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Abstract We prove a new effective Chebotarev density theorem for Galois
extensions L/Q that allows one to count small primes (even as small as an
arbitrarily small power of the discriminant of L); this theorem holds for the
Galois closures of “almost all” number fields that lie in an appropriate family of
field extensions. Previously, applying Chebotarev in such small ranges required
assuming the Generalized Riemann Hypothesis. The error term in this new
Chebotarev density theorem also avoids the effect of an exceptional zero of the
Dedekind zeta function of L, without assuming GRH. We give many different
“appropriate families,” including families of arbitrarily large degree. To do
this, we first prove a new effective Chebotarev density theorem that requires
a zero-free region of the Dedekind zeta function. Then we prove that almost
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all number fields in our families yield such a zero-free region. The innovation
that allows us to achieve this is a delicate new method for controlling zeroes
of certain families of non-cuspidal L-functions. This builds on, and greatly
generalizes the applicability of, work of Kowalski and Michel on the average
density of zeroes of a family of cuspidal L-functions. A surprising feature of
this new method, which we expect will have independent interest, is that we
control the number of zeroes in the family of L-functions by bounding the
number of certain associated fields with fixed discriminant. As an application
of the new Chebotarev density theorem, we prove the first nontrivial upper
bounds for ¢-torsion in class groups, for all integers £ > 1, applicable to
infinite families of fields of arbitrarily large degree.

Mathematics Subject Classification 11R29 - 11R42 - 11R45 - 11N75

1 Overview

In this paper, we give unconditional effective Chebotarev density theorems for
almost all number fields in certain families of fields, of a strength that previ-
ously required the assumption of GRH. We achieve this by a new method to
control zeroes of non-cuspidal L-functions in families, and we give applica-
tions including the first non-trivial bounds on £-torsion for all £ > 1 in class
groups in infinite families of fields of arbitrarily large degree. Our method
requires only crude bounds on the number of fields in our families, allowing
us to treat families of arbitrarily high degree and more general families than
in [28], which gives £-torsion bounds as a result of very precise counting of
the families.

1.1 Historical introduction

For any fixed number field k£ and Galois extension L/k of number fields,
consider the counting function of prime ideals of bounded norm in Oy and
specified splitting type in L, defined by

L/k
g (x, L/k) == #{p € O : p unramified in L, [%] = ¢, Nmyp < x},
(1.1
in which [LT/k] is the Artin symbol and % is any fixed conjugacy class in

Gal(L/k). A central goal is to prove an asymptotic for w¢ (x, L/k) that is
valid for x as small as possible (relative to the absolute discriminant of the
number field L), which is a regime in which many of the most interesting
applications arise. The celebrated Chebotarev density theorem [75] provides
the main term in the asymptotic,
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An effective Chebotarev density theorem for families 703

mg(x, L/ k) ~ %Li(x), (1.2)

as x — oo, where Gal(L/k) = G and Li(x) = fzx dt/logt. When L =k =
Q, this is the familiar Prime Number Theorem for 77 (x); when L = k, this is
the Prime Ideal Theorem, counting prime ideals p C Oy with Nmy ,gp < x;
when k = Q and L = Q(e*"?/4), this provides Dirichlet’s theorem, counting
rational primes p = a (mod g) with p < x, for any (a, g) = 1.

An effective Chebotarev theorem, conditional on GRH, was proved by
Lagarias and Odlyzko (with an improvement by Serre). Given any field exten-
sion F/Qweletng = [F : Q] and set Dr = |Disc F/Q)|.

Theorem A (Conditional on GRH, [50, Theorem 1.1], [68, Théoreme 4])
There exists an effectively computable absolute constant Co > 0 such that for
any Galois extension L [ k of number fields, if GRH holds for the Dedekind zeta
function ¢; and G := Gal(L/k), then for any fixed conjugacy class € < G
and every x > 2,

€], . 1€
we(x, L/ k) — @Ll(x) < coﬁxl/2 log(Dpx"").

Lagarias and Odlyzko also proved an unconditional result:

Theorem B ([50, Corollary 1.3]) There exist effectively computable absolute
constants C1, Ca > 0 such that the following holds. Let L/k be a Galois
extension of number fields with G := Gal(L/k). If np > 1 then 1 (s) has at
most one zero s = o + it in the region

o>1—(@logDr)~", || <@logDp)~ . (1.3)

This exceptional zero, denoted Py if it exists, is real and simple. For all x >
exp(10n (log D1)?),

% % _
me(x, L/k) — ol < ik + oy exp(—Canj " (logx)'/?),

Gl ~ |G|
(1.4)

with the understanding that the By term is present only if Bo exists.

Theorem A holds for all x > 2. Theorem B requires at least that x > DéO”L,

a power of the discriminant that is too large for many applications. Conse-
quently, citations of the Lagarias-Odlyzko work often use Theorem A and are
hence conditional on GRH. Recent unconditional work that considers lower or
upper bounds for me (x, L/ k) instead of asymptotics also leads to thresholds
for x that are too large for certain applications. For example, [77, Eqn. 1.6],
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[78] prove lower bounds for w4 (x, L/ k) that require x to be as large as a rel-
atively large power of Dy ; upper bounds for w4 (x, L/k) in the classic work
[49, Thm. 1.4] require x > C exp{(log D1 )(loglog D )(logloglog Dy )}, for
some constant C, with improvements e.g. in [21,77].

1.2 New results I: effective Chebotarev theorems

We prove a new effective Chebotarev theorem that includes two breakthroughs:
we remove the term corresponding to the exceptional zero in (1.4), and simul-
taneously we obtain an asymptotic with an effective error term, which in
particular holds for x as small as Di for any small fixed § > 0 (for D
sufficiently large). Both aspects are critical to applications such as our new
bound for £-torsion in class groups. It is unlikely that we could accomplish
these goals for all fields without proving something significant toward GRH;
instead, we prove that within appropriate families of fields, “almost all” of the
fields satisfy such an effective Chebotarev theorem.

We first state an inexplicit, general version of our result for a “family” .% (G)
of fields (precise quantitative statements appear in Theorems 3.3, 3.9, 3.11,
3.13, 3.14, and Corollary 3.16 of Sect. 3). By a family . (G) we mean a set
of degree n extensions K /Q with corresponding Galois closures K /Q having
Gal(K /Q) =~ G for a fixed transitive subgroup G C S,,. We use .% (G; X)
to denote those fields K € % (G) with Dg < X. We also use Vinogradov’s
notation: A << B denotes that there exists a constant C such that |A| < CB,
and A <, B denotes that C may depend on «.

Theorem 1.1 Fix an appropriate family % (G) (described explicitly in
Sect. 1.2.1), and constants A > 2 and ¢ > 0. Then there exist constants
0 < 1t < B and k1,k2,k3 > 0, such that for all X > 1 we have
|.Z(G; X)| > XP, and aside from at most Lz.Ae XU possible excep-
tions, each field K € %#(G; X) has the property that for every conjugacy
class € C G,

T i P I A
g (x, K/Q) — ﬁLl(x) = ﬁ(log—x)"" (1.5)
for all
x > k1 explka(loglog(D}))* (ogloglog(D )7} (1.6)

In comparison to Theorem B, for each field to which this result applies, this
theorem removes the effect of the possible exceptional zero on the error term,
and holds for x as small as an arbitrarily small power of Dg (and hence of
Dg), capabilities critical for many applications.

@ Springer



An effective Chebotarev density theorem for families 705

1.2.1 The appropriate families of fields

In general, we construct a set (or “family”) of fields as follows. For a number
field k, we let

Z,k,G; X)={K/k:K C Q, deg K/k =n,Gal([€/k) ~ G,
Nmy qDisc K /k < X},

where K is the Galois closure of K over k, the Galois group is considered as a
permutation group on the n embeddings of K in @, and the isomorphism with
G is one of permutation groups. Welet Z,,(k, G) = Z,,(k, G; c0). For our main
results we will work over @, and study families of the form Z;lﬂ (Q, G; X),
defined to be the subset of those fields K € Z,,(Q, G; X) such that for each
rational prime p that is tamely ramified in K (i.e. those p not dividing any
of the exponents of their factorization into prime ideals in the ring of integers
of K), the inertia group in Gal(K /k) of every prime ideal g of K dividing p
is generated by an element of ., where .# specifies one or more conjugacy
classes in G. The use of ramification restrictions will play a large role in our
method of proof.

The most general families we treat are degree n extensions with square-free
discriminant, which are a positive proportion of all degree n fields forn < 5,
and conjecturally so for n > 6. (These families are recorded in entries (3),
(4), (6) in the lists below; square-free discriminant corresponds to .# being
transpositions, as explained in Sect. 2.3.) We give further examples to show
the range of the method. We prove, unconditionally, that Theorem 1.1 applies
to the following families Z;” (Q, G) of fields:

(1) G acyclic group of order n > 2, with .# comprised of all generators of G
(equivalently every rational prime that is tamely ramified in K is totally
ramified).

(2) n = p anodd prime, G = D, the order 2 p dihedral group of symmetries
of a regular p-gon, .# being the conjugacy class of order 2 elements.

(3) n =3, G ~ 83, .7 is transpositions.

4) n=4, G >~ 84, .7 is transpositions.

(5) n =4, G ~ Ay, # the two conjugacy classes in A4 of order 3 elements.

This is the content of Theorem 3.3. Note for family (2) that asymptotic counting
of the fields is essentially equivalent to knowing the exact average size of p-
torsion of class groups of quadratic fields (and thus is open and very difficult).
Our method does not require this counting.

We furthermore prove, conditional on the strong Artin conjecture and (in
some cases certain hypotheses for counting number fields), that Theorem 1.1
applies to the following families of fields:
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(6) n>5, G~ S,, 7 is transpositions (Theorems 3.9 and 3.11).

(7) n >5,G >~ A, no ramification restriction (Theorem 3.13).

8) G C S, a transitive simple group, no ramification restriction (Theo-
rem 3.14).

In addition, in Corollary 3.16 we record quantitative results for counting certain
types of primes.

1.2.2 The proof strategy

To describe our strategy to prove Theorem 1.1 we define the notion of a §-
exceptional field:

Property 1.2 (6-exceptional field) For a fixed 0 < § < 1/2, a number field
K is 5-exceptional precisely when the Dedekind zeta function of the Galois
closure K of K over Q has the property that $g(s)/¢(s) has a zero in the
region [1 — 8, 11 x [—(log D)*/%, (log D z)*/°].

(Under GRH, no field is §-exceptional for any 0 < § < 1/2.) Our first step
toward Theorem 1.1 is to prove the following (for a quantitative version over
any fixed number field k, see Theorem 3.1):

Theorem 1.3 (Effective Chebotarev for non-§-exceptional fields) For every
integer n > 1, and every transitive group G C S, for every A > 2 and
every 0 < & < 1/(Q2A), there exist real numbers Dy, k1, k2, k3 (depend-
ing on §,n, A) such that the following holds: for any extension K /Q with
Gal(K /Q) ~ G such that D # = Do and K /Q is not §-exceptional, we have
that for any conjugacy class € C G, (1.5) holds for all x satisfying (1.6).

Theorem 1.1 relies on the following crucial step: we prove that within appropri-
ate families, for sufficiently small 8, almost all fields are not 8-exceptional.!
We achieve this by developing a new method for controlling zeroes of cer-
tain families of non-cuspidal L-functions. Previously, work of Kowalski and
Michel [45] provided density results for zeroes within appropriate families
of cuspidal L-functions. But we require zero-free regions for Dedekind zeta
functions of Galois fields, and these correspond (in some cases conjecturally)
to automorphic L-functions that are not cuspidal. This restriction of [45] to
the cuspidal case has been a significant barrier in many previous applications
(such as an effective prime ideal theorem in [17], or [16]; see Remark 5.9). We

1 See also Sect. 4.10 on an unconditional approach to rule out exceptional zeroes in the standard
zero-free region for ¢ (s), and thus remove the By termin (1.4), for extensions with no quadratic
subfields. However, that approach does not rule out the extensions being §-exceptional, and in
particular, does not lead to an effective Chebotarev theorem that can count primes small enough
for our purposes.
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An effective Chebotarev density theorem for families 707

expect that our new approach to proving density results for zeroes in a family
of non-cuspidal L-functions will have many further applications.

Precisely, let G be a fixed transitive subgroup of S, and let pg, p1, ..., ps
denote the irreducible representations of G, with pp being the trivial represen-
tation. Then for each K € Z,(Q, G; X), we may write { ¢ (s) as a product of
Artin L-functions

tp () = ¢ [ [ LGs, pi, K/ Q™. (1.7)

i=1

In particular, consider a set .# (X) of fields K € Z,(Q, G; X) with distinct
Galois closures Ig over Q, and denote the set of Galois closures by .% (X). For
each field K € .% (X) and each representation p » there is an associated cuspi-
dal automorphic representation 7 g of GL(m )/Q (in some cases conditional

on the Strong Artin Conjecture), and then L(s, ”k,j) = L(s, pj, K/Q). For
each 1 < j < s, we let Z;(X) denote the set of cuspidal automorphic rep-
resentations i g of GL(m )/Q associated to the fields KeZ (X) and the
representation p;. We show using [45] that for each j, .Z;(X) has the prop-
erty that aside from at most a possible small “bad” exceptional subset, each
representation w € .Z;(X) is such that its associated L-function L(s, 7r) is
zero-free in an appropriate region. (Of course, if GRH is true, there are no such
exceptional L-functions, but we are working without GRH.) In order to deduce
that amongst the Dedekind zeta functions ¢ (s) for KeZ (X), almost all of
them also possess this zero-free region, we need to build up the products as in
(1.7), and we need to understand the following question: given a representa-
tion w € .Z;(X) (i.e. possibly a “bad” exceptional representation), how many
fields K € %:(X) can have the property that L(s, p;, IE/Q) = L(s,m)?

This is subtle, and relies on delicate properties of the families considered. At
its heart the question is: for a fixed irreducible representation p; of G, for how
many fields K, K, € #(X) C Z,(Q, G; X) can we have L(s, p;, 151/(@) =
L(s, pi, K> /Q)? We transform this into a question of counting how many
fields K1, K» € .#(X) have fixed fields KT = K1, where H = Ker(p;)
(see Proposition 6.3). A challenge then appears: for certain groups G, is it
possible that such collisions can occur amongst a positive proportion of K €
Z,(Q, G; X)? (If so, a positive proportion of these fields could have g (s)
containing a factor that is not zero-free in the desired region.)

For certain G, the answer is yes (see Sect. 6.3.2). In contrast, we show
that for the groups G and the corresponding families of fields we construct
in our main theorems, the answer is no. Precisely, we define each family
F(X) C Z,(Q, G; X) according to carefully chosen ramification restrictions
on tamely ramified primes, and within these carefully constructed families we
can transform the problem of counting fields that share a certain fixed field into
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a problem of counting number fields of degree n with fixed discriminant. This
method of constructing families of fields so that we can control the zeroes of
associated L-functions by counting number fields is a key innovation of this
paper.

Within our chosen families, by counting fields of fixed discriminant, we
ultimately show that such collisions of the fixed fields must be relatively rare.
We can then prove that aside from at most a possible “small” exceptional
subset of .% (X), each field has the property that its Dedekind zeta function is
zero-free in an appropriate region.

In general, our approach can be seen as a new strategy that vastly gener-
alizes the applicability of the result of Kowalski and Michel to families of
automorphic L-functions corresponding not just to cuspidal automorphic rep-
resentations but also to isobaric automorphic representations. We expect this
new method will be relevant to other problems of interest.

1.3 New results II: counting number fields

Our new effective Chebotarev theorem for families of fields relies on quanti-
tative counts for number fields in two ways. First, we must bound from above
the number of fields in the family that have a fixed discriminant; second we
must bound from below the number of fields in the family with bounded dis-
criminant. In general, such questions lie in the arena of Malle’s conjecture
[52] and the Malle-Bhargava principle [88, Section 10], and many questions
remain open.

Definition 1.4 Within a certain family Z;f (Q, G), we say a subset E has
density zero if for some y > 0 and some c; > 0, forall X > 1,

12/ (@, G; X)I/IENZ/ (@, G; X)| > 1 X”.

Each of our main results takes the form of an effective Chebotarev density
theorem that holds for each field within a family of fields, except for fields
belonging to a possible subfamily of density zero. In all cases, proving an
upper bound for |E N Z;f (Q, G; X)| is a significant part of our new work; in
many cases, proving a lower bound for IZ;l] (Q, G; X)| is also a significant
part of our new work.

For certain of the families of fields we consider, we prove the first recorded
lower bounds. For example, we prove the following general result, from which
we deduce the first lower bound in the literature for | Z, (Q, A,; X)| that grows
like a power of X (Theorem 2.6).

Theorem 1.5 Fixanintegern > 2 and atransitive subgroup G C S,,. Suppose
fX, Ty, ..., T)) € QX, T, ..., Tj] is a regular polynomial of total degree
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d in the T; and of degree n in X with transitive Galois group G C S, over
Q(Ty, ..., Tj). Then, for every X > 1 and every ¢ > 0,

1-1G|~!

1Z0(@, G; X)| 3> 5 X 002 ~°,

Note that a recent paper of Debes [22] proves an analogous result for counting
the degree |G| Galois extensions in ZG|(Q, G; X) rather than the degree n
extensions we consider in Theorem 1.5 (or equivalently, only in the case that
G is simply transitive).

In a different direction, as mentioned above, at a key step of extending
the Kowalski-Michel zero density theorem to our setting (related to bounding
|[E N an (Q, G; X)| from above), we require an upper bound for how many
fields have any given fixed discriminant. To make things precise, we define the
following property (always defining extensions within Q):

Property 1.6 (D, (G, @w)) Let n > 2 be fixed and let G be a fixed transitive
subgroup of S,,. We say that property D,,(G, @) holds if for every fixed integer
D > 1 and for every ¢ > 0 there exist at most K, g.e D1 fields K /Q
of degree n and Gal([g/(@) >~ G such that Dg = D. Moreover, we say that
property Dy, () holds if for every fixed integer D > 1 and for every ¢ > 0
there exist at most K, e DZ ¢ fields K /Q of degree n such that Dg = D.

For appropriate families, we can control | EN Z,lf¢ (Q, G; X)| if we can prove
Property D, (G, @) for a sufficiently small @ . In particular we prove new
results for D4(A4, @), Ds(w), and D'pﬂ(Dp, @), in the latter case assuming
a certain ramification restriction.

The way Property D, (zo) arises in our work on families of automorphic
L-functions appears to be completely new. But it is actually the subject of a
well-known conjecture which occupies a rather central role in number theory.
Specifically, Duke [26, § 3] and Ellenberg and Venkatesh [29, Conjecture 1.3]
conjecture:

Conjecture 1.7 (Discriminant Multiplicity Conjecture) For each n > 2,
D, (0) holds.

Of course, D, (0) holds; for n > 3, much less is known, and results toward
Conjecture 1.7 would have strong implications. First, the “pointwise” counts
encapsulated in Property D, (z) relate to “average” counts for the number
of extensions of degree n with bounded discriminant. In one direction, this is
trivial: Property D,, (=) immediately implies there are at most <, X! T@+¢
degree n extensions of Q with discriminant at most X. It may be surprising
that there is also an implication in the other direction; this has been proved by
Ellenberg and Venkatesh [29, Prop. 4.8].
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710 L. B. Pierce et al.

Second, questions about D, (') are directly connected to questions about
{-torsion in class groups, for primes £. As just one example (see Duke [25]),
quartic fields of fixed discriminant —q (g prime) can be explicitly classified by
odd octahedral Galois representations of conductor ¢, and the number of such
fields can be expressed as in [38] as an appropriate average of the number of
2-torsion elements in the class groups of cubic number fields of discriminant
—q. More generally, as noted in [29, p. 164], if Conjecture 1.7 holds (for all n),
then it implies the main pointwise conjecture, Conjecture 7.1, for upper bounds
for £-torsion in class groups (for all n, £). The way we employ property D, (o)
in the present work is in some sense more efficient, since to study £-torsion
(for all £ > 1) in class groups of degree ng fields we only require information
about D,,(zw) for n = ng, not for all n.

1.4 New results III: applications

We expect that the new effective Chebotarev theorems for families of fields will
have many applications, and we exhibit two. First, we prove nontrivial bounds
for £-torsion, for all integers £ > 1, in class groups of “almost all” fields in
each of the families to which our Chebotarev theorems apply (Theorem 7.2).
In many cases, these are the first ever nontrivial bounds for £-torsion, and in
particular the first that apply to families of fields of arbitrarily large degree.
As a second (related) application, we prove a result on the density of number
fields with small generators, spurred by a question of Ruppert (Theorem 8.2).
Further applications will be described in later work.

