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Abstract We prove a new effective Chebotarev density theorem for Galois
extensions L/Q that allows one to count small primes (even as small as an
arbitrarily small power of the discriminant of L); this theorem holds for the
Galois closures of “almost all” number fields that lie in an appropriate family of
field extensions. Previously, applyingChebotarev in such small ranges required
assuming the Generalized Riemann Hypothesis. The error term in this new
Chebotarev density theorem also avoids the effect of an exceptional zero of the
Dedekind zeta function of L , without assuming GRH. We give many different
“appropriate families,” including families of arbitrarily large degree. To do
this, we first prove a new effective Chebotarev density theorem that requires
a zero-free region of the Dedekind zeta function. Then we prove that almost
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702 L. B. Pierce et al.

all number fields in our families yield such a zero-free region. The innovation
that allows us to achieve this is a delicate new method for controlling zeroes
of certain families of non-cuspidal L-functions. This builds on, and greatly
generalizes the applicability of, work of Kowalski and Michel on the average
density of zeroes of a family of cuspidal L-functions. A surprising feature of
this new method, which we expect will have independent interest, is that we
control the number of zeroes in the family of L-functions by bounding the
number of certain associated fields with fixed discriminant. As an application
of the new Chebotarev density theorem, we prove the first nontrivial upper
bounds for �-torsion in class groups, for all integers � ≥ 1, applicable to
infinite families of fields of arbitrarily large degree.

Mathematics Subject Classification 11R29 · 11R42 · 11R45 · 11N75

1 Overview

In this paper, we give unconditional effective Chebotarev density theorems for
almost all number fields in certain families of fields, of a strength that previ-
ously required the assumption of GRH. We achieve this by a new method to
control zeroes of non-cuspidal L-functions in families, and we give applica-
tions including the first non-trivial bounds on �-torsion for all � ≥ 1 in class
groups in infinite families of fields of arbitrarily large degree. Our method
requires only crude bounds on the number of fields in our families, allowing
us to treat families of arbitrarily high degree and more general families than
in [28], which gives �-torsion bounds as a result of very precise counting of
the families.

1.1 Historical introduction

For any fixed number field k and Galois extension L/k of number fields,
consider the counting function of prime ideals of bounded norm in Ok and
specified splitting type in L , defined by

πC (x, L/k) := #{p ⊆ Ok : p unramified in L,

[
L/k

p

]
= C ,Nmk/Qp ≤ x},

(1.1)

in which
[
L/k
p

]
is the Artin symbol and C is any fixed conjugacy class in

Gal(L/k). A central goal is to prove an asymptotic for πC (x, L/k) that is
valid for x as small as possible (relative to the absolute discriminant of the
number field L), which is a regime in which many of the most interesting
applications arise. The celebrated Chebotarev density theorem [75] provides
the main term in the asymptotic,
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An effective Chebotarev density theorem for families 703

πC (x, L/k) ∼ |C |
|G|Li(x), (1.2)

as x → ∞, where Gal(L/k) = G and Li(x) = ∫ x
2 dt/ log t. When L = k =

Q, this is the familiar Prime Number Theorem for π(x); when L = k, this is
the Prime Ideal Theorem, counting prime ideals p ⊂ Ok with Nmk/Qp ≤ x ;
when k = Q and L = Q(e2π i/q), this provides Dirichlet’s theorem, counting
rational primes p ≡ a (mod q) with p ≤ x , for any (a, q) = 1.

An effective Chebotarev theorem, conditional on GRH, was proved by
Lagarias and Odlyzko (with an improvement by Serre). Given any field exten-
sion F/Q we let nF = [F : Q] and set DF = |Disc F/Q|.
Theorem A (Conditional on GRH, [50, Theorem 1.1], [68, Théorème 4])
There exists an effectively computable absolute constant C0 > 0 such that for
any Galois extension L/k of number fields, if GRH holds for the Dedekind zeta
function ζL and G := Gal(L/k), then for any fixed conjugacy class C ⊆ G
and every x ≥ 2,

∣∣∣∣πC (x, L/k) − |C |
|G|Li(x)

∣∣∣∣ ≤ C0
|C |
|G| x

1/2 log(DLx
nL ).

Lagarias and Odlyzko also proved an unconditional result:

Theorem B ([50, Corollary 1.3]) There exist effectively computable absolute
constants C1,C2 > 0 such that the following holds. Let L/k be a Galois
extension of number fields with G := Gal(L/k). If nL > 1 then ζL(s) has at
most one zero s = σ + i t in the region

σ ≥ 1 − (4 log DL)−1, |t | ≤ (4 log DL)−1. (1.3)

This exceptional zero, denoted β0 if it exists, is real and simple. For all x ≥
exp(10nL(log DL)2),

∣∣∣∣πC (x, L/k) − |C |
|G|Li(x)

∣∣∣∣ ≤ |C |
|G|Li(x

β0) + C1x exp(−C2n
−1/2
L (log x)1/2),

(1.4)
with the understanding that the β0 term is present only if β0 exists.

TheoremA holds for all x ≥ 2. TheoremB requires at least that x ≥ D10nL
L ,

a power of the discriminant that is too large for many applications. Conse-
quently, citations of the Lagarias-Odlyzko work often use Theorem A and are
hence conditional on GRH. Recent unconditional work that considers lower or
upper bounds for πC (x, L/k) instead of asymptotics also leads to thresholds
for x that are too large for certain applications. For example, [77, Eqn. 1.6],
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704 L. B. Pierce et al.

[78] prove lower bounds for πC (x, L/k) that require x to be as large as a rel-
atively large power of DL ; upper bounds for πC (x, L/k) in the classic work
[49, Thm. 1.4] require x ≥ C exp{(log DL)(log log DL)(log log log DL)}, for
some constant C , with improvements e.g. in [21,77].

1.2 New results I: effective Chebotarev theorems

Weprove a neweffectiveChebotarev theorem that includes two breakthroughs:
we remove the term corresponding to the exceptional zero in (1.4), and simul-
taneously we obtain an asymptotic with an effective error term, which in
particular holds for x as small as Dδ

L for any small fixed δ > 0 (for DL
sufficiently large). Both aspects are critical to applications such as our new
bound for �-torsion in class groups. It is unlikely that we could accomplish
these goals for all fields without proving something significant toward GRH;
instead, we prove that within appropriate families of fields, “almost all” of the
fields satisfy such an effective Chebotarev theorem.

Wefirst state an inexplicit, general version of our result for a “family”F (G)

of fields (precise quantitative statements appear in Theorems 3.3, 3.9, 3.11,
3.13, 3.14, and Corollary 3.16 of Sect. 3). By a family F (G) we mean a set
of degree n extensions K/Q with corresponding Galois closures K̃/Q having
Gal(K̃/Q) 
 G for a fixed transitive subgroup G ⊆ Sn . We use F (G; X)

to denote those fields K ∈ F (G) with DK ≤ X . We also use Vinogradov’s
notation: A � B denotes that there exists a constant C such that |A| ≤ CB,

and A �κ B denotes that C may depend on κ .

Theorem 1.1 Fix an appropriate family F (G) (described explicitly in
Sect. 1.2.1), and constants A ≥ 2 and ε > 0. Then there exist constants
0 < τ < β and κ1, κ2, κ3 > 0, such that for all X ≥ 1 we have
|F (G; X)| 
 Xβ, and aside from at most �F ,A,ε X τ+ε possible excep-
tions, each field K ∈ F (G; X) has the property that for every conjugacy
class C ⊆ G,

∣∣∣∣πC (x, K̃/Q) − |C |
|G|Li(x)

∣∣∣∣ ≤ |C |
|G|

x

(log x)A
, (1.5)

for all
x ≥ κ1 exp{κ2(log log(Dκ3

K̃
))5/3(log log log(D2

K̃
))1/3}. (1.6)

In comparison to Theorem B, for each field to which this result applies, this
theorem removes the effect of the possible exceptional zero on the error term,
and holds for x as small as an arbitrarily small power of DK̃ (and hence of
DK ), capabilities critical for many applications.
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An effective Chebotarev density theorem for families 705

1.2.1 The appropriate families of fields

In general, we construct a set (or “family”) of fields as follows. For a number
field k, we let

Zn(k,G; X) = {K/k : K ⊂ Q̄, deg K/k = n,Gal(K̃/k) 
 G,

Nmk/QDisc K/k ≤ X},

where K̃ is the Galois closure of K over k, the Galois group is considered as a
permutation group on the n embeddings of K in Q, and the isomorphism with
G is one of permutation groups.We let Zn(k,G) = Zn(k,G; ∞). For ourmain
results we will work over Q, and study families of the form ZI

n (Q,G; X),
defined to be the subset of those fields K ∈ Zn(Q,G; X) such that for each
rational prime p that is tamely ramified in K (i.e. those p not dividing any
of the exponents of their factorization into prime ideals in the ring of integers
of K ), the inertia group in Gal(K̃/k) of every prime ideal ℘ of K̃ dividing p
is generated by an element of I , where I specifies one or more conjugacy
classes in G. The use of ramification restrictions will play a large role in our
method of proof.

The most general families we treat are degree n extensions with square-free
discriminant, which are a positive proportion of all degree n fields for n ≤ 5,
and conjecturally so for n ≥ 6. (These families are recorded in entries (3),
(4), (6) in the lists below; square-free discriminant corresponds to I being
transpositions, as explained in Sect. 2.3.) We give further examples to show
the range of the method. We prove, unconditionally, that Theorem 1.1 applies
to the following families ZI

n (Q,G) of fields:

(1) G a cyclic group of order n ≥ 2, withI comprised of all generators of G
(equivalently every rational prime that is tamely ramified in K is totally
ramified).

(2) n = p an odd prime, G = Dp the order 2p dihedral group of symmetries
of a regular p-gon, I being the conjugacy class of order 2 elements.

(3) n = 3, G 
 S3, I is transpositions.
(4) n = 4, G 
 S4, I is transpositions.
(5) n = 4, G 
 A4, I the two conjugacy classes in A4 of order 3 elements.

This is the content ofTheorem 3.3.Note for family (2) that asymptotic counting
of the fields is essentially equivalent to knowing the exact average size of p-
torsion of class groups of quadratic fields (and thus is open and very difficult).
Our method does not require this counting.

We furthermore prove, conditional on the strong Artin conjecture and (in
some cases certain hypotheses for counting number fields), that Theorem 1.1
applies to the following families of fields:
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(6) n ≥ 5, G 
 Sn , I is transpositions (Theorems 3.9 and 3.11).
(7) n ≥ 5, G 
 An , no ramification restriction (Theorem 3.13).
(8) G ⊆ Sn a transitive simple group, no ramification restriction (Theo-

rem 3.14).

In addition, inCorollary 3.16we record quantitative results for counting certain
types of primes.

1.2.2 The proof strategy

To describe our strategy to prove Theorem 1.1 we define the notion of a δ-
exceptional field:

Property 1.2 (δ-exceptional field) For a fixed 0 < δ < 1/2, a number field
K is δ-exceptional precisely when the Dedekind zeta function of the Galois
closure K̃ of K over Q has the property that ζK̃ (s)/ζ(s) has a zero in the
region [1 − δ, 1] × [−(log DK̃ )2/δ, (log DK̃ )2/δ].
(Under GRH, no field is δ-exceptional for any 0 ≤ δ < 1/2.) Our first step
toward Theorem 1.1 is to prove the following (for a quantitative version over
any fixed number field k, see Theorem 3.1):

Theorem 1.3 (Effective Chebotarev for non-δ-exceptional fields) For every
integer n ≥ 1, and every transitive group G ⊆ Sn, for every A ≥ 2 and
every 0 < δ ≤ 1/(2A), there exist real numbers D0, κ1, κ2, κ3 (depend-
ing on δ, n, A) such that the following holds: for any extension K/Q with
Gal(K̃/Q) 
 G such that DK̃ ≥ D0 and K/Q is not δ-exceptional, we have
that for any conjugacy class C ⊆ G, (1.5) holds for all x satisfying (1.6).

Theorem1.1 relies on the following crucial step:we prove thatwithin appropri-
ate families, for sufficiently small δ, almost all fields are not δ-exceptional.1

We achieve this by developing a new method for controlling zeroes of cer-
tain families of non-cuspidal L-functions. Previously, work of Kowalski and
Michel [45] provided density results for zeroes within appropriate families
of cuspidal L-functions. But we require zero-free regions for Dedekind zeta
functions of Galois fields, and these correspond (in some cases conjecturally)
to automorphic L-functions that are not cuspidal. This restriction of [45] to
the cuspidal case has been a significant barrier in many previous applications
(such as an effective prime ideal theorem in [17], or [16]; see Remark 5.9). We

1 See also Sect. 4.10 on an unconditional approach to rule out exceptional zeroes in the standard
zero-free region for ζL (s), and thus remove the β0 term in (1.4), for extensions with no quadratic
subfields. However, that approach does not rule out the extensions being δ-exceptional, and in
particular, does not lead to an effective Chebotarev theorem that can count primes small enough
for our purposes.

123



An effective Chebotarev density theorem for families 707

expect that our new approach to proving density results for zeroes in a family
of non-cuspidal L-functions will have many further applications.

Precisely, let G be a fixed transitive subgroup of Sn and let ρ0, ρ1, . . . , ρs
denote the irreducible representations of G, with ρ0 being the trivial represen-
tation. Then for each K ∈ Zn(Q,G; X), we may write ζK̃ (s) as a product of
Artin L-functions

ζK̃ (s) = ζ(s)
s∏

i=1

L(s, ρi , K̃/Q)dimρi . (1.7)

In particular, consider a set F (X) of fields K ∈ Zn(Q,G; X) with distinct
Galois closures K̃ over Q, and denote the set of Galois closures by F̃ (X). For
each field K̃ ∈ F̃ (X) and each representation ρ j , there is an associated cuspi-
dal automorphic representationπK̃ , j of GL(m j )/Q (in some cases conditional

on the Strong Artin Conjecture), and then L(s, πK̃ , j ) = L(s, ρ j , K̃/Q). For
each 1 ≤ j ≤ s, we let L j (X) denote the set of cuspidal automorphic rep-
resentations πK̃ , j of GL(m j )/Q associated to the fields K̃ ∈ F̃ (X) and the
representation ρ j . We show using [45] that for each j , L j (X) has the prop-
erty that aside from at most a possible small “bad” exceptional subset, each
representation π ∈ L j (X) is such that its associated L-function L(s, π) is
zero-free in an appropriate region. (Of course, if GRH is true, there are no such
exceptional L-functions, but we are workingwithout GRH.) In order to deduce
that amongst the Dedekind zeta functions ζK̃ (s) for K̃ ∈ F̃ (X), almost all of
them also possess this zero-free region, we need to build up the products as in
(1.7), and we need to understand the following question: given a representa-
tion π ∈ L j (X) (i.e. possibly a “bad” exceptional representation), how many
fields K̃ ∈ F̃ (X) can have the property that L(s, ρ j , K̃/Q) = L(s, π)?

This is subtle, and relies on delicate properties of the families considered. At
its heart the question is: for a fixed irreducible representation ρi of G, for how
many fields K1, K2 ∈ F (X) ⊆ Zn(Q,G; X) can we have L(s, ρi , K̃1/Q) =
L(s, ρi , K̃2/Q)? We transform this into a question of counting how many
fields K1, K2 ∈ F (X) have fixed fields K̃ H

1 = K̃ H
2 , where H = Ker(ρi )

(see Proposition 6.3). A challenge then appears: for certain groups G, is it
possible that such collisions can occur amongst a positive proportion of K ∈
Zn(Q,G; X)? (If so, a positive proportion of these fields could have ζK̃ (s)
containing a factor that is not zero-free in the desired region.)

For certain G, the answer is yes (see Sect. 6.3.2). In contrast, we show
that for the groups G and the corresponding families of fields we construct
in our main theorems, the answer is no. Precisely, we define each family
F (X) ⊆ Zn(Q,G; X) according to carefully chosen ramification restrictions
on tamely ramified primes, and within these carefully constructed families we
can transform the problem of counting fields that share a certain fixed field into
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a problem of counting number fields of degree n with fixed discriminant. This
method of constructing families of fields so that we can control the zeroes of
associated L-functions by counting number fields is a key innovation of this
paper.

Within our chosen families, by counting fields of fixed discriminant, we
ultimately show that such collisions of the fixed fields must be relatively rare.
We can then prove that aside from at most a possible “small” exceptional
subset ofF (X), each field has the property that its Dedekind zeta function is
zero-free in an appropriate region.

In general, our approach can be seen as a new strategy that vastly gener-
alizes the applicability of the result of Kowalski and Michel to families of
automorphic L-functions corresponding not just to cuspidal automorphic rep-
resentations but also to isobaric automorphic representations. We expect this
new method will be relevant to other problems of interest.

1.3 New results II: counting number fields

Our new effective Chebotarev theorem for families of fields relies on quanti-
tative counts for number fields in two ways. First, we must bound from above
the number of fields in the family that have a fixed discriminant; second we
must bound from below the number of fields in the family with bounded dis-
criminant. In general, such questions lie in the arena of Malle’s conjecture
[52] and the Malle-Bhargava principle [88, Section 10], and many questions
remain open.

Definition 1.4 Within a certain family ZI
n (Q,G), we say a subset E has

density zero if for some γ > 0 and some c1 > 0, for all X ≥ 1,

|ZI
n (Q,G; X)|/|E ∩ ZI

n (Q,G; X)| ≥ c1X
γ .

Each of our main results takes the form of an effective Chebotarev density
theorem that holds for each field within a family of fields, except for fields
belonging to a possible subfamily of density zero. In all cases, proving an
upper bound for |E ∩ ZI

n (Q,G; X)| is a significant part of our new work; in
many cases, proving a lower bound for |ZI

n (Q,G; X)| is also a significant
part of our new work.

For certain of the families of fields we consider, we prove the first recorded
lower bounds. For example, we prove the following general result, fromwhich
we deduce the first lower bound in the literature for |Zn(Q, An; X)| that grows
like a power of X (Theorem 2.6).

Theorem 1.5 Fix an integer n ≥ 2anda transitive subgroupG ⊂ Sn. Suppose
f (X, T1, . . . , Tj ) ∈ Q[X, T1, . . . , Tj ] is a regular polynomial of total degree
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An effective Chebotarev density theorem for families 709

d in the Ti and of degree n in X with transitive Galois group G ⊂ Sn over
Q(T1, . . . , Tj ). Then, for every X ≥ 1 and every ε > 0,

|Zn(Q,G; X)| 
 f,ε X
1−|G|−1

d(2n−2) −ε
.

Note that a recent paper of Dèbes [22] proves an analogous result for counting
the degree |G| Galois extensions in Z|G|(Q,G; X) rather than the degree n
extensions we consider in Theorem 1.5 (or equivalently, only in the case that
G is simply transitive).

In a different direction, as mentioned above, at a key step of extending
the Kowalski-Michel zero density theorem to our setting (related to bounding
|E ∩ ZI

n (Q,G; X)| from above), we require an upper bound for how many
fields have any given fixed discriminant. To make things precise, we define the
following property (always defining extensions within Q):

Property 1.6 (Dn(G, �)) Let n ≥ 2 be fixed and let G be a fixed transitive
subgroup of Sn. We say that propertyDn(G, �) holds if for every fixed integer
D > 1 and for every ε > 0 there exist at most �n,G,ε D�+ε fields K/Q

of degree n and Gal(K̃/Q) 
 G such that DK = D. Moreover, we say that
property Dn(�) holds if for every fixed integer D > 1 and for every ε > 0
there exist at most �n,ε D�+ε fields K/Q of degree n such that DK = D.

For appropriate families, we can control |E∩ZI
n (Q,G; X)| if we can prove

Property Dn(G, �) for a sufficiently small � . In particular we prove new
results for D4(A4, �), D5(�), and DI

p (Dp, �), in the latter case assuming
a certain ramification restriction.

The way Property Dn(�) arises in our work on families of automorphic
L-functions appears to be completely new. But it is actually the subject of a
well-known conjecture which occupies a rather central role in number theory.
Specifically, Duke [26, § 3] and Ellenberg and Venkatesh [29, Conjecture 1.3]
conjecture:

Conjecture 1.7 (Discriminant Multiplicity Conjecture) For each n ≥ 2,
Dn(0) holds.

Of course, D2(0) holds; for n ≥ 3, much less is known, and results toward
Conjecture 1.7 would have strong implications. First, the “pointwise” counts
encapsulated in Property Dn(�) relate to “average” counts for the number
of extensions of degree n with bounded discriminant. In one direction, this is
trivial: Property Dn(�) immediately implies there are at most �n,ε X1+�+ε

degree n extensions of Q with discriminant at most X . It may be surprising
that there is also an implication in the other direction; this has been proved by
Ellenberg and Venkatesh [29, Prop. 4.8].
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Second, questions about Dn(�) are directly connected to questions about
�-torsion in class groups, for primes �. As just one example (see Duke [25]),
quartic fields of fixed discriminant−q (q prime) can be explicitly classified by
odd octahedral Galois representations of conductor q, and the number of such
fields can be expressed as in [38] as an appropriate average of the number of
2-torsion elements in the class groups of cubic number fields of discriminant
−q. More generally, as noted in [29, p. 164], if Conjecture 1.7 holds (for all n),
then it implies themain pointwise conjecture, Conjecture 7.1, for upper bounds
for �-torsion in class groups (for all n, �). The waywe employ propertyDn(�)

in the present work is in some sense more efficient, since to study �-torsion
(for all � ≥ 1) in class groups of degree n0 fields we only require information
about Dn(�) for n = n0, not for all n.

1.4 New results III: applications

Weexpect that the new effectiveChebotarev theorems for families of fieldswill
have many applications, and we exhibit two. First, we prove nontrivial bounds
for �-torsion, for all integers � ≥ 1, in class groups of “almost all” fields in
each of the families to which our Chebotarev theorems apply (Theorem 7.2).
In many cases, these are the first ever nontrivial bounds for �-torsion, and in
particular the first that apply to families of fields of arbitrarily large degree.
As a second (related) application, we prove a result on the density of number
fields with small generators, spurred by a question of Ruppert (Theorem 8.2).
Further applications will be described in later work.

