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Abstract. We consider the problem of A-B testing when the impact of the treatment is
marred by a large number of covariates. Randomization can be highly inefficient in such
settings, and thus we consider the problem of optimally allocating test subjects to either
treatment with a view to maximizing the precision of our estimate of the treatment effect.
Our main contribution is a tractable algorithm for this problem in the online setting, where
subjects arrive, and must be assigned, sequentially, with covariates drawn from an el-
liptical distribution with finite second moment. We further characterize the gain in pre-
cision afforded by optimized allocations relative to randomized allocations, and show
that this gain grows large as the number of covariates grows. Our dynamic optimization
framework admits several generalizations that incorporate important operational con-
straints such as the consideration of selection bias, budgets on allocations, and endogenous
stopping times. In a set of numerical experiments, we demonstrate that our method si-
multaneously offers better statistical efficiency and less selection bias than state-of-the-art
competing biased coin designs.
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1. Introduction
The prototypical example of an A-B test is the design
of a clinical trial where one must judge the efficacy of
a treatment or drug relative to some control. In a dif-
ferent realm, A-B testing today plays an increasingly
pivotal role in e-commerce, ranging from the optimi-
zation of content and graphics for online advertising,
to the design of optimal layouts and product assort-
ments for web pages. E-commerce properties will even
use A-B testing as a means of finding the best third-
party vendor for a specific service on theirwebsite (such
as, say, recommendations or enterprise search).

A natural approach to A-B testing is to indepen-
dently, and with equal probability, assign each subject
to either the treatment or the control group. Follow-
ing such a randomized allocation, the benefit of the
treatment relative to the control can be estimated from
the outcomes of subjects in the two groups. The notion
of a subject here can range from a patient in the clin-
ical trial setting to a web surfer or impression in the
e-commerce setting. Similarly, the notion of a treat-
ment can vary from an actual medical treatment in the
clinical trial setting to the decision to show a specific ad

in the e-commerce setting. Although randomized al-
location is simple and can easily be shown to yield un-
biased estimates of the treatment effect under a mini-
mal set of assumptions, the efficiency of this procedure
(or the sample size needed to get a statistically sig-
nificant estimate of the treatment effect) can prove
onerous in practice. To see, why consider the follow-
ing challenges:

1. Limited sample size: In the clinical trial setting,
the number of subjects is limited for several reasons.
As an example, the cost of managing a single subject
through a clinical trial is tens of thousands of dol-
lars (see, e.g., Steensma and Kantarjian 2014). In the
e-commerce setting, one may need to conduct many
thousands of A-B tests in an ongoing fashion. As an
example, consider an advertising firm that uses A-B
testing on live impressions (i.e., web surfers) to mech-
anically decide the appropriate messaging, text size,
font, color, and so on, for the creative content it gen-
erates for an online advertising campaign. In this
domain, a reduction in the sample size needed to
learn can, due to scale, result in dramatic, continual
cost savings.
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2. Confounding effects: Running counter to the
need for quick inference, the impact of a particular
treatment (or design decision) may be marred by a
potentially large number of covariates. The presence of
these covariates makes the inference of the treatment
effect more challenging, since the difference in out-
come of the treatment and control groupsmight be due
to a lack of balance in the covariates in the two groups.
Although the law of large numbers assures us that a
large enough sample size will wash out the impact of
this imbalance of covariates, the requisite sample size
may grow exceedingly large when the number of
covariates is large and/or the treatment effect is small.

3. Small treatment effects: Similar to the covariate
imbalance issue, the incremental impact of the treat-
ment under studymay be relatively small. This creates
a challenge in the measurement of small treatment
effects, which, despite their magnitude, many never-
theless be important in settings where the selected
treatments will be applied on a sufficiently large scale.
More precisely, if one imagined a model where the
outcome is additively impacted by the treatment and
exogenous noise, we expect the sample size required to
discern the treatment from noise to grow quadratically
with the ratio of the standard deviation of the exog-
enous noise to the treatment effect. To (heuristically)
seewhy, observe that if Sn is the sum of n independent,
zero mean random variables, each with standard de-
viation σ, θ > 0 is some constant, and Φ(·) is the cu-
mulative distribution of the standard normal, then by
the central limit theorem, we expect

P
Sn
n

⃒⃒⃒⃒ ⃒⃒⃒⃒
≥ θ

( )
∼ 2Φ

θ
̅̅
n

√
σ

( )
.

This suggests that, in order to differentiate a treat-
ment effect with magnitude θ from exogenous noise
with standard deviation σ, we need on the order of
σ2/θ2 samples.

4. Operational constraints: As already alluded to,
A-B tests can be expensive, either because of an ex-
plicit cost related to managing test subjects or the
implicit risk of testing a suboptimal treatment. These
issues clearly impact the choice of sample size and
frequently imply a budget on the number of subjects
allocated to the alternative treatment whose efficacy
we seek to measure. It is also not unusual to dynam-
ically stop a trial based on one’s confidence in the
outcome. In clinical trials, one cares about selection
bias in addition to efficiency; measures such as se-
lection bias speak to concerns of robustness (to mod-
eling errors or manipulation), or even fairness. Taken
together, these operational constraints further com-
plicate an already challenging problem.

Addressing these challenges motivates consider-
ing the careful design of such A-B tests. In particular,

given a collection of subjects, some of whom must be
chosen for treatment, and others assigned to a control,
we would like an assignment that balances the dis-
tribution of covariates across the two groups. This in
turn could conceptually yield an efficient estimate of
the treatment effect, the primary concern alluded
to earlier.
Given the broad applicability of an efficient A-B

test, it is perhaps not surprising that a large body
of literature within the statistical theory of the design
of experiments has considered this very problem,
starting with the nearly century old work of Fisher
(1935). Although we defer a review of this substantial
literature to Section 1.2, a very popular approach to
dealing with the problem of achieving covariate bal-
ance is the use of stratification. In this approach, the
subjects are divided into a number of groups based on
the covariates. In other words, the covariate space is
divided into a number of regions and subjects whose
covariates lie in a certain region are grouped together.
Further, each of the groups is randomly split to be
allocated to the treatment or the control. Unfortu-
nately, stratification does not scale gracefully with the
number of covariates since the number of groups re-
quired in stratification will grow exponentially with
the dimension.1 Another natural idea would be to
match subjects with similar covariates, followed by
assigning onemember of amatch to the treatment and
the other to the control. Such a design would try to
mimic an idealistic scenario in which, for n subjects
under the experiment, we have n/2 pairs of twins. If
the matched subjects are indeed close to each other in
the space of covariates, we would have that the dis-
tribution of covariates in the treatment and control is
close to each other, which would cancel out the ef-
fect of these covariates. Although this latter approach
does allow us to consider a large number of cova-
riates, the literature only appears to present heuristics
motivated by these ideas.
To add a further challenge beyond those already

discussed, an additional (and very important) require-
ment apparent from the applications we have de-
scribed is that the process of allocating subjects (or
impressions) to a particular treatment (or creative) must
be made sequentially, in an online or dynamic fashion.
Again, there is a literature on dynamic allocation start-
ing with seminal work by Efron (1971) on biased coin
designs (BCDs). Although a BCD seeks to balance the
number of subjects in the treatment and control groups,
there is by now a robust literature on so-called covar-
iate adaptive BCDs. These schemes extend Efron’s orig-
inal proposal so that one cares about balance in not
just the number of subjects across the two groups but
also in the covariate distribution. Viewed from the per-
spective of dynamic optimization, all of these heu-
ristics can be seen as myopic schemes that in making
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an allocation at a given point in time fail to hedge
against the future stream of arriving subjects. In fact,
the literature surprisingly does not consider the design
ofanoptimalonlineallocationof subjects to treatments—
or online A-B testing in our parlance—as a principled
dynamic optimization problem where dynamic pro-
gramming techniques for optimal sequential decision
making can be applied.

The present paper casts the problem of computing
an efficient estimate of the treatment effect in an A-B
test as a dynamic optimization problem. Despite this
being a high-dimensional control problem, we show
that one can efficiently compute near-optimal solu-
tions to this problem when covariates are elliptically
distributed.We show that our approach yields Pareto
improvements over state-of-the-art alternatives covar-
iate adaptive BCD approaches. As a secondary con-
tribution, we also show that that the important offline
variant of the problem also admits an efficient optimal
algorithm and tightly characterize the value of opti-
mization in that setting.

1.1. This Paper
Our approach, in a nutshell, is to formulate onlineA-B
testing as a (computationally challenging) dynamic
optimization problem and develop approximation
and exact algorithms for the same. In particular, the
present paper considers the setting where a subject’s
response is linear in the treatment and covariates. As
we discuss later, this is a canonical model and is
widely encountered in the literature on experiment
design. We consider the problem of maximizing the
precision of our estimate of the treatment effect by
optimally allocating subjects to either the treatment or
control group. We formulate this problem as a dy-
namic optimization problem and make the follow-
ing contributions:

1. Offline allocation: In the offline setting, that is,
where the allocation can be made after observing all
subjects, we show that the problem can be solved
efficiently by using as a subroutine a generalization of
theMAX-CUT semidefinite program (SDP) relaxation
of Goemans andWilliamson (1995). Although not our
main result, this result shows that the problem of
offline A-B testing (which is still valuable in some
traditional applications) can surprisingly be solved
efficiently.We also characterize the value of optimized
allocations relative to randomization in this setting
and show that this value grows large as the number of
covariates grows.

2. Sequential allocation: In the online setting, which
is the algorithmic focal point of our work, our optimi-
zation problem is, not surprisingly, a high-dimensional
dynamic optimization problem with dimension that
grows like the number of covariates. We show how to
break the curse of dimensionality here. In particular,

we show that the state space of this dynamic optimi-
zation problem collapses if covariates come from an
elliptical family of distributions (a family that includes,
for example, the multivariate Gaussian). This yields
an efficient algorithm that is provably optimal in the
elliptical distribution setting and that can nonethe-
less be employed when covariates are not from an
elliptical family.