1.5 Organization of the paper

In Part I, we state and prove the results we require for counting number fields,
both with bounded discriminant and with fixed discriminant. In Part II, we turn
to the Chebotarev theorems: in Sect. 3 we state quantitative versions of all the
effective Chebotarev theorems; in Sect. 4 we prove the quantitative version
of Theorem 1.3, and in Sects. 5 and 6 we prove the quantitative versions of
Theorem 1.1. In Part III, we treat the two applications mentioned above.

Contents
Part I: Counting Number Fields 710
Part II: Effective Chebotarev Theorems 721
Part III: Applications 767

Part I: Counting number fields

2 Counting families of fields

As described in Sect. 1.3, we require results counting number fields, and we
prove those in this section. Our principal concern is families of the form
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An effective Chebotarev density theorem for families 711

Z{(Q, G; X), defined to be the subset of those fields K € Z,(Q, G; X)
such that for each rational prime p that is tamely ramified in K, an iner-
tia group for p is generated by an element of .#. We require an upper
bound for |Z;lﬂ (Q, G; X)|, which can be an overestimate, a lower bound for
|an (Q, G; X)|, which we aim to make as sharp as currently feasible, and
upper bounds on the number of fields in Zh] (Q, G) of discriminant D.

2.1 Cyeclic fields

The strategy for counting cyclic extensions goes back to Cohn [19]; see [32,
51,87,89] for results counting abelian extensions of arbitrary degree. Let G
be cyclic of order n > 2 and let g denote the smallest prime divisor of . Then
we have (see, e.g. [89]) that

1
1Z,(Q, G; X)| ~ cX /s 2.1)

for a certain constant ¢ = c(n) > 0. We require the following refinement:

Proposition 2.1 (Cyclic groups) Let n > 2 be fixed and let G be a cyclic
group of order n. Let Zn] (Q, G; X) count those fields K € Z,(Q, G; X) such
that every rational prime that ramifies tamely in K is totally ramified in K,
that is, the inertia group is generated by an element that is of full order in G.
Then there exists a constant ¢, > O such that

1
1Z7(Q, G; X)| ~ ¢, X1, (2.2)

Furthermore, Property D, (G, 0) holds.

Remark 2.2 If |G| = n is prime then 1/(n — n/g) = 1/(n — 1). However,
when |G| = n is not prime then Z;f (Q, G; X) is itself of density zero in
Z,(Q, G; X), by comparison of (2.1) and (2.2).

Proof Let a; = 1 and for m > 2, let a,, be | Aut(G)| times the number of
fields counted by Z;,f (Q, G; X) with absolute discriminant m. We define a
Dirichlet series A(s) = Y apm~—*, and by class field theory and now
standard arguments we have

m>1
A)y=P@s) ] A+¢mp ", (2.3)
p=1(modn)

where P (s) is a product over p|n of polynomials in p~*. Briefly, by class field
theory we are counting certain homomorphisms from the idele class group to
G, by [87, Lemma 4.2] we can replace the idele class group with a product
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of p-adic units, and then we can easily count the local homomorphisms (see,
e.g. [87, Section 4], for a similar analysis in a more difficult case).

When a,, is non-zero, we have a,, < quS(n)“’(m) where w (/) is the number
of distinct prime divisors of m and C,, is a constant depending only on x. (In
particular, C,, can be bounded above by the sum of the absolute values of
all coefficients of the polynomial factors in the finite product P(s).) Thus
am K, m® for any € > 0, proving Property D, (G; 0).

For comparison to A(s) we consider the product B(s) over all Dirichlet
characters defined modulo 7, given for 3i(s) > 1 by

B)=[]ees =[]0 -xpp™"
X X P

which has a pole of order 1 at s = 1 and otherwise may be analytically contin-
ued as a holomorphic function. Writing the Euler product as [ | pHp(s)” ! note
that u,(s) =1 — Zx x(P)p~* + O(p~%); by orthogonality of characters,
the coefficient ) 4 X(p) = ¢(n) if p = 1 (modn) and zero otherwise. We
can then check that A(s)/B((n — 1)s) is holomorphic in % (s) > 2n —1))~".
Thus A(s) has a meromorphic continuation in %(s) > (2(n — 1))~! with only
a simple pole at s = (n — 1)~ !; moreover A(s) inherits a standard convexity
estimate from B(s) (see e.g. [42, Lemma 5.2, Thm. 5.23]). So, by the main
term in a standard Tauberian theorem (see for example [18, Thm. A.1] and
[60, Section 6.4]), we have

127, G: X)| = en XD 4 o(x /-1y,

for a certain constant ¢,,. O

2.2 Dihedral groups D),

For p an odd prime, let D, be the order 2p group of symmetries of the
vertices of a regular p-gon. Kliiners [43, Theorem 3.5] obtained the lower
bound |Z,(Q, D,; X)| > X2/(r=1) predicted by Malle’s conjecture [52].
Kliiners also showed that Malle’s conjectured upper bound X2/ (P~D+¢ follows
from a special case of the Cohen-Lenstra heuristics [43, Thm. 2.5], as well as
proving [43, Theorem 2.7] an unconditional upper bound | Z, (Q, Dp; X)| <,
X3/(r=D+¢_This has recently been improved by Cohen and Thorne [20, Thm
1.1], based on nontrivial bounds of [28] for averages of £-torsion over quadratic
fields, to

3 1
1Z,(Q, Dp; X)| e X7 1 200+, (2.4)
p p

@ Springer



An effective Chebotarev density theorem for families 713

We require a lower bound that includes a ramification restriction. We let
Property Dl{ (D), @) be the analog of Property D, (D, ) in which we only
count D ,-fields and with the ramification restriction .# for all tamely ramified
primes.

Proposition 2.3 (Dihedral group D, of order 2p) For p an odd prime,
let Dy act on the p vertices of the regular p-gon in the usual way, and
let Z‘f(@, D,; X) count those fields K € Z,(Q, D,; X) with the follow-
ing ramification restriction %: every rational prime that ramifies tamely
in K has inertia grouplgenegated by an element in the conjugacy class
[(22p)(3 p— 1 (55 2] of reflections. Then |Z; (Q. Dy X)| >

X T,
Further, D'If (Dp, 1/(p — 1)) holds. More generally, if we know that for all

quadratic fields L we have |Cl.[p]| = O, (DIZ)for a certain exponent b > 0,
then D7 (D, 2b/(p — 1)) holds.

Note: here we use the notation Clz [ p] to denote the p-torsion subgroup of the
class group Cl, of the field L/Q; see e.g. (7.1) for the definition.

2.2.1 Proof of the upper bound

Next we count degree p D -fields with a fixed discriminant. We may trivially
state that D,,(D,,, @) holds with@m = 3/(p — 1) — 1/p(p — 1), by applying
(2.4). We improve on this by only counting fields with a fixed discriminant
and using our additional ramification restriction.

Let K € Z},] (Q, Dp) be a degree p D)-field with absolute discriminant

D. Let K be the Galois closure of K and L be the quadratic field inside
K, so K/L is a cyclic p extension. Our ramification restriction implies that
K /L is unramified except perhaps at primes dividing 2p. We have, by our
ramification restriction, that |Disc K| = 2¢p?QP~D/2 where Q is square-
free and relatively prime to 2p. Then |Disc L| = 2¢ p? Q for some a’, b’ that
are bounded in terms of p. Thus, given D, there are a constant (in terms of p)
possible quadratic fields L, and for each of them we will count the possible
cyclic p extensions K /L that could arise.

Let J1, be the idele class group of L. For a finite place v of L, let O, be the
elements of non-negative valuation in the completion L,, and for an infinite
place v let O, = L,. From the exact sequence [[, O} — J, — Clp — 1
[61, Ch. VI Prop. 1.3] (where the product is over all places of L), and the
left-exactness of Hom;(—, Cp), we have an exact sequence

1 - Hom(Cly, Cp) — Home;s(J1, Cp) — Homers ([ [ OF. C)).
v
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where we can take the product just above over finite places v of L, since
there are no continuous homormorphisms from R* or C* into C, for p
odd. Our desired C)-extensions of L correspond via class field theory to
elements of Hom.s(Jr, Cp) that for each v { 2p map O} to the iden-
tity, since they are unramified at such v. Thus the number of possible
images in Homm(]_[v O3, C)p) for our desired elements of Hom(Jr, Cp)
is |Hom(]_[v|2p O3, Cp)|. The number of v | 2p is at most 4 since L is
quadratic. Since L, is either Q, or Q; or quadratic over Q, or Q, (and
there are only finitely many possibilities for the latter), the number of homo-
morphisms from O} to C, for v | 2p is bounded in terms of p. Also,
| Hom(Cly, Cp)| = |Cl.[p]|. Note Disc L = O,(|Disc K |¥P~D). So if we
assume |Clz[p]| = OP(IDiscLIb), then the number of possible K, and thus
the number of possible K, is Op(DZb/(p_l)).

2.2.2 Proof of the lower bound

Given a quadratic field L, if Clz[p] is non-trivial, class field theory gives an
unramified cyclic degree p extension L’/L. The group Gal(L/Q) = (o) acts
on Cl, by inversion (since for an ideal a of L, we have that ao (a) is principal).
It follows that L'/Q is a degree 2p D ,-extension, with all inertia trivial or in
a subgroup generated by a reflection.

Now given an imaginary quadratic field L with units =1 such that Cl; [ p]
is trivial and p splits completely in L, we we will show by other means that
we still can obtain a degree 2p D ,-extension L’/Q containing L, and with
our required ramification condition. We will construct a surjection ¢ from J,
to the cyclic group C, of order p. Let vy, vy be the two places of L above
p- We let ¢, : Oy — C,, be any surjection. We let ¢y, : Oy, — C), be
defined by ¢, (u) = ¢y, (o)1, At every other place v # vy, vy, we let
¢y : Op — C), be trivial. Then at each place v, we pick an element o, € L
that has valuation 1 at v and valuation divisible by p at all other places (which
we can do since Cly [p] is trivial). We extend ¢, to ¢, : L} — C), by letting
by (oty) = ]—[w#v buw (o)~ L. The ¢y combine to giveamap ¢ : [[, L} — Cp,
that is trivial on the diagonal embeddings of pth powers, the «,, and units.
These elements generate L* (since Cl[p] is trivial), and so ¢ descends to
amap ¢ : J — Cj,. We can check that it follows from our definitions that
¢ (0 (x)) = ¢(x)~!. Werecall from class field theory that the Artin map for L is
equivariant for the usual action of Gal(L /Q) on J;, and the action of Gal(L/Q)
on Gal(L%’ /L) given by conjugation by a lift in Gal(L*/Q) [74, Thm 11.5
(1)]. So since ker ¢ is Gal(L /Q) invariant, it follows from Galois theory that the
degree p cyclic extension L’ of L corresponding to ¢ (from class field theory)
is actually Galois over Q. Since p is odd, we have that Gal(L’/Q) is a semi-
direct product Gal(L'/L) x Gal(K /Q), and the action of Gal(K/Q) on the
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index p subgroup Gal(L'/L) given above shows that Gal(L'/Q) >~ D,,. Since
L'/L has no tame ramification by choice of the ¢, |o;, all tame ramification
of L’/Q has inertia in the subgroup of a reflection.

So for all but finitely many imaginary quadratic fields L in which p splits
completely, we have constructed a degree 2p D ,-extension L’/Q containing L
with our required ramification condition, which in particular contains a degree
p Dp-extension K. At primes £ 1 2p of Q, the exponent of £ in Disc K is
(p — 1)/2 if £ is ramified in L and O otherwise. So we have that Disc K is
within a constant (depending on p) factor of (Disc L)(P=D/2 Since we have
>, X of these quadratic fields L, we conclude we have >, X 2/(r=D fields
counted by Z}fl(Q, Dp; X).

2.3 Symmetric groups S,

Our work on S, -fields requires understanding the size of Z;f (Q, S,; X) with
& = [(1 2)]; this is equivalent to requiring that the tamely-ramified part of
Dk is square-free. This is a consequence of a standard fact (see Lemma 6.9)
that p is tamely ramified in K with inertia group generated by a transposition
if and only if p||Dg. We record for n = 3, 4, 5, that by work of Bhargava [7,
Theorem 1.3],

12,/ (Q, Su; X)| ~ cnX. (2.5)

By the asymptotic counts of S3-fields due to Davenport and Heilbronn [23]
and Ss-fields and Ss-fields due to Bhargava [4,6], the fields in Z;f (Q, S,) are
a positive proportion of all S, fields for n = 3, 4, 5. Moreover, it is conjec-
tured by Malle [52] and Bhargava [5,7] that asymptotics of order X hold for
ZZ(@Q, Sy; X) and Z,(Q, Sy; X) when n > 6.

For symmetric groups S, with n > 6, the best proven results are much
weaker. For n > 2, we have an upper bound of Ellenberg and Venkatesh [30]
on all degree n number fields Z, (Q),

1Z,(Q; X)| < (o, X)XP(CVlogn), (2.6)

where o, is a constant depending only on n and C is an absolute constant.
The best known lower bound for S,-fields is |Z,(Q, Sy; X)| >, X!/2+1/»
by Bhargava, Shankar and Wang [11, Thm. 1.3], and importantly for us, all
of the fields they construct to deduce this new lower bound have square-free
discriminant. As a consequence, for alln > 6 and . = [(1 2)],

1Z7(Q, Su; X)| 3>, X/2Hm, 2.7)

We also require upper bounds on S,,-fields of a fixed discriminant, and we
state the best known results here. Ellenberg and Venkatesh [31, p. 1] prove
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Property D3(S3, 1/3). Kliiners [44] proves Property D4(S4, 1/2). From Bhar-
gava’s count for quintic fields, we may trivially deduce that D5(Ss, 1) holds.
For our work, knowing D5(Ss5, @) for any @ < 1 would suffice, so we make
the following simple observation:

Proposition 2.4 Property Ds(w) holds for w = 199/200.

This follows immediately from the power-saving count for quintic Ss-fields
proved by Shankar and Tsimerman [72] (see also the power-saving count for
all quintic fields in [28, Thm. 2.4]). Indeed, letting Zs(Q; X) denote all quintic
fields with Dg < X, we have a constant ¢s, > 0 such that

|ZS(Q; X)| = c5,X + 08(X199/200+g)

for every ¢ > 0, so that upon differencing this for X = Dand X = D — 1,
Proposition 2.4 follows.

2.4 The alternating group A4

For Ay, it is known by Baily [3] that the lower bound conjectured by Malle
[52] holds, |Z4(Q, Ag; X)| > XY2 and by Wong [86] that a weaker upper
bound holds,

1Z4(Q, Ag; X)| < X/0F¢, (2.8)

We require a lower bound that includes a ramification restriction and an
upper bound for fields of fixed discriminant.

Proposition 2.5 (Alternating group A4) Let Z f (Q, Ay; X) count those fields
K € Z4(Q, Ay; X) such that every rational prime that ramifies tamely in K
has inertia group generated by an element in either of the conjugacy classes
{(123),(134),(142),243)}or{(132),(143),(124),234)}. Then
|Zf(@, Ag; X)| > X2, Moreover, Das(As, @) holds for w = 0.2784 . . ..

Property D4 (A4, @) was previously known for @ = 3/4 due to Wong [84,
Thm. 6], but this is not small enough for our purposes.

2.4.1 The upper bound

To show that D4(A4, @) holds with @ = 0.2784..., we will apply Baily’s
connection [3] of A4 fields to certain quadratic ray class characters of cyclic
cubic fields, in combination with the bound on the 2-torsion in class groups
of cubic fields due to Bhargava, Shankar, Taniguchi, Thorne, Tsimerman, and
Zhao [10]. We thank Manjul Bhargava for suggesting this approach.

Let K4 be a quartic A4-field of discriminant D. Let K3 be the fixed field
of the subgroup of A4 generated by {(1 2)(3 4), (2 3)(1 4)}, and note that
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K3 is cyclic cubic. We can check using Lemma 6.9 that tame rational primes
with inertia type in the conjugacy class of (1 2)(3 4) appear squared in the
discriminant of K4 and do not appear in the discriminant of K3. Similarly,
tame rational primes with inertia type in the conjugacy class of (1 2 3) appear
squared in the discriminants of both K4 and K3. So Disc K3 | 2¢3”Disc K4,
for some absolute positive integers a, b.

Let K¢ be one of the (conjugate) sextic subfields of the Galois clo-
sure of K4. Note that K4 and K¢ have the same Galois closure, and so to
count K4 we may equivalently (up to a fixed constant) count the associ-
ated K¢. By [3, Lemmas 13 and 15] we have that K¢ = K3(b1/2), where
be O, \{ZU O%{g} and N, /(D) is a square rational integer. We have that
Nk, /o(Disc (Kg/K3)) = Disc K4/Disc K3 (see [3, Lemma 11]).

Now, we sum over each divisor d of 293”D the number of quartic A4-
fields K4 of discriminant D with Disc K3 = d. There are O (2°¢)) cyclic
cubic fields of discriminant d [19]. Given a fixed cyclic cubic field K3 of
discriminant d, for an upper bound, it suffices to bound the number of sextic
fields of the form K3(b'/?), where b € Ok, \ {Z U (9%3} and Nk, q(b) is a
square rational integer. We do this following the argument in [3, Lemma 10].
Such a sextic field corresponds to a quadratic ray class character of conductor
0 with finite part 0* = Disc (K¢/K3), and such a character is a product of a
character on (O, /0*)*, a character on the class group of K3, and a character
on signature (see [3, (4)]). Baily [3, Lemma 8] describes the possible forms
of 9, and in the proof of [3, Lemma 9] gives a generating function for all the
primitive quadratic characters on (O, /0*)*. From this it follows there are
0 (32 (P/4)) choices of * with characters on (O K5/0%)” such that we will have
Disc (K¢/K3) = D/d. Let ho(K3) denote the size of the 2-torsion subgroup
of the class group of K3. There are at most 4, (K3) class group characters,
and hy(K3) = O, (d0278%te) by [10, Equation (4)]. There are at most 8
characters of signature, and so in conclusion, there are at most

0, Z 2w(d)3w(D/d)d0.2784.,.+8 — 0€(D0.2784...+8)
d|D
quartic A4-fields of discriminant D.
2.4.2 The lower bound
The lower bound on the number of quartic A4-fields with our required rami-
fication condition follows from the proof of [3, Theorem 3]. As stated in line
2 of the proof of [3, Lemma 16], the degree 6 fields K¢ constructed by Baily

are unramified over the relevant degree 3 cyclic field K3, except perhaps at
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primes of K3 dividing 2. These fields K¢ have Galois closure K1, of degree
12 with Galois group A4. The fact that K¢/ K3 is unramified except at primes
of K3 dividing 2 means that for each odd rational prime p the inertia groups
of p in Gal(K1,/Q) must be trivial or generated by a three-cycle. The same
holds for p = 2 if the primes of K3 that divide 2 are unramified in K¢/K3. If
a prime dividing 2 is ramified in Kg/K3, it is wildly ramified, and thus 2 in
wildly ramified in K.

2.5 The alternating groups A, and proof of Theorem 1.5

The fact that forn > 5, A, is a simple group will make a later part of our
argument much simpler, but on the other hand we require a lower bound for
the number of degree n A, -extensions of Q with bounded discriminant, which
was not previously in the literature. We prove:

Theorem 2.6 (Alternating groups A,, n > 3) For each integer n > 3, there
exists a real number B, > 0 such that for all X > 1, for every ¢ > 0,
1Z(Q, An; X)| >n. XPr—8. In fact we may take B, = (1 — 2)/(4n — 4).

We first observe that Theorem 1.5 implies Theorem 2.6 when we specialize
G to A,. For each n > 3, Hilbert [40] gave polynomials f(x,?) € Q[x, ]
that have Galois group A, over Q(¢) and are degree n in x and degree 2 in
t. (Hilbert in turn credits Hurwitz with the examples: see [40, p. 125] for n
even and [40, p. 126] for n odd; see also [69, Section 10.3].) Moreover, these
same polynomials (by the same argument) have Galois group A, over E(t),
for any number field E, and thus their splitting fields do not contain a non-
trivial finite extension of Q (i.e. they are regular). Thus Theorem 1.5 with
|G| = |A,| =n!/2, j =1,m =n and d = 2 verifies Theorem 2.6.

