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Abstract:Amid the rapid development of information communication technologies (ICTs), residents of future smart cities are expected to be
exposed to unprecedented amounts of real-time information on a daily basis. The cognitive overload driven by an excess of complex
information has become a potential issue. Nonetheless, standardized information systems are still widely used, despite individual differences
in information intake. To set a foundation for the intelligent information systems of smart cities, this paper introduces methods and tools for a
cognition-driven, personalized information system, which acknowledges individual differences in information preference and helps reduce
the cognitive load in daily lives and at work. The proposed method includes the use of virtual reality (VR) to simulate complex tasks paired
with the digital twin modeling of workers’ cognitive reactions to different information formats and contents in VR simulation. Collected data
are then used to build a personal digital twins model of information-driven cognition, or Cog-DT. A human subject experiment was performed
with a simulated industrial facility shutdown maintenance task as a proof of concept of Cog-DT. The latest neuroimaging technology and
analysis methods were applied to model unique cognitive processes pertaining to information processing. Results indicate that cognitive
activities driven by different information stimuli in the work context are distinguishable and modelable with Cog-DT methods and tools.
This study is expected to contribute to digital twin literature by testing a human-centered, individual-level digital twin modeling method of
cognitive activities. It also sets a preliminary foundation for developing personalized information systems for the smart cities of the future.
DOI: 10.1061/(ASCE)ME.1943-5479.0000740. © 2019 American Society of Civil Engineers.
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Introduction

According to the United Nations (UN), over 55% of the world pop-
ulation inhabited cities in 2008, with the percentage expected to
rise to 68% by 2050 (UN 2019). Cities play a major role in societal
and economic development worldwide and have a profound impact
on the environment (Lam and Fu 2019; Mori and Christodoulou
2012). Given the importance of cities to human development, re-
search communities and policy makers have never stopped to ex-
plore fundamental paradigm changes to improve the functions,
quality and management of modern cities. In the last two decades,
the concept of the “smart city” has gained popularity in scientific

discussion (Hall et al. 2000; Hollands 2008; Kwak 2019; Nam
and Pardo 2011; Neirotti et al. 2014). Although smart cities do not
have an official definition (Nam and Pardo 2011), their most com-
monly associated characteristics in literature are smart information
and communication technology (ICT), social inclusion and social
capital, environmental sustainability, and community-centered ac-
tivities for smart growth (Albino et al. 2015; Nam and Pardo 2011).
Particularly, a fully integrated ICT infrastructure in all aspects of
city life has commonly been considered a key element of smartness
(Ahmad et al. 2019; Cocchia 2014; Dameri and Cocchia 2013). It is
believed that the wide use of ICT can make the critical infrastruc-
ture components and services of a city more intelligent (Chourabi
et al. 2012). Owing to its unique significance, various ICT-focused
concepts are often used interchangeably with smart city, such as
digital city (Cocchia 2014), information city (Sproull and Patterson
2004), and intelligent city (Komninos 2013). The present smart city
literature has mostly focused on discussing the technical and engi-
neering basis of ICT (e.g., computing architecture, sensing net-
works, and cyberphysical systems and the benefits of increased
processing power and data analytics to future smart cities (Sanchez
et al. 2014; Tang et al. 2015; Arasteh et al. 2016; Gurgen et al.
2013; Hancke et al. 2013; Zanella et al. 2014). Although the
advancing ICT has made data sensing, collection, and real-time
analytics much easier (Guo et al. 2017), the issue of information
overload has arisen. An excess of information can lead to cognitive
overload (Eppler and Mengis 2004), causing decreased perfor-
mance (Sweller 1988) or prejudices in decision-making, such as
stereotyping (i.e., relying on personal experience instead of facts)
(Banaji and Greenwald 1994). For smart city residents, there is a
foreseeable gap between the constant torrent of information en-
abled by ICT and their limited information-processing capability.
Information overload can make it difficult for residents to maintain
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cognitive functions in important decision-making, such as disaster
response, transportation decisions, and those related to professional
work (Du et al. 2019a, 2019b, 2016, 2017; Klann and Geissler
2012). There is an urgent need to develop an intelligent information
system that is adaptive to the information-processing capability of
each person for more effective control of cognitive load in impor-
tant decision-making.