1.5 Organization of the paper

In Part I, we state and prove the results we require for counting number fields,
both with bounded discriminant and with fixed discriminant. In Part II, we turn
to the Chebotarev theorems: in Sect. 3 we state quantitative versions of all the
effective Chebotarev theorems; in Sect. 4 we prove the quantitative version
of Theorem 1.3, and in Sects. 5 and 6 we prove the quantitative versions of
Theorem 1.1. In Part III, we treat the two applications mentioned above.

Contents
Part I: Counting Number Fields 710
Part II: Effective Chebotarev Theorems 721
Part III: Applications 767

Part I: Counting number fields

2 Counting families of fields

As described in Sect. 1.3, we require results counting number fields, and we
prove those in this section. Our principal concern is families of the form
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An effective Chebotarev density theorem for families 711

ZI
n (Q,G; X), defined to be the subset of those fields K ∈ Zn(Q,G; X)

such that for each rational prime p that is tamely ramified in K , an iner-
tia group for p is generated by an element of I . We require an upper
bound for |ZI

n (Q,G; X)|, which can be an overestimate, a lower bound for
|ZI

n (Q,G; X)|, which we aim to make as sharp as currently feasible, and
upper bounds on the number of fields in ZI

n (Q,G) of discriminant D.

2.1 Cyclic fields

The strategy for counting cyclic extensions goes back to Cohn [19]; see [32,
51,87,89] for results counting abelian extensions of arbitrary degree. Let G
be cyclic of order n ≥ 2 and let g denote the smallest prime divisor of n. Then
we have (see, e.g. [89]) that

|Zn(Q,G; X)| ∼ cX
1

n−n/g (2.1)

for a certain constant c = c(n) > 0. We require the following refinement:

Proposition 2.1 (Cyclic groups) Let n ≥ 2 be fixed and let G be a cyclic
group of order n. Let ZI

n (Q,G; X) count those fields K ∈ Zn(Q,G; X) such
that every rational prime that ramifies tamely in K is totally ramified in K ,
that is, the inertia group is generated by an element that is of full order in G.
Then there exists a constant cn > 0 such that

|ZI
n (Q,G; X)| ∼ cn X

1
n−1 . (2.2)

Furthermore, Property Dn(G, 0) holds.

Remark 2.2 If |G| = n is prime then 1/(n − n/g) = 1/(n − 1). However,
when |G| = n is not prime then ZI

n (Q,G; X) is itself of density zero in
Zn(Q,G; X), by comparison of (2.1) and (2.2).

Proof Let a1 = 1 and for m ≥ 2, let am be |Aut(G)| times the number of
fields counted by ZI

n (Q,G; X) with absolute discriminant m. We define a
Dirichlet series A(s) := ∑

m≥1 amm
−s , and by class field theory and now

standard arguments we have

A(s) = P(s)
∏

p≡1 (mod n)

(1 + φ(n)p−(n−1)s), (2.3)

where P(s) is a product over p|n of polynomials in p−s . Briefly, by class field
theory we are counting certain homomorphisms from the idèle class group to
G, by [87, Lemma 4.2] we can replace the idèle class group with a product
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of p-adic units, and then we can easily count the local homomorphisms (see,
e.g. [87, Section 4], for a similar analysis in a more difficult case).

When am is non-zero, we have am ≤ Cnφ(n)ω(m) whereω(m) is the number
of distinct prime divisors of m and Cn is a constant depending only on n. (In
particular, Cn can be bounded above by the sum of the absolute values of
all coefficients of the polynomial factors in the finite product P(s).) Thus
am �n,ε mε for any ε > 0, proving Property Dn(G; 0).

For comparison to A(s) we consider the product B(s) over all Dirichlet
characters defined modulo n, given for �(s) > 1 by

B(s) =
∏
χ

L(s, χ) =
∏
χ

∏
p

(1 − χ(p)p−s)−1

which has a pole of order 1 at s = 1 and otherwise may be analytically contin-
ued as a holomorphic function.Writing the Euler product as

∏
p μp(s)−1, note

that μp(s) = 1 − ∑
χ χ(p)p−s + O(p−2s); by orthogonality of characters,

the coefficient
∑

χ χ(p) = φ(n) if p ≡ 1 (mod n) and zero otherwise. We
can then check that A(s)/B((n−1)s) is holomorphic in�(s) > (2(n−1))−1.
Thus A(s) has a meromorphic continuation in �(s) > (2(n− 1))−1 with only
a simple pole at s = (n − 1)−1; moreover A(s) inherits a standard convexity
estimate from B(s) (see e.g. [42, Lemma 5.2, Thm. 5.23]). So, by the main
term in a standard Tauberian theorem (see for example [18, Thm. A.1] and
[60, Section 6.4]), we have

|ZI
n (Q,G; X)| = cn X

1/(n−1) + o(X1/(n−1)),

for a certain constant cn . ��

2.2 Dihedral groups Dp

For p an odd prime, let Dp be the order 2p group of symmetries of the
vertices of a regular p-gon. Klüners [43, Theorem 3.5] obtained the lower
bound |Z p(Q, Dp; X)| 
 X2/(p−1) predicted by Malle’s conjecture [52].
Klüners also showed thatMalle’s conjectured upper bound X2/(p−1)+ε follows
from a special case of the Cohen-Lenstra heuristics [43, Thm. 2.5], as well as
proving [43, Theorem 2.7] an unconditional upper bound |Z p(Q, Dp; X)| �ε

X3/(p−1)+ε. This has recently been improved by Cohen and Thorne [20, Thm
1.1], based on nontrivial bounds of [28] for averages of �-torsion over quadratic
fields, to

|Z p(Q, Dp; X)| �ε X
3

p−1− 1
p(p−1)+ε

. (2.4)
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We require a lower bound that includes a ramification restriction. We let
PropertyDI

p (Dp, �) be the analog of PropertyDp(Dp, �) in which we only
count Dp-fields and with the ramification restrictionI for all tamely ramified
primes.

Proposition 2.3 (Dihedral group Dp of order 2p) For p an odd prime,
let Dp act on the p vertices of the regular p-gon in the usual way, and
let ZI

p (Q, Dp; X) count those fields K ∈ Z p(Q, Dp; X) with the follow-
ing ramification restriction I : every rational prime that ramifies tamely
in K has inertia group generated by an element in the conjugacy class
[(2 p)(3 p − 1) · · · ( p+1

2
p+3
2 )] of reflections. Then |ZI

p (Q, Dp; X)| 
p

X
2

p−1 .

Further, DI
p (Dp, 1/(p − 1)) holds. More generally, if we know that for all

quadratic fields L we have |ClL [p]| = Op(Db
L) for a certain exponent b > 0,

then DI
p (Dp, 2b/(p − 1)) holds.

Note: here we use the notation ClL [p] to denote the p-torsion subgroup of the
class group ClL of the field L/Q; see e.g. (7.1) for the definition.

2.2.1 Proof of the upper bound

Next we count degree p Dp-fields with a fixed discriminant. We may trivially
state that Dp(Dp, �) holds with � = 3/(p − 1) − 1/p(p − 1), by applying
(2.4). We improve on this by only counting fields with a fixed discriminant
and using our additional ramification restriction.

Let K ∈ ZI
p (Q, Dp) be a degree p Dp-field with absolute discriminant

D. Let K̃ be the Galois closure of K and L be the quadratic field inside
K̃ , so K̃/L is a cyclic p extension. Our ramification restriction implies that
K̃/L is unramified except perhaps at primes dividing 2p. We have, by our
ramification restriction, that |Disc K | = 2a pbQ(p−1)/2, where Q is square-
free and relatively prime to 2p. Then |Disc L| = 2a

′
pb

′
Q for some a′, b′ that

are bounded in terms of p. Thus, given D, there are a constant (in terms of p)
possible quadratic fields L , and for each of them we will count the possible
cyclic p extensions K̃/L that could arise.

Let JL be the idèle class group of L . For a finite place v of L , letOv be the
elements of non-negative valuation in the completion Lv , and for an infinite
place v let Ov = Lv . From the exact sequence

∏
v O∗

v → JL → ClL → 1
[61, Ch. VI Prop. 1.3] (where the product is over all places of L), and the
left-exactness of Homcts(−,Cp), we have an exact sequence

1 → Hom(ClL ,Cp) → Homcts(JL ,Cp) → Homcts(
∏
v

O∗
v,Cp),
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where we can take the product just above over finite places v of L , since
there are no continuous homormorphisms from R∗ or C∗ into Cp for p
odd. Our desired Cp-extensions of L correspond via class field theory to
elements of Homcts(JL ,Cp) that for each v � 2p map O∗

v to the iden-
tity, since they are unramified at such v. Thus the number of possible
images in Homcts(

∏
v O∗

v,Cp) for our desired elements of Homcts(JL ,Cp)

is |Hom(
∏

v|2p O∗
v,Cp)|. The number of v | 2p is at most 4 since L is

quadratic. Since Lv is either Qp or Q2 or quadratic over Qp or Q2 (and
there are only finitely many possibilities for the latter), the number of homo-
morphisms from O∗

v to Cp for v | 2p is bounded in terms of p. Also,
|Hom(ClL ,Cp)| = |ClL [p]|. Note Disc L = Op(|Disc K |2/(p−1)). So if we
assume |ClL [p]| = Op(|Disc L|b), then the number of possible K̃ , and thus
the number of possible K , is Op(D2b/(p−1)).

2.2.2 Proof of the lower bound

Given a quadratic field L , if ClL [p] is non-trivial, class field theory gives an
unramified cyclic degree p extension L ′/L . The group Gal(L/Q) = 〈σ 〉 acts
on ClL by inversion (since for an ideal a of L , we have that aσ(a) is principal).
It follows that L ′/Q is a degree 2p Dp-extension, with all inertia trivial or in
a subgroup generated by a reflection.

Now given an imaginary quadratic field L with units ±1 such that ClL [p]
is trivial and p splits completely in L , we we will show by other means that
we still can obtain a degree 2p Dp-extension L ′/Q containing L , and with
our required ramification condition. We will construct a surjection φ from JL
to the cyclic group Cp of order p. Let v1, v2 be the two places of L above
p. We let φv1 : O∗

v1
→ Cp be any surjection. We let φv2 : O∗

v2
→ Cp be

defined by φv2(u) = φv1(σ (u))−1. At every other place v �= v1, v2, we let
φv : O∗

v → Cp be trivial. Then at each place v, we pick an element αv ∈ L
that has valuation 1 at v and valuation divisible by p at all other places (which
we can do since ClL [p] is trivial). We extend φv to φv : L∗

v → Cp by letting
φv(αv) = ∏

w �=v φw(αv)
−1. The φv combine to give a map φ : ∏v L

∗
v → Cp,

that is trivial on the diagonal embeddings of pth powers, the αv , and units.
These elements generate L∗ (since ClL [p] is trivial), and so φ descends to
a map φ : JL → Cp. We can check that it follows from our definitions that
φ(σ(x)) = φ(x)−1.We recall fromclass field theory that theArtinmap for L is
equivariant for the usual action of Gal(L/Q) on JL and the action of Gal(L/Q)

on Gal(Lab/L) given by conjugation by a lift in Gal(Lab/Q) [74, Thm 11.5
(i)]. So since ker φ is Gal(L/Q) invariant, it follows fromGalois theory that the
degree p cyclic extension L ′ of L corresponding to φ (from class field theory)
is actually Galois over Q. Since p is odd, we have that Gal(L ′/Q) is a semi-
direct product Gal(L ′/L) � Gal(K/Q), and the action of Gal(K/Q) on the
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index p subgroup Gal(L ′/L) given above shows that Gal(L ′/Q) 
 Dp. Since
L ′/L has no tame ramification by choice of the φv|O∗

v
, all tame ramification

of L ′/Q has inertia in the subgroup of a reflection.
So for all but finitely many imaginary quadratic fields L in which p splits

completely, we have constructed a degree 2p Dp-extension L ′/Q containing L
with our required ramification condition, which in particular contains a degree
p Dp-extension K . At primes � � 2p of Q, the exponent of � in Disc K is
(p − 1)/2 if � is ramified in L and 0 otherwise. So we have that Disc K is
within a constant (depending on p) factor of (Disc L)(p−1)/2. Since we have

p X of these quadratic fields L , we conclude we have 
p X2/(p−1) fields
counted by ZI

p (Q, Dp; X).

2.3 Symmetric groups Sn

Our work on Sn-fields requires understanding the size of ZI
n (Q, Sn; X) with

I = [(1 2)]; this is equivalent to requiring that the tamely-ramified part of
DK is square-free. This is a consequence of a standard fact (see Lemma 6.9)
that p is tamely ramified in K with inertia group generated by a transposition
if and only if p‖DK . We record for n = 3, 4, 5, that by work of Bhargava [7,
Theorem 1.3],

|ZI
n (Q, Sn; X)| ∼ cn X. (2.5)

By the asymptotic counts of S3-fields due to Davenport and Heilbronn [23]
and S4-fields and S5-fields due to Bhargava [4,6], the fields in ZI

n (Q, Sn) are
a positive proportion of all Sn fields for n = 3, 4, 5. Moreover, it is conjec-
tured by Malle [52] and Bhargava [5,7] that asymptotics of order X hold for
ZI
n (Q, Sn; X) and Zn(Q, Sn; X) when n ≥ 6.
For symmetric groups Sn with n ≥ 6, the best proven results are much

weaker. For n > 2, we have an upper bound of Ellenberg and Venkatesh [30]
on all degree n number fields Zn(Q),

|Zn(Q; X)| � (αn X)exp(C
√
log n), (2.6)

where αn is a constant depending only on n and C is an absolute constant.
The best known lower bound for Sn-fields is |Zn(Q, Sn; X)| 
n X1/2+1/n

by Bhargava, Shankar and Wang [11, Thm. 1.3], and importantly for us, all
of the fields they construct to deduce this new lower bound have square-free
discriminant. As a consequence, for all n ≥ 6 and I = [(1 2)],

|ZI
n (Q, Sn; X)| 
n X1/2+1/n. (2.7)

We also require upper bounds on Sn-fields of a fixed discriminant, and we
state the best known results here. Ellenberg and Venkatesh [31, p. 1] prove
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Property D3(S3, 1/3). Klüners [44] proves Property D4(S4, 1/2). From Bhar-
gava’s count for quintic fields, we may trivially deduce that D5(S5, 1) holds.
For our work, knowing D5(S5, �) for any � < 1 would suffice, so we make
the following simple observation:

Proposition 2.4 Property D5(�) holds for � = 199/200.

This follows immediately from the power-saving count for quintic S5-fields
proved by Shankar and Tsimerman [72] (see also the power-saving count for
all quintic fields in [28, Thm. 2.4]). Indeed, letting Z5(Q; X) denote all quintic
fields with DK ≤ X , we have a constant c5a > 0 such that

|Z5(Q; X)| = c5a X + Oε(X
199/200+ε)

for every ε > 0, so that upon differencing this for X = D and X = D − 1,
Proposition 2.4 follows.

2.4 The alternating group A4

For A4, it is known by Baily [3] that the lower bound conjectured by Malle
[52] holds, |Z4(Q, A4; X)| 
 X1/2, and by Wong [86] that a weaker upper
bound holds,

|Z4(Q, A4; X)| � X5/6+ε. (2.8)

We require a lower bound that includes a ramification restriction and an
upper bound for fields of fixed discriminant.

Proposition 2.5 (Alternating group A4) Let ZI
4 (Q, A4; X) count those fields

K ∈ Z4(Q, A4; X) such that every rational prime that ramifies tamely in K
has inertia group generated by an element in either of the conjugacy classes
{(1 2 3), (1 3 4), (1 4 2), (2 4 3)} or {(1 3 2), (1 4 3), (1 2 4), (2 3 4)}. Then
|ZI

4 (Q, A4; X)| 
 X1/2. Moreover, D4(A4, �) holds for � = 0.2784 . . ..

Property D4(A4, �) was previously known for � = 3/4 due to Wong [84,
Thm. 6], but this is not small enough for our purposes.

2.4.1 The upper bound

To show that D4(A4, �) holds with � = 0.2784..., we will apply Baily’s
connection [3] of A4 fields to certain quadratic ray class characters of cyclic
cubic fields, in combination with the bound on the 2-torsion in class groups
of cubic fields due to Bhargava, Shankar, Taniguchi, Thorne, Tsimerman, and
Zhao [10]. We thank Manjul Bhargava for suggesting this approach.

Let K4 be a quartic A4-field of discriminant D. Let K3 be the fixed field
of the subgroup of A4 generated by {(1 2)(3 4), (2 3)(1 4)}, and note that

123



An effective Chebotarev density theorem for families 717

K3 is cyclic cubic. We can check using Lemma 6.9 that tame rational primes
with inertia type in the conjugacy class of (1 2)(3 4) appear squared in the
discriminant of K4 and do not appear in the discriminant of K3. Similarly,
tame rational primes with inertia type in the conjugacy class of (1 2 3) appear
squared in the discriminants of both K4 and K3. So Disc K3 | 2a3bDisc K4,
for some absolute positive integers a, b.

Let K6 be one of the (conjugate) sextic subfields of the Galois clo-
sure of K4. Note that K4 and K6 have the same Galois closure, and so to
count K4 we may equivalently (up to a fixed constant) count the associ-
ated K6. By [3, Lemmas 13 and 15] we have that K6 = K3(b1/2), where
b ∈ OK3 \ {Z ∪O2

K3
} and NK3/Q(b) is a square rational integer. We have that

NK3/Q(Disc (K6/K3)) = Disc K4/Disc K3 (see [3, Lemma 11]).
Now, we sum over each divisor d of 2a3bD the number of quartic A4-

fields K4 of discriminant D with Disc K3 = d. There are O(2ω(d)) cyclic
cubic fields of discriminant d [19]. Given a fixed cyclic cubic field K3 of
discriminant d, for an upper bound, it suffices to bound the number of sextic
fields of the form K3(b1/2), where b ∈ OK3 \ {Z ∪ O2

K3
} and NK3/Q(b) is a

square rational integer. We do this following the argument in [3, Lemma 10].
Such a sextic field corresponds to a quadratic ray class character of conductor
d with finite part d∗ = Disc (K6/K3), and such a character is a product of a
character on (OK3/d

∗)×, a character on the class group of K3, and a character
on signature (see [3, (4)]). Baily [3, Lemma 8] describes the possible forms
of d, and in the proof of [3, Lemma 9] gives a generating function for all the
primitive quadratic characters on (OK3/d

∗)×. From this it follows there are
O(3ω(D/d)) choices of d∗ with characters on (OK3/d

∗)× such that wewill have
Disc (K6/K3) = D/d. Let h2(K3) denote the size of the 2-torsion subgroup
of the class group of K3. There are at most h2(K3) class group characters,
and h2(K3) = Oε(d0.2784···+ε) by [10, Equation (4)]. There are at most 8
characters of signature, and so in conclusion, there are at most

Oε

⎛
⎝∑

d|D
2ω(d)3ω(D/d)d0.2784...+ε

⎞
⎠ = Oε(D

0.2784...+ε)

quartic A4-fields of discriminant D.

2.4.2 The lower bound

The lower bound on the number of quartic A4-fields with our required rami-
fication condition follows from the proof of [3, Theorem 3]. As stated in line
2 of the proof of [3, Lemma 16], the degree 6 fields K6 constructed by Baily
are unramified over the relevant degree 3 cyclic field K3, except perhaps at
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primes of K3 dividing 2. These fields K6 have Galois closure K12 of degree
12 with Galois group A4. The fact that K6/K3 is unramified except at primes
of K3 dividing 2 means that for each odd rational prime p the inertia groups
of p in Gal(K12/Q) must be trivial or generated by a three-cycle. The same
holds for p = 2 if the primes of K3 that divide 2 are unramified in K6/K3. If
a prime dividing 2 is ramified in K6/K3, it is wildly ramified, and thus 2 in
wildly ramified in K12.

2.5 The alternating groups An and proof of Theorem 1.5

The fact that for n ≥ 5, An is a simple group will make a later part of our
argument much simpler, but on the other hand we require a lower bound for
the number of degree n An-extensions of Q with bounded discriminant, which
was not previously in the literature. We prove:

Theorem 2.6 (Alternating groups An , n ≥ 3) For each integer n ≥ 3, there
exists a real number βn > 0 such that for all X ≥ 1, for every ε > 0,
|Zn(Q, An; X)| 
n,ε Xβn−ε. In fact we may take βn = (1 − 2

n!)/(4n − 4).

We first observe that Theorem 1.5 implies Theorem 2.6 when we specialize
G to An . For each n ≥ 3, Hilbert [40] gave polynomials f (x, t) ∈ Q[x, t]
that have Galois group An over Q(t) and are degree n in x and degree 2 in
t . (Hilbert in turn credits Hurwitz with the examples: see [40, p. 125] for n
even and [40, p. 126] for n odd; see also [69, Section 10.3].) Moreover, these
same polynomials (by the same argument) have Galois group An over E(t),
for any number field E , and thus their splitting fields do not contain a non-
trivial finite extension of Q (i.e. they are regular). Thus Theorem 1.5 with
|G| = |An| = n!/2, j = 1, m = n and d = 2 verifies Theorem 2.6.

We now prove Theorem 1.5; we thank Akshay Venkatesh and Manjul
Bhargava for suggesting the approach we use, and for a number of helpful
discussions. The method of proof, in imprecise terms, is as follows. Suppose
that f (x, t) has Galois group G over Q(t), resulting in, say, y different fields
with Galois groupG as t varies over all integral tuples with coordinates at most
T in absolute value. Then by showing that f (x, t) f (x, t′) typically has Galois
groupG×G and very rarely has Galois groupG (which occurs when the fields
provided by f (x, t) and f (x, t′) collide), we will deduce that f (x, t) must
have produced many different fields to begin with, that is, y must grow at least
like a small power of T . See also [69, p. 137] for a hint at a similar philosophy
applied to generating infinitely many G-extensions if one such extension is
known.

In order to put this into action in precise terms, we require a quantitative
version of the Hilbert irreducibility theorem, for which we cite [13]:
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Theorem C Suppose f (X, T1, . . . , Tj ) ∈ Q[X, T1, . . . , Tj ] is an irre-
ducible polynomial with splitting field K over Q(T1, . . . , Tj ) such that
Gal(K/Q(T1, . . . , Tj )) 
 G. For any subgroup H ⊂ G set

N f (T ; H) = #{t ∈ Z j : |t|∞
≤ T and the splitting field of f (X, t) over Q has Galois group 
 H}.