We now prove Theorem 1.5; we thank Akshay Venkatesh and Manjul
Bhargava for suggesting the approach we use, and for a number of helpful
discussions. The method of proof, in imprecise terms, is as follows. Suppose
that f(x, t) has Galois group G over Q(t), resulting in, say, y different fields
with Galois group G as t varies over all integral tuples with coordinates at most
T in absolute value. Then by showing that f (x, t) f (x, t) typically has Galois
group G x G and very rarely has Galois group G (which occurs when the fields
provided by f(x,t) and f(x,t") collide), we will deduce that f(x,t) must
have produced many different fields to begin with, that is, y must grow at least
like a small power of T'. See also [69, p. 137] for a hint at a similar philosophy
applied to generating infinitely many G-extensions if one such extension is
known.

In order to put this into action in precise terms, we require a quantitative
version of the Hilbert irreducibility theorem, for which we cite [13]:
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Theorem C Suppose f(X,Ti,...,T;) € QIX,Ti,...,T;] is an irre-
ducible polynomial with splitting field K over Q(Ti,...,T;) such that
Gal(K/Q(Ty, ..., Tj)) = G. For any subgroup H C G set

Ni(T; H) =#{t € Z : |t
< T and the splitting field of f (X, t) over Q has Galois group ~ H}.
Then for every T > 1 and everye > 0, Ny(T; H) <f. Ti—1+IG/H| " +e
We also require the following key lemma:

Lemma 2.7 Let f(x,t,...,t;) € Q(t1,...,tj)[x] be a polynomial with
splitting field K over Q(t1, ..., t;) such that Gal(K /Q(t1,...,t;)) =~ G.

Suppose that f(x,t1,...,1t;) is regular, i.e. K does not contain a non-trivial
finite extension of Q. Then f(x,t,...,t;)f(x,s1,...,5;) has splitting field
with Galois group G x G over Q(ty, ..., tj,S1,...,5)).

2.5.1 Proof of Lemma 2.7

We will prove the lemma in the case j = 1; a straightforward extension of
this argument applies to the general case. Let F(x,t) € Q[t, x] be a monic
irreducible polynomial of x with a root 6 that generates K over Q(z). We let
all our splitting fields be in a fixed algebraic closure of Q(s, 7). Then KQ(s) is
the splitting field of f(x, t) over Q(s, t). We will show below thatif G (s, x) €
QLs, x] is a monic polynomial irreducible over Q(s) that generates a Galois
extension of (Q(s) and does not contain a non-trivial finite extension of Q,
then G (s, x) is irreducible over KQ(s). We will see now that this will suffice
to prove the lemma. Applying this in the case where F is trivial, we will
see that G (s, x) is irreducible over Q(s, ), and in particular, analogously we
will see that F(x, t) is irreducible over Q(s, t) and so [KQ(s) : Q(s, )] =
|G|. So if L is the splitting field of f(s, x) over Q(s), then L is generated
by F(s, x), and applying the above with G(s,x) = F(s, x), we see that
[KL : KQ(s)] = |G|. Thus Gal(K L/Q(s, 1)) has order |G|? and injects into
Gal(K /Q(z)) x Gal(L/Q(s)), and so Gal(K L/Q(s, 1)) ~ G x G. Since K L
is the splitting field of f(x, ) f(x, s) over Q(s, 1), this proves the lemma.

Now we show that G (s, x) with the assumptions above is irreducible over
KQ(s). Suppose that G(s, x) factored into a(x)b(x) over KQ(s). We can
write

k

ni(s,t,0) .
a(x) = Z — X!
= di (s, 1)
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where n;(y, z, w) € Qly, z, w] and n;(y, z) € Q[y, z]. (Since 0 is algebraic
over Q(s, t), we can write elements of KQ(s) as polynomials in 8 with coeffi-
cients in Q(s, ), and so we can arrange to have no 6’s in the denominators.) Let
n;i, j(z, w) be the coefficient of yj inn;(y, z, w). Let I, be the ideal in Q[z, w]
generated by all the n; ;(z, w) forall j andfori > 1, and define I; analogously.
We claim that, as ideals of Q[z, w], we have (F(w, z)) D I,I,. Suppose
not. Then there are infinitely many maximal ideals m of Q[z, w] that con-
tain (F(w, z)) but not I, 1. Each such maximal ideal gives values fg, 6y € Q
such that F(6y, tp) = 0, but upon substitution of z — #y and w — 6y, some
element of /, and some element of [, remain non-zero, which gives a non-
trivial factorization of G (s, x) over Q(s) unless some denominator d; (s, 1) is
identically zero (or similarly for the denominators in b(x)). Since only finitely
many f9 can make a denominator zero, and each have a finitely many associ-
ated 6y, we conclude that G (s, x) factors non-trivially over Q(s), and thus over
E (s, x) for some Galois number field E. Since Gal(E (s)/Q(s)) — Gal(E/Q)
is an isomorphism, the subfields of E(s) that contain Q(s) are E’(s) for the
subfields E’ of E. If M is the field generated by G(s, x) over Q(s), then
[ME(s) : E(s)] =[M : M N E(s)]. Since G (s, x) factors non-trivially over
E(s), we have [ME(s) : E(s)] < [M : Q(s)], and thus M N E(s) is a non-
trivial extension of Q(s) inside E(s), and thus contains some number field
E’. In particular M contains a non-trivial number field, which contradicts our
assumption on G (s, x). Thus, we conclude that (F(w, z)) D I;Ip, and thus
(F(w, 2))|141p, and thus either(F (w, z))|1, or (F(w, z))|1Ip, since (F(w, z))
is prime. But this implies that either @ or b has all coefficients 0 except the
constant one, and thus we conclude G (s, x) is irreducible over KQ(s). This
concludes the proof of Lemma 2.7.

2.5.2 Proof of Theorem 1.5

With Lemma 2.7 and Theorem C in hand, we may now prove Theorem 1.5.
Suppose f(X,Ty,...,T}) is a polynomial of total degree d in the T; with
Galois group G over Q(T1, ..., T;) (withdegree nin X). Fort = (11, ..., t}),
we define [t|oc = maxj<¢<; |#], so that there are > T/ possible values of
t € Z/ with |t|c < T. For each t € Z/, let L¢ be the splitting field of
fX,1,...,t;) in @ Let y be the size of the set {L¢ : t € Z/, |t|oo <
T, Gal(L{/Q) >~ G} (note it is possible that different t give the same L¢), and
we also write Ly, ..., Ly for the fields in this set.
Foreach 1 <i <y, suppose A; of the values t have Ly = L;. So
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where A is the total number of values of |t|oc < T with Gal(L{/Q) >~ G.
From Theorem C above, we have that A > ¢ T/, since there are finitely many
subgroups which each appear with an upper bound with exponent strictly
smaller than j.

For eacht € Z2/, let My be the splitting field of f(X, 11, ..., ) (X, tjyg1,
..., 1j). We ask how many t € 73 with [tlo < T have Gal(M;/Q) =~
G? By Lemma 2.7 and the assumption that f is regular, we have that
fX, Ty, ..., T)f(X,Tjy1, ..., Tr;j)hasGalois group Gx G over Q(T1, . . .,
T;). Thus, by Theorem C, the number of t € 73 with |t|se < T and
Gal(M¢/Q) >~ G is K¢ T2i=1+IGI" '+ However, note that this occurs
whenever f(X,1,...,t;) and f(X,tj11,..., ;) have the same splitting
field with Galois group G, and so

. -1
A% 4.+ Ai <<f,8 T2J—1+|G| +8'

By Cauchy-Schwarz, (A1 +---+ Ay)2 < y(A% 4+ 4+ Ag), and we conclude
that

J At Ay)? > T2 _ 116G e

T AT+ +AY

Y € T2SIHIG e

Thus there are > ¢, T1-1GI"'=¢ (gifferent fields with Galois group G that
come from specializations of f(X,Ty,...,T;) to some t with |t|oc < T.
For |t|oc < T, we have that f(X,#,...,1;) is a degree n polynomial in X
with coefficients < s T¢ and thus with absolute discriminant <y 741=2).
Thus L¢ has absolute discriminant < ¢ 792n=2) In conclusion, there are
>re X (-1GI™1=)/@@n=2)) degree n G-fields with absolute discriminant at
most X, completing the proof of Theorem 1.5.

Part I1: Effective Chebotarev theorems

3 Quantitative statements of Chebotarev theorems for families

We now state quantitative versions of our main Chebotarev theorems, starting
with a quantitative version of Theorem 1.3.

Theorem 3.1 (Chebotarev conditional on zero-free region) Let k be a fixed
number field. Fix A > 2,0 < § < 1/(2A), and an integer n > 1. Let G be a
fixed transitive subgroup of S,,. Then there exists Dy > 1 and k1, k3, k3 > 0
such that the following holds: for any Galois extension of number fields L/ k
with Gal(L/k) >~ G such that D; > Dy and such that the Artin L-function
£1.(8)/ Lk (s) is zero-free in the region
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[1—36, 11 x [—(log D)*?, (log D1)*"*], (3.1)

we have that for any conjugacy class € C G,

€] . A
L/k) — —L — 3.2
7o L0 = 16 MO = 16 Tlogaa G2
for all
x = i1 explica(log log(D}))?). (3.3)
If moreover k = Q, (3.2) holds for all
x > iy explica(loglog(D}*))>3 (log log log (D7 ))'/3). (3.4)

Remark 3.2 The parameters Dy and k1, k2, k3 depend on n, |G|, A, 8, and the
field k; they are precisely specified in Remark 4.11 and (4.47), respectively.

We next state, in quantitative form, the cases of Theorem 1.1 that are com-
pletely unconditional.

Theorem 3.3 For each family Zh] (Q, G) specified in items (1)—(5) of the list
below, there exist constants B,d with 0 < B < d such that for all X > 1,

X? <6127 @, G; X)| <n.6.r X°. (3.5)

Moreover, there exists a constant T, with 0 < t, < B, such that for every
T > T4 and every sufficiently small ey > 0, there exists a constant D3 and a
constant

8 = 8(eop, m, |G|d) (3.6)

such that for all X > 1, there are at most D3 X0 §-exceptional fields in
Z;f (Q, G; X); here m is the maximum dimension of an irreducible represen-
tation of G.

Moreover, fix any A > 2. Then for any g9 > 0 such that § as defined in
(3.6) satisfies 5 < 1/(2A), there exists a constant D5 > 1 and constants
K1, k2, k3 > 0 such that for all X > 1, aside from a set E(X) of at most
D5 X T4 possible exceptions, each field K € Z;,ﬁ (Q, G; X) has the property
that for its Galois closure K over Q, for every conjugacy class € < G,

@) €| x

- | :
7o (% K/Q) = T M| = 15 Goa

for all x > k1 exp{xz(log log(D'I?))S/3 (loglog log(D%))lﬁ}.
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The families Z;lﬂ((@, G) are defined by:

(1) G acyclic group of order n > 2, with % comprised of all generators of G
(equivalently, every rational prime that is tamely ramified in K is totally
ramified). In this case |Z,’f(@, G: X)| ~ cy X"V and 7, = 0. (Hence,
the density zero exceptional set E(X) is at most of size <z X¢ for every
e>0)

2) n = 3, G ~ 83 acting on a set of 3 elements, ¥ being the conjugacy
class [(1 2)] of transpositions. In this case, |Z3j((@, S3; X)| ~ ¢3X and
T = 1/3. (Hence the density zero exceptional set E(X) is at most of size
Le X3 for every e > 0.)

(B) n =4, G ~ S4 acting on a set of 4 elements, .9 being the conjugacy
class [(1 2)] of transpositions. In this case, |Zf(@, S4; X)| ~ c4 X and
T = 1/2. (Hence the density zero exceptional set E(X) is at most of size
Lo XV for every e > 0.)

(4) n = p anodd prime, G = D), the order 2p dihedral group of symmetries
of a regular p-gon, .7 being the conjugacy class of order 2 elements. In
this case, for all X > 1,

x2/(p=D <) |ZPJ(Q’ Dy X)| <pe x3/(p=D=1/(p(p=D)+e

and t, = 1/(p — 1). (Hence the density zero exceptional set E(X) is at
most of size K¢ X/ P~V for everye > 0.)

(5) n = 4, G ~ A4 as a subgroup of Sy acting on a set of 4 elements, .¥
comprised of the two conjugacy classes of order 3 elements. In this case,
forall X > 1,

X172 « 12 (@, Ag; X)| < X0,

and t,, = 0.2784.... (Hence the density zero exceptional set E(X) is at
most of size K¢ X0278%¢ for every e > 0.)

Note we have that m < |G|'5 (see [80] for asymptotics when G = §,,).

Remark 3.4 Kowalski and Michel’s result [45, Theorem 2] leads to the choice
5= Sm{GI/;m' Within a ﬁxe;d family Z;,] @Q, G), note'that as we cboose
&o smaller (so that § correspondingly decreases), the density of potential -
exceptional fields decreases, in accord with the fact that the requirement that
{g(s)/¢(s) be zero-free in a box to the right of R(s) = 1 — § becomes less
stringent, and fewer fields would be expected to violate it. Simultaneously,
as § and accordingly the width of the zero-free region decreases, the lower-
bound threshold for x increases, since the explicit expressions given for the
parameters «; grow with 1/§ as specified in (4.47). This is also as expected.
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Remark 3.5 (Cyclic fields of prime degree) If G is a cyclic group of prime
order p > 2, then for each Galois extension K /Q with Galois group >~ G,
every ramified prime is totally ramified, so that for .# as in Theorem 3.3,
Z7/(Q, G; X) = Zp(Q, G; X).

Remark 3.6 (degree n S, -fields with square-free discriminant) Recall from
Sect. 2.3 that for each n > 2, the family Z; (Q, S,; X) with .# = [(1 2)]
includes all degree n S, -fields with square-free discriminant, which are known
inthe case of n = 3, 4, 5 (and conjectured forn > 6) to be a positive proportion
of all degree n fields.

Remark 3.7 (degree p D)-fields) It is conjectured that |Z,(Q, Dp; X)| ~
D, X%/(P=D for some ¢p, > 0 (see [53], [43, p. 608]); assuming this is the
true order, our family of degree p D -fields exhibited in case (4) is a positive
proportion of all degree p D -fields.

Remark 3.8 (degree 4 Agy-fields) Based on heuristics as well as numerical
evidence, it is conjectured that |Z4(Q, A4; X)| ~ cA4X1/2 log X for some
ca, > 0 (see [14, §2.7], [53, Ex. 3.2]); assuming this is the true order, our
family of degree 4 A4-fields exhibited in case (5) of Theorem 3.3 just fails to
be a positive proportion of all degree 4 A4-fields.

Finally, we state the quantitative forms of Theorem 1.1 that are conditional
on the strong Artin conjecture, and in certain cases on hypotheses for counting
number fields.

Theorem 3.9 (Quintic S5-fields) Consider the family Z'5] (Q, Ss) for 7 being
the conjugacy class [(1 2)] of transpositions, in which case |Z'5’ﬂ Q, G; X)| ~
¢s5X. The conclusions of Theorem 3.3 hold for Zsj (Q, G) if we assume the
strong Artin conjecture holds for all irreducible Galois representations over Q
with image Ss. In this case, T, = 199/200. (Hence the density zero exceptional
set E(X) is at most of size <, X 199/200+¢ foreverye > 0.)

Remark 3.10 An alternative formulation of Theorem 3.9 uses the work of F.
Calegari [12]. Let YS‘] (Q, S5) be the family of quintic Ss-fields K such that
complex conjugation in Gal(K /Q) has conjugacy class (1 2)(3 4), K/Q is
unramified at 5, and the Frobenius element at 5 has conjugacy class (1 2)(3 4).
By[7, Thm. 1.3], |Y5'] (Q, Ss; X)| ~ c/SX. For these fields, Calegari verifies the
strong Artin conjecture for the dimension 4 and 6 irreducible representations of
S5, and reduces the verification for the dimension 5 irreducible representations
to checking that a certain L-function is non-vanishing for s € [0, 1]. Precisely,
for K € Y5(Q, S5), let E be the quadratic subfield of K, F be a subfield of
K of degree 6 over Q, and H be the compositum of E and F. Then by [12,
Thm. 1.2], the strong Artin conjecture holds for the dimension 5 irreducible
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representations as long as ¢y (s) is nonvanishing for s € [0, 1]. (See [8], [27]
for computational verification of this nonvanishing, in a finite number of cases
with small discriminant.) Thus we could alternatively state Theorem 3.9 for
the family YSJ (Q, Ss), assuming in place of the strong Artin conjecture that
for each field K € Y. 5'7 (Q, Ss5) considered, the appropriate L-function g (s)
is nonvanishing for s € [0, 1].

Theorem 3.11 (degree n S,-fields) Consider for n > 6 the family Zn] Q, S»)
with .# being the conjugacy class [(1 2)] of transpositions, in which case for
all X > 1,

XV <012, Q. S X)| K XEPEVIOED,

The conclusions of Theorem 3.3 hold for the family Zf @Q, S,) if we assume

(1) the strong Artin conjecture for all irreducible Galois representations over
Q with image S,

(ii) for some w, < 1/2 + 1/n, for every fixed integer D, there are at most
<n D% fields K € Z,(Q, S,) with Dk = D.

In this case, T, = wy. (Hence the density zero exceptional set E(X) is at most
of size K¢ XPnE for every e > 0.)

Remark 3.12 1f it is known that | Z (Q, S,; X)| >, X7, then to deduce that
the possible exceptional set has density zero, we need only know (ii) for some

@, < Bn.

Similarly our results for simple groups are conditional on the strong Artin
conjecture; for A,, we additionally apply our new lower bound for the number
of degree n A,-fields with bounded discriminant.

Theorem 3.13 (Alternating groups A,, n > 5) For each n > 5, consider the
Sfamily Z,,(Q, A,,) (with no restriction on inertia type, that is, .% = G). In this
case, there exists a positive exponent B, > 0 such that for all X > 1,

XPr <, 1Z7(Q, Ay X)| &, XSP(CVlogn)

for a certain absolute constant C. In fact we may take , = (1 —2/n!)/(4n —
4). Then under the assumption that the strong Artin Conjecture holds for all
irreducible Galois representations over Q with image A, the conclusions of
Theorem 3.3 hold with t, = 0. (Hence the density zero exceptional set E(X)
is at most of size K X¢ for every ¢ > 0.)

Finally, we state a result for families of fields parametrized by a fixed simple
group; here we simply assume that a lower bound that grows like a power of
X is known for the number of such fields (as may be obtained by Theorem 1.5
if an appropriate generating polynomial is known).
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Theorem 3.14 (Simple groups) For n > 2 and a fixed transitive simple group
G C Sy, the conclusions of Theorem 3.3 hold for the family Z,(Q, G) with no
restriction on inertia type (that is, % = G), if we assume

(i) the strong Artin conjecture holds for all irreducible representations over
Q with image G,

(ii) a lower bound of the form |Z,(Q, G; X)| >n.G XA for some B > O, for
all X > 1.

Then XP <, |Z,(Q, G; X)| <, XPCVILn for an absolute constant C,
and t, = 0. (Hence the density zero exceptional set E(X) is at most of size
K¢ X foreverye > 0.)

Remark 3.15 At present we do not treat families Z,, (Q, G) for G a non-cyclic
abelian group, or Z4(Q, D4); we remark on difficulties encountered in these
settings in Remarks 6.11 and 6.12.

We encapsulate two useful consequences in all the settings described above:

Corollary 3.16 (Quantitative counts for small primes) Let Z;{ @Q, G; X) be
fixed to be one of the families of fields considered in Theorems 3.3,3.9,3.11,3.13
and 3.14, and correspondingly assume the hypotheses (if any) of the relevant
theorem. Recall the parameters 1, < B < d proved to exist for the family in

(3.5), and for any sufficiently small ey > 0, let 5 < 1/4 be defined as in (3.6).

(1) Foranyo > O, there exists a constant Dg such that for every X > 1, every
field K € Z;f (Q, G; X) that has Dx > Dg and is not §-exceptional, has
the property that for any fixed conjugacy class (or finite union of conjugacy
classes) € in G,

g

g D
¢ (D%, K/Q) >G.no —a—. (3.7)
log Dk

Here K denotes the Galois closure of K over Q.