3. A general framework: We show that our dy-
namic optimization formulation permits the consid-
eration of criteria beyond just the variance of the
treatment effect. Specifically, we extend our formu-
lation to a framework that can accommodate the si-
multaneous minimization of selection bias; the mini-
mization of general separable cost functions of the
allocation; endogenous (optimal) stopping criteria (as
opposed to a priorifixed sample sizes); and budgets on
the sample size for a given treatment, to name just a
few applications of the framework.

4. Experimental comparisons: We compare our
approach to sequential allocation with a host of so-
called covariate adaptive BCD approaches, several of
which are considered state of the art. It is typical to
measure the performance of such approaches not just
in terms of efficiency, but also with respect to the so-
called selection bias they induce. Here we show that
our approach yields a Pareto improvement over these
alternatives. In addition to synthetic data, we run
our experiment on real user impression data from
Yahoo.com.We show similar Pareto gains despite the
fact that the covariates in the real data are categorical.
Thus, our main contribution is providing an al-

gorithm for the challenging problem of sequential
A-B testing that can be shown to be near optimalwhen
covariates are drawn from an elliptical family. The
algorithm is applicable to a canonical family of treat-
ment models and also applies to the simultaneous
optimization of several criteria. Given the vast extant
literature on this problem, and the fact that it is nom-
inally high dimensional, it is a pleasant surprise that
such an algorithm exists.

1.2. Related Literature
The theory of optimal experiment design (which, in a
sense, subsumes the problems we consider here) starts
with the seminal work of Fisher (1935). Important
textbook expositions of this mature topic include that
of Pukelsheim (2006) and Cook et al. (1979), the latter
of which discusses the notion of covariatematching as
it applies to practice. Although not our primary focus,
the offline problem we discuss in this paper is of prac-
tical relevance in the social sciences [see Raudenbush
et al. (2007) for an application and heuristics]. Kallus
(2013) studies an approach to this problem based on lin-
ear mixed integer optimization with an application to
clinical trials. In a follow-uppaper, Bertsimas et al. (2015)
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presents a robust optimization framework for the
offline problem with an emphasis on allocations of
treatments that are robust to the specific form of the
model of each subject’s response as a function of the
treatments and subject covariates (we merely con-
sider linear functions here). The value of optimization
has also recently received attention from the economics
community. Kasy (2016) discusses several optimiza-
tion formations that complement those proposed
by Bertsimas et al. (2015). Unlike Kallus (2013) and
Bertsimas et al. (2015), Kasy (2016) offers no algo-
rithmic approach to solve the problems he proposes
(and unfortunately, his problem formulations appear
largely intractable). In contrast, we focus on a class
of models where the treatment effect is linear in the
observed covariates and offer efficient approxima-
tion algorithms for the same. Our formulation is closely
related to the case of squared loss with a noninforma-
tive prior in the verbiage of Kasy (2016). Our offline
problem may be viewed as a special case of the prob-
lem of Da-optimal experiment design and fortuitously
coincides with an optimality criterion that already enjoys
wide acceptance. By virtue of their computational effi-
ciency, our techniques can be brought to bear in set-
tings where the size of the problem can be very large
rendering brute-force techniques for optimization (such
as those suggested by Kasy 2016) infeasible.

The problem that is of greatest algorithmic interest
to us is the online allocation problem, where treatments
must be assigned to subjects as they arrive.With regard
to this sequential problem, Efron (1971) proposed an
allocation strategy, BCD, that sought to balance the
number of subjects in each trial while minimizing
certain types of selection bias. Now, whereas Efron’s
BCD seeks only to balance the number of subjects
between test and control groups, there is by now a
robust literature on so-called covariate adaptive BCDs
(CA-BCDs). Such schemes seek balance not just in the
number of subjects but also in the covariate distribu-
tion between groups. Perhaps the most widely used
CA-BCD is the procedure proposed by Pocock and
Simon (1975), wherein the authors recommend a bias
that depends on a generic cost function of the co-
variate imbalance between the two groups. Atkinson
(1982, 1999) proposed the first CA-BCDwhose design
is rooted in theory, specifically to the notion of Da
optimality in experiment design; of course, this ap-
proach comes at the cost of assuming a treatment effect
model. A number of model-based CA-BCD proposals
have followed, including Smith’s rule (Smith 1984a, b),
the Bayesian procedure of Ball et al. (1993), and rule
ABCD, proposed by Baldi Antognini and Zagoraiou
(2011), to name a few. The so-called minimization
approach of Pocock and Simon (1975) (which applies
to generic cost functions of covariate imbalance) has
also been recently analyzed by Hu and Hu (2012),

who prescribe a more refined class of cost functions
that lead to asymptotic balance. Alternatives to the
CA-BCD procedure have also been proposed re-
cently: Kapelner and Krieger (2014) presents an ap-
proach to achieving covariate balance based on ideas
from the theory of online matching.
Viewed from the perspective of dynamic optimi-

zation, except for the heuristic proposed by Kapelner
and Krieger (2014), all of these approaches can be re-
garded as myopic policies. Such policies only consi-
der the immediate impact of an allocation decision,
and do not consider the impact on future decisions. In
general, myopic policieswill not be optimal. It is worth
noting that for all of the aforementioned procedures,
the theoretical analysis available, if any, is always in
a limiting regime where sample size grows large
keeping the number of covariates fixed. Little is un-
derstood infinite samples.More generally, Rosenberger
and Sverdlov (2008, p. 406) note that “very little is
known about the theoretical properties of covariate-
adaptive designs.” In contrast, we see that our ap-
proach yields provably optimal allocations in finite
samples for a host of optimality criteria. As we see in
our experimental work, this also translates to Pareto
improvements over several of the schemes described
earlier, even on real data. It is worth noting, however,
that such statements of optimality require restrictions
on the types of treatment models one can consider, as
well as distributional assumptions on the covariates.

1.2.1. Related but Distinct Problems. It is important
to distinguish the experiment design problems con-
sidered here from bandit problems, particularly those
with side information (e.g.,Woodroofe 1979, Langford
and Zhang 2007) as both classes of problems fre-
quently find application in very related applications.
In theory, the experimental design setting is appro-
priate when an irrevocable decision of what treatment
is appropriatemust bemade (e.g., the number of ads to
display with search results), whereas the bandit set-
ting is appropriate in a setting where the decision can
be changed over time to optimize the (say) long-run
average value of some objective (e.g., maximizing
revenues by finding the best audience for a specific
campaign). In practice, the choice of which frame-
work to use is frequently complicated by operational
considerations. For instance, consider the problem of
deciding between two distinct creatives in an adver-
tising campaign. The bandit formulation is elegant
and quite natural for this setting (Hauser et al. 2009,
Schwartz et al. 2017). Despite this, it is common in-
dustry practice to make such decisions using frequent
A-B tests.2 From a methodological perspective, an im-
portant difference is that solution methods for bandit
problems need to address an exploitation-exploration
trade-off between learning the best alternative and
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collecting rewards to optimize the objective; there is
no such trade-off in our experimental design setting.

Other problems in marketing science are also close
in spirit to the A-B testing problemwe study. Adaptive
conjoint analysis seeks to learn the tastes of an indi-
vidual (or a group of individuals) by asking a sequence
of questions (or presenting a sequence of choices). In
an effort to learn accurately with as small a number
of questions, Toubia et al. (2003, 2004) propose a
dynamic optimization procedure that is in the spirit
of the ellipsoid method in convex optimization.

Another closely related class of problems are rank-
ing and selection problems, where the task is to pick
the best of a set of alternatives with a budget on sam-
ples (for an overview, see Kim and Nelson 2006). In
our lexicon, the emphasis in such problems is choos-
ing from multiple (typically, greater than two) treat-
ments in the absence of observable covariates on a
sample. Interestingly, recent progress on this class of
problems has also heavily employed dynamic opti-
mization techniques (see, e.g., Chick and Gans 2009,
Chick and Frazier 2012, Chick et al. 2017).

As afinal note, themajor emphasis in ourwork is on
A-B testing with a fixed budget on samples. It is in-
teresting to consider A-B tests that can be stopped
with continuous monitoring. Doing so can intro-
duce a significant bias toward false discovery. Johari
et al. (2017) have recently made exciting progress on
this problem.

2. Model
In this section,we describe themodel. Given themodel
assumptions in Section 2.1, our problem is to maxi-
mize the precision of our estimate of the treatment
effect. In Section 2.2, we pose the two optimization
problems that are of interest. One of them is the offline
problem where all subjects can be observed before
making allocation decisions and the other is the se-
quential problem where subjects must be allocated
without knowing the future arrivals. In Section 2.3,
we present a simple upper bound on the precision of
any estimate of the treatment effect given an alloca-
tion. This allows us to define the notions of efficiency
and loss. Section 2.4 concludes with an intuitive in-
terpretation of our optimization problems.

2.1. Setup
Wemust learn the efficacy of a treatment by observing
its effect on n subjects. The kth subject is assigned a
treatment xk ∈ {±1}. The kth subject is associated with
a covariate vector (i.e., side information or context)
Zk ∈ Rp. We assume that impact of the treatment on
the kth subject is given by:

yk � xkθ + Z�
k κ + εk.

This assumes a linear dependence of the covariates
and treatment decision on the outcome. The treatment
effect θ ∈ R and the weights on the covariates κ ∈ Rp

are unknown. Our aim is to estimate θ. The {εk} are
independent and identically distributed (i.i.d.) zero
mean random variables with variance σ2. The key
restriction imposed by this model is that the impact of
treatment is additive, an assumption that is ubiqui-
tous in all of the related literature on the topic. Fur-
ther, we assume that there is no endogeneity, that is,
the idiosyncratic noise in the model, εk, is uncorre-
lated with any of the covariates in Zk.3

Letting Z ∈ Rn×p be the matrix whose kth row is Z�
k ,

throughout this paper, we will assume the following.