Then for every T ≥ 1 and every ε > 0, N f (T ; H) � f,ε T j−1+|G/H |−1+ε.

We also require the following key lemma:

Lemma 2.7 Let f (x, t1, . . . , t j ) ∈ Q(t1, . . . , t j )[x] be a polynomial with
splitting field K over Q(t1, . . . , t j ) such that Gal(K/Q(t1, . . . , t j )) 
 G.
Suppose that f (x, t1, . . . , t j ) is regular, i.e. K does not contain a non-trivial
finite extension of Q. Then f (x, t1, . . . , t j ) f (x, s1, . . . , s j ) has splitting field
with Galois group G × G over Q(t1, . . . , t j , s1, . . . , s j ).

2.5.1 Proof of Lemma 2.7

We will prove the lemma in the case j = 1; a straightforward extension of
this argument applies to the general case. Let F(x, t) ∈ Q[t, x] be a monic
irreducible polynomial of x with a root θ that generates K over Q(t). We let
all our splitting fields be in a fixed algebraic closure of Q(s, t). Then KQ(s) is
the splitting field of f (x, t) overQ(s, t). We will show below that ifG(s, x) ∈
Q[s, x] is a monic polynomial irreducible over Q(s) that generates a Galois
extension of Q(s) and does not contain a non-trivial finite extension of Q,
then G(s, x) is irreducible over KQ(s). We will see now that this will suffice
to prove the lemma. Applying this in the case where F is trivial, we will
see that G(s, x) is irreducible over Q(s, t), and in particular, analogously we
will see that F(x, t) is irreducible over Q(s, t) and so [KQ(s) : Q(s, t)] =
|G|. So if L is the splitting field of f (s, x) over Q(s), then L is generated
by F(s, x), and applying the above with G(s, x) = F(s, x), we see that
[K L : KQ(s)] = |G|. Thus Gal(K L/Q(s, t)) has order |G|2 and injects into
Gal(K/Q(t)) ×Gal(L/Q(s)), and so Gal(K L/Q(s, t)) 
 G ×G. Since K L
is the splitting field of f (x, t) f (x, s) over Q(s, t), this proves the lemma.

Now we show that G(s, x) with the assumptions above is irreducible over
KQ(s). Suppose that G(s, x) factored into a(x)b(x) over KQ(s). We can
write

a(x) =
k∑

i=0

ni (s, t, θ)

di (s, t)
xi
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where ni (y, z, w) ∈ Q[y, z, w] and ni (y, z) ∈ Q[y, z]. (Since θ is algebraic
over Q(s, t), we can write elements of KQ(s) as polynomials in θ with coeffi-
cients inQ(s, t), and sowe can arrange to have no θ ’s in the denominators.) Let
ni, j (z, w) be the coefficient of y j in ni (y, z, w). Let Ia be the ideal in Q[z, w]
generated by all the ni, j (z, w) for all j and for i ≥ 1, and define Ib analogously.
We claim that, as ideals of Q[z, w], we have (F(w, z)) ⊃ Ia Ib. Suppose
not. Then there are infinitely many maximal ideals m of Q[z, w] that con-
tain (F(w, z)) but not Ia Ib. Each such maximal ideal gives values t0, θ0 ∈ Q

such that F(θ0, t0) = 0, but upon substitution of z �→ t0 and w �→ θ0, some
element of Ia and some element of Ib remain non-zero, which gives a non-
trivial factorization of G(s, x) over Q(s) unless some denominator di (s, t0) is
identically zero (or similarly for the denominators in b(x)). Since only finitely
many t0 can make a denominator zero, and each have a finitely many associ-
ated θ0, we conclude thatG(s, x) factors non-trivially overQ(s), and thus over
E(s, x) for someGalois number field E . SinceGal(E(s)/Q(s)) → Gal(E/Q)

is an isomorphism, the subfields of E(s) that contain Q(s) are E ′(s) for the
subfields E ′ of E . If M is the field generated by G(s, x) over Q(s), then
[ME(s) : E(s)] = [M : M ∩ E(s)]. Since G(s, x) factors non-trivially over
E(s), we have [ME(s) : E(s)] < [M : Q(s)], and thus M ∩ E(s) is a non-
trivial extension of Q(s) inside E(s), and thus contains some number field
E ′. In particular M contains a non-trivial number field, which contradicts our
assumption on G(s, x). Thus, we conclude that (F(w, z)) ⊃ Ia Ib, and thus
(F(w, z))|Ia Ib, and thus either(F(w, z))|Ia or (F(w, z))|Ib, since (F(w, z))
is prime. But this implies that either a or b has all coefficients 0 except the
constant one, and thus we conclude G(s, x) is irreducible over KQ(s). This
concludes the proof of Lemma 2.7.

2.5.2 Proof of Theorem 1.5

With Lemma 2.7 and Theorem C in hand, we may now prove Theorem 1.5.
Suppose f (X, T1, . . . , Tj ) is a polynomial of total degree d in the Ti with
Galois group G overQ(T1, . . . , Tj ) (with degree n in X ). For t = (t1, . . . , t j ),
we define |t|∞ = max1≤�≤ j |t�|, so that there are 
 T j possible values of
t ∈ Z j with |t|∞ ≤ T . For each t ∈ Z j , let L t be the splitting field of
f (X, t1, . . . , t j ) in Q̄. Let y be the size of the set {L t : t ∈ Z j , |t|∞ ≤
T,Gal(L t/Q) 
 G} (note it is possible that different t give the same L t), and
we also write L1, . . . , Ly for the fields in this set.

For each 1 ≤ i ≤ y, suppose Ai of the values t have L t = Li . So

A1 + · · · + Ay = A,
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An effective Chebotarev density theorem for families 721

where A is the total number of values of |t|∞ ≤ T with Gal(L t/Q) 
 G.
From Theorem C above, we have that A 
 f T j , since there are finitely many
subgroups which each appear with an upper bound with exponent strictly
smaller than j .

For each t ∈ Z2 j , let Mt be the splitting field of f (X, t1, . . . , t j ) f (X, t j+1,

. . . , t2 j ). We ask how many t ∈ Z2 j with |t|∞ ≤ T have Gal(Mt/Q) 

G? By Lemma 2.7 and the assumption that f is regular, we have that
f (X, T1, . . . , Tj ) f (X, Tj+1, . . . , T2 j )hasGalois groupG×G overQ(T1, . . . ,
T2 j ). Thus, by Theorem C, the number of t ∈ Z2 j with |t|∞ ≤ T and

Gal(Mt/Q) 
 G is � f,ε T 2 j−1+|G|−1+ε. However, note that this occurs
whenever f (X, t1, . . . , t j ) and f (X, t j+1, . . . , t2 j ) have the same splitting
field with Galois group G, and so

A2
1 + · · · + A2

y � f,ε T 2 j−1+|G|−1+ε.

By Cauchy-Schwarz, (A1 +· · ·+ Ay)
2 ≤ y(A2

1 +· · ·+ A2
y), and we conclude

that

y ≥ (A1 + · · · + Ay)
2

(A2
1 + · · · + A2

y)

 f,ε

T 2 j

T 2 j−1+|G|−1+ε
= T 1−|G|−1−ε.

Thus there are 
 f,ε T 1−|G|−1−ε different fields with Galois group G that
come from specializations of f (X, T1, . . . , Tj ) to some t with |t|∞ ≤ T .
For |t|∞ ≤ T , we have that f (X, t1, . . . , t j ) is a degree n polynomial in X
with coefficients � f T d and thus with absolute discriminant � f T d(2n−2).
Thus L t has absolute discriminant � f T d(2n−2). In conclusion, there are


 f,ε X (1−|G|−1−ε)/(d(2n−2)) degree n G-fields with absolute discriminant at
most X , completing the proof of Theorem 1.5.

Part II: Effective Chebotarev theorems

3 Quantitative statements of Chebotarev theorems for families

We now state quantitative versions of our main Chebotarev theorems, starting
with a quantitative version of Theorem 1.3.

Theorem 3.1 (Chebotarev conditional on zero-free region) Let k be a fixed
number field. Fix A ≥ 2, 0 < δ ≤ 1/(2A), and an integer n ≥ 1. Let G be a
fixed transitive subgroup of Sn. Then there exists D0 ≥ 1 and κ1, κ2, κ3 > 0
such that the following holds: for any Galois extension of number fields L/k
with Gal(L/k) 
 G such that DL ≥ D0 and such that the Artin L-function
ζL(s)/ζk(s) is zero-free in the region
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[1 − δ, 1] × [−(log DL)2/δ, (log DL)2/δ], (3.1)

we have that for any conjugacy class C ⊆ G,

∣∣∣∣πC (x, L/k) − |C |
|G|Li(x)

∣∣∣∣ ≤ |C |
|G|

x

(log x)A
(3.2)

for all
x ≥ κ1 exp{κ2(log log(Dκ3

L ))2}. (3.3)

If moreover k = Q, (3.2) holds for all

x ≥ κ1 exp{κ2(log log(Dκ3
L ))5/3(log log log(D2

L))1/3}. (3.4)

Remark 3.2 The parameters D0 and κ1, κ2, κ3 depend on n, |G|, A, δ, and the
field k; they are precisely specified in Remark 4.11 and (4.47), respectively.

We next state, in quantitative form, the cases of Theorem 1.1 that are com-
pletely unconditional.

Theorem 3.3 For each family ZI
n (Q,G) specified in items (1)–(5) of the list

below, there exist constants β, d with 0 < β ≤ d such that for all X ≥ 1,

Xβ �n,G,I |ZI
n (Q,G; X)| �n,G,I Xd . (3.5)

Moreover, there exists a constant τ∗ with 0 ≤ τ∗ < β, such that for every
τ > τ∗ and every sufficiently small ε0 > 0, there exists a constant D3 and a
constant

δ = δ(ε0,m, |G|d) (3.6)

such that for all X ≥ 1, there are at most D3X τ+ε0 δ-exceptional fields in
ZI
n (Q,G; X); here m is the maximum dimension of an irreducible represen-

tation of G.
Moreover, fix any A ≥ 2. Then for any ε0 > 0 such that δ as defined in

(3.6) satisfies δ ≤ 1/(2A), there exists a constant D5 ≥ 1 and constants
κ1, κ2, κ3 > 0 such that for all X ≥ 1, aside from a set E(X) of at most
D5X τ+ε0 possible exceptions, each field K ∈ ZI

n (Q,G; X) has the property
that for its Galois closure K̃ over Q, for every conjugacy class C ⊆ G,

∣∣∣∣πC (x, K̃/Q) − |C |
|G|Li(x)

∣∣∣∣ ≤ |C |
|G|

x

(log x)A

for all x ≥ κ1 exp{κ2(log log(Dκ3

K̃
))5/3(log log log(D2

K̃
))1/3}.
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The families ZI
n (Q,G) are defined by:

(1) G a cyclic group of order n ≥ 2, withI comprised of all generators of G
(equivalently, every rational prime that is tamely ramified in K is totally
ramified). In this case |ZI

n (Q,G; X)| ∼ cn X1/(n−1) and τ∗ = 0. (Hence,
the density zero exceptional set E(X) is at most of size �ε Xε for every
ε > 0.)

(2) n = 3, G 
 S3 acting on a set of 3 elements, I being the conjugacy
class [(1 2)] of transpositions. In this case, |ZI

3 (Q, S3; X)| ∼ c3X and
τ∗ = 1/3. (Hence the density zero exceptional set E(X) is at most of size
�ε X1/3+ε for every ε > 0.)

(3) n = 4, G 
 S4 acting on a set of 4 elements, I being the conjugacy
class [(1 2)] of transpositions. In this case, |ZI

4 (Q, S4; X)| ∼ c4X and
τ∗ = 1/2. (Hence the density zero exceptional set E(X) is at most of size
�ε X1/2+ε for every ε > 0.)

(4) n = p an odd prime, G = Dp the order 2p dihedral group of symmetries
of a regular p-gon, I being the conjugacy class of order 2 elements. In
this case, for all X ≥ 1,

X2/(p−1) �p |ZI
p (Q, Dp; X)| �p,ε X3/(p−1)−1/(p(p−1))+ε

and τ∗ = 1/(p − 1). (Hence the density zero exceptional set E(X) is at
most of size �ε X1/(p−1)+ε for every ε > 0.)

(5) n = 4, G 
 A4 as a subgroup of S4 acting on a set of 4 elements, I
comprised of the two conjugacy classes of order 3 elements. In this case,
for all X ≥ 1,

X1/2 � |ZI
4 (Q, A4; X)| �ε X5/6+ε,

and τ∗ = 0.2784.... (Hence the density zero exceptional set E(X) is at
most of size �ε X0.2784...ε for every ε > 0.)

Note we have that m ≤ |G|.5 (see [80] for asymptotics when G = Sn).

Remark 3.4 Kowalski andMichel’s result [45, Theorem 2] leads to the choice
δ = ε0

5m|G|/2+2d+4ε0
. Within a fixed family ZI

n (Q,G), note that as we choose
ε0 smaller (so that δ correspondingly decreases), the density of potential δ-
exceptional fields decreases, in accord with the fact that the requirement that
ζK̃ (s)/ζ(s) be zero-free in a box to the right of �(s) = 1 − δ becomes less
stringent, and fewer fields would be expected to violate it. Simultaneously,
as δ and accordingly the width of the zero-free region decreases, the lower-
bound threshold for x increases, since the explicit expressions given for the
parameters κi grow with 1/δ as specified in (4.47). This is also as expected.
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Remark 3.5 (Cyclic fields of prime degree) If G is a cyclic group of prime
order p ≥ 2, then for each Galois extension K/Q with Galois group 
 G,
every ramified prime is totally ramified, so that for I as in Theorem 3.3,
ZI
p (Q,G; X) = Z p(Q,G; X).

Remark 3.6 (degree n Sn-fields with square-free discriminant) Recall from
Sect. 2.3 that for each n ≥ 2, the family ZI

n (Q, Sn; X) with I = [(1 2)]
includes all degree n Sn-fields with square-free discriminant, which are known
in the case of n = 3, 4, 5 (and conjectured for n ≥ 6) to be a positive proportion
of all degree n fields.

Remark 3.7 (degree p Dp-fields) It is conjectured that |Z p(Q, Dp; X)| ∼
cDp X

2/(p−1) for some cDp > 0 (see [53], [43, p. 608]); assuming this is the
true order, our family of degree p Dp-fields exhibited in case (4) is a positive
proportion of all degree p Dp-fields.

Remark 3.8 (degree 4 A4-fields) Based on heuristics as well as numerical
evidence, it is conjectured that |Z4(Q, A4; X)| ∼ cA4X

1/2 log X for some
cA4 > 0 (see [14, §2.7], [53, Ex. 3.2]); assuming this is the true order, our
family of degree 4 A4-fields exhibited in case (5) of Theorem 3.3 just fails to
be a positive proportion of all degree 4 A4-fields.

Finally, we state the quantitative forms of Theorem 1.1 that are conditional
on the strong Artin conjecture, and in certain cases on hypotheses for counting
number fields.

Theorem 3.9 (Quintic S5-fields)Consider the family ZI
5 (Q, S5) forI being

the conjugacy class [(1 2)] of transpositions, in which case |ZI
5 (Q,G; X)| ∼

c5X. The conclusions of Theorem 3.3 hold for ZI
5 (Q,G) if we assume the

strong Artin conjecture holds for all irreducible Galois representations overQ

with image S5. In this case, τ∗ = 199/200. (Hence the density zero exceptional
set E(X) is at most of size �ε X199/200+ε for every ε > 0.)

Remark 3.10 An alternative formulation of Theorem 3.9 uses the work of F.
Calegari [12]. Let YI

5 (Q, S5) be the family of quintic S5-fields K such that
complex conjugation in Gal(K̃/Q) has conjugacy class (1 2)(3 4), K̃/Q is
unramified at 5, and the Frobenius element at 5 has conjugacy class (1 2)(3 4).
By [7, Thm. 1.3], |YI

5 (Q, S5; X)| ∼ c′
5X.For these fields, Calegari verifies the

strongArtin conjecture for the dimension 4 and 6 irreducible representations of
S5, and reduces the verification for the dimension 5 irreducible representations
to checking that a certain L-function is non-vanishing for s ∈ [0, 1]. Precisely,
for K ∈ Y5(Q, S5), let E be the quadratic subfield of K̃ , F be a subfield of
K̃ of degree 6 over Q, and H be the compositum of E and F . Then by [12,
Thm. 1.2], the strong Artin conjecture holds for the dimension 5 irreducible
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An effective Chebotarev density theorem for families 725

representations as long as ζH (s) is nonvanishing for s ∈ [0, 1]. (See [8], [27]
for computational verification of this nonvanishing, in a finite number of cases
with small discriminant.) Thus we could alternatively state Theorem 3.9 for
the family YI

5 (Q, S5), assuming in place of the strong Artin conjecture that
for each field K ∈ YI

5 (Q, S5) considered, the appropriate L-function ζH (s)
is nonvanishing for s ∈ [0, 1].
Theorem 3.11 (degree n Sn-fields) Consider for n ≥ 6 the family ZI

n (Q, Sn)
with I being the conjugacy class [(1 2)] of transpositions, in which case for
all X ≥ 1,

X1/2+1/n �n |ZI
n (Q, Sn; X)| �n X exp(C

√
log n).

The conclusions of Theorem 3.3 hold for the family ZI
n (Q, Sn) if we assume

(i) the strong Artin conjecture for all irreducible Galois representations over
Q with image Sn,

(ii) for some �n < 1/2 + 1/n, for every fixed integer D, there are at most
�n D�n fields K ∈ Zn(Q, Sn) with DK = D.

In this case, τ∗ = �n. (Hence the density zero exceptional set E(X) is at most
of size �ε X�n+ε for every ε > 0.)

Remark 3.12 If it is known that |ZI
n (Q, Sn; X)| 
n Xβn , then to deduce that

the possible exceptional set has density zero, we need only know (ii) for some
�n < βn .

Similarly our results for simple groups are conditional on the strong Artin
conjecture; for An , we additionally apply our new lower bound for the number
of degree n An-fields with bounded discriminant.

Theorem 3.13 (Alternating groups An, n ≥ 5) For each n ≥ 5, consider the
family Zn(Q, An) (with no restriction on inertia type, that is,I = G). In this
case, there exists a positive exponent βn > 0 such that for all X ≥ 1,

Xβn �n |ZI
n (Q, An; X)| �n X exp(C

√
log n)

for a certain absolute constant C. In fact we may take βn = (1− 2/n!)/(4n−
4). Then under the assumption that the strong Artin Conjecture holds for all
irreducible Galois representations over Q with image An, the conclusions of
Theorem 3.3 hold with τ∗ = 0. (Hence the density zero exceptional set E(X)

is at most of size �ε Xε for every ε > 0.)

Finally, we state a result for families of fields parametrized by a fixed simple
group; here we simply assume that a lower bound that grows like a power of
X is known for the number of such fields (as may be obtained by Theorem 1.5
if an appropriate generating polynomial is known).
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Theorem 3.14 (Simple groups) For n ≥ 2 and a fixed transitive simple group
G ⊂ Sn, the conclusions of Theorem 3.3 hold for the family Zn(Q,G) with no
restriction on inertia type (that is, I = G), if we assume

(i) the strong Artin conjecture holds for all irreducible representations over
Q with image G,

(ii) a lower bound of the form |Zn(Q,G; X)| 
n,G Xβ for some β > 0, for
all X ≥ 1.

Then Xβ �n |Zn(Q,G; X)| �n X exp(C
√
log n) for an absolute constant C,

and τ∗ = 0. (Hence the density zero exceptional set E(X) is at most of size
�ε Xε for every ε > 0.)

Remark 3.15 At present we do not treat families Zn(Q,G) for G a non-cyclic
abelian group, or Z4(Q, D4); we remark on difficulties encountered in these
settings in Remarks 6.11 and 6.12.

We encapsulate two useful consequences in all the settings described above:

Corollary 3.16 (Quantitative counts for small primes) Let ZI
n (Q,G; X) be

fixed tobeoneof the families of fields considered inTheorems3.3, 3.9, 3.11, 3.13
and 3.14, and correspondingly assume the hypotheses (if any) of the relevant
theorem. Recall the parameters τ∗ < β ≤ d proved to exist for the family in
(3.5), and for any sufficiently small ε0 > 0, let δ ≤ 1/4 be defined as in (3.6).

(1) For any σ > 0, there exists a constant D6 such that for every X ≥ 1, every
field K ∈ ZI

n (Q,G; X) that has DK ≥ D6 and is not δ-exceptional, has
the property that for any fixed conjugacy class (or finite union of conjugacy
classes) C in G,

πC (Dσ
K , K̃/Q) 
G,n,σ

Dσ
K

log DK
. (3.7)

Here K̃ denotes the Galois closure of K over Q.
(2) For any σ > 0, there exists a constant D7 such that for every X ≥ 1, every

field K ∈ ZI
n (Q,G, X) that has DK ≥ D7 and is not δ-exceptional, has

the property that for any conjugacy class C of G,

πC (2Dσ
K , K̃/Q) − πC (Dσ

K , K̃/Q) ≥ 1. (3.8)

Here K̃ denotes the Galois closure of K over Q.

Finally, in either case, recall that for every τ > τ∗ there exists a constant
D3 such that for every X ≥ 1, at most D3X τ+ε0 fields K ∈ ZI

n (Q,G; X) are
δ-exceptional.
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4 A Chebotarev density theorem conditional upon a zero-free region

Themain goal of this section is to proveTheorem3.1.Anice feature ofLagarias
and Odlyzko’s approach to the effective Chebotarev theorem is that it does not
assume the Artin conjecture, so that Theorem B is completely unconditional.
Similarly, Theorem 3.1 is unconditional, aside from the assumed zero-free
region. This is made possible by using Lagarias and Odlyzko’s technical trick
(originally due toDeuring) of expressing ζL as a product ofHecke L-functions,
where L/k is a Galois extension of number fields with Gal(L/k) 
 G. Fixing
an element g ∈ G and letting H = 〈g〉 be the cyclic subgroup of G generated
by g, then upon setting E to be the fixed field LH , Lagarias and Odlyzko
obtain the product expression on the left, in which χ varies over the irreducible
characters of H :

∏
χ irred

L(s, χ, L/E) = ζL(s) =
∏
ρ j

L(s, ρ j , L/k)dim ρ j . (4.1)

Each such factor is a Hecke L-function and hence is known to be entire if χ

is nontrivial. On the other hand, once we have Theorem 3.1, to deduce the
assumed zero-free region via Kowalski-Michel, we will also factor ζL(s) as
on the right-hand side, as a product of Artin L-functions, which we then need
to show (or assume) are automorphic L-functions with certain properties.