(2) Foranyo > 0, there exists a constant D7 such that for every X > 1, every
field K € Z;f (Q, G, X) that has Dg > D7 and is not §-exceptional, has
the property that for any conjugacy class € of G,

¢ (2D%, K /Q) — ¢ (D, K/Q) = 1. (3.8)

Here K denotes the Galois closure of K over Q.

Finally, in either case, recall that for every T > T, there exists a constant
D3 such that for every X > 1, at most D3 X" 10 fields K € Z;f(@, G; X) are
8-exceptional.
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4 A Chebotarev density theorem conditional upon a zero-free region

The main goal of this section is to prove Theorem 3.1. A nice feature of Lagarias
and Odlyzko’s approach to the effective Chebotarev theorem is that it does not
assume the Artin conjecture, so that Theorem B is completely unconditional.
Similarly, Theorem 3.1 is unconditional, aside from the assumed zero-free
region. This is made possible by using Lagarias and Odlyzko’s technical trick
(originally due to Deuring) of expressing ¢, as a product of Hecke L-functions,
where L/ k is a Galois extension of number fields with Gal(L/k) ~ G. Fixing
an element g € G and letting H = (g) be the cyclic subgroup of G generated
by g, then upon setting E to be the fixed field L, Lagarias and Odlyzko
obtain the product expression on the left, in which x varies over the irreducible
characters of H:

[] LG.x. L/E) = ¢o(s) = [ [ LGs. pj. L/ )™ (41)

X irred Pj

Each such factor is a Hecke L-function and hence is known to be entire if x
is nontrivial. On the other hand, once we have Theorem 3.1, to deduce the
assumed zero-free region via Kowalski-Michel, we will also factor ¢; (s) as
on the right-hand side, as a product of Artin L-functions, which we then need
to show (or assume) are automorphic L-functions with certain properties.

If one is willing to assume the Artin conjecture, so that each factor on
the right-hand side of (4.1) with p; nontrivial is entire, a Chebotarev density
theorem with an effective error term is relatively quick to prove, since either a
standard zero-free region (or the GRH zero-free region) may be applied to each
of these Artin L-functions, obviating the alternative Hecke factorization; see
for example, [42, §5.13 and Thm. 4.13]. (The conjugacy class % of interest is
picked out via trace functions, much as in Dirichlet’s theorem on primes p =
a (mod gq), the residue class of interest is picked out via Dirichlet characters.)
In our application to families of fields we do indeed assume the strong Artin
conjecture (or it is known). Nevertheless, to prove Theorem 3.1 we have used
the Lagarias-Odlyzko approach, as we expect its unconditionality to be useful
for other applications.

4.1 Standard lemmas on zeroes

We recall the currently best known zero free region for ¢ (s), due to Vinogradov
[79] and Korobov [47].
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Lemma 4.1 (Vinogradov—Korobov zero-free region for ¢ (s)) There exists an
absolute constant cg > 0 such that {(s) has no zero s = o + it in the region

_ cQ
= (log(|t| + 2))2/3(loglog(|t| + 3))1/3" 4.2)

We will also use a standard zero-free region for any Dedekind zeta function
[42, Theorem 5.33].

Lemma 4.2 (Standard zero-free region for ¢i(s)) Let k/Q be a number field
of degree ny > 1 and with absolute discriminant Dy. There exists an absolute
constant cy > 0 such that &y (s) has no zero s = o + it in the region

Ck
nz log(Di(|t] + 3)™)’

(4.3)

except possibly a simple real “exceptional” zero ,Bék) < 1.

We also recall a standard count for zeroes of Dedekind zeta functions at a
fixed height:

Lemma 4.3 ([42, Theorem 5.31, Proposition 5.7]) Let k/Q be a number field
of degree ny > 1 and with absolute discriminant Dy. For a real variable t, let
ny(t) denote the number of zeroes p = B+ iy of {x(s) with0 < 8 < 1 and
ly —t| < 1. Forall real t, ni(t) < log Dy + nilog(|t| + 4).

The corresponding result for Hecke L-functions is:

Lemma 4.4 ([50, Lemma 5.4]) Let n, (t) denote the number of zeroes p =
B+ iy ofa Hecke L-function L(s, x, L/E)with0 < 8 < land|y —t| < L
Let F(x) denote the conductor of x, and A(x) = DgNmg,(F(x)). For all
t, ny (1) < log A(x) + ng log(jt] +2).

4.2 Explicit description of assumed zero-free region

We now prove Theorem 3.1, using in particular the assumption, in the theorem
statement, that ¢z (s)/¢x(s) is zero-free in the region

[1 =8, 1] x [~(log D1)*, (log D1)*°]. (4.4)
For use in potential computational applications, we specify the dependencies
of all parameters on k, §, etc., although we do not now optimize them (e.g.

compared to recent work conditional on GRH in [35]), as it is not relevant for
our current applications.
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We may assume that L has degree n; > 1 over Q, since in the case L =
k = Q, mg(x, L/k) is simply counting rational primes p < x. Our proof
will proceed in two stages: first, we deduce from Theorem B of Lagarias and
Odlyzko that the conclusion of Theorem 3.1 is true if x is sufficiently large.
Second, for small x, we refine the method of Lagarias and Odlyzko, keeping
track of the assumed zero-free region. (This manner of partitioning into large
and small x has appeared in the proof of the prime ideal theorem of [17,
Theorem 2.6].)

At each step, when we state that something holds for a number field k, it also
applies to k = Q; separately, we give refined statements so far applicable only
to k = Q. We do not rule out a priori the possibility of an exceptional zero
of ¢1.(s), say Bo. Instead, in our application of Theorem B, the main idea is to
assume that Dy is sufficiently large that the real interval within the region (1.3)
in Theorem B is contained inside the assumed zero-free region (4.4), and thus
{1 cannot have an exceptional zero B¢. In order to carry this out rigorously,
we must be more careful, since (4.4) is an assumed zero-free region for ¢z /{x
and not just ¢ .

The function ¢k (s) may have an exceptional (real) zero in the standard region
(4.3) given in Lemma 4.2; we will denote this, if it exists, ﬁék). (Of course when
k = Q, ¢ (s) = ¢(s), and no such exceptional zero exists.) Since k is fixed,

,Bék) is fixed. We now fix a new parameter g so that
1-8>1-5, and 1—8 > g, (4.5)

we set 8o = & if k = Q. (Throughout this section we will use the notation
8o; in the statement of Theorem 3.1, any dependence on & is equivalently a
dependence on ,Bék) and §.) From now on, instead of the zero-free region (4.4),
we work with the possibly smaller region

[1 =80, 1] x [—(log D1)*°, (log D1)*°], (4.6)
which excludes the possible fixed zero ,Bék).

By our hypothesis, the Artin L-function ¢z (s)/Zx(s) has no zeroes in the
region (4.6), and it is an entire function by the Aramata-Brauer theorem; i (s)
has no zeroes in the intersection of regions (4.3) and (4.6) (respectively, no
zeroes in the intersection of the regions (4.2) and (4.6) if k = Q) and is
holomorphic there. Thus ¢z (s) has no zeroes in the intersection of (4.3) and
(4.6) (respectively, (4.2) and (4.6) if k = Q).
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| D 216 /

(log D;) I B,
To

_1 i

(4log D;) B

S o
112 e I, 4

~(4log D) i
_T0
— log DL)M

Fig. 1 The curved region represents the standard zero-free region for ¢ and the point ﬂ(()k)
denotes the possible (real) exceptional zero of ;. The larger box Bj is the assumed zero-free
region (4.6) for {7 /¢ . The shaded region represents the consequent (assumed) zero-free region
for ¢, determined by the intersection of the known standard zero-free region for ¢; and Bj.
The box B is the zero-free region (1.3) known to hold for ¢; , aside from a possible exceptional
(real) zero; we will conclude no such zero can exist in By as long as Dy is sufficiently large

Thus we now specify (under the above hypotheses) the zero-free region of
¢r(s) (see Fig. 1):

o>1-3 if 7] < To,
- i 2/8 4.7)
oz1-=2@) ifTo<]t| < (logDr)”,
where
-
L(t) = | milosDui+3)") general k s
< lfk = Q’

(log(|]+2))2/3 (log log([t|+3))1/3

and Ty is the height at which the zero-free region (4.3) for ¢ (respectively (4.2)
for ¢) intersects the line M(s) = 1 — &p. In our Chebotarev theorems we are
interested in the range where D;, — 00, so there is no harm in always assuming
(for simplicity) that Dy is sufficiently large that the left-hand boundary N (s) =
1 — §p of (4.6) intersects the boundary of (4.3) (respectively (4.2) if k = Q) at
a height Ty < (log D1)?/%. For example, for a field k and the zero-free region
(4.3), we compute that
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Ty = D; /™ exp (C—k3) _3. (4.9)
Sony,

A similar computation may be done to find Ty in the case k = Q with the
improved zero-free region (4.2). In either case, to have Ty < (log D)% it s
sufficient to have

_ {GXP{CXP(Ck5/5O)} general k (4.10)

exp{(expexp(cg/8)*°}  ifk =Q;

we refer to this lower bound as D, = Dy (cx, 8o, 8).

4.3 The proof of Theorem 3.1 for large x

With this zero-free region in mind, we dispatch the case of our Chebotarev
theorem for large x, that is, for x > exp(10nr (log D1)?). Recall the standard
zero-free region (1.3) which is known to hold for ¢z (s), aside from a possible
real exceptional zero. We may define a constant D1 = D1(d¢) so that

1—80 < 1— (dlog D1(8o) " 4.11)

For later purposes, we also assume D1 (8g) > 4. Our conclusion now is that
for Dp > D1(8p), {1, can have no (real, exceptional) zero in the region (1.3),
and thus under the hypotheses of Theorem 3.1, the result of Theorem B holds
without the o term.

Now in order to show the remaining error term in Theorem B (with absolute
constants C1, C») is sufficiently small, as claimed in Theorem 3.1, we need
only verify that there exists a constant D] = D/ (C1, C2, ny, A) such that as
long as Dy, > Dﬁ, for all x > exp(10nr (log DL)Z),

_ 4
Crrexp(~Can Pogn)!) = 1€ xlogn) . (@12)

In fact it suffices that Dy is sufficiently large that (4.12) holds at the end-
point x = exp(10ny (log D;)?), which is equivalent to requiring D; >
c2(log D)% with ¢ = (e /% (10n,)1/2)@HC 1072 4ng o3 = 24C5 !
10~1/2; this provides the necessary threshold Dj. As a consequence, the

conclusion of Theorem 3.1 holds for x > exp(10n (log D1)?), as long as
Dy > max{Dy, D{}.
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4.4 Small x

In the remaining region of small x (that is, for x < exp(10n (log D)%) we
return to the original strategy of Lagarias and Odlyzko, which will be our
focus for the remainder of Sect. 4. As in the classical prime number theorem,
it is convenient to work originally with a weighted prime-counting function,
defined in this case by

Ve, L/ = Y log(Nmygp);

p.m
Nmy op™ <x

4T

the final result for w4 (x, L/ k) will then follow from partial summation. Here

Y’ denotes that the sum is restricted to those prime ideals p in Oy that are

m
unramified in Or. The notation [LT/k] = % denotes the requirement that if

we pick any prime ideal ¢ C Oy lying above p, then %’ is the conjugacy class
of the m-th power (04)" of the Frobenius element oy inside G. (This is well-
defined no matter which prime q is chosen above p, since if ¢’ = 7(q) for some
nontrivial automorphism 7 € G, then (o))" = (T(Tq‘r_l)m = t(aq)’”r_l, SO
that they lie in the same conjugacy class in G.)

Our main result for ¥ in the region of small x is as follows:

Proposition 4.5 Let k be a fixed number field. Fix A > 2,0 < § < 1/(2A),
and an integer n > 1. Let G be a fixed transitive subgroup of Sy,. Then for
any absolute constant 0 < co < 1 of our choice, there exists a constant D>
and constants k1, k%, k5 such that for any Galois extension of number fields
L/k with Gal(L/k) >~ G such that Dy > max{D|j, D1, Dy}, and such that
the Artin L-function ¢ (s)/Ck(s) is zero-free in the region

[1—86,1] x [—(log D1)*?, (log D1)*?], (4.13)

we have for every conjugacy class € in G that

R 7S BN PN L B S
IGI"| = 1G] (logx)A~1
as long as
K| explic (log 1og(D{3))2} < x < exp{10nz (log D1)?}. (4.14)
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If moreover k = Q we may take x in the range

K] €Xp {Ké(log log DZ3)5/3(log log log(D%))IB} < x < exp{10n (log Dy)?}.
(4.15)

Remark 4.6 Recall that D, was fixed by (4.10), Dy was fixed by (4.11); we
will construct D; explicitly in Lemma 4.10. The constants k|, k5, k5 depend
on co, Dy, ni,nr, 8o, 8, A and are chosen in (4.38).

4.5 The passage to sums over zeroes of Hecke L-functions

To prove this proposition, we rebuild the argument of Lagarias and Odlyzko,
inserting the zero-free region (4.7) at a key point. With & the fixed conju-
gacy class of interest, we fix any element g € % and let H = (g) be the
cyclic group generated by g. Then H defines a fixed field E = L with
k € E C L, and the cyclic group H has an associated family of irreducible
one-dimensional characters. For any such character x, we consider the Hecke
L-function L(s, x, L/E); in particular if x = yo is the trivial character on
H then L(s, x, L/E) = ¢g(s). The following statement provides the key
framework for proving Proposition 4.5:

Proposition 4.7 (Theorem 7.1 of [50]) For L/k a finite Galois extension of
number fields with Gal(L/k) ~ G, cyclic subgroup H C G, andk C E C L
as described above, there exists an absolute constant Cs > 1 such that if x > 2
and T > 2, then

W%(x,L/k)—%x SCs%{S(x,T)+E1+E2}, (4.16)

in which

sen=Yrw| ¥ S ¥ o
X

p=B+iy p=B+iy
lyI<T lol<1/2

where the sum is over irreducible characters x of H, and for each character x
the inner sums are over nontrivial zeroes p = B + iy of the Hecke L-function
L(s, x,L/E), and

E;=xT"! logxlog Dy +1log Dy + ny logx + npxT ™! logxlogT,
(4.17)

E> =logxlog Dy +nypxT ' (logx)?. (4.18)
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Remark 4.8 Note that we may assume that C5 > 1, by enlarging it if necessary.
Asstated in (4.18), E» is slightly refined over [50, Theorem 7.1], which in place
of |€||G|~'E, has

E} =logxlog Dy + nix T (log x)?,

(without a factor of |%’||G|~!). As noted in [68, Théoréme 4], the first term in
E’, may be replaced by

|G| log x log Dy, < |€)|G|~ " logxlog Dy,

by arefined estimate for a sum over prime ideals p C Oy that ramify in L. For
the second term in E7, we use the trivial observation that ni|G| = np, so that

nxTlogx)? = |G| 'npxT ' ogx)? < |€||G| 'npxT ' (logx)?,

as claimed.

With Proposition 4.7 in hand, Lagarias and Odlyzko use zero-free regions
(either unconditional or on GRH) to deduce a bound for S(x, T'), which indi-
cates an appropriate choice for the height 7' that guarantees all the error terms
are sufficiently small. We proceed with a different zero-free region and a dif-
ferent choice for 7', namely

T = (log D1)*°, (4.19)

where § is provided from our assumed zero-free region (4.7). (In particular,
we may assume that T > 2 as long as D; > 3 > exp(2%/?), upon recalling
8§ <1/4)

4.6 Bounding the contribution of zeroes [p] < 1/2in S(x, T)

The contribution to S(x, T') from |p| < 1/2 (so that certainly |y| < T with T
as in (4.19)) is bounded by:

Pl 1
Z Z {x_ +‘—“<<x1/22 Z —‘<<x1/2nL(logDL)2,
X lol<ipp U P T IP X lpl<1/2!P
lyI<T

(4.20)
in which the implied constant is absolute. The first inequality is clear; to prove
the second inequality, recall the factorization (4.1) into Hecke L-functions,

t(s) =¢e(s) [ LG, x, L/E), 4.21)

XFX0

@ Springer



An effective Chebotarev density theorem for families 735

with the product over non-trivial irreducible characters of H. The Hecke L-
functions are entire, and { ¢ (s) and ¢z, (s) each have their only pole ats = 1;thus
(rigorously by multiplying both sides of the identity by (s — 1)), it follows that
none of the factors on the right hand side of (4.21) have a zero in the region
(4.7). Recalling that (4.7) contains the region (1.3) since Dy > Di(8p) we
may conclude (by the functional equation) that each L(s, x, L/E) is zero-free
bothin (1.3)andin0 < o < (4log Dy)~', |t| < (4log Dy )~!. Thus the only
zeroes that can appear in (4.20) must have |p| > (4log D7)~ '; recalling the
notation of Lemmas 4.3 and 4.4, we then see that for each y,

2

Ipl<1/2

1
—‘ < 4(log Dp)ny (1) < (log Dp)(log A(x) +nglog3) (4.22)

with the implied constant being absolute. The conductor-discriminant formula
[61, Ch. VII 11.9] shows

> log A(x) = log |:D|;”NmE/Q (]_[ F(X)>i|

X X
— log [D%:E]NmE/Q(DL/E)] —logDy.  (4.23)

Thus, summing (4.22) over x we have

2 2

X pl<1/2

1
;‘ & (log D1)* +ng|H|log3 < np(log Dr)?,

with an absolute implied constant, verifying (4.20).

4.7 Bounding the contribution of |y| < T in S(x, T)

Suppose that p = S+iy isanontrivial zero of L(s, x, L/E) with |y| < T and
|p| > 1/2.Recalling the definition (4.9) of the height Tp, by the assumption of
the zero-free region (4.7), we know that without exception, all zeroes p with
ly| < To have B < 1 — 8, so that [x”| = x# < x!7%_ Similarly, all zeroes p
with Ty < |y| < T have 8 < 1 — Z(T), so that |x°| = P < x24T we
also note that for any fixed y, by Lemma 4.4,

2

ly|=<To

xP 1-5 ny ()
— | xlT Y

J=<To J

< x'7%(log Tp)(log A(x) + ng log Tp)
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< x'"7(log T)(log A(x) + ng log T);

similarly,

2

To<|y|=T

p
x—‘ & x' 72D (log TY(log A(x) + ng log T).

Summing over all x as in (4.23), we see that
x'7% 3 "(log T)(log A(x) + nglog T) < x' =% (log T){log Dy, + ny log T},
X

and, likewise,

x' DX "(log T)(log A(x) + ng log T)
X

< x'7? D log T){log D1 + ny log T}.
Combining these estimates with (4.20), we may conclude
IS(x, T)| < Ce{E3 + E4 + Es}, (4.24)
for an absolute constant Cg (which we may assume satisfies C¢ > 1), and
E; = xl/an(log DL)2

Es = x'"%(log T) log(D. T"")
Es =x""%T(log T)log(D,T").
The proof of Proposition 4.5 will then be complete, upon verification of two
lemmas, which we record as Lemmas 4.9 and 4.10 below.

Lemma 4.9 Let k be a fixed number field. Let A > 2 be fixed and let 0 < § <
1/(2A) be a fixed positive constant; define &g from § as in (4.5) according to
whether or not £ (s) has an exceptional zero. Let L/ k be a Galois extension
of number fields with Gal(L/k) >~ G, and assume that the Artin L-function
C1.(8)/ Lk (s) is zero-free in the region

[1—36,1] x [—(log D1.)*’?, (log D1.)*/1. (4.25)

For D; = D1(8¢) (as defined in (4.11)), for any choice of absolute constant
0 <c; <1, we have

IS(x, T)| < 3c¢1Cex(logx)~A~D (4.26)
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for all

K} expii} (loglog(D;*)*} < x < exp{10n (log D7)}, (4.27)
where
K} i= (6cy 1047 T ngy /00 5=2/%
Ky = max{2A8; ', 4Ac; 'njs)
iy = 6c; /Y Dynps—/A, (4.28)
Moreover, if k = Q we may consider all

k! exp [Kg’(log log(D'*))%3 (log log 1og(DZ))‘/3} < x <exp{l0n;(log D1)?}. (4.29)

Itis in Lemma 4.9 that we fully utilize the fact that the zero-free region (4.6)
has a width that is independent of Dy ; this is key to obtaining a small lower
threshold on x.