Assumption 1. The first column of Z is a vector of all ones.
Further, Z is full rank and p ≤ n − 1.

The requirement that one of the covariates be a
constant ensures that θ is interpreted as a treatment
effect, otherwise it could be learned from the assign-
ment of a single treatment. The crucial assumption is
that p ≤ n − 1, which nonetheless allows for a large
number of covariates.4 In fact, the scenario where
p ∼ n is particularly relevant. Our problem formula-
tion does not apply to the regimewhere p > n; indeed,
a formulation that is relevant to that regime is un-
clear to us since treatments must be assigned prior to
having observed outcomes. For a particular allocation
of treatments, x, let us denote by θ̂x the least squares
estimator for θ.

2.2. Optimization Problem
We are interested in finding an experiment design
with minimal variance or, equivalently, maximal pre-
cision. A standard calculation yields that the estima-
tor θ̂x has precision

Prec
(
θ̂x

)
≜

1

Var
(
θ̂x

) � x�PZ⊥x
σ2

, (1)

where PZ⊥ ≜ I − Z(Z�Z)−1Z�. Details are presented in
the electronic companion to this paper.
We can now immediately state the offline experi-

ment design problem:

(P1) ≜ maximize x�PZ⊥x
subject to x ∈ {±1}n.

Here, given the collection of covariates Z, we seek to
find the allocation x that yields the least squares es-
timate with maximal precision.
In many real-world applications, the assignments

need to be made in a sequential fashion. Subjects
arrive one at a time and the assignment must be made
without the knowledge of subjects in the future. We
formulate this as a dynamic optimization problem.
To this end we must now assume the existence of a
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measure on the covariate process {Zk}. We define a
filtration {^k} by setting, for each time k, ^k to be the
sigma algebra generated by the first k covariates
(Z1, . . . ,Zk) and the first k − 1 allocations (x1, . . . , xk−1).
The online experiment design problem is then
given by:

(P2) ≜ maximize E
[
x�PZ⊥x

]
subject to x ∈ {±1}n,

xk is ^k-measurable, ∀ 1 ≤ k ≤ n,

where the expectation is over the distribution of the
covariate process. Here, the objective is to maximized
the expected ex post precision.5

2.3. Upper Bound, Efficiency, and Loss
The following upper bound on the precision of any
unbiased estimator that is a straightforward conse-
quence of the Cramér-Rao bound.

Proposition 1. If ε ∼ N(0, σ2I), then for any covariate
matrix Z and any unbiased estimator (θ̂, κ̂), including non-
least squares estimators, we have

Prec
(
θ̂x

)
≤ n
σ2

,

an upper bound on the optimal value of both problems (P1)
and (P2). For non-Gaussian noise ε, this upper bound still
holds for all least squares estimators.

This proposition, whose proof is provided for com-
pleteness in the electronic companion to this paper,
shows that the precision of the optimal estimator6 is
O(n). Consider the case when subjects are identical,
that is, p � 1 and Zk � 1 for all k. It is easy to note that,
in this case assuming n is even, the optimal design al-
locates half of the subjects to either treatment. Further,
the precision of such a design is n/σ2, the optimal
achievable precision. For p > 1, this precision is less
than this value. Thus the presence of covariates only
makes the inference challenging.

Motivated by Proposition 1, we define efficiency
as the precision of an estimator normalized by the
Cramér-Rao upper bound, that is,

Eff
(
θ̂x

)
≜

Prec
(
θ̂x

)
n/σ2

≤ 1,

Loss is defined as the suboptimality of an estimator
relative to the upper bound measured additively in
sample units:

Loss
(
θ̂x

)
≜ n − σ2Prec

(
θ̂x

)
≥ 0,

so that

Prec
(
θ̂x

)
�
n − Loss

(
θ̂x

)
σ2

.

We consequently see that loss can intuitively be
thought of as “the effective number of subjects on
whom information is lost due to the imbalance of the
design” (Atkinson 2014, p. 147).

2.4. Problem Interpretation
Before moving on to algorithm design, we pause to
interpret the offline and online problems presented
previously. First we begin with an intuitive interpre-
tation of the objective. Define the imbalance vector in
covariate values between the test and control groups,
Δn ∈ Rp, according to Δn ≜

∑n
k�1 xkZk � Z�x. Notice

that the empirical second moment matrix for the
covariates is given by Γn ≜ Z�Z/n. Then, it is easy to
see that the objective of the offline problem (P1) re-
duces to

x�PZ⊥x � x�
(
I − Z

(
Z�Z

)−1Z�
)
x � n 1 − Δ

�
n Γ

−1
n Δn

( )
.

Therefore, the offline problem (P1) is equivalent to
minimizing the square of the weighted Euclidean
norm of Δn,

Δn
⃦⃦ ⃦⃦2

Γ−1n
≜ Δ

�
n Γ

−1
n Δn,

whereas (P2) seeks to minimize the expected value of
this quantity where the expectation is over the co-
variate process and our allocations. Put simply, both
problems seek to minimize the aggregate imbalance
of covariates between the treatment and control groups,
measured according to this norm.
As a final point, we note that the measure of im-

balance minimized in problems (P1) and (P2) was
derived assuming a least squares estimator, and it is
worth noting that this choice is not arbitrary. Specif-
ically, note that the Cramér-Rao bound dictates that,
provided x andZ are independent of ε, and further if ε
is normally distributed, then for any unbiased esti-
mator of the treatment effect θ̃x, we have that

Eff
(
θ̃x

)
≤ Eff

(
θ̂x

)
,

where the right-hand side quantity is the efficiency of
the least square estimator. Now both problems (P1)
and (P2) seek to find an allocation x to maximize the
latter quantity, or its expected value, respectively.
Consequently, both problems may be interpreted as
seeking an allocation of samples to the test and control
groupwith a view to maximizing the efficiency of our
estimate of the treatment effect among all unbiased
estimators of the treatment effect.

3. The Offline Optimization Problem
In this section, we consider the offline optimization
problem (P1). We show that this combinatorial prob-
lem permits a tractable, constant factor approximation
using an SDP-based randomized rounding algorithm.
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Moreover, in this setting, we can analyze the effect
optimization has on the precision of the estimator of
the treatment effect, as comparedwith randomization.
To this end, we first obtain the mean precision of the
randomized design. Surprisingly, precision is a simple
function of n and p and does not depend on the data
matrix Z. We show that when p ∼ n, the randomi-
zation is rather inefficient and the precision is O(1).
This can be contrasted with the upper bound on
precision given by Proposition 1 which is Ω(n). To
conclude the section, we analyze the performance of
the optimal allocation assuming a distribution on Z.
We show that for any p, the precision of optimal al-
location is Ω(n). Thus concluding that when p ∼ n,
randomization can be arbitrarily bad as compared
with the optimal design.

3.1. Approximation Algorithm for (P1)
First, we observe that there is a tractable approxima-
tion algorithm to solve the combinatorial optimization
problem (P1). In particular, consider the SDP over
symmetric positive semidefinite matrices Y ∈ Rn×n
given by7

(P1-SDP) ≜ maximize tr PZ⊥Y( )
subject to Ykk � 1, ∀ 1 ≤ k ≤ n,

Y � 0,
Y ∈ Rn×n.

It is straightforward to see that (P1-SDP) is a re-
laxation of (P1) in the sense that it achieves higher
objective value: given an optimal solution x̂ ∈ {±1}n
for (P1), define the symmetric positive definite matrix
Ŷ ≜ x̂x̂� ∈ Rn×n. Then, clearly Ŷ satisfies the constraints
of (P1-SDP). Also, tr(PZ⊥ Ŷ) � x̂�PZ⊥ x̂, so the objective
values for (P1) and (P1-SDP) coincide. Therefore, the
optimal objective value of (P1-SDP) must be larger than
that of (P1).Moreover, because it is an SDP, (P1-SDP) can
be efficiently solved in polynomial time.

Based upon prior work on the MAX-CUT problem
(Goemans andWilliamson 1995), the following result,
due to Nesterov (1997), establishes that (P1-SDP) can
be used as the basis of a randomized algorithm to solve
(P1) with a constant factor guarantee with respect to
the optimal design. The corresponding (randomized)
allocation procedure is described in Algorithm 1.

Algorithm 1 (Randomized Allocation Algorithm Based on
(P1-SDP))

1. procedure SDPALLOCATION(Z) 8 Compute
an allocation x̃

2. Set Y∗ � 0 to be an optimal solution of the pro-
gram (P1-SDP) given the data matrix Z.

3. Set the matrixV ∈ Rn×n with columns v1, . . . , vn ∈
Rn so that the matrix decomposition Y∗ � V�V holds.

4. Let u ∈ Rn be a vector chosen at random uni-
formly over the unit sphere.

5. for k ← 1,n do

6. x̃k ← +1 if u�vk ≥ 0,
−1 if u�vk < 0.

{
7. end for
8. return x̃
9. end procedure

Theorem 1. Given a data matrix Z ∈ Rn×p, set the allo-
cation x̃ ∈ Rn according to Algorithm 1. Then,

Eu x̃�PZ⊥ x̃
[ ] ≥ 2

π
max
x∈{±1}n

x�PZ⊥x,

where the expectation is taken over the choice of randomvector u
inAlgorithm 1. In order words, the expected value achieved
by the vector x̃ in the offline experiment design problem
(P1) is within a constant factor 2/π of the best possible.

Proof. This theorem is a direct consequence of theorem
3.4.2 of Ben-Tal and Nemirovski (2001). That result
states that any quadratic integer optimization problem
with objective x�Qx, such that x ∈ {±1}n, can be ap-
proximated within a relative error of π/2 using the
prescribed algorithm, provided Q is positive semi-
definite. Since PZ⊥ is positive semidefinite (indeed, it is
a projection matrix), the result follows. □

3.2. Optimal Allocations Versus
Randomized Allocations

Randomization is the most popular technique used
for A-B testing. In what follows, we will compare
the performance of randomization to what can be
achieved by the optimal offline allocation of (P1).
In its most basic variation, simple randomization

partitions the population into two equally sized groups,
each assigned a different treatment, where the partition
is chosen uniformly at random over all such partitions
(for simplicity, we will assume that the population is
of even size). Denote by Xrand ∈ {±1}n the random
allocation generated by simple randomization, and
denote by θ̂Xrand the resulting unbiased least squares
estimator for θ.