If one is willing to assume the Artin conjecture, so that each factor on
the right-hand side of (4.1) with ρ j nontrivial is entire, a Chebotarev density
theorem with an effective error term is relatively quick to prove, since either a
standard zero-free region (or theGRH zero-free region)may be applied to each
of these Artin L-functions, obviating the alternative Hecke factorization; see
for example, [42, §5.13 and Thm. 4.13]. (The conjugacy class C of interest is
picked out via trace functions, much as in Dirichlet’s theorem on primes p ≡
a (mod q), the residue class of interest is picked out via Dirichlet characters.)
In our application to families of fields we do indeed assume the strong Artin
conjecture (or it is known). Nevertheless, to prove Theorem 3.1 we have used
the Lagarias-Odlyzko approach, as we expect its unconditionality to be useful
for other applications.

4.1 Standard lemmas on zeroes

We recall the currently best known zero free region for ζ(s), due toVinogradov
[79] and Korobov [47].
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Lemma 4.1 (Vinogradov–Korobov zero-free region for ζ(s)) There exists an
absolute constant cQ > 0 such that ζ(s) has no zero s = σ + i t in the region

σ ≥ 1 − cQ

(log(|t | + 2))2/3(log log(|t | + 3))1/3
. (4.2)

We will also use a standard zero-free region for any Dedekind zeta function
[42, Theorem 5.33].

Lemma 4.2 (Standard zero-free region for ζk(s)) Let k/Q be a number field
of degree nk ≥ 1 and with absolute discriminant Dk. There exists an absolute
constant ck > 0 such that ζk(s) has no zero s = σ + i t in the region

σ ≥ 1 − ck
n2k log(Dk(|t | + 3)nk )

, (4.3)

except possibly a simple real “exceptional” zero β
(k)
0 < 1.

We also recall a standard count for zeroes of Dedekind zeta functions at a
fixed height:

Lemma 4.3 ([42, Theorem 5.31, Proposition 5.7]) Let k/Q be a number field
of degree nk ≥ 1 and with absolute discriminant Dk. For a real variable t , let
nk(t) denote the number of zeroes ρ = β + iγ of ζk(s) with 0 < β < 1 and
|γ − t | ≤ 1. For all real t , nk(t) � log Dk + nk log(|t | + 4).

The corresponding result for Hecke L-functions is:

Lemma 4.4 ([50, Lemma 5.4]) Let nχ(t) denote the number of zeroes ρ =
β + iγ of a Hecke L-function L(s, χ, L/E) with 0 < β < 1 and |γ − t | ≤ 1.
Let F(χ) denote the conductor of χ , and A(χ) = DENmE/Q(F(χ)). For all
t , nχ(t) � log A(χ) + nE log(|t | + 2).

4.2 Explicit description of assumed zero-free region

We now prove Theorem 3.1, using in particular the assumption, in the theorem
statement, that ζL(s)/ζk(s) is zero-free in the region

[1 − δ, 1] × [−(log DL)2/δ, (log DL)2/δ]. (4.4)

For use in potential computational applications, we specify the dependencies
of all parameters on k, δ, etc., although we do not now optimize them (e.g.
compared to recent work conditional on GRH in [35]), as it is not relevant for
our current applications.
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We may assume that L has degree nL > 1 over Q, since in the case L =
k = Q, πC (x, L/k) is simply counting rational primes p ≤ x . Our proof
will proceed in two stages: first, we deduce from Theorem B of Lagarias and
Odlyzko that the conclusion of Theorem 3.1 is true if x is sufficiently large.
Second, for small x , we refine the method of Lagarias and Odlyzko, keeping
track of the assumed zero-free region. (This manner of partitioning into large
and small x has appeared in the proof of the prime ideal theorem of [17,
Theorem 2.6].)

At each step, whenwe state that something holds for a number field k, it also
applies to k = Q; separately, we give refined statements so far applicable only
to k = Q. We do not rule out a priori the possibility of an exceptional zero
of ζL(s), say β0. Instead, in our application of Theorem B, the main idea is to
assume that DL is sufficiently large that the real interval within the region (1.3)
in Theorem B is contained inside the assumed zero-free region (4.4), and thus
ζL cannot have an exceptional zero β0. In order to carry this out rigorously,
we must be more careful, since (4.4) is an assumed zero-free region for ζL/ζk
and not just ζL .

The function ζk(s)mayhave an exceptional (real) zero in the standard region
(4.3) given in Lemma 4.2; wewill denote this, if it exists,β(k)

0 . (Of coursewhen
k = Q, ζk(s) = ζ(s), and no such exceptional zero exists.) Since k is fixed,
β

(k)
0 is fixed. We now fix a new parameter δ0 so that

1 − δ0 ≥ 1 − δ, and 1 − δ0 > β
(k)
0 ; (4.5)

we set δ0 = δ if k = Q. (Throughout this section we will use the notation
δ0; in the statement of Theorem 3.1, any dependence on δ0 is equivalently a
dependence on β

(k)
0 and δ.) From now on, instead of the zero-free region (4.4),

we work with the possibly smaller region

[1 − δ0, 1] × [−(log DL)2/δ, (log DL)2/δ], (4.6)

which excludes the possible fixed zero β
(k)
0 .

By our hypothesis, the Artin L-function ζL(s)/ζk(s) has no zeroes in the
region (4.6), and it is an entire function by the Aramata-Brauer theorem; ζk(s)
has no zeroes in the intersection of regions (4.3) and (4.6) (respectively, no
zeroes in the intersection of the regions (4.2) and (4.6) if k = Q) and is
holomorphic there. Thus ζL(s) has no zeroes in the intersection of (4.3) and
(4.6) (respectively, (4.2) and (4.6) if k = Q).
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B1

B2

1/2 β0(k) 1 – δ0 1
σ

(log DL)2/δ

– log DL)2/δ

T0

–T0

(4log DL)–1

–(4log DL)–1

t

Fig. 1 The curved region represents the standard zero-free region for ζk and the point β
(k)
0

denotes the possible (real) exceptional zero of ζk . The larger box B1 is the assumed zero-free
region (4.6) for ζL/ζk . The shaded region represents the consequent (assumed) zero-free region
for ζL , determined by the intersection of the known standard zero-free region for ζk and B1.
The box B2 is the zero-free region (1.3) known to hold for ζL , aside from a possible exceptional
(real) zero; we will conclude no such zero can exist in B2 as long as DL is sufficiently large

Thus we now specify (under the above hypotheses) the zero-free region of
ζL(s) (see Fig. 1):

{
σ ≥ 1 − δ0 if |t | ≤ T0,

σ ≥ 1 − L (t) if T0 ≤ |t | ≤ (log DL)2/δ,
(4.7)

where

L (t) =
⎧⎨
⎩

ck
n2k log(Dk(|t |+3)nk )

general k
cQ

(log(|t |+2))2/3(log log(|t |+3))1/3
if k = Q,

(4.8)

and T0 is the height at which the zero-free region (4.3) for ζk (respectively (4.2)
for ζ ) intersects the line �(s) = 1 − δ0. In our Chebotarev theorems we are
interested in the rangewhere DL → ∞, so there is no harm in always assuming
(for simplicity) that DL is sufficiently large that the left-hand boundary�(s) =
1− δ0 of (4.6) intersects the boundary of (4.3) (respectively (4.2) if k = Q) at
a height T0 ≤ (log DL)2/δ . For example, for a field k and the zero-free region
(4.3), we compute that
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T0 = D−1/nk
k exp

(
ck

δ0n3k

)
− 3. (4.9)

A similar computation may be done to find T0 in the case k = Q with the
improved zero-free region (4.2). In either case, to have T0 ≤ (log DL)2/δ it is
sufficient to have

DL ≥
{
exp{exp(ckδ/δ0)} general k

exp{(exp exp(cQ/δ))2/δ} if k = Q; (4.10)

we refer to this lower bound as D′
0 = D′

0(ck, δ0, δ).

4.3 The proof of Theorem 3.1 for large x

With this zero-free region in mind, we dispatch the case of our Chebotarev
theorem for large x , that is, for x ≥ exp(10nL(log DL)2). Recall the standard
zero-free region (1.3) which is known to hold for ζL(s), aside from a possible
real exceptional zero. We may define a constant D1 = D1(δ0) so that

1 − δ0 < 1 − (4 log D1(δ0))
−1. (4.11)

For later purposes, we also assume D1(δ0) ≥ 4. Our conclusion now is that
for DL ≥ D1(δ0), ζL can have no (real, exceptional) zero in the region (1.3),
and thus under the hypotheses of Theorem 3.1, the result of Theorem B holds
without the β0 term.

Now in order to show the remaining error term in Theorem B (with absolute
constants C1,C2) is sufficiently small, as claimed in Theorem 3.1, we need
only verify that there exists a constant D′

1 = D′
1(C1,C2, nL , A) such that as

long as DL ≥ D′
1, for all x ≥ exp(10nL(log DL)2),

C1x exp(−C2n
−1/2
L (log x)1/2) ≤ |C |

|G| x(log x)
−A. (4.12)

In fact it suffices that DL is sufficiently large that (4.12) holds at the end-
point x = exp(10nL(log DL)2), which is equivalent to requiring DL ≥
c2(log DL)c3 with c2 = (c−1/(2A)

1 (10nL)1/2)(2A)C−1
2 10−1/2

and c3 = 2AC−1
2

10−1/2; this provides the necessary threshold D′
1. As a consequence, the

conclusion of Theorem 3.1 holds for x ≥ exp(10nL(log DL)2), as long as
DL ≥ max{D1, D′

1}.
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4.4 Small x

In the remaining region of small x (that is, for x < exp(10nL(log DL)2)) we
return to the original strategy of Lagarias and Odlyzko, which will be our
focus for the remainder of Sect. 4. As in the classical prime number theorem,
it is convenient to work originally with a weighted prime-counting function,
defined in this case by

ψC (x, L/k) =
∑′

p,m
Nmk/Qp

m≤x[
L/k
p

]m=C

log(Nmk/Qp);

the final result for πC (x, L/k) will then follow from partial summation. Here
�′ denotes that the sum is restricted to those prime ideals p in Ok that are

unramified in OL . The notation
[
L/k
p

]m = C denotes the requirement that if

we pick any prime ideal q ⊂ OL lying above p, then C is the conjugacy class
of the m-th power (σq)

m of the Frobenius element σq inside G. (This is well-
defined nomatter which prime q is chosen above p, since if q′ = τ(q) for some
nontrivial automorphism τ ∈ G, then (σq′)m = (τσqτ

−1)m = τ(σq)
mτ−1, so

that they lie in the same conjugacy class in G.)
Our main result for ψC in the region of small x is as follows:

Proposition 4.5 Let k be a fixed number field. Fix A ≥ 2, 0 < δ ≤ 1/(2A),
and an integer n ≥ 1. Let G be a fixed transitive subgroup of Sn. Then for
any absolute constant 0 < c0 ≤ 1 of our choice, there exists a constant D2
and constants κ ′

1, κ
′
2, κ

′
3 such that for any Galois extension of number fields

L/k with Gal(L/k) 
 G such that DL ≥ max{D′
0, D1, D2}, and such that

the Artin L-function ζL(s)/ζk(s) is zero-free in the region

[1 − δ, 1] × [−(log DL)2/δ, (log DL)2/δ], (4.13)

we have for every conjugacy class C in G that

∣∣∣∣ψC (x, L/k) − |C |
|G| x

∣∣∣∣ ≤ c0
|C |
|G|

x

(log x)A−1 ,

as long as

κ ′
1 exp{κ ′

2(log log(D
κ ′
3
L ))2} ≤ x ≤ exp{10nL(log DL)2}. (4.14)
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If moreover k = Q we may take x in the range

κ ′
1 exp

{
κ ′
2(log log D

κ ′
3
L )5/3(log log log(D2

L))1/3
}

≤ x ≤ exp{10nL(log DL)2}.
(4.15)

Remark 4.6 Recall that D′
0 was fixed by (4.10), D1 was fixed by (4.11); we

will construct D2 explicitly in Lemma 4.10. The constants κ ′
1, κ

′
2, κ

′
3 depend

on c0, Dk, nk, nL , δ0, δ, A and are chosen in (4.38).

4.5 The passage to sums over zeroes of Hecke L-functions

To prove this proposition, we rebuild the argument of Lagarias and Odlyzko,
inserting the zero-free region (4.7) at a key point. With C the fixed conju-
gacy class of interest, we fix any element g ∈ C and let H = 〈g〉 be the
cyclic group generated by g. Then H defines a fixed field E = LH with
k ⊆ E ⊆ L , and the cyclic group H has an associated family of irreducible
one-dimensional characters. For any such character χ , we consider the Hecke
L-function L(s, χ, L/E); in particular if χ = χ0 is the trivial character on
H then L(s, χ, L/E) = ζE (s). The following statement provides the key
framework for proving Proposition 4.5:

Proposition 4.7 (Theorem 7.1 of [50]) For L/k a finite Galois extension of
number fields with Gal(L/k) 
 G, cyclic subgroup H ⊆ G, and k ⊆ E ⊆ L
as described above, there exists an absolute constant C5 ≥ 1 such that if x ≥ 2
and T ≥ 2, then

∣∣∣∣ψC (x, L/k) − |C |
|G| x

∣∣∣∣ ≤ C5
|C |
|G| {S(x, T ) + E1 + E2} , (4.16)

in which

S(x, T ) =
∑
χ

χ(g)

⎛
⎜⎜⎝

∑
ρ=β+iγ
|γ |<T

xρ

ρ
−

∑
ρ=β+iγ
|ρ|<1/2

1

ρ

⎞
⎟⎟⎠ ,

where the sum is over irreducible characters χ of H, and for each character χ

the inner sums are over nontrivial zeroes ρ = β + iγ of the Hecke L-function
L(s, χ, L/E), and

E1 = xT−1 log x log DL + log DL + nL log x + nLxT
−1 log x log T,

(4.17)

E2 = log x log DL + nLxT
−1(log x)2. (4.18)
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Remark 4.8 Note thatwemay assume thatC5 ≥ 1, by enlarging it if necessary.
As stated in (4.18), E2 is slightly refined over [50, Theorem7.1], which in place
of |C ||G|−1E2 has

E ′
2 = log x log DL + nkxT

−1(log x)2,

(without a factor of |C ||G|−1). As noted in [68, Théorème 4], the first term in
E ′
2 may be replaced by

|G|−1 log x log DL ≤ |C ||G|−1 log x log DL ,

by a refined estimate for a sum over prime ideals p ⊂ Ok that ramify in L . For
the second term in E ′

2, we use the trivial observation that nk |G| = nL , so that

nkxT
−1(log x)2 = |G|−1nLxT

−1(log x)2 ≤ |C ||G|−1nLxT
−1(log x)2,

as claimed.

With Proposition 4.7 in hand, Lagarias and Odlyzko use zero-free regions
(either unconditional or on GRH) to deduce a bound for S(x, T ), which indi-
cates an appropriate choice for the height T that guarantees all the error terms
are sufficiently small. We proceed with a different zero-free region and a dif-
ferent choice for T , namely

T = (log DL)2/δ, (4.19)

where δ is provided from our assumed zero-free region (4.7). (In particular,
we may assume that T ≥ 2 as long as DL ≥ 3 > exp(2δ/2), upon recalling
δ ≤ 1/4.)

4.6 Bounding the contribution of zeroes |ρ| < 1/2 in S(x, T)

The contribution to S(x, T ) from |ρ| < 1/2 (so that certainly |γ | ≤ T with T
as in (4.19)) is bounded by:

∑
χ

∑
|ρ|<1/2
|γ |≤T

{∣∣∣∣ x
ρ

ρ

∣∣∣∣ +
∣∣∣∣ 1ρ

∣∣∣∣
}

� x1/2
∑
χ

∑
|ρ|<1/2

∣∣∣∣ 1ρ
∣∣∣∣ � x1/2nL(log DL)2,

(4.20)
in which the implied constant is absolute. The first inequality is clear; to prove
the second inequality, recall the factorization (4.1) into Hecke L-functions,

ζL(s) = ζE (s)
∏

χ �=χ0

L(s, χ, L/E), (4.21)
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with the product over non-trivial irreducible characters of H . The Hecke L-
functions are entire, and ζE(s) and ζL(s) eachhave their only pole at s = 1; thus
(rigorously by multiplying both sides of the identity by (s−1)), it follows that
none of the factors on the right hand side of (4.21) have a zero in the region
(4.7). Recalling that (4.7) contains the region (1.3) since DL ≥ D1(δ0) we
may conclude (by the functional equation) that each L(s, χ, L/E) is zero-free
both in (1.3) and in 0 ≤ σ ≤ (4 log DL)−1, |t | ≤ (4 log DL)−1. Thus the only
zeroes that can appear in (4.20) must have |ρ| ≥ (4 log DL)−1; recalling the
notation of Lemmas 4.3 and 4.4, we then see that for each χ ,

∑
|ρ|<1/2

∣∣∣∣ 1ρ
∣∣∣∣ ≤ 4(log DL)nχ(1) � (log DL)(log A(χ) + nE log 3) (4.22)

with the implied constant being absolute. The conductor-discriminant formula
[61, Ch. VII 11.9] shows

∑
χ

log A(χ) = log

[
D|H |

E NmE/Q

(∏
χ

F(χ)

)]

= log
[
D[L:E]

E NmE/Q(DL/E )
]

= log DL . (4.23)

Thus, summing (4.22) over χ we have

∑
χ

∑
|ρ|<1/2

∣∣∣∣ 1ρ
∣∣∣∣ � (log DL)2 + nE |H | log 3 � nL(log DL)2,

with an absolute implied constant, verifying (4.20).

4.7 Bounding the contribution of |γ | ≤ T in S(x, T)

Suppose that ρ = β+iγ is a nontrivial zero of L(s, χ, L/E)with |γ | ≤ T and
|ρ| > 1/2. Recalling the definition (4.9) of the height T0, by the assumption of
the zero-free region (4.7), we know that without exception, all zeroes ρ with
|γ | ≤ T0 have β ≤ 1 − δ0, so that |xρ | = xβ ≤ x1−δ0 . Similarly, all zeroes ρ

with T0 ≤ |γ | ≤ T have β ≤ 1 − L (T ), so that |xρ | = xβ ≤ x1−L (T ). We
also note that for any fixed χ , by Lemma 4.4,

∑
|γ |≤T0

∣∣∣∣ x
ρ

ρ

∣∣∣∣ � x1−δ0
∑
j≤T0

nχ( j)

j

� x1−δ0(log T0)(log A(χ) + nE log T0)
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� x1−δ0(log T )(log A(χ) + nE log T );
similarly,

∑
T0≤|γ |≤T

∣∣∣∣ x
ρ

ρ

∣∣∣∣ � x1−L (T )(log T )(log A(χ) + nE log T ).

Summing over all χ as in (4.23), we see that

x1−δ0
∑
χ

(log T )(log A(χ) + nE log T ) � x1−δ0(log T ){log DL + nL log T },

and, likewise,

x1−L (T )
∑
χ

(log T )(log A(χ) + nE log T )

� x1−L (T )(log T ){log DL + nL log T }.
Combining these estimates with (4.20), we may conclude

|S(x, T )| ≤ C6 {E3 + E4 + E5} , (4.24)

for an absolute constant C6 (which we may assume satisfies C6 ≥ 1), and

E3 = x1/2nL(log DL)2

E4 = x1−δ0(log T ) log(DLT
nL )

E5 = x1−L (T )(log T ) log(DLT
nL ).

The proof of Proposition 4.5 will then be complete, upon verification of two
lemmas, which we record as Lemmas 4.9 and 4.10 below.

Lemma 4.9 Let k be a fixed number field. Let A ≥ 2 be fixed and let 0 < δ ≤
1/(2A) be a fixed positive constant; define δ0 from δ as in (4.5) according to
whether or not ζk(s) has an exceptional zero. Let L/k be a Galois extension
of number fields with Gal(L/k) 
 G, and assume that the Artin L-function
ζL(s)/ζk(s) is zero-free in the region

[1 − δ, 1] × [−(log DL)2/δ, (log DL)2/δ]. (4.25)

For DL ≥ D1(δ0) (as defined in (4.11)), for any choice of absolute constant
0 < c1 ≤ 1, we have

|S(x, T )| ≤ 3c1C6x(log x)
−(A−1) (4.26)
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for all

κ ′′
1 exp{κ ′′

2 (log log(D
κ ′′
3
L ))2} ≤ x ≤ exp{10nL(log DL)2}, (4.27)

where

κ ′′
1 := (6c−1

1 10A−1nA
L )1/δ0δ−2/δ0

κ ′′
2 := max{2Aδ−1

0 , 4Ac−1
k n3kδ

−1}
κ ′′
3 := 6c−1/(2A)

1 DknLδ−1/A. (4.28)

Moreover, if k = Q we may consider all

κ ′′
1 exp

{
κ ′′
2 (log log(D

κ ′′
3
L ))5/3(log log log(D2

L ))1/3
}

≤ x ≤ exp{10nL (log DL )2}. (4.29)

It is in Lemma 4.9 that we fully utilize the fact that the zero-free region (4.6)
has a width that is independent of DL ; this is key to obtaining a small lower
threshold on x .