Proof The lemmais proved by simple computations. For any field k, we see that
in the range x < exp(10nz (log D1)?), to guarantee |E3| < c1x(log x)~A=D
it suffices that

x = e 2104 Ui (log D)™,

here we have explicitly used the upper bound x < exp(10n; (log D;)?). Sim-
ilarly for such an upper bound for E it suffices to have

x > (671 10)A gy /o0 5=2/%0 (log Dy )?A/%,

provided that T = (log D1)*%and x < exp(10ny (log D1)?). Since §y < 8 <
1/4, both of the lower bounds for x displayed above are satisfied if

x > (6¢;1104 /305720 exp(2 A8, loglog Dy ). (4.30)

The distinction of k& = Q only appears in the treatment of E5; in the case of
k = Q, it suffices to find a lower bound on x such that

C

x| Goa 2 ogloa T (log T) log(Dy T™) < e1x(logx) A=V,

as long as x < exp(10n (log D)), T = (log D)% and D; > D;(8p).
Here one sees that it would suffice to have
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x > exp{2Acg' (log(2(log D1)**))* (loglog(2(log D1)*/*))'/?
logle, V™14 (log D11}

with ¢ = 601_1 (10)A~ 14 7.» which can be simplified as the requirement that x
is at least

5/3 R

exp 4AcQ18 2B (log(25~") + 1)!/3 <loglog Dmax{zs/z RIS 1/A}> (logloglog D%M_)m '
(4.31)

Note that 25/2 < 2, 1og(28~!) + 1 < 8~ ! for all 8 < 1/4, and c;/**5~1/4 <

6c, 1/(ZA)n 8§~ 1/A Thus upon comparing (4.30) and (4.31), we see that (4.29)
suffices with ;" defined as above (specialized to the case k = Q); the case of
other fields k follows from analogous computations. O

Lemma 4.10 Let k be a fixed number field. Let A > 2 be fixed and let 0 <
8 < 1/(2A) be a fixed positive constant. Let L/k be a Galois extension of
number fields with Gal(L/k) ~ G. Set T = (log D1)*/®. Given any absolute
constant 0 < c’1 < 1, there exists a constant Dy such that for Dy, > D>,

|E1| + |E2| < 6¢}x(logx)~A~D (4.32)

for all
()04 log D1)*AT! < x < exp(10n, (log D1)?). (4.33)
Proof Thisis proved by simple computations checking error terms in the range
of “small” x, thatis x < exp(10ny (log DL)Z), and recalling T = (log DL)Z/‘S.
Writing E1 = Ey 4+---+E1 gand Ey = E» .+ E» j, we see that for example
|E1ql < cfx(logx)=™=D for x < exp(10nz(log D1)?) if § < 2/(2A + 1)

and
Dy > exp{(c]” (100, )4)1/3-2A=D7"y, (4.34)

Similarly, Ey p, E1,c, E2,4 are seen to be sufficiently small if x is bounded
below as in (4.33). The remaining two terms E 4 and E; ; impose (respec-
tively) the constraints § < 2/(2A + 1) and

Dp > exp{(2 - 104 nf+1 [ @/8-24-D70 (4.35)
and § < 1/(A + 1),

Dy = exp{(10A+ 4271 @/8-2(A+ D)7y (4.36)
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It suffices to assume § < 1/(2A) and to take Dy = D (c’l, 8,nyr, A) to be the
maximum of (4.34), (4.35) and (4.36). O

4.8 Proof of Proposition 4.5

To deduce Proposition 4.5, for a fixed absolute constant cg, from these lemmas,
we will apply Lemmas 4.9 and 4.10 with the respective choices

c1 =¢o/(6C5Ce), ¢} = co/(12Cs), (4.37)

where C5 and Cg are the absolute constants arising in (4.16) and (4.24) from
the Lagarias-Odlyzko argument. After this choice in Lemma 4.10, we could
denote the dependencies of D; (c/l, d,nr, A) by Dr(co, Cs,8,np, A). The last
step of the proof of Proposition 4.5 is to check that we can ensure that the
parameters are such that (4.33) holds whenever (4.27) (or (4.29) respectively)
is satisfied. Note that the lower bound in (4.33) will hold if we have

IN—1/QA+1) 1012
x > exp{(2A + 1) log log(D(LCl) 107

((c/l)—l loAn£+|)l/(2A+l)

> exp{(2A + 1) loglog(D,
Thus either for general k or k = Q it suffices to set

K=kl =1, b=y =max{iy,2A + 1}, «}= ()AL
(4.38)

4.9 Partial summation back to prime counting

There are two remaining steps to pass from Proposition 4.5 to Theorem 3.1
(in the regime of small x). First, we define the function

Op(x, LIy =Y logMNmygp) = Y lg(oq)log(Nmygp),

Nmk/?@PSX Nmk/?QPSX

4]

in which the sum is restricted to prime ideals p C Oy that are unramified in
L, and we fix any prime ideal q in Oy above p and let 1 detect whether the
conjugacy class of the Frobenius element oy is ¢". A Chebyshev argument
shows that 8¢ (x, L/k) is well-approximated by vy« (x, L/k) and then partial
summation passes from 6 (x, L/ k) back to m¢ (x, L/ k); we only mention the
highlights. We note that
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’ 1
Ve (x, L/k) —0x(x, L/ k) = Z 14 (0y")— log(Nmy @ (p™)),
p,m=>2 m
Nmy/gp™ <x

so that upon setting m to be the smallest integer such that x'/” > 2 (so in
particular m < log x/log?2), the above difference is at most

1/2 1o
5 ngX gx,

log x (ln(xl/z,L/k) bt ln(xl/m’ L/k)) - 3

m 2log?2
where we have denoted by 7 (x, L/k) the counting function for prime ide-
als (unramified in L) with Nmy,op < x. Thus we see that the statement
of Proposition 4.5 holds for 64 (x, L/k) in place of Y« (x, L/k), with an
additional error term of size at most 3n;x'/%log x, which is no bigger than
co|%| |G|*1x(10g x)~ =D (for an absolute constant ¢y < 1 we will choose
later) as soon as the sufficient condition 3|G|nx = 3n; < cox!/? (log x)~A
is met. It is simple to check that this holds in the regimes (4.14) or (4.15) we
consider in Proposition 4.5, with the parameters «; as already defined. Thus
for x in either range we have

b e Lk — el <gEl_x
IGI"| = 1G] (log x)A~!

(4.39)

Let xp denote the lower bound for x in (4.14) for general k£ and for x
in the range (4.15) for k = Q, respectively. To pass from 0z (x) to mwy(x)
(temporarily suppressing the notational dependence on L/k for simplicity),
we let A, be an increasing sequence of positive real numbers running over the
norms Nmy q(p) attained by prime ideals of k (unramified in L). By partial
summation, for any xo < x < exp{10nr(log D1)?},

re () =Y ( > lw(aq)logxn) (log )~ = / Pl e 4 40)

2
An<x \Nmy/gp=h, A tlog”t log x

We split the integral into the region A < t < xp, in which the asymptotic (4.39)
has not been verified, and the region xg < ¢ < x, in which it has. For the first
portion of the integral we apply the trivial bound 6 (f) < nitlogt to see that
this integral contributes at most n;Li(xp). In the remaining contributions to
(4.40), we may replace 04 (t) by |€| |G|~ 1t as in (4.39) (deferring the error
terms for a moment), and similarly for 6 (x); this main contribution becomes
after integration by parts
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|€| Y d 1 X B %] [. . . X0
Gl [/xo “ai (‘@) dr+ mgx] =Gl [L“’” B (L“"‘” B 1ong)] |
4.41)

The error terms accrued via this replacement are (in absolute value) at most

) %] [* dt 42 |%| X
co—— _— co—— .
%161 J,, Qogt)A*T " “1G] (log x)4

(4.42)

In the first term of (4.42) we may bound the contribution from, say,
xo < t < x!/2 trivially by 2¢¢|%||G|~'x!/? while in the remaining por-
tion we have logt > (1/2)logx, yielding a total contribution of at most
24420011 |G|~ 'x (log x) A+, we trivially dominate this from above by
24%2¢4|%) |G|_1x(log x)~4 so that we may combine it with the second term
in (4.42). Finally, we crudely bound the last two terms in (4.41), in absolute
value, by 2Li(xg). In total, we have represented w4 (x) as |%| |G|~ 'Li(x) + E
where

|E| < (ng 4 2)Li(x0) + 2¢0|%|IG| " x 1/ + 2472 + 2)¢0|€1|G| ' x (log x) ™4
< (nx 4+ 2)Li(x0) + 24%2 + 4)¢o|€|1G|~ x(log x) 4. (4.43)

Here we have used that x!/> < x(logx)™ in the regime of x <
1/2,1/2

exp{10n (log DL)Z} as soon as x > exp{4A log log(DzO " )}, which holds
for all x > xg. The first term on the right-hand side of (4.43) is certainly
dominated by the second as long as

X |G|(ng +2)
(logx)A = (2412 4 4)|€|co

Li(xp), (4.44)

for which it suffices to have x > npcy lxo(logx)“‘. Of course, we are
already assuming that x > xq; recalling that we presently only consider
x < exp{10n (log D1)?} we see that (4.44) holds as long as

x> 10Ané+1c51xo(log D)4 = 10An?+lcal exp{2Aloglog Dr} - xg.
(4.45)
Under this condition, we have shown that

|E| <224 + 4)co|%1IGI x(logx)™* < |€11G| 'x(log x) ™4,

upon making the choice
co= Q43 187 (4.46)
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We may accommodate the requirement (4.45) simply by enlarging the param-
eters «; by setting k1 = CO_IKi, Ky = Ky 4+ 2A, k3 = k} > 1. We record the
definitions here, with cg as in (4.46):

11 0A—1,,4y1/80 §~2/80
10 8~
co L6 (12C Ce ) )
Ky = max{2A87 ", 4Ac—‘n,§5*1} +2A
_ €0 1/(2A+1) 1/(2A) —1/A
=6 — Dgnp 8V, 4.47
K3 (12C5) (12C5C6) kL (4.47)

To conclude, for x in the ranges (4.14) and (4.15) with /cl.’ replaced by «;,
we have verified the effective error term in the asymptotic for e (x, L/ k).
This completes the treatment of small x, and combining this with the result of
Sect. 4.3 for large x, we may conclude that Theorem 3.1 holds.

Remark 4.11 The threshold Dy = Dg(8, ck, ,B(()k), nr, Cq, Ca, A) appearing
in Theorem 3.1 is the maximum of Dy, in (4.10), Dy in (4.11), D] defined in
Sect. 4.3, and D, defined as the most restrictive of (4.34), (4.35), (4.36) (with
the imposed choices ¢| = ¢o/12Cs and ¢p = (2473 +8)71).

4.10 Remark: A Chebotarev theorem for fields without quadratic
subfields

In the introduction, we stated that one of our two goals was to remove the g
term in Theorem B. As an aside, we note that for certain fields, the existence of
an exceptional zero can already be ruled out, so that an immediate application
of Theorem B yields:

Theorem 4.12 Let k be a number field such that (i (s) has no real zeroes. Let
L/k be a Galois extension of relative degree at least 3 such that L/ k contains
no quadratic extension of k. Then there exist absolute effectively computable
constants Cy, C such that for all x > exp(10n (log D1)?),

€
wy(x, L/k) — uLl(x) < Crxexp(— Canl/2

1/2
G (logx)™/<). (4.48)

Remark 4.13 In particular, if & = Q this theorem holds unconditionally for
any L/Q such that G = Gal(L/Q) with |G| > 3 has no subgroup of index 2
(for example, G >~ C), for p an odd prime).

Theorem 4.12 is an application of a nice idea of Stark [73, Theorem 3], in
turn a refinement of a theorem of Heilbronn [39]. (See also further work on
eliminating Siegel zeroes in towers of fields in [58,63].)
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Theorem D ([73, Theorem 3]) Let L be a Galois extension of k with
Gal(L/k) ~ G and let x be a character of G. Suppose p is a simple zero
of ¢r(s). Then L(s, x, L/k) is analytic at s = p. Furthermore, there is a
field F with k € F C L such that F/k is cyclic and for any field E with
kCECL,tg(p) =0ifand only if F C E. If in particular p is real, then
either F = k or F is quadratic over k.

By Theorem B, we need only consider a possible real zero of {7 (s), which
by Theorem D (and the assumption that ¢ (s) has no real zero) can only occur
if there is a quadratic extension F of k contained in L. No such F can exist
if Gal(L/k) has no index 2 subgroup. Nevertheless, as remarked before, the
lower bound on x in Theorem 4.12 is too large for our ultimate application to
£-torsion, a problem which Theorem 3.1 alleviates via careful attention to the
assumed box-shaped zero-free region.

5 A zero density result for families of Dedekind zeta functions

We have proved a Chebotarev density theorem conditional on a box-shaped
zero-free region for ¢y (s)/¢kx(s). Now we restrict our attention to k = Q
and show that within appropriate families of Galois extensions of QQ, except
for a possible exceptional subfamily of density zero within the family, each
¢r(s)/¢(s) is in fact zero-free in the desired region. To do so we will build on
the result of Kowalski and Michel [45, Thm. 2] on the density of zeroes among
a family of cuspidal automorphic L-functions. We describe our approach
somewhat generally to facilitate future applications, and then specialize to
our present setting.

5.1 The Kowalski-Michel zero density estimate

Let m > 1 be fixed. For any cuspidal automorphic representation p of
GL(m)/Q, define the zero-counting function for the corresponding automor-
phic L-function L(s, p) in aregion with @ € [1/2, 1], T > 0 by

Np;a,T)={s=B+iy:B=aly|<T,L(s, p) =0},

counting with multiplicity. For an isobaric representation w = py H--- H p,
with p; cuspidal, define

N(;o, T) =N(p1;0,T)+---+ N(pr;a, T), (5.1
again counting each zero with multiplicity.

The main outcome of [45] is a bound for N (p; «, T') that holds on average
for an appropriate family of cuspidal representations p. Our innovation is to
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develop a means to apply their results to the case when 7 varies over an appro-
priate family of isobaric representations, in our case, obtained from Dedekind
zeta functions. We first recall the original setting for cuspidal representations,
which assumes the following conditions hold:

Condition 5.1 For each X > 1 let S(X) be a finite (possibly empty) set of
cuspidal automorphic representations p of GL(m)/Q such that the following
properties hold for (S(X))x>1:

(i) Every p € S(X) satisfies the Ramanujan-Petersson conjecture at the finite

places.

(i1) There exists A > 0 and a constant Mg such that for all X > 1, for all
p € S(X), Cond(p) < MoXA.

(iii) There exists d > 0 and a constant M| such that for all X > 1, |S(X)| <
M X4,

(iv) For any ¢ > 0 there exists a constant M . such that for all p € S(X) we
have the convexity bound

IL(s, p)| < Mp.¢(Cond(p)(t] +2)™)I=MED/2%e - for 0 < R(s) < 1.

Forany ¢ > O there exists a constant M3 ¢ such that forall p % p’ € S(X)
we have the convexity bound

IL(s, p ® p)] < M3.c(Cond(p @ p')(Jt] +2)" )17 )/2+e,
for0 < M(s) < 1.

Remark 5.2 Kowalski and Michel call (S(X))x>1 a family of automorphic
representations, with associated automorphic L-functions; following their con-
vention we will call the associated collection of constants {m, A, d, My, M,
M> o, M3 .} the family parameters.

Remark 5.3 1t is worth comparing precisely Condition 5.1 to the hypotheses
originally stated in the work of [45]. We note that the above criteria (i)—(iii)
reduce to exactly the criteria of [45, Thm. 2]; Condition (iv) above replaces
their assumption that all the L-functions in (S(X)) x>1 have the same gamma
factors at infinity. That condition is only used in order to attain the uniform
convexity bounds of [45, Lemma 10] (Kowalski, personal communication),
and thus we merely assume the relevant uniform convexity bounds directly.
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In this context, we recall Kowalski and Michel’s original theorem:

Theorem E ([45, Theorem 2]) Let (S(X))x>1 be a family of cuspidal auto-
morphic representations of GL(m)/Q satisfying Condition 5.1. Let o > 3/4
and T > 2. Then there exists a constant c(/) = c(/) (m, A, d), in particular

,  SmA
cy=—+=+d 5.2)
2
and a constant B > 0, depending only on the family parameters, such that for
every choice of co > ¢, we have that there exists a constant My, ., depending
only on cq such that for all X > 1,

. B yco i
> N(pia,T) < My, TEX0%T,
pES(X)

5.2 Defining a family of automorphic representations

Fix n > 2 and a transitive subgroup G C S,. Let #(Q, G) C Z||(Q, G)
be a set of Galois extensions L/Q with Gal(L/Q) ~ G, and let % (Q, G; X)
denote the finite subset comprised of those fields with Dy = |[Disc L/Q| < X.
(Momentarily we will construct such a set from each of the families Z ,‘f Q, G)
of degree n fields considered in our main theorems.)

Denote the irreducible representations of G by po, p1, - . ., ps, With pg being
the trivial representation. For each field L € % (Q, G; X), the Dedekind zeta
function may be written as

t(s) =¢(s) [ [ LGs, pj, L/Q™. (5.3)
j=1

The regular representation, of total dimension |G| = 1+, _ j<s m?, may be
written as an isobaric sum

regg = po B (o1 B---Bp)B---BosB---Bps)

in which p; appears m ; = dim p; times. Thus for each field L € .7 (Q, G; X)
we may consider the Artin L-function L(s, ) = {1 (s)/¢ (s) for the represen-
tation

7= (p1B---Bp)B---H(psB---H py) (54
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in which p; appears m; = dim p; times. Additionally, assuming the Strong
Artin Conjecture (see Sect. 6.2), to each field L € #(Q, G; X) and each
representation p;, there is an associated cuspidal automorphic representation
mr,j of GL(m;)/Q; we then have

L(s,mp ;) = L(s, pj, L/Q).

Now fix 1 < j < s. Foreach X > 1, let .Zj (X) be the set of cuspidal
automorphicrepresentations 77, ; of GL(1m ;) /Q associated by the Strong Artin
Conjecture to the fields L € .7 (Q, G; X) and the representation p;.

The main result of this section, and the key result underlying our effective
Chebotarev theorem in families, relates to the following phenomenon. For
each j, under appropriate assumptions, we show that Theorem E applies to
the family (.Z; (X)) x>1, so that for each X > 1, aside from very few possible
“bad” exceptional representations, for each representation 7 € .Z;(X) the
associated L-function L(s, i) possesses a certain zero-free region. Now a
key difficulty arises: in general, depending on the group G and the family
Z(Q, G; X),itcould happen that a given L-function L (s, ) corresponding to
arepresentation 7 € .Z;(X) occurs as a factor in £y, (s) /¢ (s) for “many” fields
L € Z(Q, G; X), indeed even possibly a positive proportion of such fields
(see Sect. 6.3.2). We need to rule out this possibility that a “bad” exceptional
representation in .Z; (X) could lead to an L-function that “contaminates” ¢ /¢
for a positive proportion of fields in .% (Q, G; X). In this section, we state
appropriate conditions on a set % (Q, G; X) of Galois extensions that allow us
to rule out this problem (see in particular the condition (5.5) below). In Sect. 6,
we show that the families of fields that we consider in our main theorems obey
these conditions.

Now we state the conditions we assume on the set .% (Q, G) of Galois exten-
sions and the associated families (.Z; (X)) x>1 of automorphic representations
(1 < j < s), building on Condition 5.1. (Note that we explicitly assume
the Strong Artin Conjecture below, but for certain groups G it is known; see
Sect. 6.2.)

Condition 5.4 Let % (Q, G) be a set of Galois extensions as specified above.
For each 1 < j < s and each X > 1, define the set .Z;(X) of automorphic
representations as above, assuming the Strong Artin Conjecture.

Assume that for each 1 < j < s, the family (£;(X))x>1 satisfies Con-
dition 5.1, with corresponding parameters {m;, Aj,d;j, Mo j, My ;, M3 j .,
M3 j ¢}. In particular, for 1 < j <'s, (Z;(X))x>1 is a family in the sense of
Theorem E.

Let A > 0, My be such that for all X > 1, for every field L € ¥ (Q, G; X),
the representation w associated to L(s,w) = ¢r(s)/¢(s) has Cond(w) <
MoXA.
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Let d, My be such that for all X > 1, |.Z(Q, G; X)| < M X
We assume that for each 1 < j <'s, there exists 0 < 1; < d and a constant
Ms_j such that for all X > 1, for any fixed m € £;(X),

#{LE?(Q,G;X)27TL7j=7T}§M5’jXT-". (5.5

We will call {M(), Ml, A, d} and {mj, Aj, dj, Ml,j» Mz’j’g, Ms’j’g, M5’j} for
1 < j < s the family parameters for % (Q, G).