Theorem 2. If n is even, given a covariate matrix Z, define
the expected precision and loss of simple randomization

Precrand ≜ EXrand Prec θ̂Xrand

( )[ ]
,

Lossrand ≜ EXrand Loss θ̂Xrand

( )[ ]
,

where the expectations are taken over the random alloca-
tion Xrand. Then,

Precrand � n
σ2

1 − p − 1
n − 1

( )
, Lossrand � n

n − 1
(p − 1).
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The proof relies on simple probabilistic arguments
and is presented in the electronic companion to this
paper. Surprisingly, the precision and loss of the ran-
domized allocation do not depend on the data ma-
trix Z at all, as long as it is full rank and has a con-
stant column.

Comparing with the upper bound of Proposition 1,
we notice that in the large sample size regime where
n→∞, simple randomization is asymptotically order
optimal in the sense that it achieves precision that
grows with order n—the maximum permitted by the
upper bound of Proposition 1—when p � n. Thismay
not be the case when p is close to n, however. For
example, if p � n − 1, which is the maximum value p
can take under Assumption 1, then Precrand ≈ 1/σ2,
which is of constant order. In such a case, the least
squares estimator θ̂Xrand will not asymptotically con-
verge to θ as n→∞. In general, simple randomiza-
tion is asymptotically order optimal any time that
pn � o(n) as n → ∞.

Nowwe consider the performance of the least squares
estimator under the optimal design that would be
obtained by solving the offline experiment design
problem (P1). By construction, the optimal design will
clearly have precision that is at least that of the ran-
domized procedure. We would like to understand the
magnitude of the possible improvement, however, and
to see if it is material. Unlike in the simple randomized
case, however, the precision of the optimal design de-
pends on the covariate matrix Z. Moreover, it is dif-
ficult to obtain a closed-form expression for this
precision as a function of Z.

We can illustrate this with a simple example. Con-
sider the case where p � n − 1. The precision of the op-
timal design is given by

sup
x∈{±1}n

x�PZ⊥x
σ2

.

Since p � n − 1, the null space of Z� is a one-
dimensional subspace of Rn. Let y ∈ Rn be a non-
zero vector such that Z�y � 0 and ‖y‖22 � 1. That is, y is
a unit vector in the null space of Z�. It is easy to see
that PZ⊥ � yy�. Thus, the precision of the optimal
design is

sup
x∈{±1}n

x�yy�x
σ2

� sup
x∈{±1}n

y�x
( )

2

σ2
� ‖y‖21

σ2
. (2)

Now, consider the following two cases:
1. In case 1, y has only two nonzero components

given by 1/
̅̅
2

√
and −1/ ̅̅

2
√

. In this case, the optimal
precision is 2/σ2. Thus, in this case, randomization is
within a constant factor of optimal.

2. In case 2, y has entries such that |yi| � 1/
̅̅
n

√
and

1�y � 0. In this case, the precision is n/σ2. Thus, in this

case, the optimal design achieves the Cramér-Rao
upper bound and the performance is a significant
improvement over the randomized design.
The preceding two cases show that depending on

the covariate matrix Z (which determines the vector y
in the previous discussion), the performance of the
optimal design may be a drastic improvement over
that of the randomized design. To study the perfor-
mance of the optimal design, we proceed by making
a certain probabilistic assumption on Z. Under this
assumption, we will then analyze the distribution of
performance of the optimal design. For this purpose,
we will assume a distribution on the covariate ma-
trix Z as follows:

Assumption 2. Given (n, p) with 1 ≤ p < n, assume that
the covariate matrix Z ∈ Rn×p has i.i.d. rows. Further, as-
sume that for each 1 ≤ k ≤ n, the kth row Zk ∈ Rp satisfies
Zk,1 � 1, and that the vector of all components except the first
satisfies Zk,2:p ∼ N(0,Σ), that is, it is distributed according
to a multivariate normal distribution with zero mean and
covariance matrix Σ ∈ Rp−1×p−1.
It is easy to check that, under Assumption 2, the

covariate matrix Z will satisfy the full rank condition
of Assumption 1 almost surely. Consider a sequence
of problems indexed by the sample size n, and where
the dimension of the covariates is given by 1 ≤ pn < n.
For each n, let Zn,pn ∈ Rn×pn be the data matrix satis-
fying Assumption 2. We have the following.

Theorem 3. Suppose that Assumption 2 holds with
Σ � ρ2I. Let x∗ be an optimal design obtained by solving (P1)
with covariate matrix Z � Zn,pn , and let θ̂x∗,Zn,pn be the cor-
responding least squares estimator of θ. Denote the pre-
cision of this estimator by

Precn,pn∗ ≜ Prec θ̂x∗,Zn,pn

( )
.

Then, we have that for any ε > 0,

lim
n→∞P

(
Precn,pn∗

n
<

1
8πσ2

− ε

)
� 0,

where the probability is measured over the distribution of
the covariates.

Theorem 3 states that, with high probability, the
optimal offline optimization-based design always
yields Ω(n) precision under Assumption 2. Note that
this is true for all possible values of pn < n with pn �
n − 1 being the worst case (the latter fact is established
in the proof). In contrast, Theorem 2 establishes that
when p � n − 1, the precision one expects under ran-
domized allocation is O(1), so the relative improve-
ment from optimization for this value of p is Θ(n). In
other words, if the number of covariates is comparable
to the sample size, we might expect dramatic improve-
ments over simple randomization through optimization.
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Moreover, whereas the optimal design requires solu-
tion of (P1), which may not be tractable, Theorem 1
suggests a tractable approximation that is guaranteed
to achieve the same precision as the optimal design up
to a constant factor.

The proof of Theorem 3 is presented in the elec-
tronic companion to this paper. Here we provide a
proof sketch. LetZn,p ∈ Rn×p andZn,n−1 ∈ Rn×n−1 be two
covariate matrices defined on the same probability
space (under Assumption 2 with Σ � ρ2I) such that
they are identical on the first p columns. We show that
Precn,p∗ ≥ Precn,n−1∗ . This establishes that p � n − 1 cor-
responds to the worst case precision and allows us to
focus on the sequence Precn,n−1∗ . We then analyze the
distribution of Zn,n−1. We show that Precn,n−1∗ can be
written down as a function of a unit vector in the null
space of (Zn,n−1)�, say yn ∈ Rn. Further, yn describes a
randomone-dimensional subspace ofRn that is invariant
to orthonormal transformations that leave the constant
vector unchanged. There is a uniquedistribution that has
this property. We then identify the distribution and
compute the precision in closed-form using this distri-
bution. In particular, we show that, as n→∞,

Precn,n−1∗
n

→ 1
8πσ2

,

where the convergence is in distribution.

4. Sequential Problem
We now consider the online experiment design prob-
lem (P2). Here, decisions must be made sequentially.
At each time k, an allocation xk ∈ {±1} must be made
based only on the first k covariates and any prior
allocations. In other words, xk is ^k-measurable.

In this section we show that the optimization problem
is tractable. First, we pose a surrogate problem in which
the objective of (P2) is simplified. The details of this sim-
plification are provided in Section 4.1. In Section 4.2,
we show that the reduction in performance when the
surrogateproblem isused todeviceanassignmentpolicy
is negligible. Focusing on the surrogate problem, we
show that the surrogate problem is a p-dimensional
dynamic program in Section 4.3. Surprisingly, if we
assume that the data generating distribution for the
covariates comes from the so-called elliptical family,
then the state space collapses to twodimensions,making
the dynamic program tractable. This state space collapse
is presented in Section 4.4.

4.1. Formulation and Surrogate Problem
To formulate the sequential problem with an ex-
pected value objective, a probabilistic model for cova-
riates is necessary. We will start by making the follow-
ing assumption.

Assumption 3. Given (n, p) with 1 ≤ p < n, assume that
the covariate matrix Z ∈ Rn×p has i.i.d. rows. Further,

assume that for each 1 ≤ k ≤ n, the kth row Zk ∈ Rp sat-
isfies Zk,1 � 1, and that the vector Zk,2:p ∈ Rp−1 of all com-
ponents except the first has zero mean and covariance matrix
Σ ∈ Rp−1×p−1.
Assumption 3 requires that the sequentially ar-

riving covariates are i.i.d. with first and second mo-
ments. Assumption 2, by comparison, in addition
imposes a Gaussian distribution.
Problem (P2) can be viewed as maximizing the

expectation of terminal reward that is given by

x�PZ⊥x � x� I − Z(Z�Z)−1Z�( )
x

� n − 1
n

∑n
k�1

xkZk

( )�
Γ−1n

∑n
k�1

xkZk

( )
, (3)

where the sample second moment of covariates is
given by

Γn ≜
1
n

∑n
k�1

ZkZ�
k .

We write this matrix in block form as

Γn � 1 M�
n

Mn Σn

[ ]
,

where

Σn ≜
1
n

∑n
k�1

Zk,2:pZ�
k,2:p, Mn ≜

1
n

∑n
k�1

Zk,2:p.

Here, Mn and Σn correspond to sample estimates of the
covariate mean and covariance structure, respectively.
Wedefine, for each k, the scalar sample count imbalance

δk ∈ R and the covariate imbalance vector Δk ∈ Rp−1 by

δk ≜
∑k
	�1

x	, Δk ≜
∑k
	�1

x	Z	,2:p. (4)

The terminal reward (Equation (3)) is equal to

x�PZ⊥x � n − 1
n

δn Δ�
n

[ ] 1 M�
n

Mn Σn

[ ]−1
δn
Δn

[ ]
.