Each person is unique in how he or she processes information
intake: some may be easily burdened by visuospatial information,
whereas others may be resistant to verbal instruction (Cornoldi
et al. 1991). The information-taking behavior of the same person
may also change dramatically in different cognitive states, such as a
bias toward visuospatial information during periods of emotional
turmoil (Holmes and Bourne 2008). This indicates that methods
for controlling information-induced cognitive load should vary by
person and case. The human-computer interaction (HCI) literature
has long recognized the importance of personalized information
in promoting effective communication (e.g., information filtering
theory) (Gerjets and Scheiter 2003; Hanani et al. 2001; Oviatt
2006; Sherman and Frost 2016) and has proposed various ap-
proaches for personalizing information in various contexts (Gajos
et al. 2010; Jannach and Kreutler 2005; Khriyenko 2018; Khushraj
and Lassila 2005; Liang et al. 2014; Liu et al. 2003; Soh et al.
2017). Most approaches are driven by learning the indirect and lag-
ging evidence of cognitive profile to filter information, such as user
modeling. As a subdivision of human-computer interaction, user
modeling refers to the process of customization and adaptation
of a system or the user interface (UI) to the user’s specific needs.
In other words, the system presents the right information at the right
time in the right way (Abel et al. 2011; Berkovsky and Freyne
2015; Fink and Kobsa 2002; Shen et al. 2005; Yin et al. 2015).
However, according to the information-processing theory (Sowa
1983) (Fig. 1), these behavioral responses are, at most, indirect evi-
dence of complex cognitive processes, often affected by other emo-
tional and motivational factors (Ross 1979). Directly measuring
human cognitive status presents a major challenge.

This research relies on direct cues of human cognitive processes
related to information processing as a leading indicator of possible
cognitive overload. Cognitive process refers to the process of ac-
quiring knowledge through experiences, senses, and learning
(Flower and Hayes 1981). Because it relates to the direct measure
of neural activities, an information system based on cognitive proc-
esses can adapt to a person’s needs proactively instead of passively.
To address the need of modeling and predicting cognitive processes
at an individual level, this paper introduces the concept of cognition
digital twins (Cog-DT), i.e., a digital replica of information-driven
cognition (Boschert and Rosen 2016). Cog-DT models, monitors,
and predicts a person’s cognitive status through the process-
ing of diverse types of information. We propose that it should
become a key component of the future ICT infrastructure in smart
cities. To provide a potential solution for the complex issue of mod-
eling the precise cognitive processes related to information process-
ing (Cabeza and Nyberg 2000), we used a recent advancement
in neuroimaging: functional near-infrared spectroscopy (fNIRS)

(Ferrari and Quaresima 2012). The mapped cognitive activities then
are used to build a personal digital twin model for the specific indi-
vidual, which can be used to predict the cognitive status in real time
and maneuver a large number of possible information adjustment
strategies to control the cognitive load. To test the concept, we will
investigate a personalized information system for industrial facility
shutdown maintenance (e.g., power plants), an event in which the
entire facility is shut down for a short period of time for renewal
(Duffuaa and Ben Daya 2004; Yussef et al. 2019). Industrial facility
shutdown maintenance often requires workers to process a large
amount of information under extreme mental pressure and thus
is a suitable application to test the proposed personalized informa-
tion system. In addition, it plays a critical role in maintaining the
sustainable infrastructure systems for smart cities.

In the reminder of this paper, we will introduce the theoretical
background of this study, the method for developing the proposed
system, and a set of virtual reality (VR) experiments as a proof for
the concept. The limitations and future agenda will be introduced at
the end.