5.3 A zero density theorem for L-functions associated to the family
Z(Q, G)

To bound on average the number of zeroes of L-functions ¢z (s)/¢(s) in a
certain region, as the field L varies over the family .7 (Q, G), we will apply
Theorem E repeatedly, under the assumption of Condition 5.4.

Theorem 5.5 Let % (Q, G) be a set of Galois extensions as specified above.
For each 1 < j < s and each X > 1, define the set .Z;(X) of automorphic
representations as above, assuming the Strong Artin Conjecture.

Assume that Z(Q, G) and the families (Zj(X))x>1 for j = 1,...,s,
satisfy Condition 5.4.

Set T = max; t; and m = maxm;. Then for any 0 < A < 1 sufficiently
small that A < 1 — t/d, and for any n < 1/4, there exists B depending only
on the family parameters for F(Q, G), and 0 < § < 1/4 depending only
on A,m,d, A, t, such that for all X > 1, at most O(X(l_(l_")A)d) fields
L € Z(Q, G; X) can have the property that {1 (s)/¢(s) has a zero in the
region

[1—8,1] x [-X"2d/B_xnAd/By

The implied constant in the O (-) notation depends only on A, m,d, A, Tt and
s (the number of nontrivial irreducible representations of G).

Remark 5.6 We see that in the hypotheses there is a non-empty range of 0 <
A <1—1/dsinceeacht; <d.

To deduce Theorem 5.5 we first apply Theorem E to the family (.Z; (X)) x>1
foreachl < j <s.Let1 < j < s be fixed. By Theorem E, for any o; > 3/4
and T; > 2, forall X > 1,

B ¢ 1701]-

j i,02q-—1

E N(m;aj, Tj) <cjo T/.’X’ 2y (5.6)
reZi(X)
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in which we may choose any cj,0 > ¢/, with ¢’y = ¢, ((m;, A}, dj) as
shown to exist in Theorem E; the particular form 1s not critical, but we may
for example take

C/j,O = % + d J-

In the spirit of [45, Remark 3], we pause to observe that although the parameter
dj assumed to exist in the upper bound (iii) of Condition 5.1 may not provide
a sharp upper bound, this does not cause any contradictions in terms of its role
in C/j,O; if d; is an over-estimate, then the right-hand side of (5.6) is similarly an
overestimate (and similarly with respect to the possibly non-sharp parameter
A ). Indeed, for convenience we may choose ¢ o = C;'/,o + &1 (for a certain &
to be chosen later) with

+d. (5.7)

Note that A > max; A;, d > max d; so that this choice is valid.
Set T = max; <<, 7. Recalling that A is given, we fix «; to be such that

o0 =%) _ v
Qaj —1)

We see that the right-hand side is positive, so thataj < 1,since A < 1—1/d.
Theorem E applies when «; > 3/4; if necessary one could simply impose
this using monotonicity of the estimates, but in fact it is simple to check that
this holds in our scenario. (This will also easily be satisfied in our ultimate
applications, in which we will be working very close to the line fi(s) = 1.)
We compute that

Y cjo+ (1 —Ad—1
T cio+2((1 = Ad — 1)

so that ; > 3/4 as long as
cj0=2((1 —A)d —1). (5.9)
By assumption, A < 1 — 7/d; let &2 > 0 be such that
A=1—-1/d—¢e/2d. (5.9)
Then (5.8) is equivalent to the requirement that c; o > &>, which will always

hold as long as we choose €1 > &, according to the definition (5.7), upon
recalling that A, d > 0. Upon setting T} = X nAd/Bj we conclude that
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Z NG aj, T)) <o xnAd y(1-A)d—7 oo x(1=(1=ma)d—t
reZi(X)
(5.10)
Now we assemble these results together for 1 < j < s. For notational
convenience, given an L-function L(s) (which could be an Artin L-function
L(s, p, L/Q) or an automorphic L-function L(s, ) corresponding to an auto-
morphic representation i), we will let N'(L(s); a, T) denote the number of
zeros B+ iy with L(B +iy) =0,and B > «,|y| < T. Set @ = max; o;
and T = min; T;. (Note that o« > 3/4.) Then for each X > 1, assuming the
Strong Artin Conjecture,

Y N@/saD= Y Y mN(Le. . L/QiaT)

LeZ(Q,G;X) LeF(Q,G;X) j=1

N
= Y > miN(L(.mp ;. L/Q:a,T)
LeZ(Q,G;X) j=1

:imj > NemyieT) Y L

j=l  meZi(X) LeZ(Q,G;X)

TL,j=T

Using condition (5.5), we can bound the right-hand side from above by

N
<Y miX% 3" N(L(s,m)aT).
j=1

e (X)

Thus by applying (5.10) for each 1 < j < s, we see that

Z N'(CL/ta, T) Kegosom x(1=1=mayd
Le7(Q,G;X)

where ¢p = max;cjo. From this we conclude that at most O, s,m
(x(A=U=mM)dy fields L € .Z(Q, G; X) can have the property that ¢z (s)/¢(s)
has a zero in the region [¢, 1] % [—X"1Ad/B xnAd/B] \where B = max B;.
The implied constant depends on cp, s, m, and hence on A, m, d, T, A, s, €1.
Now from (5.9), & is defined, and then we can choose £ = &3 in the definition
of ¢j 0. Then we may compute that upon setting § = 1 — o = 1 — max;{o;}
(which we have therefore verified satisfies 0 < § < 1/4), we have

& &2
8 = =
Smax;{m;}A +2d +4e;  SmA +2d + 4e

(5.11)
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as an allowable choice. Since & is determined by A, t,d we can write the
dependencies in terms of these parameters. This yields the result of Theo-
rem 5.5, moreover with a specific description of §.

Remark 5.7 This argument shows that although the parameters A, d are only
assumed to yield valid upper bounds (not necessarily sharp) in Condition 5.4, it
is advantageous to make them as small as possible. In a similar vein, it is worth
asking why, if making 1 — A smaller gives better control on the exceptional
set, we do not in (5.9) artificially inflate the size of d. The reason is that 1 — A
only controls the density (roughly O (X 1=2))) of the exceptional set relative
to the assumed upper bound O (X?) for the family; thus in this instance also,
it is advantageous to make d as sharp as possible.

Remark 5.8 We see that the size of A, and hence of the possible exceptional
set of bad fields in .7 (Q, G; X) depends on the largest value of 7; with 1 <
J < s coming from the condition (5.5). The larger max 7, is, the smaller we
must take A, and the less savings we have for the possible exceptional set in
F@Q, G; X).

Remark 5.9 We recall that Cho and Kim (e.g. [15, Theorem 3.1] and other
works) have also applied [45] to certain families of isobaric representations,
say 71 =y B --- H 7w, of GL(m)/Q, with m = m| + - - - 4+ m,, and each
7 a cuspidal automorphic representation of GL(m;)/Q. Let us momentarily
call the family of such 7 by S(X) and for each j the family of such 7; by
S (X). In their work, item (iv) of Condition 5.1 is replaced by the requirement
that for each 1 < j < r, for all p; € §;(X) the gamma factor of L(s, ;)
is of the form ]_[:n:’ | T'(s + «;), where a; € R are fixed; this is a special case
of the version of (iv) stated here. More importantly, instead of the key item
(5.5) in Condition 5.4, Cho and Kim assume that for any two inequivalent
m,n" € S(X)withm =7 B---Bax, and 7’ = 7y B .- B x/, they have
nj # m forall 1 < j, k < r.Relative to (5.5), this would be the statement
that for each j, for any fixed p € §;(X), precisely one w € S(X) has w; >~ p,
which in our notation is even stronger than the case T; = Oforall 1 < j <r.
Cho and Kim used this to deduce that |S; (X)| = [S(X)| for each j, which was
crucial to their proof, but also limited the types of families S(X) they could
consider.

6 Verifying the conditions of the zero density theorem for families of
Dedekind zeta functions

The main result of this section is that Theorems 3.3, 3.9, 3.11, 3.13 and 3.14
may be deduced from Theorem 5.5 by verifying that for each of the families of
fields considered in these theorems, Condition 5.4 is satisfied. Accordingly, in

@ Springer



An effective Chebotarev density theorem for families 751

this section we fix Zf (Q, G) to be one of the families specified in the above
theorems, under the associated hypotheses of the theorem (if any).

6.1 Passage to a family of Galois closures

We now pass from considering the original set of the degree n fields in
Z}fg (Q, G) to considering the set of Galois closures Z},] (Q,G)={K:K €
Z;lﬂ (Q, G)}; each Galois closure corresponds to a constant number of fields in
Z;f (Q, G) (only depending on G as a permutation group). We now recall the
notation of Sect. 5.2. Using that notation, we define % (Q, G) = Z;f Q, G)to
be the set of Galois extensions we consider, and we accordingly define the sets
Z;(X) foreach 1 < j < s andevery X > 1, and thereby the corresponding
families (.Z; (X)) x>1 of automorphic representations.

6.2 Verification of Condition 5.1 (i)—(iv)

Now that we have constructed the appropriate families .% (Q, G) = Z ;f Q, G)
and (.Zj(X))x>1 foreach 1 < j < s, we must verify that Condition 5.4 is
satisfied. We first note that for each family Z;fl (Q, G) we consider, either the
strong Artin conjecture is known to apply to all the Galois representations
considered (this is the case in Theorem 3.3) or it is explicitly assumed (this is
the case in Theorems 3.9, 3.11, 3.13 and 3.14). To be precise, let us write the
Euler product of an Artin L-function as L(s, p) = [[, L(s, py), and the Euler
product for an automorphic L-function as L(s, w) = [, L(s, y).

Conjecture F (Strong Artin Conjecture) Let L be a finite Galois extension
of a number field k, with Gal(L/Q) ~ G. Let p be an m-dimensional com-
plex representation of G. There exists an automorphic representation 7w (p) of
GL(m)/Q such that the L-functions L(s, p) and L(s, ) agree almost every-
where, i.e. except at a finite number of places v, L(s, p,) = L(s, ). Moreover,
if p is irreducible, then 7 is cuspidal.

This is known to hold for: 1-dimensional representations p, due to Artin [2];
nilpotent Galois extensions L/k, due to Arthur and Clozel [1]; A4 and Sy,
due to Langlands [48] and Tunnell [76], respectively; dihedral groups (and in
particular S3), due to Langlands [48]. We also note that in the setting we will
work in, a stronger identity is known. (See, for example, [24, Theorem 4.6],
[54, Proposition 2.1], [55, Appendix A], and [57, Proposition 1.5].)

Theorem G If 7w is cuspidal and L(s, ) = L(s, py) for almost all v, then
in fact L(s, ) = L(s, p).
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These considerations guarantee that in the settings we consider (with the rel-
evant hypotheses we assume), each .Z;(X) is a set of cuspidal automorphic
representations.

We next confirm that for each 1 < j < s, the family (.Z; (X)) x>1 satisfies
the four items in Condition 5.1. For item (i), since the Ramanujan-Petersson
conjecture holds for automorphic L-functions associated to Artin L-functions
once they are known to exist (see e.g. the comment following [45, Thm. 5]),
under the assumption (or known truth) of the strong Artin conjecture, the
Ramanujan-Petersson conjecture holds for all the cuspidal automorphic L-
functions in each set .Z; (X).

For item (ii), note thatif K € Z{ (Q, G; X) then by construction Dg < X.
The following standard lemma relates to discriminants of a field and its Galois
closure.

Lemma 6.1 (Discriminant comparisons) Let G be a transitive subgroup of
Sn. There exist constants C; = C1(G) and C» = C2(G) such that for every
field K € Z,(Q, G),

D" < pp < DT,

(The lemma follows from Lemmas 6.9 and 6.10, recorded below, and for the
left-hand inequality, the fact that every cycle length in a permutation is at most
the order of the permutation.)

Recall that in general for an Artin L-function L(s, p, L/k), if F(x) denotes
the Artin conductor of x = Tr(p), then the conductor of L(s, p, L/k) is
given by A(x) = D,f(])Nmk /QF (x). According to the multiplicativity rela-
tion Dy = Dy [] X A(x j)Xf(l) for the conductors in the identity (5.3), we see
that for each 1 < J =< s, the conductors of L(s, p;, L/Q) are bounded by
<n.G X161/2 and we may take Aj=A=|G|/2forall j.

For (iii), to control the size of the family of fields Z;f (Q, G; X) it suffices
to control the sizes of the families Zh] (Q, G; X) (and moreover it suffices to
bound from above the sizes of the families Z,(Q, G; X) without the ramifica-
tion restriction). Thus we may apply the following known unconditional upper
bounds to show the existence of d; = d for all j: G cyclic, Proposition 2.1;
G >~ Sy see (2.6); G = D see (2.4); G = Ay see (2.8); G C S, simple, we
simply embed Z,,(Q, G; X) in the family of all fields of degree n and apply
(2.6).

For item (iv), we use the known convexity bounds for automorphic L-
functions, which apply to our Artin L-functions under the strong Artin
conjecture. Briefly, to be precise, we recall for ¢+ € R the analytic conduc-
tor of L(s, ) (in terms of the arithmetic conductor Cond(sr) and the local
parameters at infinity, p (j)),
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Q () = Cond () [ [(1 + lit — pix ().

j=1

Then via the functional equation, Stirling’s formula, and an application of the
Phragmen-Lindelof principle, one may derive the classical convexity bound
(see e.g. [36, page 5]):

1-%(s)

L(s, ) Kne Q)2 75, 0<N() < L.

For 7,7 unitary cuspidal automorphic representations of GL(m)/Q,
GL(m')/Q, the Rankin-Selberg L-function L(s, 7 @ 77) (see e.g. [56, §1.1.2])
has a corresponding arithmetic conductor Cond(;r ® 7’) and analytic conduc-
tor, given for r € R by

Qrgn(t) = Cond(r @ ) [ [(1 + lit — pagnr (1)
j=1

The convexity bound for L(s, 7 ® ) in the critical strip is known:

1—NR(s)

L(s,m ®7T/) Lr,lve Qn®n/(t> 2

e 0<NG) < 1.

Remark 6.2 Note that for each 1 < j < s, the uniformity of the convexity
bounds assumed in Condition 5.1 (iv) with respect to m; is critically reliant
on the fact that within a family Z;l] (Q, G; X), all fields share a fixed degree
and a fixed Galois group of the Galois closure.

6.3 Verification of condition (5.5): controlling the propagation of bad
L-function factors

Now we turn to the most difficult task: verifying that for each choice of the
family Zf (Q, G; X) that we consider in our main theorems, condition (5.5)
of Condition 5.4 is satisfied.

6.3.1 Reframing the question in terms of subfields

Let Zf (Q, G; X) be a fixed family of fields, for a fixed transitive group G C
Sn,andlet p be anirreducible representationof G.Let L1, Ly € Z;f Q, G; X).
Then Gal(L;/Q) ~ G while Gal(L}*"”’/Q) ~ G/Ker(p). The following

proposition transforms the property of identical L-functions into a property of
identical fixed fields.
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Proposition 6.3 Let p be a fixed representation of a fixed transitive subgroup
G C Sy For L1/Q and Ly/Q with Gal(L,/Q) ~ Gal(L2/Q) >~ G, then if

L(s,p,L1/Q) = L(s, p, L2/Q) (6.1)

it follows that Llfer(p) = LI;er(P)‘

We recall a standard lemma.

Lemma 6.4 Suppose for two Galois extensions F1/Q and F>/Q, that, aside
from finitely many exceptions, the set of rational primes that split completely
in Fy is the same as the set of rational primes that split completely in F>. Then
F = k.

Proof By the Chebotarev density theorem, the density of rational primes that
are split completely in F1, F», or F F; are, respectively [ F] : Q]*1 JFo Q]*l,
[F1F> : Q]~!. Since a prime is split completely in Fj F; if and only if it is split
completely in F| and F,, we have [F; : Q] = [F> : Q] = [F1 F> : Q] and so
F1 = F>. O

Thus to prove Proposition 6.3, it suffices to show that for each fixed
representation p of G, aside from finitely many exceptions, the set of

Ker(p)
1

rational primes that split completely in L7’ is the same as the set of

rational primes that split completely in LZKer(’O ), under the assumption that

L(s,p,L1/Q) = L(s, p, L2/Q). First we assume that p is a rational prime

that is unramified in L1, L, (and hence is unramified in Lll(er(p ), LzKer(p ) ) and
Ker(p)

splits completely in Llfer(p ). In particular, this means that for any py in L
that lies above p, the conjugacy class of the Frobenius element oy, is trivial

in Gal(Lll(er(p)/Q) >~ G/Ker(p), that is to say, p(op,) is the identity matrix /.

Now letting ps € L2K er(P) pe any prime lying above p, by the assumption
that the L-functions are equal, we have that the factors corresponding to p are
equal as functions of s and therefore

det(I — p(op,) p™*) " = det(I — p(oy,)p™*) ! =det(I — Ip~)~". (6.2)

Now recall that the Frobenius element oy, is necessarily finite order. We recall
a simple observation. Suppose M is an n x n matrix over C of finite order,
say MF¥ = I for some k, such that det(/ — Mx) = det(I — Ix) = (1 — x)"
for a formal variable x. Then we claim M = [. Indeed, since M is finite
order, M is diagonalizable, for the minimal polynomial of M divides x* — 1
and so has no repeated roots. By our second assumption, all the roots of the
characteristic polynomial of M are equal to 1, so that all the eigenvalues of
M are 1 and M = I. We apply this in (6.2) to conclude that p(op,) = 1
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as well. Thus the conjugacy class of the Frobenius element oy, is trivial in

Gal(LzK e(P) 1Q) ~ G/Ker(p) and p must split completely in Lger 28

In this fashion we see that any prime that is unramified in L1, Ly and splits

completely in LYY must split completely in L5, Starting from primes

unramified in L, Ly that split completely in L5 we can similarly show

that they must split completely in Llfer(p ), and this concludes the proof of

Proposition 6.3.

Remark 6.5 Proposition 6.3 can alternatively be deduced from [46, Theorem
5], which also includes a converse, which we do not require in our applica-
tion. To apply [46, Theorem 5] in our setting, one first passes as in [46, p.
162] to the case of a faithful representation @ (o Ker(p)) = p(o) acting on
H = G/Ker(p). Kliiners and Nicolae present a counterexample to the char-
acterization deduced in Proposition 6.3 when working over k # Q [46, p.
167], but see their relative version [46, Thm. 6]. It is possible that certain other
families anﬁ (k, G; X) with k # Q and certain choices of G can be treated by
an adaptation of our methods with such a relative result. (When working over
k # Q one would also need to take into account the more nuanced situation
that arises with regards to arithmetic equivalence.)

We now apply Proposition 6.3. As before, let G be a fixed transitive subgroup
of S, and let py, ..., ps be the nontrivial irreducible representations of G. For
each 1 < j < s, consider the set of fields

(LX) - 1 e Z7(Q, G; X)).

(Note that we define this as a set, not a multi-set.) Philosophically, we would
like to show that the cardinality of this set is “large,” or equivalently very few of
the fields L share the same fixed field, which would imply that “few” collisions
L(s, pj, L1/Q) = L(s, pj, L2/Q) couldoccurfor Ly # L € Z;f(@, G; X).

Formally, recall the definition of the set .Z’; (X) in Sect. 5.2 according to the
family of fields . (Q, G; X) = Z;f (Q, G; X). Letus first consider the special

case in which p; is faithful so that Ker(p;) is trivial. Then by Proposition 6.3,

for two fields L1 # L, € Z;{(Q, G; X), we cannot have Lll(er(pj) = LzKer(pj)

and so we cannot have L(s, pj, L1/Q) = L(s, pj, L2/Q), and so in this case
201 =12 (@, G: X). 6.3)
Thus if p; is faithful, we have verified (5.5) of Condition 5.4 with 7; = 0,

which certainly suffices.
More generally, even if p; is not a faithful representation, Proposition 6.3

shows that the number of fields L; € Z;f(@, G; X) for which L(s, p;, L; /Q)
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is identical to a specific L-function is bounded above by the number of fields

L; € Z;f (Q, G; X) for which Lfer(p'f ) is identical to a specific field. Thus we
have translated the problem of verifying (5.5) for a particular family .Z; (X)
to a problem of counting fields.