Proof The lemma is provedby simple computations. For anyfield k,we see that
in the range x ≤ exp(10nL(log DL)2), to guarantee |E3| ≤ c1x(log x)−(A−1)

it suffices that

x ≥ c−2
1 (10)2(A−1)n2AL (log DL)4A;

here we have explicitly used the upper bound x ≤ exp(10nL(log DL)2). Sim-
ilarly for such an upper bound for E4 it suffices to have

x ≥ (6c−1
1 (10)A−1nA

L )1/δ0δ−2/δ0(log DL)2A/δ0,

provided that T = (log DL)2/δ and x ≤ exp(10nL(log DL)2). Since δ0 ≤ δ ≤
1/4, both of the lower bounds for x displayed above are satisfied if

x ≥ (6c−1
1 10A−1nA

L )1/δ0δ−2/δ0 exp{2Aδ−1
0 log log DL}. (4.30)

The distinction of k = Q only appears in the treatment of E5; in the case of
k = Q, it suffices to find a lower bound on x such that

x
1− cQ

(log(T+2))2/3(log log(T+3))1/3 (log T ) log(DLT
nL ) ≤ c1x(log x)

−(A−1),

as long as x ≤ exp(10nL(log DL)2), T = (log DL)2/δ and DL ≥ D1(δ0).
Here one sees that it would suffice to have
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x ≥ exp{2Ac−1
Q

(log(2(log DL)2/δ))2/3(log log(2(log DL)2/δ))1/3

· log[c1/(2A)
2 δ−1/A(log DL)]},

with c2 = 6c−1
1 (10)A−1nA

L , which can be simplified as the requirement that x
is at least

exp

{
4Ac−1

Q
δ−2/3(log(2δ−1) + 1)1/3

(
log log D

max{2δ/2,c1/(2A)
2 δ−1/A}

L

)5/3 (
log log log D2δ/2

L

)1/3}
.

(4.31)
Note that 2δ/2 ≤ 2, log(2δ−1) + 1 ≤ δ−1 for all δ ≤ 1/4, and c1/2A2 δ−1/A ≤
6c−1/(2A)

1 nLδ−1/A. Thus upon comparing (4.30) and (4.31), we see that (4.29)
suffices with κ ′′

i defined as above (specialized to the case k = Q); the case of
other fields k follows from analogous computations. ��
Lemma 4.10 Let k be a fixed number field. Let A ≥ 2 be fixed and let 0 <

δ ≤ 1/(2A) be a fixed positive constant. Let L/k be a Galois extension of
number fields with Gal(L/k) 
 G. Set T = (log DL)2/δ . Given any absolute
constant 0 < c′

1 ≤ 1, there exists a constant D2 such that for DL ≥ D2,

|E1| + |E2| ≤ 6c′
1x(log x)

−(A−1) (4.32)

for all

(c′
1)

−110AnA+1
L (log DL)2A+1 ≤ x ≤ exp(10nL(log DL)2). (4.33)

Proof This is proved by simple computations checking error terms in the range
of “small” x , that is x ≤ exp(10nL(log DL)2), and recalling T = (log DL)2/δ .
Writing E1 = E1,a+· · ·+E1,d and E2 = E2,a+E2,b we see that for example
|E1,a| ≤ c′

1x(log x)
−(A−1) for x ≤ exp(10nL(log DL)2) if δ < 2/(2A + 1)

and
DL ≥ exp{(c′−1

1 (10nL)A)(1/δ−2A−1)−1}. (4.34)

Similarly, E1,b, E1,c, E2,a are seen to be sufficiently small if x is bounded
below as in (4.33). The remaining two terms E1,d and E2,b impose (respec-
tively) the constraints δ < 2/(2A + 1) and

DL ≥ exp{(2 · 10AnA+1
L c′−1

1 )(2/δ−2A−1)−1}, (4.35)

and δ < 1/(A + 1),

DL ≥ exp{(10A+1nA+2
L c′−1

1 )(2/δ−2(A+1))−1}. (4.36)
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It suffices to assume δ ≤ 1/(2A) and to take D2 = D2(c′
1, δ, nL , A) to be the

maximum of (4.34), (4.35) and (4.36). ��

4.8 Proof of Proposition 4.5

To deduce Proposition 4.5, for a fixed absolute constant c0, from these lemmas,
we will apply Lemmas 4.9 and 4.10 with the respective choices

c1 = c0/(6C5C6), c′
1 = c0/(12C5), (4.37)

where C5 and C6 are the absolute constants arising in (4.16) and (4.24) from
the Lagarias-Odlyzko argument. After this choice in Lemma 4.10, we could
denote the dependencies of D2(c′

1, δ, nL , A) by D2(c0,C5, δ, nL , A). The last
step of the proof of Proposition 4.5 is to check that we can ensure that the
parameters are such that (4.33) holds whenever (4.27) (or (4.29) respectively)
is satisfied. Note that the lower bound in (4.33) will hold if we have

x ≥ exp{(2A + 1) log log(D
(c′

1)
−1/(2A+1)101/2nL

L )}
≥ exp{(2A + 1) log log(D

((c′
1)

−110AnA+1
L )1/(2A+1)

L )}.
Thus either for general k or k = Q it suffices to set

κ ′
1 = κ ′′

1 ≥ 1, κ ′
2 = κ ′′

2 = max{κ ′′
2 , 2A + 1}, κ ′

3 = (c′
1)

−1/(2A+1)κ ′′
3 .

(4.38)

4.9 Partial summation back to prime counting

There are two remaining steps to pass from Proposition 4.5 to Theorem 3.1
(in the regime of small x). First, we define the function

θC (x, L/k) =
∑′

p
Nmk/Qp≤x[

L/k
p

]
=C

log(Nmk/Qp) =
∑′

p
Nmk/Qp≤x

1C (σq) log(Nmk/Qp),

in which the sum is restricted to prime ideals p ⊂ Ok that are unramified in
L , and we fix any prime ideal q in OL above p and let 1C detect whether the
conjugacy class of the Frobenius element σq is C . A Chebyshev argument
shows that θC (x, L/k) is well-approximated by ψC (x, L/k) and then partial
summation passes from θC (x, L/k) back to πC (x, L/k); we only mention the
highlights. We note that
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ψC (x, L/k) − θC (x, L/k) =
∑′

p,m≥2
Nmk/Qp

m≤x

1C (σm
q )

1

m
log(Nmk/Q(pm)),

so that upon setting m to be the smallest integer such that x1/m ≥ 2 (so in
particular m ≤ log x/ log 2), the above difference is at most

log x

log 2

(
1

2
π(x1/2, L/k) + · · · + 1

m
π(x1/m, L/k)

)
≤ 3

2 log 2
nkx

1/2 log x,

where we have denoted by π(x, L/k) the counting function for prime ide-
als (unramified in L) with Nmk/Qp ≤ x . Thus we see that the statement
of Proposition 4.5 holds for θC (x, L/k) in place of ψC (x, L/k), with an
additional error term of size at most 3nkx1/2 log x , which is no bigger than
c0|C ||G|−1x(log x)−(A−1) (for an absolute constant c0 ≤ 1 we will choose
later) as soon as the sufficient condition 3|G|nk = 3nL ≤ c0x1/2(log x)−A

is met. It is simple to check that this holds in the regimes (4.14) or (4.15) we
consider in Proposition 4.5, with the parameters κ ′

i as already defined. Thus
for x in either range we have

∣∣∣∣θC (x, L/k) − |C |
|G| x

∣∣∣∣ ≤ 2c0
|C |
|G|

x

(log x)A−1 . (4.39)

Let x0 denote the lower bound for x in (4.14) for general k and for x
in the range (4.15) for k = Q, respectively. To pass from θC (x) to πC (x)
(temporarily suppressing the notational dependence on L/k for simplicity),
we let λn be an increasing sequence of positive real numbers running over the
norms Nmk/Q(p) attained by prime ideals of k (unramified in L). By partial
summation, for any x0 ≤ x ≤ exp{10nL(log DL)2},

πC (x) =
∑
λn≤x

⎛
⎝ ∑′

Nmk/Qp=λn

1C (σq) log λn

⎞
⎠ (log λn)

−1 =
∫ x

λ1

θC (t)dt

t log2 t
+ θC (x)

log x
. (4.40)

We split the integral into the regionλ1 ≤ t ≤ x0, inwhich the asymptotic (4.39)
has not been verified, and the region x0 ≤ t ≤ x , in which it has. For the first
portion of the integral we apply the trivial bound θC (t) ≤ nkt log t to see that
this integral contributes at most nkLi(x0). In the remaining contributions to
(4.40), we may replace θC (t) by |C ||G|−1t as in (4.39) (deferring the error
terms for a moment), and similarly for θC (x); this main contribution becomes
after integration by parts
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|C |
|G|

[∫ x

x0
t
d

dt

(
− 1

log t

)
dt + x

log x

]
= |C |

|G|
[
Li(x) −

(
Li(x0) − x0

log x0

)]
.

(4.41)
The error terms accrued via this replacement are (in absolute value) at most

2c0
|C |
|G|

∫ x

x0

dt

(log t)A+1 + 2c0
|C |
|G|

x

(log x)A
. (4.42)

In the first term of (4.42) we may bound the contribution from, say,
x0 ≤ t ≤ x1/2 trivially by 2c0|C ||G|−1x1/2 while in the remaining por-
tion we have log t ≥ (1/2) log x , yielding a total contribution of at most
2A+2c0|C ||G|−1x(log x)−(A+1); we trivially dominate this from above by
2A+2c0|C ||G|−1x(log x)−A so that we may combine it with the second term
in (4.42). Finally, we crudely bound the last two terms in (4.41), in absolute
value, by 2Li(x0). In total, we have represented πC (x) as |C ||G|−1Li(x) + E
where

|E | ≤ (nk + 2)Li(x0) + 2c0|C ||G|−1x1/2 + (2A+2 + 2)c0|C ||G|−1x(log x)−A

≤ (nk + 2)Li(x0) + (2A+2 + 4)c0|C ||G|−1x(log x)−A. (4.43)

Here we have used that x1/2 ≤ x(log x)−A in the regime of x ≤
exp{10nL(log DL)2} as soon as x ≥ exp{4A log log(D

101/2n1/2L
L )}, which holds

for all x ≥ x0. The first term on the right-hand side of (4.43) is certainly
dominated by the second as long as

x

(log x)A
≥ |G|(nk + 2)

(2A+2 + 4)|C |c0 Li(x0), (4.44)

for which it suffices to have x ≥ nLc
−1
0 x0(log x)A. Of course, we are

already assuming that x ≥ x0; recalling that we presently only consider
x ≤ exp{10nL(log DL)2} we see that (4.44) holds as long as
x ≥ 10AnA+1

L c−1
0 x0(log DL)2A = 10AnA+1

L c−1
0 exp{2A log log DL} · x0.

(4.45)
Under this condition, we have shown that

|E | ≤ 2(2A+2 + 4)c0|C ||G|−1x(log x)−A ≤ |C ||G|−1x(log x)−A,

upon making the choice
c0 = (2A+3 + 8)−1. (4.46)
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We may accommodate the requirement (4.45) simply by enlarging the param-
eters κ ′

i by setting κ1 = c−1
0 κ ′

1, κ2 = κ ′
2 + 2A, κ3 = κ ′

3 ≥ 1. We record the
definitions here, with c0 as in (4.46):

κ1 = c−1
0 (6(

c0
12C5C6

)−110A−1nA
L )1/δ0δ−2/δ0

κ2 = max{2Aδ−1
0 , 4Ac−1

k n3kδ
−1} + 2A

κ3 = 6(
c0

12C5
)−1/(2A+1)(

c0
12C5C6

)−1/(2A)DknLδ−1/A. (4.47)

To conclude, for x in the ranges (4.14) and (4.15) with κ ′
i replaced by κi ,

we have verified the effective error term in the asymptotic for πC (x, L/k).
This completes the treatment of small x , and combining this with the result of
Sect. 4.3 for large x , we may conclude that Theorem 3.1 holds.

Remark 4.11 The threshold D0 = D0(δ, ck, β
(k)
0 , nL ,C1,C2, A) appearing

in Theorem 3.1 is the maximum of D′
0 in (4.10), D1 in (4.11), D′

1 defined in
Sect. 4.3, and D2 defined as the most restrictive of (4.34), (4.35), (4.36) (with
the imposed choices c′

1 = c0/12C5 and c0 = (2A+3 + 8)−1).

4.10 Remark: A Chebotarev theorem for fields without quadratic
subfields

In the introduction, we stated that one of our two goals was to remove the β0
term in TheoremB. As an aside, we note that for certain fields, the existence of
an exceptional zero can already be ruled out, so that an immediate application
of Theorem B yields:

Theorem 4.12 Let k be a number field such that ζk(s) has no real zeroes. Let
L/k be a Galois extension of relative degree at least 3 such that L/k contains
no quadratic extension of k. Then there exist absolute effectively computable
constants C1,C2 such that for all x ≥ exp(10nL(log DL)2),

∣∣∣∣πC (x, L/k) − |C |
|G|Li(x)

∣∣∣∣ ≤ C1x exp(−C2n
−1/2
L (log x)1/2). (4.48)

Remark 4.13 In particular, if k = Q this theorem holds unconditionally for
any L/Q such that G = Gal(L/Q) with |G| ≥ 3 has no subgroup of index 2
(for example, G 
 Cp for p an odd prime).

Theorem 4.12 is an application of a nice idea of Stark [73, Theorem 3], in
turn a refinement of a theorem of Heilbronn [39]. (See also further work on
eliminating Siegel zeroes in towers of fields in [58,63].)
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Theorem D ([73, Theorem 3]) Let L be a Galois extension of k with
Gal(L/k) 
 G and let χ be a character of G. Suppose ρ is a simple zero
of ζL(s). Then L(s, χ, L/k) is analytic at s = ρ. Furthermore, there is a
field F with k ⊆ F ⊆ L such that F/k is cyclic and for any field E with
k ⊆ E ⊆ L, ζE (ρ) = 0 if and only if F ⊆ E. If in particular ρ is real, then
either F = k or F is quadratic over k.

By Theorem B, we need only consider a possible real zero of ζL(s), which
by Theorem D (and the assumption that ζk(s) has no real zero) can only occur
if there is a quadratic extension F of k contained in L . No such F can exist
if Gal(L/k) has no index 2 subgroup. Nevertheless, as remarked before, the
lower bound on x in Theorem 4.12 is too large for our ultimate application to
�-torsion, a problem which Theorem 3.1 alleviates via careful attention to the
assumed box-shaped zero-free region.

5 A zero density result for families of Dedekind zeta functions

We have proved a Chebotarev density theorem conditional on a box-shaped
zero-free region for ζL(s)/ζk(s). Now we restrict our attention to k = Q

and show that within appropriate families of Galois extensions of Q, except
for a possible exceptional subfamily of density zero within the family, each
ζL(s)/ζ(s) is in fact zero-free in the desired region. To do so we will build on
the result of Kowalski andMichel [45, Thm. 2] on the density of zeroes among
a family of cuspidal automorphic L-functions. We describe our approach
somewhat generally to facilitate future applications, and then specialize to
our present setting.

5.1 The Kowalski-Michel zero density estimate

Let m ≥ 1 be fixed. For any cuspidal automorphic representation ρ of
GL(m)/Q, define the zero-counting function for the corresponding automor-
phic L-function L(s, ρ) in a region with α ∈ [1/2, 1], T ≥ 0 by

N (ρ; α, T ) = |{s = β + iγ : β ≥ α, |γ | ≤ T, L(s, ρ) = 0}|,
counting with multiplicity. For an isobaric representation π = ρ1 � · · · � ρr
with ρ j cuspidal, define

N (π; α, T ) = N (ρ1; α, T ) + · · · + N (ρr ; α, T ), (5.1)

again counting each zero with multiplicity.
The main outcome of [45] is a bound for N (ρ; α, T ) that holds on average

for an appropriate family of cuspidal representations ρ. Our innovation is to
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develop a means to apply their results to the case when π varies over an appro-
priate family of isobaric representations, in our case, obtained from Dedekind
zeta functions. We first recall the original setting for cuspidal representations,
which assumes the following conditions hold:

Condition 5.1 For each X ≥ 1 let S(X) be a finite (possibly empty) set of
cuspidal automorphic representations ρ of GL(m)/Q such that the following
properties hold for (S(X))X≥1:

(i) Every ρ ∈ S(X) satisfies the Ramanujan-Petersson conjecture at the finite
places.

(ii) There exists A > 0 and a constant M0 such that for all X ≥ 1, for all
ρ ∈ S(X), Cond(ρ) ≤ M0X A.

(iii) There exists d > 0 and a constant M1 such that for all X ≥ 1, |S(X)| ≤
M1Xd .

(iv) For any ε > 0 there exists a constant M2,ε such that for all ρ ∈ S(X) we
have the convexity bound

|L(s, ρ)| ≤ M2,ε(Cond(ρ)(|t | + 2)m)(1−�(s))/2+ε, for 0 ≤ �(s) ≤ 1.

For any ε > 0 there exists a constant M3,ε such that for all ρ �
 ρ′ ∈ S(X)

we have the convexity bound

|L(s, ρ ⊗ ρ′)| ≤ M3,ε(Cond(ρ ⊗ ρ′)(|t | + 2)m
2
)(1−�(s))/2+ε,

for 0 ≤ �(s) ≤ 1.

Remark 5.2 Kowalski and Michel call (S(X))X≥1 a family of automorphic
representations,with associated automorphic L-functions; following their con-
vention we will call the associated collection of constants {m, A, d, M0, M1,

M2,ε, M3,ε} the family parameters.

Remark 5.3 It is worth comparing precisely Condition 5.1 to the hypotheses
originally stated in the work of [45]. We note that the above criteria (i)–(iii)
reduce to exactly the criteria of [45, Thm. 2]; Condition (iv) above replaces
their assumption that all the L-functions in (S(X))X≥1 have the same gamma
factors at infinity. That condition is only used in order to attain the uniform
convexity bounds of [45, Lemma 10] (Kowalski, personal communication),
and thus we merely assume the relevant uniform convexity bounds directly.
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In this context, we recall Kowalski and Michel’s original theorem:

Theorem E ([45, Theorem 2]) Let (S(X))X≥1 be a family of cuspidal auto-
morphic representations of GL(m)/Q satisfying Condition 5.1. Let α ≥ 3/4
and T ≥ 2. Then there exists a constant c′

0 = c′
0 (m, A, d), in particular

c′
0 = 5mA

2
+ d (5.2)

and a constant B ≥ 0, depending only on the family parameters, such that for
every choice of c0 > c′

0 we have that there exists a constant M4,c0 depending
only on c0 such that for all X ≥ 1,

∑
ρ∈S(X)

N (ρ; α, T ) ≤ M4,c0T
B Xc0

1−α
2α−1 .

5.2 Defining a family of automorphic representations

Fix n ≥ 2 and a transitive subgroup G ⊆ Sn . Let F (Q,G) ⊂ Z|G|(Q,G)

be a set of Galois extensions L/Q with Gal(L/Q) 
 G, and let F (Q,G; X)

denote the finite subset comprised of those fields with DL = |Disc L/Q| ≤ X .
(Momentarily wewill construct such a set from each of the families ZI

n (Q,G)

of degree n fields considered in our main theorems.)
Denote the irreducible representations ofG byρ0, ρ1, . . . , ρs,withρ0 being

the trivial representation. For each field L ∈ F (Q,G; X), the Dedekind zeta
function may be written as

ζL(s) = ζ(s)
s∏

j=1

L(s, ρ j , L/Q)m j . (5.3)

The regular representation, of total dimension |G| = 1+∑
1≤ j≤s m

2
j , may be

written as an isobaric sum

regG = ρ0 � (ρ1 � · · · � ρ1) � · · · � (ρs � · · · � ρs)

in which ρ j appearsm j = dim ρ j times. Thus for each field L ∈ F (Q,G; X)

we may consider the Artin L-function L(s, π) = ζL(s)/ζ(s) for the represen-
tation

π = (ρ1 � · · · � ρ1) � · · · � (ρs � · · · � ρs) (5.4)
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in which ρ j appears m j = dim ρ j times. Additionally, assuming the Strong
Artin Conjecture (see Sect. 6.2), to each field L ∈ F (Q,G; X) and each
representation ρ j , there is an associated cuspidal automorphic representation
πL , j of GL(m j )/Q; we then have

L(s, πL , j ) = L(s, ρ j , L/Q).

Now fix 1 ≤ j ≤ s. For each X ≥ 1, let L j (X) be the set of cuspidal
automorphic representationsπL , j ofGL(m j )/Q associated by theStrongArtin
Conjecture to the fields L ∈ F (Q,G; X) and the representation ρ j .

The main result of this section, and the key result underlying our effective
Chebotarev theorem in families, relates to the following phenomenon. For
each j , under appropriate assumptions, we show that Theorem E applies to
the family (L j (X))X≥1, so that for each X ≥ 1, aside from very few possible
“bad” exceptional representations, for each representation π ∈ L j (X) the
associated L-function L(s, π) possesses a certain zero-free region. Now a
key difficulty arises: in general, depending on the group G and the family
F (Q,G; X), it could happen that a given L-function L(s, π) corresponding to
a representation π ∈ L j (X) occurs as a factor in ζL(s)/ζ(s) for “many” fields
L ∈ F (Q,G; X), indeed even possibly a positive proportion of such fields
(see Sect. 6.3.2). We need to rule out this possibility that a “bad” exceptional
representation inL j (X) could lead to an L-function that “contaminates” ζL/ζ

for a positive proportion of fields in F (Q,G; X). In this section, we state
appropriate conditions on a setF (Q,G; X) of Galois extensions that allow us
to rule out this problem (see in particular the condition (5.5) below). In Sect. 6,
we show that the families of fields that we consider in our main theorems obey
these conditions.

Nowwe state the conditionswe assume on the setF (Q,G) ofGalois exten-
sions and the associated families (L j (X))X≥1 of automorphic representations
(1 ≤ j ≤ s), building on Condition 5.1. (Note that we explicitly assume
the Strong Artin Conjecture below, but for certain groups G it is known; see
Sect. 6.2.)

Condition 5.4 LetF (Q,G) be a set of Galois extensions as specified above.
For each 1 ≤ j ≤ s and each X ≥ 1, define the set L j (X) of automorphic
representations as above, assuming the Strong Artin Conjecture.

Assume that for each 1 ≤ j ≤ s, the family (L j (X))X≥1 satisfies Con-
dition 5.1, with corresponding parameters {m j , A j , d j , M0, j , M1, j , M2, j,ε,

M3, j,ε}. In particular, for 1 ≤ j ≤ s, (L j (X))X≥1 is a family in the sense of
Theorem E.

Let A ≥ 0, M0 be such that for all X ≥ 1, for every field L ∈ F (Q,G; X),
the representation π associated to L(s, π) = ζL(s)/ζ(s) has Cond(π) ≤
M0X A.
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Let d, M1 be such that for all X ≥ 1, |F (Q,G; X)| ≤ M1Xd.
We assume that for each 1 ≤ j ≤ s, there exists 0 ≤ τ j < d and a constant

M5, j such that for all X ≥ 1, for any fixed π ∈ L j (X),

#{L ∈ F (Q,G; X) : πL , j = π} ≤ M5, j X
τ j . (5.5)

We will call {M0, M1, A, d} and {m j , A j , d j , M1, j , M2, j,ε, M3, j,ε, M5, j } for
1 ≤ j ≤ s the family parameters for F (Q,G).