Problem (P2) is then equivalent to

(P3) ≜ minimize E
[
δn Δ�

n

[ ] 1 M�
n

Mn Σn

[ ]−1 δn
Δn

[ ]]
subject to x ∈ {±1}n,

xk is ^k-measurable, ∀ 1≤ k≤ n.

Observe that the objective of (P3) corresponds to n
times the loss of the estimator.
As n → ∞, by the strong law of large numbers

(under mild additional technical assumptions), Σn →
Σ andMn → 0 almost surely.Motivated by this fact, in
developing an efficient algorithm for (P3), our first
move will be to consider a surrogate problem that
replaces the sample covariance matrix Σn with the
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exact covariancematrixΣ and sets the sample meanMn

to the exact mean 0:

(P3′) ≜ minimize E δ2n + Δn‖ ‖2Σ−1
[ ]

subject to x ∈ {±1}n,
xk is ^k-measurable, ∀ 1≤ k≤n.

Here, given an arbitrary covariance matrix Σ̂ ∈ Rp−1×p−1,
we find it convenient to introduce the norm ‖ · ‖Σ̂−1
on Rp−1 defined by ‖z‖Σ̂−1 ≜ (z�Σ̂−1z)1/2. In the present
context, this norm is typically referred to as a Mahala-
nobis distance.

The roles of the sample count imbalance δn and the
covariate imbalance vector Δn in the surrogate prob-
lem (P3′) are intuitive: requiring δn to be small balances
the number of assignments between the two treat-
ments (the focus of the so-called BCDs). Requiring the
sameofΔn will tend to balance covariates—whenΔn is
small, the empirical moments of the covariates across
the two treatments are close. As discussed in the in-
troduction, heuristics developed in the literature on
the design of optimal trials tend to be driven by precisely
these two forces.

For the rest of this section, we will focus on the
surrogate problem. We want to first justify the use of
the surrogate objective. We do this by providing an
approximation guarantee in Section 4.2. We then turn
our attention on how to solve the surrogate problem via
dynamic programming in the subsequent sections.

4.2. Approximation Guarantee for the
Surrogate Problem

First, we show that the policy obtained by solving
(P3′) is near optimal. Denote by μ̂ the measure over
the sequence xk induced by an optimal solution for the
surrogate control problem (P3′), and let μ∗ denote the
measure induced by an optimal policy for our orig-
inal dynamic optimization problem (P3). Now, δn
and Δn are random variables given an allocation policy.
Given an allocation policy μ, define

Dn,p
μ ≜ Eμ δn Δ�

n

[ ]
Γ−1n

δn
Δn

[ ][ ]
to be the objective value of (P3) under the allocation
policyμwith sample size n and covariate dimension p.
The following result is demonstrated, without loss
of generality, under the assumption that Σ is the
identity (otherwise, we simply consider setting Zk,2:p

to Σ−1/2Zk,2:p).

Theorem 4. Suppose that Assumption 2 holds with Σ � I
and let ε > 0 be any positive real number. Consider a se-
quence of problems indexed by the sample size n, where the

dimension of the covariates is given by 1 ≤ pn < n and
γn > 0 are real numbers such that, for n sufficiently large,
n ≥ Lmax(pn, l log 2/γn)/ε2. Then, as n→∞

Dn,pn
μ̂ ≤ 1 + ε

1 − ε

( )
2
Dn,pn

μ∗ + γnn
2 + γnn

2pn +O

( ̅̅̅̅̅̅̅̅
n

pn − 1

√ )
.

Here, L and l are universal constants. In particular, select-
ing γn ∝ 1/n4 yields

Dn,pn
μ̂ ≤ 1 + ε

1 − ε

( )
2
Dn,pn

μ∗ +O

( ̅̅̅̅̅̅̅̅
n

pn − 1

√ )
. (5)

This result relies on the use of nonasymptotic
guarantees on the spectra of random matrices with
sub-Gaussian entries and can be found in the elec-
tronic companion to this paper.
The preceding result bounds the objective of the

problem (P3) when (P3′) is used to devise an alloca-
tion policy. However, we are interested in the ob-
jective of the problem (P2), which is the precision or
inverse variance of the design corresponding to the
policy used. In particular, denote by Precn,pμ the ex-
pected precision of the estimator when allocations
are made with a policy μ, for a problem with sample
size n and covariate dimension p, that is,

Precn,pμ � Eμ x�PZ⊥x[ ]
σ2

� n −Dn,p
μ /n

σ2
. (6)

Then, we have the following.

Corollary 1. Suppose that Assumption 2 holds with Σ � I.
Consider a sequence of problems indexed by the sample
size n, where the dimension of the covariates is given
by 1 ≤ pn < n, and a fixed positive real number ε > 0
such that

ε >
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L lim sup

n→∞
pn/n

√
,

for a universal constant L. Then, as n→∞,

Precn,pnμ̂

Precn,pnμ∗
≥ 1 − 4ε3

(L − ε2)(1 − ε2) + o(1).

Corollary 1 gives the multiplicative loss in the pre-
cision by using an allocation derived from the sur-
rogate problem (P3′) . Themultiplicative loss depends
on the ratio p/n, which is captured in the choice of ε.
For small values of ε, the ratio of precision obtained by
solving (P3′) and (P2) approaches 1. Note that this
result holds in an asymptotic regime where p and n
both increase to infinity, as long as p/n remains small.
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Proof of Corollary 1. Consider Equation (5) in Theorem 4.
This holds when

n ≥
Lmax

(
pn, l log 2/γn

)
ε2

with γn � b/n4 for some constant b. Equivalently,

n ≥ Lmax(pn, 4l log n + 2l log b)
ε2

.

For n sufficiently large, clearly the constraint that
n ≥ L(4l logn + 2l log b)/ε2 will be satisfied. Therefore,
combined with the lower bound hypothesized for ε,
Equation (5) holds as n→∞.

Using Equation (6),

Precn,pnμ∗ − Precn,pnμ̂

� Dn,pn
μ̂ −Dn,pn

μ∗

nσ2

≤
(1 + ε)2
(1 − ε)2 D

n,pn
μ∗ −Dμ∗ +O

̅̅̅̅̅̅̅̅
n

pn − 1

√( )
nσ2

� 4εDn,pn
μ∗

nσ2(1 − ε)2 + o(1)

� 4ε
(1 − ε)2

(
n
σ2

− Precn,pnμ∗

)
+ o(1). (7)

The first inequality follows from Theorem 4 and the
last equality from Equation (6).

Let Precn,pnrand denote precision of the randomized pol-
icy. Using Theorem 2 and the optimality of μ∗, we
have that

n
σ2

− Precn,pnμ∗ ≤ n
σ2

− Precn,pnrand � n
σ2

pn − 1
n − 1

≤ n
σ2

pn
n

≤ ε2n
Lσ2

, (8)

where the last inequality uses the fact that, by hypo-
thesis, pn/n ≤ ε2/L. Substituting this into Equation (7)
we get that

Precn,pnμ∗ − Precn,pnμ̂ ≤ 4ε3n
(1 − ε)2Lσ2 + o(1).

Now, using Equation (8), we get that,

Precn,pnμ∗ ≥ n
σ2

(
1 − ε2

L

)
.

Thus, we have that

1 − Precn,pnμ̂

Precn,pnμ∗
≤ 4εn
Precn,pnμ∗ (1 − ε)2Lσ2 + o(1)

≤ 4ε3

(L − ε2)(1 − ε2) + o(1).

This yields the result. □

4.3. Dynamic Programming Decomposition
It is not difficult to see that (P3′) is a terminal cost
dynamic program with state (δk−1,Δk−1) ∈ Rp at each
time k. The pair (δk,Δk) can be interpreted as the
postdecision state of the dynamic decision problem
immediately after the kth allocation. In other words,
given the past arrival sequence and actions, (δk,Δk) sum-
marizes the impact of this past on the future objective.
This is formally stated in the following proposition.

Proposition 2. Suppose that Assumption 3 holds. For each
1 ≤ k ≤ n, define the function Qk:R × Rp−1 → R by the
Bellman equation

Qk(δk,Δk)

≜
δ2n + ‖Δn‖2Σ−1 , if k � n,

E
[
min
u∈{±1}

Qk+1
(
δk + u,Δk + uZk+1,2:p

)]
, if 1 ≤ k < n.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(9)

Then,
1. At each time k, the optimal continuation cost for the

dynamic program (P3′) is given by Qk(δk,Δk). In other
words, this is the expected terminal cost, given the cova-
riates observed and the allocations made up to and in-
cluding time k, assuming optimal decisions are made at all
future times.

2. Suppose the allocation x∗k at each time k is made
according to

x∗k ∈ arg min
u∈{±1}

Qk

(
δk−1 + u,Δk−1 + uZk,2:p

)
.

Then, the sequence of allocations x∗ is optimal for the online
experiment design problem (P3′).

Proposition 2, whose proof is presented in the
electronic companion to this paper, suggests a stan-
dard dynamic programming line of attack for the
surrogate problem (P3′): optimal continuation cost
functions {Qk}1≤k≤n can be computed via backward
induction, and these can then be applied to determine
an optimal policy. However, the dimension of this
dynamic program is given by the number of cova-
riates p. In general, the computational effort required
by this approach will be exponential in p—this is the
so-called curse of dimensionality. Thus, outside of
very small numbers of covariates, say, p ≤ 3, the stan-
dard dynamic programming approach is intractable.
However, as we will now see, that the surrogate prob-
lem surprisingly admits an alternative, low dimensional
dynamic programming representation.

4.4. State Space Collapse
Proposition 2 yields a dynamic programming ap-
proach for the surrogate problem (P3′) that is in-
tractable for all but very small values of p. What is
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remarkable, however, is that if the covariate data are
assumed to have an elliptical distribution, then (P3′)
can be solved via a tractable two-dimensional dynamic
program. We first present the technical definition.