Precisely, we summarize the implications of Proposition 6.3 as the following

statement:

Proposition 6.6 Let Z” (Q, G) be a set of fields considered in Theo-
rem 3.3, 3.9, 3.11, 3.13 or 3.14 under the associated hypotheses, if any. Let
Z;f (Q, G) be the corresponding set of Galois closures. Let p1, . .., ps be the
nontrivial irreducible representations of G. Define the families (£ (X)) x>1
for 1 < j < s accordingly, as in Sect. 5.2. Then Z;{ (Q, G) and the families
(Zj(X))x=1 for 1 < j < s satisfy (5.5) of Condition 5.4 with parameters
{tj}1<j<s if the following holds: for each irreducible representation p; of G,
given any field F € Z,(Q, G/Ker(p;); X) (where u = |G /Ker(p;)|), at most
On.G.s(XT) fields L € Z7 (Q, G; X) have LK) = F,

6.3.2 Rationale for the restriction on ramification types of tamely ramified
primes

For G not a simple group, Proposition 6.6 spurs us to quantify, for each proper
normal subgroup H of G that appears as the kernel of at least one (non-faithful,
non-trivial) irreducible representation of G, how often a particular field occurs
as a fixed field L, as L varies over a relevant family of Galois extensions of
Q with Galois group G.

For certain groups G, fixed fields could collide with high repetition. For
example, taking G = Z/4Z, then for any fixed quadratic field such as F =
Q(e?71/3), a positive proportion of quartic Galois fields K € Z4(Q, Z/4Z; X)
have K%/?2 = F. This can be seen for example via a counting argument
similar to that of Sect. 2.1. (See also comments in Remarks. 6.11 and 6.12.)

To eliminate such possibilities, we will critically use our restrictions on the
ramification types of the tamely ramified primes in the fields in Z,}ﬂ (Q, G; X).
Given G, we will select . so that it has two properties:

(1) For an (Q, G) to be infinite, we need the elements in .# to generate G.

(2) We need .# to have the property that for each proper normal subgroup H
in G that is the kernel of a non-faithful irreducible representation of G,
given any field K € Z;f (Q, G; X) with associated Galois closure K /Q,
then p|Dg implies p|Dp, where F = K.

(Of course the primes that appear in Dk are the same that appear in D but
this need not a priori be true of D and Dp.) Property (2) will enable us to
obtain the information we seek in Proposition 6.6, that is, to count the number
of K € Z;l](Q, G; X) sharing the same fixed field F = K, by applying
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quantitative information about D, (G; @) (Property 1.6). This is one of the
most novel features of this paper.

6.4 The counting problem

We now define the counting problem that is the heart of the matter.

Property 6.7 (Property Mult, (G, .#; 1)) Let Mult, (G, .#; t) denote the
property that for every X > 1, for each irreducible representation p of G,
given any particular field F € Z,,(Q, G/Ker(p)) (withu = |G /Ker(p)|) that
arises as afixed field KX for at least one field K € Z;f (Q, G; X), forevery
g >0, atmost Oy . s.(X7) fields K € Z” (Q, G; X) have KX = F.

Given a family Z;lﬂ (Q, G; X), if we can prove that Mult,, (G, .#; t) holds
for a sufficiently small 7, then by Proposition 6.6, the relevant effective Cheb-
otarev density theorem for the family Z;f (Q, G; X) will follow (that is, either
Theorem 3.3, 3.9, 3.11, 3.13 or 3.14). Quantitatively, lowering the size of t for
which we can prove Mult, (G, .#; 7) will allow us to better control the size of
the possible exceptional set of fields.

Proposition 6.8 (Counting problem)
We can prove the following:

(1) Mult,, (G, #; 0) for G a simple group, .9 imposing no restriction.

(2) Mult,, (G, #; 0) for G cyclic, .7 specifying totally ramified.

(3) Mult, (S, Z; @wy) for n > 3, . the conjugacy class [(1 2)], where
w3 = 1/3, w4 = 1/2, ws = 199/200, and for n > 6, w,, = @ if
we assume Property D, (S, @).

(4) Mult, (D, .#; 1)) holds for T, = 1/(p — 1), p an odd prime, . the
conjugacy class of order 2 elements.

(5) Multy(Ag, 7;0.2784...), I the two conjugacy classes of order 3 ele-
ments.

As observed above, Mult, (G, .#; 0) is tautologically true when G is a simple
group (. imposing no restriction), since all the nontrivial irreducible repre-
sentations are faithful and (6.3) applies. All the other cases of the counting
problem require work. We first explicitly prove this for S;,, n # 4; in particular,
to aid the reader, we include our argumentation for choosing . = [(1 2)].

6.4.1 Background lemmas on inertia groups and discriminants

We recall standard results on the powers of primes dividing Dg.

Lemma 6.9 (Powers of tamely ramified primes in discriminants) Ler K C
K Cc Qwith Gal(K/Q) ~ G and H = Gal(K /K). Let p be a rational prime
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that is tamely ramified in K and K, and has an inertia group in Gal(K /Q)
generated by w € G. The power a such that p*||Dg is

[G : H] — number of orbits of w acting on the cosets G/ H. (6.4)

Proof We have that D is the Artin conductor of K /Q for the permutation
representation of G on G/H [61, Ch. VII, Corollary 11.8]. By definition, the
Artin conductor of K /Q for a representation V of Gal([g /Q)is [ » pf p(V),
where the product is over rational primes and

V) = Z Eni codim VCri,
i>0 8p.0

for G, ; an ith ramification group for p in Gal(IZ/Q) and g,; = |Gpl.
Recall that G, ¢ is the inertia group I, and that for tamely ramified p, we have
Gp,i = lfori > 1. So for tamely ramified p, we have f,(V) = codim Vi,
The lemma follows, since for a permutation representation V, the dimension
of the fixed subspace V7 is the number of orbits of 7. O

Lemma 6.10 (Maximum contribution of wild primes) Let G be a transitive
subgroup of S,. Then for all fields K € Z,(Q, G), the total contribution to
Dy from the rational primes that are wildly ramified in K is at most a certain
finite constant Cg depending only on G.

This lemma follows from [61, Ch. III, Thm. 2.6] and the fact that all wildly
ramified primes divide |G|.

In order to consider only the tame part of the discriminant in our investiga-
tions below, it will be convenient to use the following notation. Given a finite
set of primes €2, define D%Q) to denote the contribution to the discriminant

from primes p ¢ €, i.e. Dgz) is the maximal positive divisor of Dk that is
not divisible by any prime in 2. We will apply this in particular when €2 is
comprised of the primes dividing |G|.

6.4.2 Exemplar case: G = S, n =3 orn > 5

Recall that when n = 3 or n > 5, S, has one nontrivial, proper normal
subgroup, namely A,, which certainly appears as the kernel of the sign rep-
resentation. Thus we must specify a ramification type .# so that the counting
problem for fixed fields K“» can be handled. We wish, for a fixed quadratic
field F € Z>(Q, C»),to count the number of degree n fields K € Z,(Q, S,; X)
such that K4» = F.
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Table 1 Table of exponents for p when Gal(I? /Q) ~ S, for each p t n!

Inertia type of p Exponent of p appearing in the discriminant of
K K F=KM

(0] 0 0 0

[(12)] 1 n!—n!/2 1
[(123)]=[12)23)] 2 n!'—n!/3 0

[(12)34)] 2 n! —n!/2 0

[(123...n)] n—1 n!—n!/n en

K

Gal(K/F) ~ A,

Gal(K/Q) ~ S,| K F = KAn
n
2
Q

Using Lemma 6.9, we can compute for fields K, K , F in such a constellation
the exact power of p that appears in the absolute discriminants Dk, Dy, Dp,
for each prime p { |G|. We show these exponents in Table 1: the leftmost
column specifies the conjugacy class of the generating element r of the (cyclic)
inertia group for p, while the other columns specify the exact power of p
appearing in the discriminants. We only list a few of the p(n) conjugacy
classes of S,,;; we set e, = 0ifnisodd and ¢, = 1 if n is even.

From Table 1 we observe that every p 1 |G| that has inertia group generated
by a transposition has p| D, p"/?| Dy, pllDF. This will allow us to control,
for a fixed field F, how many K can yield a constellation including F'. These
observations from Table 1 motivated our choice of . = [(1 2)] for G ~ S,
(n=3,n>)5).

Now we come to the crux of the argument. Suppose that F is fixed, and
hence Dr > 1 is fixed. Set 2 = {p : p|n!} and recall the notation D%Q)
defined above. Our discussion above shows that any degree n extension K €
Zn](@, S,; X) such that K4» = F must have

D =p¥. (6.5)
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Assuming Property D, (S,, @) is known, then since the power of any p €
Q dividing Dk is bounded in terms of n, for a given F there are at most
<n.G.e D?“ <n.G.e X7 such K satisfying (6.5), for every ¢ > 0. Now
to obtain the conclusion on Mult, (S,,, .#; @) of Proposition 6.8 for S,,, n =
3,n > 5, we simply apply the currently best known upper bounds for Property
D, (S,, @) in these cases, as stated in Sect. 2.3.

Having completed this exemplar case of G = S, (n # 4) in some detail,
we are now more brief with the remaining groups G, which follow similarly
by using Lemma 6.9 in order to fix an appropriate choice of ramification type
# for which the counting problem can be resolved.

643 G~ S

Recall that S4 has four nontrivial irreducible representations (see e.g. [67, p.
43]): two three-dimensional faithful representations (the standard representa-
tion and the product of the standard representation with the sign representation)
and two non-faithful representations. The subgroup A4 is the kernel of the one-
dimensional sign representation, and K4 >~ Cy x C; the Klein four group is
the kernel of the irreducible two-dimensional representation of S4. We thus
have two counting problems to consider.

Relevant to the counting problem for fixed fields under A4, by choosing .%
to be the conjugacy class [(1 2)] of transpositions, we may conclude that triads
K, K, F = K4 behave exactly as in the case of S, in Sect. 6.4.2, so that for
any p 1 4!, p||Dk, p12||DK plIDF, and hence upon setting Q = {2, 3}, we

have D(Q) D(Q) Thus arguing as in Sect. 6.4.2, any fixed F corresponds

to at most <, Dw+€ <n.G.e XPFE possibilities for K € Z7 (Q, S4; X), if
Property D4 (54, w) is known.

Relevant to the counting problem for fixed fields under K34, still choosmg 5
to be the conjugacy class [(1 2)] of transpositions, for triads K, K, F = KX+
the exponents are different: for every p t 4! we have p| Dk, p12||D 7> and
p3 || DF. Thus upon setting €2 = {2, 3}, we have

D& — (D)3, 6.6)

and so any fixed F corresponds to at most <, D w/3+8 LnGe X @+ pos-

sibilities (for every ¢ > 0) for K € Zj 7 (Q, S4; X ), if Property D4(S4, @)
is known. (Here we have used the fact that if K € Z,(Q, G; X) and (6.6)
holds, then Dr <,.¢ X 3.) We conclude that Mult4(S4, -#; 1/2) holds since
Property D4(S4, 1/2) is known.
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644 G ~ A4

Recall (see [67, Section 5.7, page 41]) that A4 has four nontrivial irreducible
representations: two faithful representations and two one-dimensional non-
faithful representations, each with kernel K4 >~ C, x C; the Klein-four group.
Thus we need only complete the counting problem for triads K, K, F = K X4,
We will require all tamely ramified primes to have inertia type belonging to
either of the conjugacy classes %1, 42 of order 3 elements (specified e.g. in
Proposition 2.5).

Suppose we restrict to primes of inertia type in the conjugacy class .
The image of this inertia type in A4/K4 =~ C3 is nontrivial, and we see that
for any p { |A4l, p>|| Dk, p®|IK, p?||DF. Thus upon setting Q@ = {2, 3},
within the triad we have D%Q) = D;Q), and so, any fixed F corresponds to
at most <, DZV* <. X7T¢ possibilities for K € Z7 (Q, As; X), if
Property D4(A4, @) is known. The computation for primes of inertia type in
the conjugacy class %> is identical. Recalling our result of Proposition 2.5, we
conclude that Mult4(Sy4, .#; 0.2784...) holds.

6.4.5 G >~ Dy, p an odd prime

We think of D, (with p an odd prime) as the group of order 2 p of symmetries
on a regular p-gon, acting in the usual way. Thus D, has one nontrivial,
proper normal subgroup, namely C; this subgroup certainly appears as the
kernel of the (one-dimensional) sign representation. Thus we must consider the
corresponding counting problem for fixed fields K €». We restrict the inertia
type .# to the conjugacy class [2 p)(3 (p—1))--- (pT+1 pTJ“})], that is the
conjugacy class of reflections (each with with (p + 1)/2 orbits acting on p
elements).

For a triad K, K, F = K€» we then have for every prime ¢ { 2p that

¢P=D/2| D £P|| D, €| DF. Thus upon setting = {2, p} we have

Q Q), 21
DY = (D) T, (6.7)

and so any fixed F’ corresponds to at most <, p,, Dl(,p_l)w/ e possibilities

for K € Z]”f(@, D,; X), if Property D‘f(Dp, @) is known. Now if (6.7) is
known and K € Z;f(@, Dp; X) then Dp <, b, X?/P=D 50 we have at

most Kp p,.e X7 choices for such K if Property D‘f (D), @) is known. We
conclude from Proposition 2.3 that Mult, (D, .#; 1/(p — 1)) holds uncondi-
tionally.

@ Springer



762 L. B. Pierce et al.

6.4.6 G a cyclic group

Finally, for G a cyclic group of order n, note that Z,(Q, G; X) already is
comprised of Galois fields, so we do not need to pass to the Galois closures.
(As a special case, if G >~ C), with p prime, then G has no nontrivial proper
(normal) subgroups, so all nontrivial representations are faithful, without the
need to artificially impose a ramification restriction. But in this case, every
ramified prime is naturally totally ramified, so we still group this with the
general case below. ) In general, consider G an arbitrary cyclic group of order
n,say G ~C poL X X C Pk with distinct primes py, ..., px. We restrict to

& specifying that every tamely ramified prime must be totally ramified, that
is, its inertia group must be generated by an element of full order in G; in
particular, such an element does not belong to any proper, nontrivial subgroup
C,, of C,.

By Lemma 6.9 the following properties hold:

(1) for every prime ¢ { n we have Y Dg = Dg;
(2) for every nontrivial proper (normal) subgroup C,, of C,, (corresponding to
a proper divisor m|n) there exists an integer 1 < o, <n — 1 (depending

on m and C,,) such that £%|| Dy where F = Kn.

As a result, upon setting Q = {p : p|n}, for each nontrivial proper subgroup
C,, of G, parametrized by divisors m, we have that

D& — (D'D)i

when F = K% = KO Thus any fixed F corresponds to at most
Ln,m,Cp e D?("_l)/a”’+e Lnm.c,.e X7 possibilities (for any & > 0) for
K e Zf (@Q, Cy; X) if Property D, (C,,, @) is known. By Proposition 2.1 we

have D,,(C,, 0), so that we have verified Mult, (C,,, .#; 0).

Remark 6.11 (Non-cyclic abelian groups) The above arguments show that we
are able to pick an appropriate ramification restriction to control the propaga-
tion of bad L-function factors if there exists a set that generates G and such
that none of them lies in any (nontrivial, proper, normal) subgroup H of G that
appears as the kernel of at least one nontrivial irreducible representation of G.
We may already observe the difficulty of adapting this general strategy to a
non-cyclic abelian group by considering the simple case of G =~ Cjpe x Cps
for a prime p. Consider an element in the generating set of the form (a, b)
with a # 0. Let p* be the highest power of p that divides both a and b. Then

for ¢, = = ¢¥"/P the map Cpe x C,y — C given by (i, j) = ;lb/l’ —ja/p*

is a non-trivial irreducible representation of Cj, x C 1{ , and our generator is in
the kernel of this map.
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Remark 6.12 (Quartic D4-fields) Difficulties also arise for quartic D4-fields:
there are irreducible representations of D4 with kernels K4, K 4’1 (two different
subgroups isomorphic to the Klein-four group) and C4, but no set of generators
of D4 that avoid all three of these subgroups, and hence no choice of ramifi-
cation type .# for which the three counting problems can simultaneously be
resolved. It may be possible to apply our method to a particular subfamily
of quartic D4-fields generated from a fixed biquadratic field; in this case the
counting problems will be trivial, although proving a lower bound that grows
with X for such a family may not be.

6.5 Deduction of Theorems 3.3, 3.9, 3.11, 3.13 and 3.14 from
Theorem 5.5

We have verified Condition 5.4 for each family Z;,ﬂ (Q, G; X) considered in the
above theorems; now we apply Theorem 5.5. The family parameters notated in
Condition 5.4, namely {Mo, M, A,d}and {m;, A, d;, My j, M3 j ¢, M3 j ,
Ms ;) for 1 < j <'s, all depend only on n, G, .#, and thus in the following
statements we can replace any dependence on family parameters by depen-
denceonn, G, .#.

Proposition 6.13 Fix a family Z;/(Q, G; X) considered in Theorem 3.3,
3.9, 3.11, 3.13 or 3.14 under the associated hypotheses (if any). If it is known
that XP <n.6,.0 127 (Q,G; X)| <n,» X¢ and that Mult, (G, .7; 1)
holds for some 1, < B, then the conclusions of the relevant theorem hold
for those values of T, B, d.

Let 7. < B < d be as assumed in the proposition. Fix 7 = 7, + &3
for some sufficiently small €3 (in particular so that T < d) and fix g9 <
min{l/2, 2(d — t)} sufficiently small. We apply Theorem 5.5 with

T &
A=1-1_20 (6.8)
d 2d

8 chosen as in (5.11) (according to A = |G|/2 and &3 = gp so that we obtain
the expression for § in Remark 3.4), and n = ¢9/2d. Then

€0

(1= (=AM =1+

n %0(1 —t/d —g0/2d) < T + 0.

Then there exists B depending only on n, G, .# such that for all X > 1, at
most

On,G,J,r,d,so (XT+SO) (69)
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fields K € Z;Lﬁ (Q, G; X) are such that ¢ /¢ can have a zero in the region
[1-36,1]x [-XP, X#], (6.10)

where 8 = go(1 — 7/d — ¢0/2d)/(2B).

Our goal now is to express this in terms of how many §-exceptional fields
there can be. It is temporarily convenient to work in terms of families of fields
with discriminant in a dyadic range; thus we set Z;,ﬂ ’ﬁ(Q, G; X) to be the
subset of Z;l’%(@, G; X) with X/2 < Dg < X. We next verify that for X
sufficiently large, for every K € Z;Zﬂ ’#(Q, G; X) the region (6.10) contains
the region (3.1), which we write now in the notation

[1—8, 1] x [—(log Dg)*°, (log D)*"*]. (6.11)

If K € Z7*(Q, G; X) then by Lemma 6.1, C1(n, G)(X/2)/Cl/" < Di <
C>(n, G)X'C1/2, for certain constants C;(n, G). Thus it suffices to show that
there exists a threshold D3 = D3(n, G, .Z, 1,d, 8, &y) such that if X > Dj3
then

(log(Ca(n, G)X'61/2))2/% < xB. (6.12)

This is the claim that a fixed power of X is larger than any fixed power of log X,
as long as X is sufficiently large; thus an appropriate threshold D3 exists.

We have shown that for every X > 1 there are at most Oy, G..7 . 7.d.6, (X" T50)
fields K € Z;f(@, G; X) such that ¢z /¢ can have a zero in (6.10); con-
sequently if X/2 > D3, at most Op.G.7 r.d.60(X*T%0) fields in K €
Z,‘f’#(@, G; X) are such that {z /¢ can have a zero in (6.11), that is, can
be §-exceptional. Now we suppose that A > 2 has been fixed, and we recall
the threshold Do from Theorem 3.1. As long as

X/2 > Dy, (6.13)

any K € Z;;a ’#(Q, G; X) that is not -exceptional satisfies the hypothesis of
Theorem 3.1, and therefore for every conjugacy class ¢ C G yields (3.2) for
all x sufficiently large as in (3.4). Upon taking

Dy = D4(n, G, #,1,d,38, &, cQ, C1, C2, A) := max{Dy, D3}

we have shown that for any X such that X/2 > D4 we have that at most
04.G,.7 v.d,s (XTT0) fieldsin K € Z;fl’#(@, G; X) can be §-exceptional, and
for all remaining fields, (3.2) holds for all x satisfying (3.4). We may in fact
omit the dependence on § in the notation, as it is defined in terms of the other
parameters.
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The final step to complete the proof of Proposition 6.13 is to sum over dyadic
ranges of discriminants. Now for any X > 1 (say using log, temporarily),

I+log X

z;Q.G:xc |J z/7Q G2
j=0

We may dissect this into two pieces: those for which j is such that 2/ =1 > Dy,
in which case our work above applies, and we conclude that the number of
s-exceptional fields in

1+log X
S, Y
U z7*@.G:2)
2/=1>Dy
is at most
1+log X
Y 006.57.de(@DTT) = 046,57 1.a.6(XTT). (6.14)
2/=1>Dy

For those j such that 27=1 < Dy, we count all the fields as possible exceptions,
noting that

U  z7%@ G:29)| <12/ Q. G: 2Ds)| <. DY

1<2i-1<Dy

We enlarge the implied constant in (6.14) to include this constant, and call
the resulting implied constant Ds, as appears in the theorem statements. This
completes the proof of Proposition 6.13, and in combination with the values of
74 supplied by Proposition 6.8, we have proved Theorems 3.3, 3.9, 3.11, 3.13
and 3.14 (and the non-quantitative Theorem 1.1).