5.3 A zero density theorem for L-functions associated to the family
F (Q, G)

To bound on average the number of zeroes of L-functions ζL(s)/ζ(s) in a
certain region, as the field L varies over the family F (Q,G), we will apply
Theorem E repeatedly, under the assumption of Condition 5.4.

Theorem 5.5 Let F (Q,G) be a set of Galois extensions as specified above.
For each 1 ≤ j ≤ s and each X ≥ 1, define the set L j (X) of automorphic
representations as above, assuming the Strong Artin Conjecture.

Assume that F (Q,G) and the families (L j (X))X≥1 for j = 1, . . . , s,
satisfy Condition 5.4.

Set τ = max j τ j and m = maxm j . Then for any 0 < � < 1 sufficiently
small that � < 1 − τ/d, and for any η < 1/4, there exists B depending only
on the family parameters for F (Q,G), and 0 < δ ≤ 1/4 depending only
on A,m, d, �, τ , such that for all X ≥ 1, at most O(X (1−(1−η)�)d) fields
L ∈ F (Q,G; X) can have the property that ζL(s)/ζ(s) has a zero in the
region

[1 − δ, 1] × [−Xη�d/B, Xη�d/B].

The implied constant in the O(·) notation depends only on A,m, d, �, τ and
s (the number of nontrivial irreducible representations of G).

Remark 5.6 We see that in the hypotheses there is a non-empty range of 0 <

� < 1 − τ/d since each τ j < d.

To deduce Theorem 5.5we first apply TheoremE to the family (L j (X))X≥1
for each 1 ≤ j ≤ s. Let 1 ≤ j ≤ s be fixed. By Theorem E, for any α j ≥ 3/4
and Tj ≥ 2, for all X ≥ 1,

∑
π∈L j (X)

N (π; α j , Tj ) �c j,0 T
Bj
j X

c j,0
1−α j
2α j−1 , (5.6)
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in which we may choose any c j,0 > c′
j,0, with c′

j,0 = c′
j,0(m j , A j , d j ) as

shown to exist in Theorem E; the particular form is not critical, but we may
for example take

c′
j,0 = 5m j A j

2
+ d j .

In the spirit of [45, Remark 3], we pause to observe that although the parameter
d j assumed to exist in the upper bound (iii) of Condition 5.1 may not provide
a sharp upper bound, this does not cause any contradictions in terms of its role
in c′

j,0; if d j is an over-estimate, then the right-hand side of (5.6) is similarly an
overestimate (and similarly with respect to the possibly non-sharp parameter
A j ). Indeed, for convenience we may choose c j,0 = c′′

j,0 + ε1 (for a certain ε1
to be chosen later) with

c′′
j,0 = 5m j A

2
+ d. (5.7)

Note that A ≥ max j A j , d ≥ max j d j so that this choice is valid.
Set τ = max1≤ j≤s τ j . Recalling that � is given, we fix α j to be such that

c j,0(1 − α j )

(2α j − 1)
= (1 − �)d − τ.

We see that the right-hand side is positive, so that α j < 1, since � < 1− τ/d.
Theorem E applies when α j ≥ 3/4; if necessary one could simply impose
this using monotonicity of the estimates, but in fact it is simple to check that
this holds in our scenario. (This will also easily be satisfied in our ultimate
applications, in which we will be working very close to the line �(s) = 1.)
We compute that

α j = c j,0 + (1 − �)d − τ

c j,0 + 2((1 − �)d − τ)
,

so that α j ≥ 3/4 as long as

c j,0 ≥ 2((1 − �)d − τ). (5.8)

By assumption, � < 1 − τ/d; let ε2 > 0 be such that

� = 1 − τ/d − ε2/2d. (5.9)

Then (5.8) is equivalent to the requirement that c j,0 ≥ ε2, which will always
hold as long as we choose ε1 ≥ ε2, according to the definition (5.7), upon
recalling that A, d ≥ 0. Upon setting Tj = Xη�d/Bj , we conclude that
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∑
π∈L j (X)

N (π; α j , Tj ) �c j,0 Xη�d X (1−�)d−τ �c j,0 X (1−(1−η)�)d−τ .

(5.10)
Now we assemble these results together for 1 ≤ j ≤ s. For notational

convenience, given an L-function L(s) (which could be an Artin L-function
L(s, ρ, L/Q) or an automorphic L-function L(s, π) corresponding to an auto-
morphic representation π ), we will let N ′(L(s); α, T ) denote the number of
zeros β + iγ with L(β + iγ ) = 0, and β ≥ α, |γ | ≤ T . Set α = max j α j
and T = min j Tj . (Note that α ≥ 3/4.) Then for each X ≥ 1, assuming the
Strong Artin Conjecture,

∑
L∈F (Q,G;X)

N ′(ζL/ζ ; α, T ) =
∑

L∈F (Q,G;X)

s∑
j=1

m j N
′(L(s, ρ j , L/Q);α, T )

=
∑

L∈F (Q,G;X)

s∑
j=1

m j N
′(L(s, πL , j , L/Q); α, T )

=
s∑

j=1

m j
∑

π∈L j (X)

N ′(L(s, π);α, T )
∑

L∈F (Q,G;X)
πL , j=π

1.

Using condition (5.5), we can bound the right-hand side from above by

�
s∑

j=1

m j X
τ j

∑
π∈L j (X)

N ′(L(s, π); α, T ).

Thus by applying (5.10) for each 1 ≤ j ≤ s, we see that

∑
L∈F (Q,G;X)

N ′(ζL/ζ ; α, T ) �c0,s,m X (1−(1−η)�)d ,

where c0 = max j c j,0. From this we conclude that at most Oc0,s,m

(X (1−(1−η)�)d) fields L ∈ F (Q,G; X) can have the property that ζL(s)/ζ(s)
has a zero in the region [α, 1] × [−Xη�d/B, Xη�d/B], where B = max Bj .
The implied constant depends on c0, s,m, and hence on A,m, d, τ, �, s, ε1.
Now from (5.9), ε2 is defined, and then we can choose ε1 = ε2 in the definition
of c j,0. Then we may compute that upon setting δ = 1 − α = 1 − max j {α j }
(which we have therefore verified satisfies 0 < δ ≤ 1/4), we have

δ = ε2

5max j {m j }A + 2d + 4ε2
= ε2

5mA + 2d + 4ε2
(5.11)
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as an allowable choice. Since ε2 is determined by �, τ, d we can write the
dependencies in terms of these parameters. This yields the result of Theo-
rem 5.5, moreover with a specific description of δ.

Remark 5.7 This argument shows that although the parameters A, d are only
assumed to yield valid upper bounds (not necessarily sharp) in Condition 5.4, it
is advantageous to make them as small as possible. In a similar vein, it is worth
asking why, if making 1 − � smaller gives better control on the exceptional
set, we do not in (5.9) artificially inflate the size of d. The reason is that 1−�

only controls the density (roughly O(X (1−�)d)) of the exceptional set relative
to the assumed upper bound O(Xd) for the family; thus in this instance also,
it is advantageous to make d as sharp as possible.

Remark 5.8 We see that the size of �, and hence of the possible exceptional
set of bad fields in F (Q,G; X) depends on the largest value of τ j with 1 ≤
j ≤ s coming from the condition (5.5). The larger max j τ j is, the smaller we
must take �, and the less savings we have for the possible exceptional set in
F (Q,G; X).

Remark 5.9 We recall that Cho and Kim (e.g. [15, Theorem 3.1] and other
works) have also applied [45] to certain families of isobaric representations,
say π = π1 � · · · � πr of GL(m)/Q, with m = m1 + · · · + mr , and each
π j a cuspidal automorphic representation of GL(m j )/Q. Let us momentarily
call the family of such π by S(X) and for each j the family of such π j by
S j (X). In their work, item (iv) of Condition 5.1 is replaced by the requirement
that for each 1 ≤ j ≤ r , for all ρ j ∈ S j (X) the gamma factor of L(s, π j )

is of the form
∏m j

i=1 �(s + αi ), where αi ∈ R are fixed; this is a special case
of the version of (iv) stated here. More importantly, instead of the key item
(5.5) in Condition 5.4, Cho and Kim assume that for any two inequivalent
π, π ′ ∈ S(X) with π = π1 � · · · � πr and π ′ = π ′

1 � · · · � π ′
r , they have

π j �
 π ′
k for all 1 ≤ j, k ≤ r . Relative to (5.5), this would be the statement

that for each j , for any fixed ρ ∈ S j (X), precisely one π ∈ S(X) has π j 
 ρ,
which in our notation is even stronger than the case τ j = 0 for all 1 ≤ j ≤ r .
Cho and Kim used this to deduce that |S j (X)| = |S(X)| for each j , which was
crucial to their proof, but also limited the types of families S(X) they could
consider.

6 Verifying the conditions of the zero density theorem for families of
Dedekind zeta functions

The main result of this section is that Theorems 3.3, 3.9, 3.11, 3.13 and 3.14
may be deduced from Theorem 5.5 by verifying that for each of the families of
fields considered in these theorems, Condition 5.4 is satisfied. Accordingly, in
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this section we fix ZI
n (Q,G) to be one of the families specified in the above

theorems, under the associated hypotheses of the theorem (if any).

6.1 Passage to a family of Galois closures

We now pass from considering the original set of the degree n fields in
ZI
n (Q,G) to considering the set of Galois closures Z̃I

n (Q,G) = {K̃ : K ∈
ZI
n (Q,G)}; each Galois closure corresponds to a constant number of fields in

ZI
n (Q,G) (only depending on G as a permutation group). We now recall the

notation of Sect. 5.2. Using that notation, we defineF (Q,G) = Z̃I
n (Q,G) to

be the set of Galois extensions we consider, and we accordingly define the sets
L j (X) for each 1 ≤ j ≤ s and every X ≥ 1, and thereby the corresponding
families (L j (X))X≥1 of automorphic representations.

6.2 Verification of Condition 5.1 (i)–(iv)

Now thatwe have constructed the appropriate familiesF (Q,G) = Z̃I
n (Q,G)

and (L j (X))X≥1 for each 1 ≤ j ≤ s, we must verify that Condition 5.4 is
satisfied. We first note that for each family Z̃I

n (Q,G) we consider, either the
strong Artin conjecture is known to apply to all the Galois representations
considered (this is the case in Theorem 3.3) or it is explicitly assumed (this is
the case in Theorems 3.9, 3.11, 3.13 and 3.14). To be precise, let us write the
Euler product of an Artin L-function as L(s, ρ) = ∏

v L(s, ρv), and the Euler
product for an automorphic L-function as L(s, π) = ∏

v L(s, πv).

Conjecture F (Strong Artin Conjecture) Let L be a finite Galois extension
of a number field k, with Gal(L/Q) 
 G. Let ρ be an m-dimensional com-
plex representation of G. There exists an automorphic representation π(ρ) of
GL(m)/Q such that the L-functions L(s, ρ) and L(s, π) agree almost every-
where, i.e. except at a finite number of placesv, L(s, ρv) = L(s, πv).Moreover,
if ρ is irreducible, then π is cuspidal.

This is known to hold for: 1-dimensional representations ρ, due to Artin [2];
nilpotent Galois extensions L/k, due to Arthur and Clozel [1]; A4 and S4,
due to Langlands [48] and Tunnell [76], respectively; dihedral groups (and in
particular S3), due to Langlands [48]. We also note that in the setting we will
work in, a stronger identity is known. (See, for example, [24, Theorem 4.6],
[54, Proposition 2.1], [55, Appendix A], and [57, Proposition 1.5].)

Theorem G If π is cuspidal and L(s, πv) = L(s, ρv) for almost all v, then
in fact L(s, π) = L(s, ρ).
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These considerations guarantee that in the settings we consider (with the rel-
evant hypotheses we assume), each L j (X) is a set of cuspidal automorphic
representations.

We next confirm that for each 1 ≤ j ≤ s, the family (L j (X))X≥1 satisfies
the four items in Condition 5.1. For item (i), since the Ramanujan-Petersson
conjecture holds for automorphic L-functions associated to Artin L-functions
once they are known to exist (see e.g. the comment following [45, Thm. 5]),
under the assumption (or known truth) of the strong Artin conjecture, the
Ramanujan-Petersson conjecture holds for all the cuspidal automorphic L-
functions in each set L j (X).

For item (ii), note that if K ∈ ZI
n (Q,G; X) then by construction DK ≤ X .

The following standard lemma relates to discriminants of a field and its Galois
closure.

Lemma 6.1 (Discriminant comparisons) Let G be a transitive subgroup of
Sn. There exist constants C1 = C1(G) and C2 = C2(G) such that for every
field K ∈ Zn(Q,G),

C1D
|G|/n
K ≤ DK̃ ≤ C2D

|G|/2
K .

(The lemma follows from Lemmas 6.9 and 6.10, recorded below, and for the
left-hand inequality, the fact that every cycle length in a permutation is at most
the order of the permutation.)

Recall that in general for an Artin L-function L(s, ρ, L/k), if F(χ) denotes
the Artin conductor of χ = Tr(ρ), then the conductor of L(s, ρ, L/k) is
given by A(χ) = Dχ(1)

k Nmk/QF(χ). According to the multiplicativity rela-
tion DL = Dk

∏
χ j

A(χ j )
χ j (1) for the conductors in the identity (5.3), we see

that for each 1 ≤ j ≤ s, the conductors of L(s, ρ j , L/Q) are bounded by
�n,G X |G|/2 and we may take A j = A = |G|/2 for all j .

For (iii), to control the size of the family of fields Z̃I
n (Q,G; X) it suffices

to control the sizes of the families ZI
n (Q,G; X) (and moreover it suffices to

bound from above the sizes of the families Zn(Q,G; X) without the ramifica-
tion restriction). Thus wemay apply the following known unconditional upper
bounds to show the existence of d j = d for all j : G cyclic, Proposition 2.1;
G 
 Sn see (2.6); G 
 Dp see (2.4); G 
 A4 see (2.8); G ⊆ Sn simple, we
simply embed Zn(Q,G; X) in the family of all fields of degree n and apply
(2.6).

For item (iv), we use the known convexity bounds for automorphic L-
functions, which apply to our Artin L-functions under the strong Artin
conjecture. Briefly, to be precise, we recall for t ∈ R the analytic conduc-
tor of L(s, π) (in terms of the arithmetic conductor Cond(π) and the local
parameters at infinity, μπ( j)),
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Qπ(t) = Cond(π)

m∏
j=1

(1 + |i t − μπ( j)|).

Then via the functional equation, Stirling’s formula, and an application of the
Phragmen-Lindelöf principle, one may derive the classical convexity bound
(see e.g. [36, page 5]):

L(s, π) �π,ε Qπ(t)
1−�(s)

2 +ε, 0 ≤ �(s) ≤ 1.

For π, π ′ unitary cuspidal automorphic representations of GL(m)/Q,
GL(m′)/Q, the Rankin-Selberg L-function L(s, π ⊗ π̃) (see e.g. [56, §1.1.2])
has a corresponding arithmetic conductor Cond(π ⊗π ′) and analytic conduc-
tor, given for t ∈ R by

Qπ⊗π ′(t) = Cond(π ⊗ π ′)
mm′∏
j=1

(1 + |i t − μπ⊗π ′( j)|).

The convexity bound for L(s, π ⊗ π ′) in the critical strip is known:

L(s, π ⊗ π ′) �π,π ′,ε Qπ⊗π ′(t)
1−�(s)

2 +ε, 0 ≤ �(s) ≤ 1.

Remark 6.2 Note that for each 1 ≤ j ≤ s, the uniformity of the convexity
bounds assumed in Condition 5.1 (iv) with respect to m j is critically reliant
on the fact that within a family ZI

n (Q,G; X), all fields share a fixed degree
and a fixed Galois group of the Galois closure.

6.3 Verification of condition (5.5): controlling the propagation of bad
L-function factors

Now we turn to the most difficult task: verifying that for each choice of the
family ZI

n (Q,G; X) that we consider in our main theorems, condition (5.5)
of Condition 5.4 is satisfied.

6.3.1 Reframing the question in terms of subfields

Let ZI
n (Q,G; X) be a fixed family of fields, for a fixed transitive group G ⊆

Sn , and letρ be an irreducible representationofG. Let L1, L2 ∈ Z̃I
n (Q,G; X).

Then Gal(Li/Q) 
 G while Gal(LKer(ρ)
i /Q) 
 G/Ker(ρ). The following

proposition transforms the property of identical L-functions into a property of
identical fixed fields.
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Proposition 6.3 Let ρ be a fixed representation of a fixed transitive subgroup
G ⊆ Sn. For L1/Q and L2/Q with Gal(L1/Q) 
 Gal(L2/Q) 
 G, then if

L(s, ρ, L1/Q) = L(s, ρ, L2/Q) (6.1)

it follows that LKer(ρ)
1 = LKer(ρ)

2 .

We recall a standard lemma.

Lemma 6.4 Suppose for two Galois extensions F1/Q and F2/Q, that, aside
from finitely many exceptions, the set of rational primes that split completely
in F1 is the same as the set of rational primes that split completely in F2. Then
F1 = F2.

Proof By the Chebotarev density theorem, the density of rational primes that
are split completely in F1, F2, or F1F2 are, respectively [F1 : Q]−1,[F2 : Q]−1,
[F1F2 : Q]−1. Since a prime is split completely in F1F2 if and only if it is split
completely in F1 and F2, we have [F1 : Q] = [F2 : Q] = [F1F2 : Q] and so
F1 = F2. ��
Thus to prove Proposition 6.3, it suffices to show that for each fixed

representation ρ of G, aside from finitely many exceptions, the set of
rational primes that split completely in LKer(ρ)

1 is the same as the set of

rational primes that split completely in LKer(ρ)
2 , under the assumption that

L(s, ρ, L1/Q) = L(s, ρ, L2/Q). First we assume that p is a rational prime
that is unramified in L1, L2 (and hence is unramified in LKer(ρ)

1 , LKer(ρ)
2 ) and

splits completely in LKer(ρ)
1 . In particular, this means that for any p1 in LKer(ρ)

1
that lies above p, the conjugacy class of the Frobenius element σp1 is trivial

in Gal(LKer(ρ)
1 /Q) 
 G/Ker(ρ), that is to say, ρ(σp1) is the identity matrix I .

Now letting p2 ∈ LKer(ρ)
2 be any prime lying above p, by the assumption

that the L-functions are equal, we have that the factors corresponding to p are
equal as functions of s and therefore

det(I − ρ(σp2)p
−s)−1 = det(I − ρ(σp1)p

−s)−1 = det(I − I p−s)−1. (6.2)

Now recall that the Frobenius element σp2 is necessarily finite order. We recall
a simple observation. Suppose M is an n × n matrix over C of finite order,
say Mk = I for some k, such that det(I − Mx) = det(I − I x) = (1 − x)n

for a formal variable x . Then we claim M = I . Indeed, since M is finite
order, M is diagonalizable, for the minimal polynomial of M divides xk − 1
and so has no repeated roots. By our second assumption, all the roots of the
characteristic polynomial of M are equal to 1, so that all the eigenvalues of
M are 1 and M = I . We apply this in (6.2) to conclude that ρ(σp2) = I
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as well. Thus the conjugacy class of the Frobenius element σp2 is trivial in

Gal(LKer(ρ)
2 /Q) 
 G/Ker(ρ) and p must split completely in LKer(ρ)

2 .
In this fashion we see that any prime that is unramified in L1, L2 and splits

completely in LKer(ρ1)
1 must split completely in LKer(ρ)

2 . Starting from primes

unramified in L1, L2 that split completely in LKer(ρ)
2 we can similarly show

that they must split completely in LKer(ρ)
1 , and this concludes the proof of

Proposition 6.3.

Remark 6.5 Proposition 6.3 can alternatively be deduced from [46, Theorem
5], which also includes a converse, which we do not require in our applica-
tion. To apply [46, Theorem 5] in our setting, one first passes as in [46, p.
162] to the case of a faithful representation �(σKer(ρ)) = ρ(σ) acting on
H = G/Ker(ρ). Klüners and Nicolae present a counterexample to the char-
acterization deduced in Proposition 6.3 when working over k �= Q [46, p.
167], but see their relative version [46, Thm. 6]. It is possible that certain other
families ZI

n (k,G; X) with k �= Q and certain choices of G can be treated by
an adaptation of our methods with such a relative result. (When working over
k �= Q one would also need to take into account the more nuanced situation
that arises with regards to arithmetic equivalence.)

WenowapplyProposition 6.3.As before, letG be afixed transitive subgroup
of Sn and let ρ1, . . . , ρs be the nontrivial irreducible representations of G. For
each 1 ≤ j ≤ s, consider the set of fields

{LKer(ρ j ) : L ∈ Z̃I
n (Q,G; X)}.

(Note that we define this as a set, not a multi-set.) Philosophically, we would
like to show that the cardinality of this set is “large,” or equivalently very few of
the fields L share the same fixed field, which would imply that “few” collisions
L(s, ρ j , L1/Q) = L(s, ρ j , L2/Q) could occur for L1 �= L2 ∈ Z̃I

n (Q,G; X).

Formally, recall the definition of the setL j (X) in Sect. 5.2 according to the
family of fieldsF (Q,G; X) = Z̃I

n (Q,G; X). Let us first consider the special
case in which ρ j is faithful so that Ker(ρ j ) is trivial. Then by Proposition 6.3,

for two fields L1 �= L2 ∈ Z̃I
n (Q,G; X), we cannot have L

Ker(ρ j )

1 = L
Ker(ρ j )

2
and so we cannot have L(s, ρ j , L1/Q) = L(s, ρ j , L2/Q), and so in this case

|L j (X)| = |Z̃I
n (Q,G; X)|. (6.3)

Thus if ρ j is faithful, we have verified (5.5) of Condition 5.4 with τ j = 0,
which certainly suffices.

