2" and hence Bx > 2"
=[K : Q]

Proof. For E € &y, let A(E) be its minimal discriminant, and for d € Q* (or Q* /Q*?),
let E4 be the corresponding quadratic twist of E. If G is a finite subgroup of Q* /Q*?, and
K = Q(v/G) is the corresponding multiquadratic field, thenrk E(K) = Y ;. 1k Eq(Q),
as one sees by decomposing the Gal(K /Q)-representation E(K) ® Q.

Given n, the multidimensional density Hales—Jewett theorem of Furstenberg and
Katznelson [FK91, Theorem 2.5] (re-proved by Polymath [Pol12, Theorem 1.6]) shows
that if m is sufficiently large, any subset of I} of density 26% or more contains an affine
n-plane. (The reason for using 26% will be explained later.) Fix suchanm. Letqq, ..., g
be primes congruent to 1 modulo 4 and to &2 modulo 5. Let L := Q(,/q1, . . ., \/Gm)-
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Consider the following conditions on an elliptic curve E € &

(a) E has good ordinary reduction at 5;
(b) E has good reduction at every g;; and
(c) for every prime £ = =1 (mod5) we have ord,(A(E)) ¢ {5, 10, 15, ...}.

Let S be the set of E € & satisfying (a) and (b); this is a positive density subset of &.
Now

1. A method of Wong [Won01] (see [BSZ, Theorem 16]) shows that S contains a family
F’ (a finite union of large families, in the sense of [BSZ, Section 2.3]) of relative
density > 55.01% in S in which the root number is equidistributed.

2. A squarefree sieve shows that at least 99.9% of the curves in F’ satisfy (c) as well
(cf. [BSZ, Lemma 19]); these curves are contained in the set S1(5) of [BSZ, Sec-
tion 3.1].

3. The arguments of [BSZ, Section 3.4] show that at least 19/40 of the curves in this
subfamily have rank 1.

Thus at least (0.5501)(0.999)(19/40) > 26% of the curves in S have rank 1.

Let D be the set of products formed by subsets of {q1, ..., gn}. Foreachd € D, let
Sq :={E4 : E € S}. The same arguments as above show that for each d, the subset Sy is
of positive density in &, and more than 26% of the curves in Sy have rank 1.

Choose ¢ > 0 small enough that £ € &<,y implies E; € &<y for all d € D. For
each E € SN &<cp, call {E4 : d € D} a hypercube. For a positive fraction (independent
of H) of hypercubes H, at least 26% of the 2™ curves in H have rank 1. In each such H,
the choice of m guarantees an affine n-plane consisting entirely of twists of rank > 1;
any one of these twists £ has rank at least 2" over the degree 2" multiquadratic field
K C L corresponding to the orientation of the n-plane. But L has only finitely many
such subfields, so one such K occurs for a positive fraction of hypercubes. These give a
positive fraction of E € &<p for whichrk E(K) > 2". Thus Bg > 2". ]

Remark 12.4.3. The proof of Theorem 12.4.2 produces a finite list of degree 2" multi-
quadratic fields K such that one of them satisfies Bx > 2", but it seems that we cannot
determine effectively which K it is! We can, however, effectively construct their com-
positum L, a multiquadratic field of larger degree such that By > 2".

12.5. Function fields

Let K be a global function field. Tate and Shafarevich [TS67] and Ulmer [Ulm02] con-
structed families of elliptic curves showing that Bx = oo. But the elliptic curves of high
rank constructed are always defined over proper subfields of K. (For example, in [TS67]
the curves are isotrivial and not necessarily constant, but still they are defined over a
proper infinite subfield of K.) Thus By may still be finite.
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