Definition 1. A random variable X taking values in Rm

has an elliptical distribution if the characteristic func-
tion ϕ: Cm → C has the form

ϕ(t) ≜ E exp(it�X)[ ] � exp iμ�t
( )

Ψ t�Σt
( )

,

for all t ∈ Cm, given some μ ∈ Rm, Σ ∈ Rm×m, and a
characteristic function Ψ: C → C.

Elliptical distributions, studied extensively, for
example, by Cambanis et al. (1981), are a general-
ization of the multivariate Gaussian distribution. The
name derives from the fact that if an elliptical dis-
tribution has a density, then the contours of the density
are ellipsoids inRm parameterized by μ andΣ. A useful
standard result for us (see, e.g., Cambanis et al. 1981)
is that these distributions can be generated by in-
dependently generating the direction and the length
of the deviation (in ‖ · ‖Σ−1 -norm) from the center μ.

Proposition 3. If X has an elliptical distribution with pa-
rameters μ, Σ, and Ψ, then there exists a nonnegative
random variable R such that,

X
d�μ + RΣ1/2U,

where U is distributed uniformly on the unit sphere {x ∈
Rp−1 | ‖x‖22 � 1} and U and R are independent.

Thus, any elliptical distribution can be identified
with a vector μ ∈ Rm, a positive semidefinite matrix
Σ ∈ Rm×m, and random variable R taking values on the
nonnegative real line. We denote such a distribution
by Ell(μ,Σ,R). It can be shown that if R2 ∼ χ2

m is a chi-
squared distribution with m degrees of freedom, then
Ell(μ,Σ,R) is a Gaussian distributionwithmean μ and
covariance Σ. Well-known distributions such as the
multivariate t-distribution, Cauchy distribution, and
logistic distribution also fall in the elliptical family.

We state the assumption needed for the state
space collapse.

Assumption 4. Given (n, p) with 1 ≤ p < n, assume that
the covariate matrix Z ∈ Rn×p has i.i.d. rows. Further, as-
sume that for each 1 ≤ k ≤ n, the kth row Zk ∈ Rp satisfies
Zk,1 � 1, and that the vector Zk,2:p ∈ Rp−1 of all components
except the first is distributed according to Ell(0,Σ,R),where
it is assumed that the random variable R has a finite second
moment, and further that, without loss of generality,8

E[R2] � p − 1.

The following theorem shows how the p-dimensional
dynamic program is reduced to a two-dimensional
one with Assumption 4.

Theorem 5. Suppose that Assumption 4 holds. For each
1 ≤ k ≤ n, define the function qk: Z × R+ → R according to

qk(m, λ)

≜

m2 + λ, if k � n,

E min
u∈{±1}

qk+1 m + u, λ + 2uRU1
̅
λ̅

√ + R2
( )[ ]

,

if 1 ≤ k < n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

Here, when k < n, the expectation is taken over inde-
pendent random variables U and R that are the random
variables in the stochastic decomposition of Z1,2:p from
Assumption 4. Then,

1. At each time k, the optimal continuation cost for the
dynamic program (P3′) is given by

Qk(δk,Δk) � qk
(
δk, Δk‖ ‖2Σ−1

)
.

In other words, this is the expected terminal cost, given
then covariates observed and the allocationsmade up to and
including time k, assuming optimal decisions are made at
all future times.

2. Suppose the allocation x∗k at each time k is made
according to

x∗k ∈ arg min
u∈{±1}

qk δk−1 + u, Δk−1 + uZk,2:p
⃦⃦ ⃦⃦2

Σ−1

( )
. (11)

Then, the sequence of allocations x∗ is optimal for the online
experiment design problem (P3′).

For the case of Gaussian distribution, the recursion
(Equation (10)) for solving the dynamic program (DP)
can be simplified according to the following corollary.

Corollary 2. If Assumption 2 holds, then, for 1 ≤ k ≤ n, the
functions qgaussk : Z × R+ → R are given by

qgaussk (m, λ)

≜

m2 + λ, if k � n,

E min
u∈{±1}

qgaussk+1 m + u,
̅
λ̅

√ + uη
( )

2+ξ
( )[ ]

,

if 1 ≤ k < n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

Here, when k < n, the expectation is taken over inde-
pendent random variables (η, ξ) ∈ R2,where η ∼ N(0, 1) is
a standard normal random variable, and ξ ∼ χ2

p−2 is chi-
squared random variable with p − 2 degrees of freedom.9

Weprovide the proofs for Theorem 5 and Corollary 2
in the electronic companion to this paper. We make
the following observations:

1. A key point is that, unlike the standard dynamic
programming decomposition of Proposition 2, Theo-
rem 5 provides a tractable way to solve the surrogate
problem (P3

′

), independent of the covariate dimension p.
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This is because the recursion (Equation (10)) yields a
two-dimensional dynamic program. One of the state
variables of this program, m, is discrete, taking values
on the integers from −n to n. Further, one can show
that, with high probability, the second state variable λ
is O(n2), thereby allowing us to discretize the state
space ona two-dimensionalmesh. The functions {qk} can
be numerically evaluated on this grid via backward
induction. Note that since the expectation in Equa-
tion (10) is over a two-dimensional random variable,
it can be computed via numerical integration. Further
details of this procedure are given in Section 6.

2. Moreover, the functions {qk} do not directly
depend on the matrix Σ at all and only indirectly
depend on time horizon n through the remaining
time k − n. In fact, they only depend on the covariate
dimension p. For example, in the Gaussian case, this
means that if these functions are computed offline,
they can subsequently be applied to all p-dimensional
problem with a Gaussian data distribution.

3. Finally, the algorithm assumes that the co-
variance matrix Σ is known. This is needed to com-
pute the ‖ · ‖Σ−1 -norm of Δk. In practice, Σ may not be
known, and may need to be estimated from data.
However, observe that Σ depends only on the dis-
tribution of covariates across the subject population,
not on the outcome of experiments. In the applica-
tions we have in mind, there is typically a wealth of
information about this population known in advance
of the experimental trials. Hence, Σ can be estimated
offline even if the number of covariates p is large and
the number of experimental subjects n is small.

For example, in an online advertising setting, and
advertiser may want to compare two creatives using
A-B testing with a limited number of experimental sub-
jects. In advance of any experiments, the advertiser can
use historical data from other trials or market surveys
over the same population of subjects to estimate Σ.

5. Variations of the Sequential Problem:
A Dynamic Programming Framework

The vanilla formulation of the sequential problem (P2)
described in Section 2.2 solely optimizes statistical
efficiency. In reality, a complete framework must
allow the designer to model a number of additional
constraints relevant to practical implementation, in-
cluding budgets on allocations to the treatment arm;
controlling selection bias in addition to maximizing
efficiency; optimally stopping an experiment if effi-
ciency objectives are met; and so forth. Wewill establish
that the solution approachdescribed inSection 4 applies
to a substantially more general class of problem than
the vanilla problem (P2).

To setup this dynamic programming framework,
we introduce a few new concepts:
• We will think of the allocation at time 1 ≤ k ≤ n

as a bias vk ∈ [0, 1]. Our optimization algorithm will
yield the optimal bias at any given point in time, and
then we pick an allocation by flipping a coin with this
bias, that is, setting

xk � +1 with probability vk,

−1 with probability 1 − vk.

{
(13)

This is the same decision space as in a BCD.
• We are given convex stage wise costs, c: [0, 1] → R,

that are a function of bias. This can capture for in-
stance, the cost of a sample unit; the extent of non-
randomness in a given choice of bias, and so on.
• The set of permitted bias vk at any stage 1 ≤

k ≤ n can be constrained to an arbitrary convex set
that is itself a function of the state at that time,
9k(δk−1, ‖Δk−1‖2Σ−1) ⊂ [0, 1].
• Instead of a fixed time horizon n, we allow the

experiment to be stopped early according to a stop-
ping time 1 ≤ τ ≤ n. As we discuss later, this allows us
to model optimal early stopping based, for instance,
on estimating the treatment effect with a desired
precision.
Given these concepts, and an arbitrary parame-

ter γ ≥ 0, consider the following generalization of the
problem (P3′):

(P3′′) ≜ minimize E δ2τ + ‖Δτ‖2Σ−1 + γ
∑τ
k�1

c(vk)
[ ]

subject to vk ∈ 9k δk−1, ‖Δk−1‖2Σ−1
( )

,

∀ 1 ≤ k ≤ n,
vk is ^k-measurable,

∀ 1 ≤ k ≤ n.

Following the same arguments as in Section 4.4,
(P3′′) can be solved according to optimal continua-
tion costs given by the two-dimensional Bellman
recursion10:

qk(m, λ)

≜

m2 + λ, if k � τ,

E
[

min
v∈9k+1(m,λ)

γc(v)

+ vqk+1 m + 1, λ + 2RU1
̅
λ̅

√ + R2
( )

+ (1− v)qk+1 m− 1, λ− 2RU1
̅
λ̅

√ +R2
( )]

,

if 1≤ k < τ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)
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for each time k. Given the optimal continuation costs,
an optimal decision vk at each time k can be computed
according to

v∗k ∈ argmin

v∈9k δk−1,‖Δk−1‖2
Σ−1

( )γc(v)
+ vqk δk−1 + 1, Δk−1 + Zk,2:p

⃦⃦ ⃦⃦2
Σ−1

( )
+ (1 − v)qk δk−1 − 1, Δk−1 − Zk,2:p

⃦⃦ ⃦⃦2
Σ−1

( )
, (15)

In the following, we illustrate how (P3′′) addresses
several practical variations of the sequential alloca-
tion problem.

5.1. Selection Bias
An important consideration that has emerged in the
literature on A-B testing is managing so-called se-
lection bias. Following Blackwell and Hodges (1957),
one commonly defines the selection bias of an allo-
cation over n time steps as 2

n
∑n

k�1 |vk − 1/2|. Notice that
perfect randomization has zero selection bias, whereas
a fully deterministic procedure (where vk is either 0
or 1) has the highest bias possible, one.