6.6 Proof of Corollary 3.16

Let Z;f (Q, G; X) be a specified family, with corresponding parameters 7, <
B <d,set A =2 and let g (sufficiently small) be fixed, with corresponding
choice § < 1/4. First, we verify that for o0 > 0 fixed, there is a threshold
D¢ = Dg(n, G, #,d, cq, Cs, Cg, €, o) such that for Dg > Dy,
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Di = 1 explra(loglog(D)* (logloglog(D)) 7},
where this lower bound is as stated in (3.4), and the parameters «; have the
dependenciesk; = «;(n, G, d, cg, Cs, Cg, &) (dropping the notational depen-

dence on A = 2). In fact it suffices to compute a threshold above which

D% = 1 exp{ka(loglog(DP))?)

where we set ks = max{k3, 2}. By Lemma 6.1, Dz < Ca(n, G)Dllf‘/2 for a
certain constant C»(n, G), so that it further suffices to show

D% > k1 exp{xz(log log(KéD?))z}

where kg = Ca(n, G)*5 and k7 = «5|G|/2. This will hold when Dy is suffi-
ciently large that

- logky  Kka(loglog(ke D))?
~ log Dk log Dk

and we denote this threshold by Dy = Dg(n, G, .7, d, cq, Cs, C, €0, 0).
Finally, recall the parameter Dg provided in Theorem 3.1. While this is used as
aconstraint Dg > Do, we apply Lemma 6.1 toseethat Dz > Cy(n, G)Dllfl/"
for a certain constant Cy(n, G). Then Dg > Dy is certainly satisfied if Dg >
D, with

D}, := (C1(n, G)~ ' Dpy/1°1, (6.15)

Now for part (1) of Corollary 3.16, we may conclude from Theorem 3.1
with A = 2 that for every X > 1, for every field in Z;l¢ (Q, G; X) that has
Dg > max{D;, D¢} and is not §-exceptional,

o €] €] Dy
s (D ,K/Q)—@L i(DR)| < |G| (og DI

(6.16)
Finally, we enlarge max{D,,, Dy} if necessary to a parameter Ds, so that for
all Dg > Deg, the error term in (6.16) is at most (1/2)|G|™ 1L1(D ) <
(1/DICNIGI'Li(DE). Then m¢ (D%, K/Q) = (1/2)|€]|G|7'Li(Dg) >
/2G|~ 1L1(D ), and we can further enlarge Dg if necessary to write the
lower bound as in (3.7).

For part (2) of Corollary 3.16, we may follow e.g. Vaaler and Widmer [81,
Lemma 5.1] (but without assuming GRH, as they do). Suppose that K is not
8-exceptional and furthermore that Dx > D with parameter D) as above
in (6.15). Then for every x satisfying the lower bound (3.4), we apply (3.2)

@ Springer



An effective Chebotarev density theorem for families 767

with A = 2 to both m¢(x, K /Q) and w4 (2x, K /Q). If the (non-negative)
difference 3 3
e (2x, K/Q) — g (x, K/Q) (6.17)

were zero, this in combination with (3.2) would imply that

X 3x

‘ . 2x
L1(2x) — Ll(X) < (10g2x)2 + (logx)2 = (logx)Z.

(6.18)

Yet certainly for x > 2,

/2x dt x X
> > .
» logt ~ log2x — 2logx

Thus (6.18) fails (so the difference in (6.17) must be > 1) as soon as x >
max{2, ¢®}. Given ¢ > 0, we apply this to x = D%, in which case we require
Dk > D7 = max{Dy, Dy, 2, %} with the parameter Dy, (depending on o) as
above. This completes the verification of Corollary 3.16.

Part III: Applications

7 Bounding £-torsion in class groups

For a finite extension K /Q, the ideal class group Clk is a finite abelian group
that encodes information about arithmetic in K, and interest in the class number
|Clg | has along history, going back to the Gauss class number conjecture, early
attempts at proving Fermat’s Last Theorem, and Dirichlet’s development of
the class number formula, which unites class numbers with L-functions. We
focus on the ¢-torsion subgroup of Clg, defined for any integer £ > 1 by

Clg[£] := {[a] € Clg : [a]® = Id}. (7.1)
For any number field K/Q of degree n and absolute discriminant Dx =

|Disc K /Q|, we may trivially bound the ¢-torsion subgroup by the full class
group, which admits the following bound (see [59, Theorem 4.4]):

1< [CIk[e]] < IClk| e DY, (72)
for any integer £ > 1, and ¢ > O arbitrarily small. We will refer to this as the
trivial bound for |Clg[£]].

Our work on £-torsion is inspired by the following well-known conjecture
(e.g. see [9, “Question CL(¢, d)”’], [26], [90, Conjecture 3.5]):
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Conjecture 7.1 (£-torsion Conjecture) Let K /Q be a number field of degree
n. Then for every integer £ > 1 and every ¢ > 0,

IClk [€]] <Kn, e D-

Now, with our new effective Chebotarev theorems for families of fields,
we can make new progress toward this conjecture: we improve on the trivial
bound (7.2) and in fact do as well as previous bounds that assumed GRH, for
all but a possible density zero subfamily of fields. In particular, we prove the
first unconditional nontrivial upper bounds for £-torsion, for all £ > 1, for
almost all fields in infinite families of fields of arbitrarily high degree.

Theorem 7.2 Let Z;{/ (Q, G) be fixed to be one of the families of fields consid-
ered in Theorems 3.3, 3.9, 3.11, 3.13 and 3.14, and correspondingly assume
the hypotheses (if any) of the relevant theorem. Let the parameters T, < B < d
be those proved to exist for that family in (3.5). For every T > T, sufficiently
close to Ty, every eg > O sufficiently small, and every integer £ > 1, there exists
a constant Dg such that for for every X > 1, aside from at most DgX* €0
exceptions, every field K € Z7 (Q, G; X) satisfies

11 ..
IClg[€]] €ne.6.e D 7" (7.3)

forall e > 0.

Recalling that for each family considered we have shown that IZ;,ﬂ Q, G; X)|
>n.6.s XP with B > 1, the exceptional family has density zero once 7 is
sufficiently close to 7, and g is taken to be sufficiently small. (In Sect. 7.2.1,
we re-state Theorem 7.2 in terms of averages of £-torsion.)

The deduction of Theorem 7.2 follows a general approach codified by Ellen-
berg and Venkatesh for bounding ¢-torsion in Clg by finding many small
rational primes that split completely in K:

Theorem H ([31, Lemma 2.3]) Suppose K /Q is an extension of degree n,
and let £ be a positive integer. Set 0 < § < m and suppose that there

are at least M rational primes with p < D% that are unramified and split
completely in K. Then for any ¢ > 0,

3He
|C1K[£]| Lnte DK M.

To find small primes that split completely in K it is sufficient to find small
primes that split completely in the Galois closure K of K over Q, and to
do so Ellenberg and Venkatesh applied Lagarias and Odlzyko’s conditional
Theorem A to obtain:
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Theorem I ([31, Prop. 3.1]) Let K /Q be a number field of degree n and £ > 1
an integer. Assuming GRH, then for any ¢ > 0,

I tE
CIK[0]] g D2 7007 (7.4)

The argument in Sect. 7.2 will show that any quantitative improvement to the
exponent obtained in Theorems H and I is expected to be similarly reflected
in the exponent obtained in (7.3).

As n, £ grow large, to produce the primes required in Theorem H, we must
be allowed to count primes as small as any fixed positive power of Dg. This
in particular illuminates why previously known lower bounds for 7« (x, L/ k),
such as obtained in the recent work of Thorner and Zaman [78], [77, Eqn. 1.6],
or even the result of Theorem B (assuming no exceptional zero S exists, or in
the setting of Theorem 4.12), do not suffice for our application. The new results
in Theorem 7.2 show that the following fields satisfy (7.3) unconditionally, for
all integers £ > 1:

(i) almost all degree p cyclic extensions of QQ (p prime)
(ii) almost all totally ramified cyclic extensions of Q
(iii) almost all degree p D-extensions (.# the conjugacy class of order 2
elements, odd prime p)
(iv) almost all degree 4 A4-extensions (.# the two conjugacy classes of order
3 elements).

Furthermore, Theorem 7.2 shows that for every n > 2, almost all degree n
S,-extensions of Q with square-free discriminants satisfy (7.3) for all £ > 1,
where this result is

(v) unconditional if n = 2, 3,4
(vi) if n = 5, conditional on the strong Artin conjecture
(vii) if n > 6, conditional on the strong Artin conjecture and D, (S, @) for
some w, < 1/2+ 1/n.

Finally, Theorem 7.2 shows (among other results for simple groups) that (7.3)
holds

(viii) forevery n > 5, almost all degree n A,-extensions of Q satisfy (7.3) for
all £ > 1, conditional on the strong Artin conjecture.

Remark 7.3 In fact, our proof of Theorem 7.2 works as well if we replace any
of our families of fields with the family of their Galois closures.

7.1 Previous results toward Conjecture 7.1

To situate our results, we briefly review previous results in the literature toward
Conjecture 7.1 in terms of a property we now define.
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Property 7.4 (C, ¢(A)) Given integers n,£ > 1 and a fixed real number
A > 0, we say that property Cy, ¢(A) holds if it is known that for every ¢ > 0
there is a constant Ca , ¢, such that for all fields K /Q of degree n,

ICIK[€]] < CaneeDETE

Thus in particular, (7.2) shows that C,, ;(1/2) is trivially true for all n, £ > 1.
The strongest type of result holds for all fields of a fixed degree. In this vein,
Gauss [34] genus theory shows Cz 2(0) holds. This is the only case in which
Conjecture 7.1 is known to hold, for a certain prime ¢, for all fields of a fixed
degree. The only other known pointwise bounds for prime £ are: n = 2 and
£ = 3, where initial progress occurred in [41,64,65], and [31] holds the record
C,.5(1/3); C3.3(1/3) due to [31]; C4.3(1/2 —§) due to [31] where § = 1/168
if K is non-Dy; C, 2(0.2784...) for n = 3,4 and C, 2(1/2 — 1/2n) where
n > 5, due to [10]. Also in [31], there is a proof of pointwise bounds for
£-torsion for certain families of fields of arbitrarily high degree, where these
fields always contain ¢, + {[1. Conditional on the Birch—Swinnerton—Dyer
conjecture and GRH, Wong [85] has observed that C 3(1/4) holds.

For n = 2,3,4,5, bounds for ¢-torsion at least as strong as (7.3) were
already known to hold, unconditionally, for almost all degree n S, -fields (with-
out any ramification condition). For imaginary quadratic fields, Soundararajan
[71] showed that for each prime ¢, the nontrivial bound |Clg[€]] <¢.¢
D}(/z_ V26 holds for all but a possible family of exceptional fields of density
zero. Furthermore, Heath-Brown and the first author [37] obtained for each
prime £ > 5 the unconditional bound |Clg [£]| </ ¢ D}(/ 273/@HDFE foranl
but a possible density zero family of imaginary quadratic fields; their methods
also yield upper bounds for higher moments of £-torsion for all £ > 3. For
each degree n < 5, Ellenberg and the first and third authors [28] proved the
bound (7.3) holds unconditionally for all but a possible density zero excep-
tional family of degree n extensions of Q. (In the case n = 4, this work had
the additional requirement that the fields be non-D4 quartic fields and £ > 8
and for n = 5, the requirement ¢ > 25.) In both [37] and [28], the upper
bound for the possible exceptional family becomes weaker as £ increases (e.g.
in [28] the number of exceptional fields is at most O, (X 1=1/@Em=1)+e) for
£ large); this is noticeably different from the bound for the exceptional set in
Theorem 7.2.

Remark 7.5 Atthe time of posting, the authors learned of the works of Frei and
Widmer [33] and Widmer [83]. Frei and Widmer obtain the upper bound (7.3)
for £-torsion for almost all totally ramified cyclic extensions of Q (see our case
(ii) above), albeit with a larger upper bound for the possible exceptional family
of fields, analogous to that in [28]. Frei and Widmer use the sieve method of
Ellenberg and the first and third authors [28] combined with new counts for the
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number of totally ramified cyclic extensions with a finite number of specified
local conditions. Notably, their method also works for totally ramified cyclic
extensions of any fixed number field F. Moreover they remark, building on
[83], on the possibility of sharpening to 1/2 — 1/(£(n + 1)) the exponent in
(7.4) for almost all fields in a family Z,(Q, G; X) that is sufficiently dense
(e.g. |1Z,(Q, G; X)| > X). Of the families we consider, the latter strategy
could conceivably similarly improve the exponent in (7.3) only for the family
Zn] (Q, S;;; X), conditional on such a lower bound being known for the family.
We thank Frei and Widmer for sharing their preprint [33].

7.2 Proof of Theorem 7.2

Theorem 7.2 is an immediate consequence of Corollary 3.16. We suppose that
a family Z;f (Q, G; X) and a sufficiently small &g > 0 have been fixed. We
let 0 < 8 < 1/4 be defined as in (3.6). We set ¥ = {id}, in which case we are
counting primes that split completely in K and hence in K . For any integer £ >
1, we take T > t, sufficiently close and a sufficiently small £; > 0 and we set
o = 1/(2¢(n—1))—e,. Thenforevery X > 1, foranyfield K € Z7 (Q, G; X)
with Dg > Dg that is not one of the at most D3 X* 140 §-exceptional fields
in Z;f(@, G; X), there are >G .06 D}(/Z(Z(nfl))fgl/log Dk primes p <

D}(/z(e(n_l))_gl that split completely in K. Thus for such a K that is not §-

exceptional, by Theorem H,

1 1
2 2em=n) 1182

|C1K[£]| <<n,G,Z,61,62 DK s (7-5)

for all sufficiently small 1, &2 > 0. Now we count all those fields that are §-
exceptional and all those fields in Z;f (Q, G; X) that have discriminant smaller
than Dg, of which there are at most <, g,.» Dg , by the definition of the
parameter d. Defining Dg = Dg(n, ¢, G, .#,d, 1, gy) to be an appropriate
maximum of D3 and the above multiple of Dg , we see that for every X > 1
we may say that (7.5) holds for each field in Z;l] (Q, G; X), apart from at most
Dg X ™10 fields. This completes the proof of Theorem 7.2.

7.2.1 Averages of £-torsion
The results of Theorem 7.2 can alternatively be stated in terms of averages of £-
torsion over a fixed family of degree n extensions. If |Zf Q,G; X)| <n.G.7

X4, Theorem 7.2 shows that forall X > 1,¢ > 1,1t > 1, sufficiently close,
go sufficiently small,
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S (Clla] « X4y yrte
KeZ? (Q,G;X)

forevery ¢ > 0, with an implied constant dependingonn, ¢, G, .4, d, t, &9, &.
For 7, < t < d, for £ sufficiently large we will obtaint < d —1/(2¢(n — 1)),
so that

Y ICIkle] < X
Kez? (Q,G;X)

forevery ¢ > 0. The “trivial bound” would be <,.G..7 & X4+t foralle > 0.

8 Number fields with small generators

For our second application, we turn to a question of whether all number fields
have a “small” generator. Given a number field K /Q of degree n (inside our
fixed algebraic closure Q), one can ask for the element o € K of smallest height
H (o) such that K = Q(w); here H (o) denotes the absolute multiplicative Weil
height. Precisely, for an element @ € K,

dy
H (o) = [ [max{1, lalu}
v

in which v runs over the places of K and for each place v, | - |, is the unique
representative that either extends the Archimedean absolute value on Q or a
p-adic absolute value on QQ, while d, = [K, : Q,] denotes the local degree at
v. (By Northcott’s theorem [62, Thm.1], there are finitely many elements in
K with height at most any fixed real number, and thus a generator of smallest
height does exist.)

In terms of lower bounds, it is known by Silverman [70, Thm. 1] that for
each n > 2, for all fields K /Q of degree n, for any element « € K such that
K = Q(w),

1
H(a) = BiDg"7, 8.1)

where we may take By = Bi(n) = n_ﬁ. In fact, this lower bound led to
the numerology of the savings in the exponent in Theorem I. (See [31, Lemma
2.2], with the lower bound now further explored in the recent preprints [33,83],
where it is shown that improving on (8.1) for a sufficiently dense class of fields
can improve on Theorem I in an average sense.)

On the other hand, regarding upper bounds, Ruppert asked two questions
[66] of increasing strength:
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Question 8.1 Does there exist for each n > 2:
(1) a positive constant By = By (n) such that for every field K /Q of degree n
|

there exists an element o € K such that K = Q(«) and H(a) < By DIZ?” ?
(2) a positive constant B3 = B3(n) such that for every field K /Q of degree
n there exists an element @ € K such that K = Q(«) and H(x) <

1

B3 D]Z(n(n—l) r)

(Ruppert posed these questions in terms of the naive height, but up to constants
this is equivalent to the form given here, for which we cite the presentations
of [81,82].) The second question is effectively asking whether the exponent
in Silverman’s lower bound (8.1) is sharp. For degree n = 2 the two questions
are equivalent, and Ruppert [66, Prop. 2] answered them in the affirmative.
Moreover, [66, Prop. 3] verified (1) for totally real fields K of prime degree.
Recently, Vaaler and Widmer [81, Thm. 1.2] verified (1) for all number fields
with at least one real embedding, with a constant By(n) < 1. In contrast,
they provided in [82], for each composite degree n, an infinite family of fields
violating (2). Furthermore, in [83, §3 and §4], Widmer shows that for n > 4,
the number of degree n fields satisfying the bound in case (2) of Question 8.1 is
0(X), so that the answer to this case must be no. (For clarity, note that Widmer
works in terms of the relative Weil height.)

This leaves the question of whether case (1) is true. As an application of
our effective Chebotarev density theorem, we show that within appropriate
families of fields, (1) is true for “almost all” fields.

Theorem 8.2 Let Z;Lﬁ (Q, G) be fixed to be one of the families of fields consid-
ered in Theorems 3.3, 3.9, 3.11, 3.13 and 3.14, and correspondingly assume
the hypotheses (if any) of the relevant theorem. Let the parameters 1, < 8 < d
be those proved to exist for that family in (3.5). For every T > t, suffi-
ciently close and every ey > O sufficiently small, there exists a constant Dg
such that for every X > 1, aside from at most DoX* 10 exceptions, every
field K € Z{(Q, G; X) contains an element a with K = Q(«) such that
1

H(a) <2DZ.

The proof is a simple adaptation of an observation of Vaaler and Widmer
in [81, Thm. 1.3], which relies on finding primes that split completely in K
that are of size around D}g 2, They showed that the bound in Question 8.1 case
(1) holds whenever ¢ satisfies GRH, via an application of Theorem A. Now,
independent of GRH, for every field that is not §-exceptional, with § determined
by (3.6), we apply part (2) of Corollary 3.16 with the choices ¢ = {1} and
o = 1/2,inplace of [81, Lemma 5.1]. Then [81, Thm. 4.1] shows that for each
field K to which the conclusion (3.8) applies, there exists an element « € K

with K = Q(«) and H (a) < p'/" < 2D}{/2". We use Theorem 3.3 to bound
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the number of §-exceptional fields, with § determined by (3.6). We use the
trivial upper bound |Z;¢ Q, G; D7)| <n.6.7 D;‘Z for the number of fields in
the family with discriminant smaller than the threshold D7 required to apply
part (2) of Corollary 3.16. Then upon setting Dy = Do(n, G, .7, d, 7, &) to
be an appropriate maximum of D3 from Theorem 3.3 and the above multiple
of DY, we may then conclude Theorem 8.2 holds.
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