More generally, even if ρ j is not a faithful representation, Proposition 6.3
shows that the number of fields Li ∈ Z̃I

n (Q,G; X) for which L(s, ρ j , Li/Q)
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is identical to a specific L-function is bounded above by the number of fields

Li ∈ Z̃I
n (Q,G; X) for which L

Ker(ρ j )

i is identical to a specific field. Thus we
have translated the problem of verifying (5.5) for a particular family L j (X)

to a problem of counting fields.
Precisely,we summarize the implications of Proposition 6.3 as the following

statement:

Proposition 6.6 Let ZI
n (Q,G) be a set of fields considered in Theo-

rem 3.3, 3.9, 3.11, 3.13 or 3.14 under the associated hypotheses, if any. Let
Z̃I
n (Q,G) be the corresponding set of Galois closures. Let ρ1, . . . , ρs be the

nontrivial irreducible representations of G. Define the families (L j (X))X≥1

for 1 ≤ j ≤ s accordingly, as in Sect. 5.2. Then Z̃I
n (Q,G) and the families

(L j (X))X≥1 for 1 ≤ j ≤ s satisfy (5.5) of Condition 5.4 with parameters
{τ j }1≤ j≤s if the following holds: for each irreducible representation ρ j of G,
given any field F ∈ Zu(Q,G/Ker(ρ j ); X) (where u = |G/Ker(ρ j )|), at most
On,G,I (X τ j ) fields L ∈ Z̃I

n (Q,G; X) have LKer(ρ j ) = F.

6.3.2 Rationale for the restriction on ramification types of tamely ramified
primes

For G not a simple group, Proposition 6.6 spurs us to quantify, for each proper
normal subgroup H ofG that appears as the kernel of at least one (non-faithful,
non-trivial) irreducible representation ofG, how often a particular field occurs
as a fixed field LH , as L varies over a relevant family of Galois extensions of
Q with Galois group G.

For certain groups G, fixed fields could collide with high repetition. For
example, taking G = Z/4Z, then for any fixed quadratic field such as F =
Q(e2π i/3), a positive proportion of quartic Galois fields K ∈ Z4(Q, Z/4Z; X)

have KZ/2Z = F . This can be seen for example via a counting argument
similar to that of Sect. 2.1. (See also comments in Remarks. 6.11 and 6.12.)

To eliminate such possibilities, we will critically use our restrictions on the
ramification types of the tamely ramified primes in the fields in ZI

n (Q,G; X).
Given G, we will select I so that it has two properties:

(1) For ZI
n (Q,G) to be infinite, we need the elements in I to generate G.

(2) We needI to have the property that for each proper normal subgroup H
in G that is the kernel of a non-faithful irreducible representation of G,
given any field K ∈ ZI

n (Q,G; X) with associated Galois closure K̃/Q,
then p|DK implies p|DF , where F = K̃ H .

(Of course the primes that appear in DK are the same that appear in DK̃ but
this need not a priori be true of DK̃ and DF .) Property (2) will enable us to
obtain the information we seek in Proposition 6.6, that is, to count the number
of K̃ ∈ Z̃I

n (Q,G; X) sharing the same fixed field F = K̃ H , by applying
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quantitative information about Dn(G; �) (Property 1.6). This is one of the
most novel features of this paper.

6.4 The counting problem

We now define the counting problem that is the heart of the matter.

Property 6.7 (Property Multn(G,I ; τ)) Let Multn(G,I ; τ) denote the
property that for every X ≥ 1, for each irreducible representation ρ of G,
given any particular field F ∈ Zu(Q,G/Ker(ρ)) (with u = |G/Ker(ρ)|) that
arises as a fixed field K̃Ker(ρ) for at least one field K ∈ ZI

n (Q,G; X), for every
ε > 0, at most On,G,I ,ε(X τ+ε) fields K ∈ ZI

n (Q,G; X) have K̃Ker(ρ) = F.

Given a family ZI
n (Q,G; X), if we can prove that Multn(G,I ; τ) holds

for a sufficiently small τ , then by Proposition 6.6, the relevant effective Cheb-
otarev density theorem for the family ZI

n (Q,G; X) will follow (that is, either
Theorem 3.3, 3.9, 3.11, 3.13 or 3.14). Quantitatively, lowering the size of τ for
which we can prove Multn(G,I ; τ) will allow us to better control the size of
the possible exceptional set of fields.

Proposition 6.8 (Counting problem)
We can prove the following:

(1) Multn(G,I ; 0) for G a simple group, I imposing no restriction.
(2) Multn(G,I ; 0) for G cyclic, I specifying totally ramified.
(3) Multn(Sn,I ; �n) for n ≥ 3, I the conjugacy class [(1 2)], where

�3 = 1/3, �4 = 1/2, �5 = 199/200, and for n ≥ 6, �n = � if
we assume Property Dn(Sn, �).

(4) Mult p(Dp,I ; τp) holds for τp = 1/(p − 1), p an odd prime, I the
conjugacy class of order 2 elements.

(5) Mult4(A4,I ; 0.2784...), I the two conjugacy classes of order 3 ele-
ments.

As observed above, Multn(G,I ; 0) is tautologically true when G is a simple
group (I imposing no restriction), since all the nontrivial irreducible repre-
sentations are faithful and (6.3) applies. All the other cases of the counting
problem require work.We first explicitly prove this for Sn , n �= 4; in particular,
to aid the reader, we include our argumentation for choosing I = [(1 2)].
6.4.1 Background lemmas on inertia groups and discriminants

We recall standard results on the powers of primes dividing DK .

Lemma 6.9 (Powers of tamely ramified primes in discriminants) Let K ⊂
K̃ ⊂ Q with Gal(K̃/Q) 
 G and H = Gal(K̃/K ). Let p be a rational prime
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that is tamely ramified in K and K̃ , and has an inertia group in Gal(K̃/Q)

generated by π ∈ G. The power α such that pα||DK is

[G : H ] − number of orbits of π acting on the cosets G/H. (6.4)

Proof We have that DK is the Artin conductor of K̃/Q for the permutation
representation of G on G/H [61, Ch. VII, Corollary 11.8]. By definition, the
Artin conductor of K̃/Q for a representation V of Gal(K̃/Q) is

∏
p p f p(V ),

where the product is over rational primes and

f p(V ) =
∑
i≥0

gp,i
gp,0

codim VGp,i ,

for Gp,i an i th ramification group for p in Gal(K̃/Q) and gp,i := |Gp,i |.
Recall thatGp,0 is the inertia group Ip and that for tamely ramified p, we have
Gp,i = 1 for i ≥ 1. So for tamely ramified p, we have f p(V ) = codim V Ip .

The lemma follows, since for a permutation representation V , the dimension
of the fixed subspace V π is the number of orbits of π . ��
Lemma 6.10 (Maximum contribution of wild primes) Let G be a transitive
subgroup of Sn. Then for all fields K ∈ Zn(Q,G), the total contribution to
DK from the rational primes that are wildly ramified in K is at most a certain
finite constant CG depending only on G.

This lemma follows from [61, Ch. III, Thm. 2.6] and the fact that all wildly
ramified primes divide |G|.

In order to consider only the tame part of the discriminant in our investiga-
tions below, it will be convenient to use the following notation. Given a finite
set of primes �, define D(�)

K to denote the contribution to the discriminant

from primes p /∈ �, i.e. D(�)
K is the maximal positive divisor of DK that is

not divisible by any prime in �. We will apply this in particular when � is
comprised of the primes dividing |G|.

6.4.2 Exemplar case: G = Sn, n = 3 or n ≥ 5

Recall that when n = 3 or n ≥ 5, Sn has one nontrivial, proper normal
subgroup, namely An , which certainly appears as the kernel of the sign rep-
resentation. Thus we must specify a ramification type I so that the counting
problem for fixed fields K̃ An can be handled. We wish, for a fixed quadratic
field F ∈ Z2(Q,C2), to count the number of degree n fields K ∈ Zn(Q, Sn; X)

such that K̃ An = F .
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Table 1 Table of exponents for p when Gal(K̃/Q) 
 Sn , for each p � n!
Inertia type of p Exponent of p appearing in the discriminant of

K K̃ F = K̃ An

[()] 0 0 0

[(1 2)] 1 n! − n!/2 1

[(1 2 3)] = [(1 2)(2 3)] 2 n! − n!/3 0

[(1 2)(3 4)] 2 n! − n!/2 0

...
...

...
...

[(1 2 3 . . . n)] n − 1 n! − n!/n εn

K̃

K F = K̃ An

Q

Gal(K̃/Q) 
 Sn

n

Gal(K̃/F) 
 An

2

UsingLemma6.9,we can compute for fields K , K̃ , F in such a constellation
the exact power of p that appears in the absolute discriminants DK , DK̃ , DF ,
for each prime p � |G|. We show these exponents in Table 1: the leftmost
column specifies the conjugacy class of the generating elementπ of the (cyclic)
inertia group for p, while the other columns specify the exact power of p
appearing in the discriminants. We only list a few of the p(n) conjugacy
classes of Sn; we set εn = 0 if n is odd and εn = 1 if n is even.

From Table 1 we observe that every p � |G| that has inertia group generated
by a transposition has p‖DK , pn!/2‖DK̃ , p‖DF . This will allow us to control,
for a fixed field F , how many K can yield a constellation including F . These
observations from Table 1 motivated our choice of I = [(1 2)] for G 
 Sn
(n = 3, n ≥ 5).

Now we come to the crux of the argument. Suppose that F is fixed, and
hence DF ≥ 1 is fixed. Set � = {p : p|n!} and recall the notation D(�)

K
defined above. Our discussion above shows that any degree n extension K ∈
ZI
n (Q, Sn; X) such that K̃ An = F must have

D(�)
K = D(�)

F . (6.5)
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Assuming Property Dn(Sn, �) is known, then since the power of any p ∈
� dividing DK is bounded in terms of n, for a given F there are at most
�n,G,ε D�+ε

F �n,G,ε X�+ε such K satisfying (6.5), for every ε > 0. Now
to obtain the conclusion on Multn(Sn,I ; �n) of Proposition 6.8 for Sn , n =
3, n ≥ 5, we simply apply the currently best known upper bounds for Property
Dn(Sn, �) in these cases, as stated in Sect. 2.3.

Having completed this exemplar case of G = Sn (n �= 4) in some detail,
we are now more brief with the remaining groups G, which follow similarly
by using Lemma 6.9 in order to fix an appropriate choice of ramification type
I for which the counting problem can be resolved.

6.4.3 G 
 S4

Recall that S4 has four nontrivial irreducible representations (see e.g. [67, p.
43]): two three-dimensional faithful representations (the standard representa-
tion and the product of the standard representationwith the sign representation)
and two non-faithful representations. The subgroup A4 is the kernel of the one-
dimensional sign representation, and K4 
 C2 × C2 the Klein four group is
the kernel of the irreducible two-dimensional representation of S4. We thus
have two counting problems to consider.

Relevant to the counting problem for fixed fields under A4, by choosingI
to be the conjugacy class [(1 2)] of transpositions, wemay conclude that triads
K , K̃ , F = K̃ A4 behave exactly as in the case of Sn in Sect. 6.4.2, so that for
any p � 4!, p‖DK , p12‖DK̃ , p‖DF , and hence upon setting � = {2, 3}, we
have D(�)

K = D(�)
F . Thus arguing as in Sect. 6.4.2, any fixed F corresponds

to at most �ε D�+ε
F �n,G,ε X�+ε possibilities for K ∈ ZI

4 (Q, S4; X), if
Property D4(S4, �) is known.

Relevant to the counting problem for fixed fields under K4, still choosingI
to be the conjugacy class [(1 2)] of transpositions, for triads K , K̃ , F = K̃ K4

the exponents are different: for every p � 4! we have p‖DK , p12‖DK̃ , and
p3‖DF . Thus upon setting � = {2, 3}, we have

D(�)
K = (D(�)

F )1/3, (6.6)

and so any fixed F corresponds to at most �ε D�/3+ε
F �n,G,ε X�+ε pos-

sibilities (for every ε > 0) for K ∈ ZI
4 (Q, S4; X), if Property D4(S4, �)

is known. (Here we have used the fact that if K ∈ Zn(Q,G; X) and (6.6)
holds, then DF �n,G X3.) We conclude that Mult4(S4,I ; 1/2) holds since
Property D4(S4, 1/2) is known.
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6.4.4 G 
 A4

Recall (see [67, Section 5.7, page 41]) that A4 has four nontrivial irreducible
representations: two faithful representations and two one-dimensional non-
faithful representations, each with kernel K4 
 C2×C2 the Klein-four group.
Thus we need only complete the counting problem for triads K , K̃ , F = K̃ K4 .
We will require all tamely ramified primes to have inertia type belonging to
either of the conjugacy classes C1,C2 of order 3 elements (specified e.g. in
Proposition 2.5).

Suppose we restrict to primes of inertia type in the conjugacy class C1.
The image of this inertia type in A4/K4 
 C3 is nontrivial, and we see that
for any p � |A4|, p2‖DK , p8‖K̃ , p2‖DF . Thus upon setting � = {2, 3},
within the triad we have D(�)

K = D(�)
F , and so, any fixed F corresponds to

at most �ε D�+ε
F �n,G,ε X�+ε possibilities for K ∈ ZI

4 (Q, A4; X), if
Property D4(A4, �) is known. The computation for primes of inertia type in
the conjugacy class C2 is identical. Recalling our result of Proposition 2.5, we
conclude that Mult4(S4,I ; 0.2784...) holds.

6.4.5 G 
 Dp, p an odd prime

We think of Dp (with p an odd prime) as the group of order 2p of symmetries
on a regular p-gon, acting in the usual way. Thus Dp has one nontrivial,
proper normal subgroup, namely Cp; this subgroup certainly appears as the
kernel of the (one-dimensional) sign representation. Thuswemust consider the
corresponding counting problem for fixed fields K̃ Cp . We restrict the inertia
type I to the conjugacy class [(2 p)(3 (p − 1)) · · · ( p+1

2
p+3
2 )], that is the

conjugacy class of reflections (each with with (p + 1)/2 orbits acting on p
elements).

For a triad K , K̃ , F = K̃ Cp we then have for every prime � � 2p that
�(p−1)/2‖DK , �p‖DK̃ , �‖DF . Thus upon setting � = {2, p} we have

D(�)
K = (D(�)

F )
p−1
2 , (6.7)

and so any fixed F corresponds to at most �p,Dp,ε D(p−1)�/2+ε
F possibilities

for K ∈ ZI
p (Q, Dp; X), if Property DI

p (Dp, �) is known. Now if (6.7) is

known and K ∈ ZI
p (Q, Dp; X) then DF �p,Dp X2/(p−1), so we have at

most �p,Dp,ε X� choices for such K if Property DI
p (Dp, �) is known. We

conclude from Proposition 2.3 that Mult p(Dp,I ; 1/(p− 1)) holds uncondi-
tionally.
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6.4.6 G a cyclic group

Finally, for G a cyclic group of order n, note that Zn(Q,G; X) already is
comprised of Galois fields, so we do not need to pass to the Galois closures.
(As a special case, if G 
 Cp with p prime, then G has no nontrivial proper
(normal) subgroups, so all nontrivial representations are faithful, without the
need to artificially impose a ramification restriction. But in this case, every
ramified prime is naturally totally ramified, so we still group this with the
general case below.) In general, consider G an arbitrary cyclic group of order
n, say G 
 Cp

e1
1

× · · · × Cp
ek
k
with distinct primes p1, . . . , pk . We restrict to

I specifying that every tamely ramified prime must be totally ramified, that
is, its inertia group must be generated by an element of full order in G; in
particular, such an element does not belong to any proper, nontrivial subgroup
Cm of Cn .

By Lemma 6.9 the following properties hold:

(1) for every prime � � n we have �n−1‖DK = DK̃ ;
(2) for every nontrivial proper (normal) subgroupCm ofCn (corresponding to

a proper divisor m|n) there exists an integer 1 ≤ αm ≤ n − 1 (depending
on m and Cn) such that �αm‖DF where F = K̃ Cm .

As a result, upon setting � = {p : p|n}, for each nontrivial proper subgroup
Cm of G, parametrized by divisors m, we have that

D(�)
K = (D(�)

F )
n−1
αm

when F = KCm = K̃ Cm . Thus any fixed F corresponds to at most
�n,m,Cn,ε D�(n−1)/αm+ε

F �n,m,Cn,ε X�+ε possibilities (for any ε > 0) for
K ∈ ZI

n (Q,Cn; X) if Property Dn(Cn, �) is known. By Proposition 2.1 we
have Dn(Cn, 0), so that we have verified Multn(Cn,I ; 0).
Remark 6.11 (Non-cyclic abelian groups) The above arguments show that we
are able to pick an appropriate ramification restriction to control the propaga-
tion of bad L-function factors if there exists a set that generates G and such
that none of them lies in any (nontrivial, proper, normal) subgroup H ofG that
appears as the kernel of at least one nontrivial irreducible representation of G.
We may already observe the difficulty of adapting this general strategy to a
non-cyclic abelian group by considering the simple case of G 
 Cpe × Cp f

for a prime p. Consider an element in the generating set of the form (a, b)
with a �= 0. Let pk be the highest power of p that divides both a and b. Then

for ζp = e2π i/p, the map Cpe × Cp f → C given by (i, j) �→ ζ
ib/pk− ja/pk
p

is a non-trivial irreducible representation of Ce
p ×C f

p , and our generator is in
the kernel of this map.

123



An effective Chebotarev density theorem for families 763

Remark 6.12 (Quartic D4-fields) Difficulties also arise for quartic D4-fields:
there are irreducible representations of D4 with kernels K4, K ′

4 (two different
subgroups isomorphic to the Klein-four group) andC4, but no set of generators
of D4 that avoid all three of these subgroups, and hence no choice of ramifi-
cation type I for which the three counting problems can simultaneously be
resolved. It may be possible to apply our method to a particular subfamily
of quartic D4-fields generated from a fixed biquadratic field; in this case the
counting problems will be trivial, although proving a lower bound that grows
with X for such a family may not be.

6.5 Deduction of Theorems 3.3, 3.9, 3.11, 3.13 and 3.14 from
Theorem 5.5

Wehave verifiedCondition 5.4 for each family ZI
n (Q,G; X) considered in the

above theorems; nowwe apply Theorem 5.5. The family parameters notated in
Condition 5.4, namely {M0, M1, A, d} and {m j , A j , d j , M1, j , M2, j,ε, M3, j,ε,

M5, j } for 1 ≤ j ≤ s, all depend only on n,G,I , and thus in the following
statements we can replace any dependence on family parameters by depen-
dence on n,G,I .

Proposition 6.13 Fix a family ZI
n (Q,G; X) considered in Theorem 3.3,

3.9, 3.11, 3.13 or 3.14 under the associated hypotheses (if any). If it is known
that Xβ �n,G,I |ZI

n (Q,G; X)| �n,G,I Xd and that Multn(G,I ; τ∗)
holds for some τ∗ < β, then the conclusions of the relevant theorem hold
for those values of τ∗, β, d.

Let τ∗ < β ≤ d be as assumed in the proposition. Fix τ = τ∗ + ε3
for some sufficiently small ε3 (in particular so that τ < d) and fix ε0 <

min{1/2, 2(d − τ)} sufficiently small. We apply Theorem 5.5 with

� = 1 − τ

d
− ε0

2d
, (6.8)

δ chosen as in (5.11) (according to A = |G|/2 and ε2 = ε0 so that we obtain
the expression for δ in Remark 3.4), and η = ε0/2d. Then

(1 − (1 − η)�)d = τ + ε0

2
+ ε0

2
(1 − τ/d − ε0/2d) ≤ τ + ε0.

Then there exists B depending only on n,G,I such that for all X ≥ 1, at
most

On,G,I ,τ,d,ε0(X
τ+ε0) (6.9)
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fields K ∈ ZI
n (Q,G; X) are such that ζK̃ /ζ can have a zero in the region

[1 − δ, 1] × [−Xβ, Xβ], (6.10)

where β = ε0(1 − τ/d − ε0/2d)/(2B).

Our goal now is to express this in terms of how many δ-exceptional fields
there can be. It is temporarily convenient to work in terms of families of fields
with discriminant in a dyadic range; thus we set ZI ,�

n (Q,G; X) to be the
subset of ZI

n (Q,G; X) with X/2 < DK ≤ X . We next verify that for X
sufficiently large, for every K ∈ ZI ,#

n (Q,G; X) the region (6.10) contains
the region (3.1), which we write now in the notation

[1 − δ, 1] × [−(log DK̃ )2/δ, (log DK̃ )2/δ]. (6.11)

If K ∈ ZI ,�
n (Q,G; X) then by Lemma 6.1, C1(n,G)(X/2)|G|/n ≤ DK̃ ≤

C2(n,G)X |G|/2, for certain constants Ci (n,G). Thus it suffices to show that
there exists a threshold D3 = D3(n,G,I , τ, d, δ, ε0) such that if X ≥ D3
then

(log(C2(n,G)X |G|/2))2/δ ≤ Xβ. (6.12)

This is the claim that a fixed power of X is larger than any fixed power of log X ,
as long as X is sufficiently large; thus an appropriate threshold D3 exists.

We have shown that for every X ≥ 1 there are at most On,G,I ,τ,d,ε0(X
τ+ε0)

fields K ∈ ZI
n (Q,G; X) such that ζK̃ /ζ can have a zero in (6.10); con-

sequently if X/2 ≥ D3, at most On,G,I ,τ,d,ε0(X
τ+ε0) fields in K ∈

ZI ,#
n (Q,G; X) are such that ζK̃ /ζ can have a zero in (6.11), that is, can

be δ-exceptional. Now we suppose that A ≥ 2 has been fixed, and we recall
the threshold D0 from Theorem 3.1. As long as

X/2 ≥ D0, (6.13)

any K ∈ ZI ,#
n (Q,G; X) that is not δ-exceptional satisfies the hypothesis of

Theorem 3.1, and therefore for every conjugacy class C ⊆ G yields (3.2) for
all x sufficiently large as in (3.4). Upon taking

D4 = D4(n,G,I , τ, d, δ, ε0, cQ,C1,C2, A) := max{D0, D3}

we have shown that for any X such that X/2 ≥ D4 we have that at most
On,G,I ,τ,d,ε0(X

τ+ε0) fields in K ∈ ZI ,#
n (Q,G; X) can be δ-exceptional, and

for all remaining fields, (3.2) holds for all x satisfying (3.4). We may in fact
omit the dependence on δ in the notation, as it is defined in terms of the other
parameters.
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The final step to complete the proof of Proposition 6.13 is to sumover dyadic
ranges of discriminants. Now for any X ≥ 1 (say using log2 temporarily),

ZI
n (Q,G; X) ⊆

1+log X⋃
j=0

ZI ,�
n (Q,G; 2 j ).