It is frequently important to balance this bias against
efficiency (or, equivalently, loss). Inparticular,wewant a
Pareto optimal solution across the two criteria. Atkinson
(2014) compares a multitude of state-of-the-art BCD
procedures and calls a procedure admissible if it is not
Pareto dominated by some other procedure. He finds
that none of the heuristics he examines can be ruled
out implying that none of these heuristics are Pareto
optimal. But by varying γ ≥ 0 in (P3′′), we can gen-
erate a Pareto optimal solution at any point on the
trade-off curve. Specifically, to incorporate selection
bias into our framework, we simply define

c(v) ≜ | v − 1/2 |, τ ≜ n, 9k ≜ [0, 1]. (16)

Our approach can consequently produce any design on
the Pareto frontier, and thus Pareto dominate state-of-
the-art BCD designs. We will see this numerically in
Section 6.

Notice that the optimal policy Equation (15) in the
setting of Equation (16) is a linear program. Direct
examination of this program yields an interesting
insight: at every time k, the optimal action for (P3′′) is
restricted to vk ∈ {0, 1/2, 1}. In otherwords, an optimal
policy will only either take a deterministic action or
fully randomize. This is in contrast to the main BCD
heuristics developed in the literature (some of which
we will describe shortly in Section 6.3), which tend to
vary probabilities over the entire interval [0, 1].

5.2. Allocation Budget
Assuming a test with a total sample size of n, the
designer may be happy to assign these samples to the
control arm (the status quo) but may want to limit
exposure to the test. Formally, wemaywant to have a
budget B on the number of +1 allocations in the trial.
As it turns out, BCD does not naturally extend to this
setting (Han et al. 2009, Kuznetsova and Tymofyeyev
2012). Problem (P3′′) can trivially incorporate a budget
constraint, we simply define

c(v) ≜ 0, τ ≜ n,

9k δk−1, ‖Δk−1‖2Σ−1
( )

≜

{ [0, 1] if k + δk−1 < 2B,
{0} otherwise.

5.3. Endogenous Stopping
Consider the (not uncommon) scenario where there is
an economic cost associated with every incremental
sampling unit in a sequential trial, and all we care
about is estimating the treatment effect up to a desired
level of precision (see Johari et al. 2017 for a broader
discussion of related problems). In such a scenario,we
may opportunistically want to stop early so that the
sample size is in fact picked endogenously. For con-
creteness, let us suppose that the unit cost per sam-
ple is a constant r. Assume further that it suffices to
estimate the treatment effect with precision κ, unless
the trial has run up to a sample size of n, in which case
we must stop. One can think of n here as an upper
bound on sample size imposed by the trial designer.
The objective is simply to minimize the expected cost
of the trial. This problem is easily modeled in our
framework. Specifically, (P3′′) can capture this prob-
lem by defining

c(v) ≜ r, τ ≜ min k ≥ 1 : k − 1
k

(
δ2k +

⃦⃦
Δk

⃦⃦2
Σ−1

){
≥ κσ2

}
∧ n, 9k ≜ [0, 1].

6. Experiments
This section focuses on numerical experiments with
data. We will attempt to highlight the relative merits
of our approach vis-à-vis simple randomization, as
well as BCDs. As discussed in the literature review,
BCDs are an approach to minimizing loss (or equiv-
alently, maximizing efficiency) by dynamically adjust-
ing for covariate imbalances.
Our goal will be to show that for a given level of

selection bias, our approach provides an improve-
ment in efficiency (or a reduction in loss) over com-
peting BCDs. Equivalently, our approach can achieve
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a given level of efficiency with a smaller level of se-
lection bias. We will study these relative merits for
varying values of sample size n, and the number of
covariates p. Finally, whereas our analysis in Section 4
required the covariates to follow an elliptical distri-
bution, such a requirement may not hold in real ap-
plications. As such we conduct experiments using
click log data from Yahoo! wherein the covariates are
categorical. We show that our approach enjoys sim-
ilar relative merits in this setting.

6.1. BCDs, Loss, and Selection Bias
Let vk ∈ [0, 1] denote the probability that the kth al-
location is set to xk � +1 under a givenallocation rule!.
Recall from Section 5 that a measure of selection bias
under ! is defined according to

Bias! ≜ E
2
n

∑n
k�1

vk − 1/2| |
[ ]

∈ [0, 1].

(Here, we have normalized the bias to be contained in
the unit interval.) This measure captures the extent of
randomness (or, equivalently, how predictable any
given allocation is) under ! (Blackwell and Hodges
1957). Also, recall our definition of loss:

Loss! ≜ n − E x�PZ⊥x
[ ] � E x�Z Z�Z

( )−1Z�x
[ ] ≥ 0.

The loss under! is interpreted as the effective number
of samples on which information is lost due to an
imbalance in covariates. It is well known that any
allocation rule engenders a trade-off between loss and
selection bias, so that a comparison between rules
ideally compares the entire trade-off curve attained
by the two rules (Atkinson 2002).Wewill do precisely
this in the experiments that follow.

Observe that the expressions for bias and loss do
not depend on the experimental outcomes {yk}. From
an empirical perspective, this is helpful: we can assess
any rule !, given only access to the covariate distri-
bution. The conclusionswedrawon the relativemerits of
one approach with respect to another hold across any
linear model for the given covariate structure.

6.2. Data
We run our experiments on two different data dis-
tributions for the covariates. Assumption 3 holds in
both cases. Thus, {Zk} are i.i.d. and Zk,1 is assumed to
be 1. We run our experiments with the following
sampling distributions for Z2:p.

6.2.1. Synthetic Gaussian Data. In our synthetic exper-
iments, we assume that Z2:p follows multivariate normal
distribution. This is, of course, an elliptical distribution,
so that Assumption 2 is satisfied. For the covariance
matrix Σ, we set Σii � 1.0 and Σij � 0.1 for any j �� i.

6.2.2. Yahoo! User Data. To experiment on data from a
more realistic setting, we use a data set of user click
log data from the Yahoo! front page.11 The users here
are visitors to “Featured Tab of the TodayModule” on
the Yahoo! front page. In the data set, each user has
136 associated features, such as age and gender. Each
feature is binary, taking values in {0, 1}. Some of these
features were constant throughout the data set, and
these were discarded. Duplicate and colinear features
were discarded as well. Features were selected at
random until up to p � 40 features were collected. Fea-
ture selection was repeated independently in each sim-
ulation trial.
Our algorithm requires the covariance matrix of the

data as an input. For this purpose, we estimate the
covariance matrix from a portion of the data set. This
estimate is obtained by simply taking a sample av-
erage across 1 million data points kept aside from the
rest of the experiments.
Finally, for evaluation purposes, we require a gener-

ative model for the data. To this end, from a set of
1million data pointswe sample individual data points,
with replacement. In other words, as the sampling
distribution we use the empirical distribution of the
1 million data points used for testing. Such a sampling
procedure is intended to mimic the arrival of users on
the Yahoo! front page.

6.3. Algorithms
6.3.1. Dynamic Programming (Our Approach). The
problem at hand is addressed by the dynamic pro-
gramming formulation described in Section 5. As
such, we are required to compute the two-dimensional
value functions given by {qk}1≤k≤n. These functions are
computed offline by backward induction following
Equation (14). Here, we provide the computational
details for this operation. In particular, given qk+1(·, ·),
we compute qk(·, ·) as follows:

1. Discretization: The first state variable m is dis-
crete and can take values from −n to n. We discretize
values for the second state variable λ on a geometric
mesh taking values λi

0 for λ0 ≜ 1.5 and 0 ≤ i ≤ 26. The
maximum value of λwas chosen so that ‖Δk‖2Σ−1 has a
low probability of exceeding it.

2. Sampling: For each discretized pair (m, λ) we
estimate qk(m, λ) via Monte Carlo simulation. In par-
ticular,N � 10,000 pairs12 (ξ, η) ∈ R2 are sampled from
the appropriate distributions and qk(m, λ) is estimated
according to Equation (14) using the corresponding
empirical measure. We use the same sample set of
(ξ, η) for all (m, λ) at which this is evaluated.

3. Interpolation: Given an (m, λ) such that λ is not
a discretized mesh point, we estimate qk+1(m, λ) in
the Bellman recursion (Equation (14)) by linear in-
terpolation between the closest points in the dis-
cretized mesh.
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6.3.2. Biased Coin Designs. In addition to our own
dynamic programming algorithm, we will consider
several other rules proposed in the literature. These
include Rule ABCD (Baldi Antognini and Zagoraiou
2011), which, following Atkinson (2014), we refer to
as Rule J; Smith’s rule (Rule S) (Smith 1984a, b);
Atkinson’s rule (Rule A) (Atkinson 1982); and the
Bayesian procedure of Ball et al. (1993) (Rule B). Rules
J, S, and B are all parameterized by a scalar parameter,
which we denote ρ, that may take values in (0,∞).
Rule A is a special case of Rule S taking ρ � 1. As
ρ → 0, these rules become equivalent to randomiza-
tion. On the other hand, as ρ → ∞, these rules become
entirely deterministic in nature. As such, for values
of ρ close to zero, one expects low selection bias,
whereas as ρ→∞ one expects to see a reduction in
loss at the expense of selection bias. A deterministic
rule has the largest possible selection bias of 1. To
precisely specify each of these rules, define

dk uk+1,Zk+1,2:p
( )

≜ 1 − uk+1δk/k − uk+1Z�
k+1,2:pΣ

−1Δk/k
( )

2,

where uk+1 ∈ {±1}, Zk+1,2:p ∈ Rp−1, and δk and Δk have
the usual definitions (Equation (4)). For background
on the function dk(·, ·), see Atkinson (1982); this quantity
arises naturally in the sequential design of DA-optimal
experiments. The rules described above then take the
following form:

1. Rules S/A: Assign xk+1 � +1 with probability

vk+1 ≜
dk
(
+1,Zk+1,2:p

)
ρ

dk
(
+1,Zk+1,2:p

)
ρ + dk

(
−1,Zk+1,2:p

)
ρ
.