Wemay dissect this into two pieces: those for which j is such that 2 j−1 ≥ D4,
in which case our work above applies, and we conclude that the number of
δ-exceptional fields in

1+log X⋃
2 j−1≥D4

ZI ,�
n (Q,G; 2 j )

is at most

1+log X∑
2 j−1≥D4

On,G,I ,τ,d,ε0((2
j )τ+ε0) = On,G,I ,τ,d,ε0(X

τ+ε0). (6.14)

For those j such that 2 j−1 ≤ D4, we count all the fields as possible exceptions,
noting that

∣∣∣∣∣∣
⋃

1≤2 j−1≤D4

ZI ,�
n (Q,G; 2 j )

∣∣∣∣∣∣ ≤ |ZI
n (Q,G; 2D4)| �n,G Dd

4 .

We enlarge the implied constant in (6.14) to include this constant, and call
the resulting implied constant D5, as appears in the theorem statements. This
completes the proof of Proposition 6.13, and in combination with the values of
τ∗ supplied by Proposition 6.8, we have proved Theorems 3.3, 3.9, 3.11, 3.13
and 3.14 (and the non-quantitative Theorem 1.1).

6.6 Proof of Corollary 3.16

Let ZI
n (Q,G; X) be a specified family, with corresponding parameters τ∗ <

β ≤ d, set A = 2 and let ε0 (sufficiently small) be fixed, with corresponding
choice δ ≤ 1/4. First, we verify that for σ > 0 fixed, there is a threshold
D′
6 = D′

6(n,G,I , d, cQ,C5,C6, ε0, σ ) such that for DK ≥ D′
6,
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Dσ
K ≥ κ1 exp{κ2(log log(Dκ3

K̃
))5/3(log log log(D2

K̃
))1/3},

where this lower bound is as stated in (3.4), and the parameters κi have the
dependenciesκi = κi (n,G, d, cQ,C5,C6, ε0) (dropping the notational depen-
dence on A = 2). In fact it suffices to compute a threshold above which

Dσ
K ≥ κ1 exp{κ2(log log(Dκ5

K̃
))2}

where we set κ5 = max{κ3, 2}. By Lemma 6.1, DK̃ ≤ C2(n,G)D|G|/2
K for a

certain constant C2(n,G), so that it further suffices to show

Dσ
K ≥ κ1 exp{κ2(log log(κ6Dκ7

K ))2}
where κ6 = C2(n,G)κ5 and κ7 = κ5|G|/2. This will hold when DK is suffi-
ciently large that

σ ≥ log κ1

log DK
+ κ2(log log(κ6D

κ7
K ))2

log DK
,

and we denote this threshold by D′
6 = D′

6(n,G,I , d, cQ,C5,C6, ε0, σ ).
Finally, recall the parameter D0 provided in Theorem 3.1.While this is used as
a constraint DK̃ ≥ D0, we apply Lemma6.1 to see that DK̃ ≥ C1(n,G)D|G|/n

K
for a certain constant C1(n,G). Then DK̃ ≥ D0 is certainly satisfied if DK ≥
D′
0 with

D′
0 := (C1(n,G)−1D0)

n/|G|. (6.15)

Now for part (1) of Corollary 3.16, we may conclude from Theorem 3.1
with A = 2 that for every X ≥ 1, for every field in ZI

n (Q,G; X) that has
DK ≥ max{D′

0, D
′
6} and is not δ-exceptional,∣∣∣∣πC (Dσ
K , K̃/Q) − |C |

|G|Li(D
σ
K )

∣∣∣∣ ≤ |C |
|G|

Dσ
K

(log Dσ
K )2

. (6.16)

Finally, we enlarge max{D′
0, D

′
6} if necessary to a parameter D6, so that for

all DK ≥ D6, the error term in (6.16) is at most (1/2)|G|−1Li(Dσ
K ) ≤

(1/2)|C ||G|−1Li(Dσ
K ). Then πC (Dσ

K , K̃/Q) ≥ (1/2)|C ||G|−1Li(Dσ
K ) ≥

(1/2)|G|−1Li(Dσ
K ), and we can further enlarge D6 if necessary to write the

lower bound as in (3.7).
For part (2) of Corollary 3.16, we may follow e.g. Vaaler and Widmer [81,

Lemma 5.1] (but without assuming GRH, as they do). Suppose that K is not
δ-exceptional and furthermore that DK ≥ D′

0 with parameter D′
0 as above

in (6.15). Then for every x satisfying the lower bound (3.4), we apply (3.2)
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with A = 2 to both πC (x, K̃/Q) and πC (2x, K̃/Q). If the (non-negative)
difference

πC (2x, K̃/Q) − πC (x, K̃/Q) (6.17)

were zero, this in combination with (3.2) would imply that

Li(2x) − Li(x) ≤ 2x

(log 2x)2
+ x

(log x)2
≤ 3x

(log x)2
. (6.18)

Yet certainly for x ≥ 2,

∫ 2x

x

dt

log t
≥ x

log 2x
≥ x

2 log x
.

Thus (6.18) fails (so the difference in (6.17) must be ≥ 1) as soon as x ≥
max{2, e6}. Given σ > 0, we apply this to x = Dσ

K , in which case we require
DK ≥ D7 = max{D′

0, D
′
6, 2, e

6} with the parameter D′
6 (depending on σ ) as

above. This completes the verification of Corollary 3.16.

Part III: Applications

7 Bounding �-torsion in class groups

For a finite extension K/Q, the ideal class group ClK is a finite abelian group
that encodes information about arithmetic in K , and interest in the class number
|ClK | has a long history, going back to theGauss class number conjecture, early
attempts at proving Fermat’s Last Theorem, and Dirichlet’s development of
the class number formula, which unites class numbers with L-functions. We
focus on the �-torsion subgroup of ClK , defined for any integer � ≥ 1 by

ClK [�] := {[a] ∈ ClK : [a]� = Id}. (7.1)

For any number field K/Q of degree n and absolute discriminant DK =
|Disc K/Q|, we may trivially bound the �-torsion subgroup by the full class
group, which admits the following bound (see [59, Theorem 4.4]):

1 ≤ |ClK [�]| ≤ |ClK | �n,ε D1/2+ε
K , (7.2)

for any integer � ≥ 1, and ε > 0 arbitrarily small. We will refer to this as the
trivial bound for |ClK [�]|.

Our work on �-torsion is inspired by the following well-known conjecture
(e.g. see [9, “Question CL(�, d)”], [26], [90, Conjecture 3.5]):
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Conjecture 7.1 (�-torsion Conjecture) Let K/Q be a number field of degree
n. Then for every integer � ≥ 1 and every ε > 0,

|ClK [�]| �n,�,ε Dε
K .

Now, with our new effective Chebotarev theorems for families of fields,
we can make new progress toward this conjecture: we improve on the trivial
bound (7.2) and in fact do as well as previous bounds that assumed GRH, for
all but a possible density zero subfamily of fields. In particular, we prove the
first unconditional nontrivial upper bounds for �-torsion, for all � ≥ 1, for
almost all fields in infinite families of fields of arbitrarily high degree.

Theorem 7.2 Let ZI
n (Q,G) be fixed to be one of the families of fields consid-

ered in Theorems 3.3, 3.9, 3.11, 3.13 and 3.14, and correspondingly assume
the hypotheses (if any) of the relevant theorem. Let the parameters τ∗ < β ≤ d
be those proved to exist for that family in (3.5). For every τ > τ∗ sufficiently
close to τ∗, every ε0 > 0 sufficiently small, and every integer � ≥ 1, there exists
a constant D8 such that for for every X ≥ 1, aside from at most D8X τ+ε0

exceptions, every field K ∈ ZI
n (Q,G; X) satisfies

|ClK [�]| �n,�,G,ε D
1
2− 1

2�(n−1)+ε

K (7.3)

for all ε > 0.

Recalling that for each family considered we have shown that |ZI
n (Q,G; X)|


n,G,I Xβ with β > τ∗, the exceptional family has density zero once τ is
sufficiently close to τ∗ and ε0 is taken to be sufficiently small. (In Sect. 7.2.1,
we re-state Theorem 7.2 in terms of averages of �-torsion.)

The deduction of Theorem 7.2 follows a general approach codified by Ellen-
berg and Venkatesh for bounding �-torsion in ClK by finding many small
rational primes that split completely in K :

Theorem H ([31, Lemma 2.3]) Suppose K/Q is an extension of degree n,
and let � be a positive integer. Set 0 < δ < 1

2�(n−1) and suppose that there

are at least M rational primes with p ≤ Dδ
K that are unramified and split

completely in K . Then for any ε > 0,

|ClK [�]| �n,�,ε D
1
2+ε

K M−1.

To find small primes that split completely in K it is sufficient to find small
primes that split completely in the Galois closure K̃ of K over Q, and to
do so Ellenberg and Venkatesh applied Lagarias and Odlzyko’s conditional
Theorem A to obtain:
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Theorem I ([31, Prop. 3.1]) Let K/Q be a number field of degree n and � ≥ 1
an integer. Assuming GRH, then for any ε > 0,

|ClK [�]| �n,�,ε D
1
2− 1

2�(n−1)+ε

K . (7.4)

The argument in Sect. 7.2 will show that any quantitative improvement to the
exponent obtained in Theorems H and I is expected to be similarly reflected
in the exponent obtained in (7.3).

As n, � grow large, to produce the primes required in Theorem H, we must
be allowed to count primes as small as any fixed positive power of DK . This
in particular illuminates why previously known lower bounds for πC (x, L/k),
such as obtained in the recent work of Thorner and Zaman [78], [77, Eqn. 1.6],
or even the result of Theorem B (assuming no exceptional zero β0 exists, or in
the setting of Theorem 4.12), do not suffice for our application. The new results
in Theorem 7.2 show that the following fields satisfy (7.3) unconditionally, for
all integers � ≥ 1:

(i) almost all degree p cyclic extensions of Q (p prime)
(ii) almost all totally ramified cyclic extensions of Q

(iii) almost all degree p Dp-extensions (I the conjugacy class of order 2
elements, odd prime p)

(iv) almost all degree 4 A4-extensions (I the two conjugacy classes of order
3 elements).

Furthermore, Theorem 7.2 shows that for every n ≥ 2, almost all degree n
Sn-extensions of Q with square-free discriminants satisfy (7.3) for all � ≥ 1,
where this result is

(v) unconditional if n = 2, 3, 4
(vi) if n = 5, conditional on the strong Artin conjecture
(vii) if n ≥ 6, conditional on the strong Artin conjecture and Dn(Sn, �n) for

some �n < 1/2 + 1/n.

Finally, Theorem 7.2 shows (among other results for simple groups) that (7.3)
holds

(viii) for every n ≥ 5, almost all degree n An-extensions of Q satisfy (7.3) for
all � ≥ 1, conditional on the strong Artin conjecture.

Remark 7.3 In fact, our proof of Theorem 7.2 works as well if we replace any
of our families of fields with the family of their Galois closures.

7.1 Previous results toward Conjecture 7.1

To situate our results, we briefly review previous results in the literature toward
Conjecture 7.1 in terms of a property we now define.
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Property 7.4 (Cn,�(�)) Given integers n, � ≥ 1 and a fixed real number
� ≥ 0, we say that property Cn,�(�) holds if it is known that for every ε > 0
there is a constant C�,n,�,ε such that for all fields K/Q of degree n,

|ClK [�]| ≤ C�,n,�,εD
�+ε
K .

Thus in particular, (7.2) shows that Cn,�(1/2) is trivially true for all n, � ≥ 1.
The strongest type of result holds for all fields of a fixed degree. In this vein,
Gauss [34] genus theory shows C2,2(0) holds. This is the only case in which
Conjecture 7.1 is known to hold, for a certain prime �, for all fields of a fixed
degree. The only other known pointwise bounds for prime � are: n = 2 and
� = 3, where initial progress occurred in [41,64,65], and [31] holds the record
C2,3(1/3); C3,3(1/3) due to [31]; C4,3(1/2− δ) due to [31] where δ = 1/168
if K is non-D4; Cn,2(0.2784...) for n = 3, 4 and Cn,2(1/2 − 1/2n) where
n ≥ 5, due to [10]. Also in [31], there is a proof of pointwise bounds for
�-torsion for certain families of fields of arbitrarily high degree, where these
fields always contain ζ� + ζ−1

� . Conditional on the Birch–Swinnerton–Dyer
conjecture and GRH, Wong [85] has observed that C2,3(1/4) holds.

For n = 2, 3, 4, 5, bounds for �-torsion at least as strong as (7.3) were
already known to hold, unconditionally, for almost all degree n Sn-fields (with-
out any ramification condition). For imaginary quadratic fields, Soundararajan
[71] showed that for each prime �, the nontrivial bound |ClK [�]| ��,ε

D1/2−1/2�+ε
K holds for all but a possible family of exceptional fields of density

zero. Furthermore, Heath-Brown and the first author [37] obtained for each
prime � ≥ 5 the unconditional bound |ClK [�]| ��,ε D1/2−3/(2�+2)+ε

K for all
but a possible density zero family of imaginary quadratic fields; their methods
also yield upper bounds for higher moments of �-torsion for all � ≥ 3. For
each degree n ≤ 5, Ellenberg and the first and third authors [28] proved the
bound (7.3) holds unconditionally for all but a possible density zero excep-
tional family of degree n extensions of Q. (In the case n = 4, this work had
the additional requirement that the fields be non-D4 quartic fields and � ≥ 8
and for n = 5, the requirement � ≥ 25.) In both [37] and [28], the upper
bound for the possible exceptional family becomes weaker as � increases (e.g.
in [28] the number of exceptional fields is at most On,ε(X1−1/(2�(n−1))+ε) for
� large); this is noticeably different from the bound for the exceptional set in
Theorem 7.2.

Remark 7.5 At the time of posting, the authors learned of theworks of Frei and
Widmer [33] and Widmer [83]. Frei and Widmer obtain the upper bound (7.3)
for �-torsion for almost all totally ramified cyclic extensions ofQ (see our case
(ii) above), albeit with a larger upper bound for the possible exceptional family
of fields, analogous to that in [28]. Frei and Widmer use the sieve method of
Ellenberg and the first and third authors [28] combined with new counts for the
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number of totally ramified cyclic extensions with a finite number of specified
local conditions. Notably, their method also works for totally ramified cyclic
extensions of any fixed number field F . Moreover they remark, building on
[83], on the possibility of sharpening to 1/2 − 1/(�(n + 1)) the exponent in
(7.4) for almost all fields in a family Zn(Q,G; X) that is sufficiently dense
(e.g. |Zn(Q,G; X)| 
 X ). Of the families we consider, the latter strategy
could conceivably similarly improve the exponent in (7.3) only for the family
ZI
n (Q, Sn; X), conditional on such a lower bound being known for the family.

We thank Frei and Widmer for sharing their preprint [33].

7.2 Proof of Theorem 7.2

Theorem 7.2 is an immediate consequence of Corollary 3.16. We suppose that
a family ZI

n (Q,G; X) and a sufficiently small ε0 > 0 have been fixed. We
let 0 < δ ≤ 1/4 be defined as in (3.6). We set C = {id}, in which case we are
counting primes that split completely in K̃ and hence in K . For any integer � ≥
1, we take τ > τ∗ sufficiently close and a sufficiently small ε1 > 0 and we set
σ = 1/(2�(n−1))−ε1. Then for every X ≥ 1, for anyfield K ∈ ZI

n (Q,G; X)

with DK ≥ D6 that is not one of the at most D3X τ+ε0 δ-exceptional fields
in ZI

n (Q,G; X), there are 
G,n,�,ε1 D1/2(�(n−1))−ε1
K / log DK primes p ≤

D1/2(�(n−1))−ε1
K that split completely in K . Thus for such a K that is not δ-

exceptional, by Theorem H,

|ClK [�]| �n,G,�,ε1,ε2 D
1
2− 1

2�(n−1)−ε1+ε2

K , (7.5)

for all sufficiently small ε1, ε2 > 0. Now we count all those fields that are δ-
exceptional and all those fields in ZI

n (Q,G; X) that have discriminant smaller
than D6, of which there are at most �n,G,I Dd

6 , by the definition of the
parameter d. Defining D8 = D8(n, �,G,I , d, τ, ε0) to be an appropriate
maximum of D3 and the above multiple of Dd

6 , we see that for every X ≥ 1
we may say that (7.5) holds for each field in ZI

n (Q,G; X), apart from at most
D8X τ+ε0 fields. This completes the proof of Theorem 7.2.

7.2.1 Averages of �-torsion

The results of Theorem 7.2 can alternatively be stated in terms of averages of �-
torsion over a fixed family of degree n extensions. If |ZI

n (Q,G; X)| �n,G,I

Xd , Theorem 7.2 shows that for all X ≥ 1, � ≥ 1, τ > τ∗ sufficiently close,
ε0 sufficiently small,
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∑
K∈ZI

n (Q,G;X)

|ClK [�]| � Xd+ 1
2− 1

2�(n−1)+ε + X τ+ 1
2+ε0+ε,

for every ε > 0, with an implied constant depending on n, �,G,I , d, τ, ε0, ε.
For τ∗ < τ < d, for � sufficiently large we will obtain τ ≤ d −1/(2�(n−1)),
so that

∑
K∈ZI

n (Q,G;X)

|ClK [�]| � Xd+ 1
2− 1

2�(n−1)+ε

for every ε > 0. The “trivial bound”would be�n,G,I ,ε Xd+ 1
2+ε for all ε > 0.

8 Number fields with small generators

For our second application, we turn to a question of whether all number fields
have a “small” generator. Given a number field K/Q of degree n (inside our
fixed algebraic closureQ), one can ask for the elementα ∈ K of smallest height
H(α) such that K = Q(α); here H(α) denotes the absolutemultiplicativeWeil
height. Precisely, for an element α ∈ K ,

H(α) =
∏
v

max{1, |α|v} dv
n ,

in which v runs over the places of K and for each place v, | · |v is the unique
representative that either extends the Archimedean absolute value on Q or a
p-adic absolute value on Q, while dv = [Kv : Qv] denotes the local degree at
v. (By Northcott’s theorem [62, Thm.1], there are finitely many elements in
K with height at most any fixed real number, and thus a generator of smallest
height does exist.)

In terms of lower bounds, it is known by Silverman [70, Thm. 1] that for
each n ≥ 2, for all fields K/Q of degree n, for any element α ∈ K such that
K = Q(α),

H(α) ≥ B1D
1

2n(n−1)
K , (8.1)

where we may take B1 = B1(n) = n− 1
2(n−1) . In fact, this lower bound led to

the numerology of the savings in the exponent in Theorem I. (See [31, Lemma
2.2], with the lower bound now further explored in the recent preprints [33,83],
where it is shown that improving on (8.1) for a sufficiently dense class of fields
can improve on Theorem I in an average sense.)

On the other hand, regarding upper bounds, Ruppert asked two questions
[66] of increasing strength:
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Question 8.1 Does there exist for each n ≥ 2:

(1) a positive constant B2 = B2(n) such that for every field K/Q of degree n

there exists an element α ∈ K such that K = Q(α) and H(α) ≤ B2D
1
2n
K ?

(2) a positive constant B3 = B3(n) such that for every field K/Q of degree
n there exists an element α ∈ K such that K = Q(α) and H(α) ≤
B3D

1
2n(n−1)
K ?

(Ruppert posed these questions in terms of the naive height, but up to constants
this is equivalent to the form given here, for which we cite the presentations
of [81,82].) The second question is effectively asking whether the exponent
in Silverman’s lower bound (8.1) is sharp. For degree n = 2 the two questions
are equivalent, and Ruppert [66, Prop. 2] answered them in the affirmative.
Moreover, [66, Prop. 3] verified (1) for totally real fields K of prime degree.
Recently, Vaaler and Widmer [81, Thm. 1.2] verified (1) for all number fields
with at least one real embedding, with a constant B2(n) ≤ 1. In contrast,
they provided in [82], for each composite degree n, an infinite family of fields
violating (2). Furthermore, in [83, §3 and §4], Widmer shows that for n ≥ 4,
the number of degree n fields satisfying the bound in case (2) of Question 8.1 is
o(X), so that the answer to this case must be no. (For clarity, note that Widmer
works in terms of the relative Weil height.)

This leaves the question of whether case (1) is true. As an application of
our effective Chebotarev density theorem, we show that within appropriate
families of fields, (1) is true for “almost all” fields.

Theorem 8.2 Let ZI
n (Q,G) be fixed to be one of the families of fields consid-

ered in Theorems 3.3, 3.9, 3.11, 3.13 and 3.14, and correspondingly assume
the hypotheses (if any) of the relevant theorem. Let the parameters τ∗ < β ≤ d
be those proved to exist for that family in (3.5). For every τ > τ∗ suffi-
ciently close and every ε0 > 0 sufficiently small, there exists a constant D9
such that for every X ≥ 1, aside from at most D9X τ+ε0 exceptions, every
field K ∈ ZI

n (Q,G; X) contains an element α with K = Q(α) such that

H(α) ≤ 2D
1
2n
K .

The proof is a simple adaptation of an observation of Vaaler and Widmer
in [81, Thm. 1.3], which relies on finding primes that split completely in K
that are of size around D1/2

K . They showed that the bound in Question 8.1 case
(1) holds whenever ζK̃ satisfies GRH, via an application of Theorem A. Now,
independent ofGRH, for everyfield that is not δ-exceptional,with δ determined
by (3.6), we apply part (2) of Corollary 3.16 with the choices C = {1} and
σ = 1/2, in place of [81, Lemma 5.1]. Then [81, Thm. 4.1] shows that for each
field K to which the conclusion (3.8) applies, there exists an element α ∈ K
with K = Q(α) and H(α) ≤ p1/n ≤ 2D1/2n

K . We use Theorem 3.3 to bound
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the number of δ-exceptional fields, with δ determined by (3.6). We use the
trivial upper bound |ZI

n (Q,G; D7)| �n,G,I Dd
7 for the number of fields in

the family with discriminant smaller than the threshold D7 required to apply
part (2) of Corollary 3.16. Then upon setting D9 = D9(n,G,I , d, τ, ε0) to
be an appropriate maximum of D3 from Theorem 3.3 and the above multiple
of Dd

7 , we may then conclude Theorem 8.2 holds.
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