The parameter ρ can take values in (0,∞). Rule
A corresponds to the special case where ρ � 1.

2. Rule B: Assign xk+1 � +1 with probability

vk+1 ≜

(
1 + dk

(
+1,Zk+1,2:p

))
ρ(

1+dk
(
+1,Zk+1,2:p

))
ρ +

(
1 + dk

(
−1,Zk+1,2:p

))
ρ
.

The parameter ρ can again take values in (0,∞). This
rule is very similar to Rule S, but permits a Bayesian
interpretation (Ball et al. 1993).

3. Rule D: Assign xk+1 � +1 deterministically if
dk(+1,Zk+1,2:p) > dk(−1,Zk+1,2:p), set xk+1 � −1 other-
wise. This rule is obtained in the limit as ρ → ∞ for
rules A, S, and B. Note that this deterministic rule is
equivalent to a myopic policy that seeks to optimize
the objective of (P3′) assuming that xk+1 is the final
allocation to be made, and ignoring the impact of this
allocation on future decision making.

4. Rule J: Define the discrepancy after k allocations,
Dk(Zk+1,2:p), according to

Dk(Zk+1,2:p) ≜
2 − k

(
dk
(
+1,Zk+1,2:p

)
+ dk

(
−1,Zk+1,2:p

))
dk
(
+1,Zk+1,2:p

)
− dk

(
−1,Zk+1,2:p

) ,

assuming dk(+1, Zk+1,2:p) �� dk(−1, Zk+1,2:p). If Dk ·
(Zk+1,2:p) < 0, we assign xk+1 � +1 with probability

vk+1 ≜

⃒⃒⃒
Dk

(
Zk+1,2:p

)⃒⃒⃒
ρ

1 +
⃒⃒⃒
Dk

(
Zk+1,2:p

)⃒⃒⃒
ρ
.

If, on the other handDk(Zk+1,2:p)> 0, we assign xk+1 �+1
with probability

vk+1 ≜
1

1 +
⃒⃒⃒
Dk

(
Zk+1,2:p

)⃒⃒⃒
ρ
.

Finally, if Dk(Zk+1,2:p) � 0 or dk(+1,Zk) � dk(−1,Zk), we
simply randomize (vk+1 � 1/2). The parameter ρ can
again take values in (0,∞).
6.4. Results
Our goal is to compare the statistical efficiency of our
dynamic programming-based sequential algorithm
to the various competing BCDs discussed earlier
while controlling for selection bias. To do this, we run
each BCD procedure for an increasing sequence of
value of ρ. The smallest value used, ρ � 0, is simply
equivalent to randomized allocation. The largest
value of ρwe considered for each scheme was chosen
so that the rule was effectively deterministic. We
implemented our sequential DP algorithm for an in-
creasing sequence of values of γ, tracing out a similar
trade-off curve.
Results are reported in Figures 1, 2, and 3. Of these,

Figures 1 and 2 show results on synthetic Gaussian
data whereas Figure 3 shows results on the Yahoo!
data set. Each data point in thesefigures is the average
of 10,000 independent Monte Carlo trials with shared
randomness across all BCD rules and our own rule;
and different data points were generated for each rule
by varying their respective configurations of ρ and γ.
These figures reveal that:
1. For any target level of selection bias, our dy-

namic programming algorithm has the smallest loss
among all of the alternatives implemented. In this
way, the DP approach Pareto dominates all alterna-
tives. The relative improvement in loss can be non-
trivial: the loss incurred under our approach can be
up to five times smaller for moderate budgets on
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selection bias. Put a different way, the effective
number of samples lost due to covariate imbalance
can be substantially smaller for a given budget on
selection bias .

2. The relative improvement alluded to previously
is particularly pronounced for smaller values of p/n.
Our intuition here is as follows: keeping n fixed, one
expects to require fewer nonrandom allocations for
small p. As such, the importance of strategizing on
when to employ a nonrandom allocation has greater
impact in such a setting.

3. The relative merits of our sequential approach ap-
pear more pronounced in the setting where n is larger.

4. Finally, observe that Figure 3 shows results on
the Yahoo! data set, and that the covariates in this
experiment are in fact categorical. Despite this we
see that our approach exhibits similar improvements
relative to the competing BCD schemes.

7. Conclusion
We conclude with a summary of what we have ac-
complished and what we view as key directions for
further research. At a conceptual level, this paper illus-
trates the power of the optimization viewpoint in what
are inherently statistical problems: we have presented a
provably near-optimal solution to a problem for which
a plethora of heuristics were available. In addition to
establishing the appropriate approach to this problem,
the algorithms we have developed are eminently prac-
tical and easy to implement—a property that is crucial
for the sorts of applications that motivated this work.
On amore pragmatic note, we have quantified the value
of these sorts of optimization approaches establishing
precise estimates of thebenefits optimizationapproaches
provide over straightforward randomization. These
estimates illustrate that in so-called high-dimensional
setting—that is, in settings where the number of

Figure 2. (Color online) Bias-Loss Trade-Off on Synthetic
Gaussian Data for n � 1,000 and Varying Values of p

Figure 1. (Color online) Bias-Loss Trade-Off on Synthetic
Gaussian Data for n � 100 and Varying Values of p

Bhat et al.: Near-Optimal A-B Testing
Management Science, Articles in Advance, pp. 1–19, © 2020 INFORMS 17



covariates is large, such approaches can provide order
of magnitude improvements in sampling efficiency.

Our progress does come at the expense of structural
assumptions on the relationship between the ob-
served effect and observable covariates. In particular,
we assumed a linear model with exogenous noise.
Any such structural assumption is restrictive. In the
event that these assumptions fail, they could result in
biased estimates of the treatment effect. With that
said, it appears difficult to overcome the risk of such
a bias while using a covariate dependent treatment
assignment scheme. In addition to these structural
assumptions, we also required that the experiment
designer have some knowledge on the distribution of
the covariates (their covariance matrix). Our theoretical
resultsmade further distributional assumptions on these
covariates. Much remains to be done to mitigate the

impact of these limiting assumptions, and as such a
number of directions remain for future research. We
highlight several here in parting:

1. Normality: To what extent can our assumption
on the normality of covariates be relaxed? Can we
develop approximation guarantees for the situation
when covariates are not normally distributed?

2. Nonlinear models: Can we allow for a nonlinear
dependence on covariates? One direction to accom-
plish this is perhaps a reliance of some manner of
nonparametric kernel approach. The good news here
is that the value of optimization is likely to be even
higher in such an infinite-dimensional setting.

3. More than two alternatives: The present paper
considers only the two alternative setting, an impor-
tant direction for future work would be to consider
settings where there is a larger number of choices.

Acknowledgments
The authors thank Anthony Atkinson, Steve Chick, Shane
Hendersen, Nathan Kallus, Costis Maglaras, Assaf Zeevi, and
Jose Zubizarreta for helpful discussions.

Endnotes
1Rule C in table 1 of Atkinson (2002) illustrates that with as few
as 10 covariates, methods based on stratification are hardly better
than randomization.
2For example, consider the following case study by one of the larg-
est providers of commercial A-B testing infrastructure: https://blog
.optimizely.com/2014/02/03/case-study-sony-ab-tests-banner-ads/,
accessed July 29, 2019.
3The assumption of no endogeneity is required for the least square
estimate of θ under a given allocation to be unbiased. It is also re-
quired for our performance analysis. In general, it appears difficult to
overcome bias in the face of the risk of model misspecification while
using a covariate dependent treatment assignment scheme.
4We will informally refer to p as the number of covariates even
though, strictly speaking, it is the dimension of the linear model and
could include second order terms, interaction terms between cova-
riates, and so on.
5Note that, in the online case, because of Jensen’s inequality,
maximizing precision and minimizing variance are no longer
equivalent objectives.
6 In what follows, given a function f (·) and a positive function g(·), as
n→∞ we say f (n) � O(g(n)) if lim supn→∞ | f (n)|/g(n) < ∞; we say
f (n) � o(g(n)) if limn→∞ | f (n)|/g(n) � 0; we say f (n) � Ω(g(n)) if
lim supn→∞ | f (n)/g(n)| > 0; and finally we say f (n) � Θ(g(n)) if f (n) �
O(g(n)) and f (n) � Ω(g(n)).
7Here, Y � 0 denotes that Y is a symmetric and positive semi-
definite matrix.
8Note that under our assumption, it is easy to verify that each co-
variate vector Zk,2:p is zeromean. Our choice of normalizationE[R2] �
p − 1 ensures that the covariance matrix of Zk,2:p is given by Σ. This
second moment requirement does exclude heavy-tailed elliptical
distributions such as the Cauchy distribution. However, it is nec-
essary so that our performance criteria (expected precision) is finite.
9 If p � 2, we take ξ ≜ 0.
10For the decomposition (Equation (14)) to apply, an additional
technical assumption is needed on the stopping time τ: we
assume that, for each 1 ≤ k < τ, the distribution of the random

Figure 3. (Color online) Bias-Loss Trade-Off on the Yahoo!
Data Set for n � 100 and Varying Values of p
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variable corresponding to the future stopped payoff δ2τ + ‖Δτ‖2Σ−1
is conditionally independent of the history given the current
state (δk ,Δk).
11This data set is obtained from the Yahoo! Labs repository of data
sets available for academic research, and can be downloaded as
“R6B—Yahoo! Front Page Today Module User Click Log Dataset,
version 2.0” at http://webscope.sandbox.yahoo.com/catalog.php?
datatype=r, accessed July 29, 2019.
12 In all examples, our algorithm assumes that the covariate data are
generated from a multivariate normal, even when this was not true
(Yahoo! data set). In this case, when Z2:p ∼ N(I,Σ) is multivariate
normal, λ+2uRU1

̅
λ̅

√ +R2 has the same distribution as ( ̅
λ̅

√ +uη)2 + ξ,
where η is a standard normal and ξ is a chi-squared random variable
with p−2 degrees of freedom. See also Corollary 2.
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