Literature Review

Industrial Facility Shutdown Maintenance

According to ASCE (2017), the US infrastructure system received
a low grade of D+ in 2017, projecting a more than $2.0 trillion
investment to fix the problems (ASCE 2018). As a result, indus-
trial facility shutdown maintenance work has become more inten-
sive (Wang et al. 2019). Data from the Energy Information
Administration (EIA 2018) shows that, in the first 6 months of
2018, there were 7,783 planned outages in the United States
due to industrial shutdown maintenance works. During a shutdown
maintenance, workers are always under extreme pressure (Duffuaa
and Ben Daya 2004). To minimize the impact of the shutdown
schedule, the work is usually done in a 24/7 manner (Daley 2008;
Valentin et al. 2018). On average, shutdown maintenance workers
work 12 h a day, 7 days a week (Ben-Daya et al. 2009). In addition,
owing to the growing complexity of engineered facilities, workers
often need to digest a large amount of dynamic engineering
information in a very short period (Fig. 2). Many mistakes in fa-
cility shutdown operations are related to the miscommunication,
misunderstanding, and misuse of information (Anderson et al.
2011a; Carper 1987; New Civil Engineer 2010; Gordon 1998;
j5 International 2017; Meshkati 2016; Rozenfeld et al. 2010;
Toole 2002). There is a pressing need for the understanding of
the causes and constructs of workers’ cognitive load in stressful
and complex shutdown maintenance works and the best mitigation
methods (Liu et al. 2017).

Cognitive Load and Information Intake

The cognitive load theory (CLT) (Kalyuga 2009; Paas et al.
2003; Sweller 1994, 2010) divides the overall cognitive load into

Information
(Diverse Contents and Formats)  

Cognition 
(Multidimensional Construct) 

Action
(In different contexts) 

Q1: Is there a measurable, modelable and repetitive relationship 
between info structure and cognitive architecture via neuroimaging?  

Q3: Does cognition-driven info personalization enable a 
more effective real-time intervention for cognitive overload? 

Q2: Is the impact of context on the info-
cognition relationship predictable? 

Real-time Feedback (this paper)

Fig. 1. Three scientific challenges in the form of unanswered questions, based on information-processing theory by Sowa (1983).
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three main components: the intrinsic cognitive load (related to the
complexity of tasks), the extraneous cognitive load (affected by
how information is presented), and the germane cognitive load (de-
voted to construction of schemas—permanent knowledge about
patterns). Baddeley and colleagues found a “dual channels” process
in human cognition related to information processing, where differ-
ent mental activities are activated when people are processing
two distinct categories of information: phonological information
(i.e., auditory verbal information or visually presented language)
and visuospatial information (i.e., the visually presented informa-
tion about objects and space) (Baddeley 1992, 2000, 2003, 2012;
Baddeley and Hitch 1974; Miyake and Shah 1999; Moreno and
Mayer 2007). In addition, a central executive cognitive process also
takes place to bind information into coherent episodes, shift be-
tween tasks or retrieval strategies, and select between attention
and inhibition (Sridharan et al. 2008). Based on the dual channels
framework, Mayer (2002) proposed a multimedia learning theory
to describe various mental constructs pertaining to information
processing, including sensory (which receives stimuli and stores
it for a very short period of time), working (where we actively pro-
cess information to create mental constructs), and long-term (the
repository of all things learned) memories (Mayer 2002), as illus-
trated in Fig. 3.

Because of the difficulty of measuring cognitive loads caused by
different information stimuli, literature tends to investigate cogni-
tive load as a single entity [Chang and Wang 2010; D. Cyganski
and R. J. Duckworth, “Search and rescue method and system,”
US Patent No. 9476963B2 (2016); Haapalainen et al. 2010;
Kim and Irizarry 2019; Klatzky et al. 2006; Progri et al. 2007].
Indicators such as task performance (e.g., errors) and psychomet-
rics (e.g., NASA TLX surveys) are typically used to measure cog-
nitive load (Cabeza and Nyberg 2000; Meilinger et al. 2008;
Sweller 1988). As a result of the rapid development of neuroimag-
ing technologies, it is possible to map brain activities that are di-
rectly related to different types of cognitive loads (Cabeza and

Nyberg 2000; Sauseng et al. 2005). For example, neuroimaging
studies found that phonological information often triggers Broca’s
area (involved in speech production) in addition to supplementary
and premotor areas (involved in movement) in the frontal cortex
cognitive (Sahin et al. 2009). These advancements in neural science
have inspired this study to investigate a method called Cog-DT that
measures, models, and even predicts information-driven cognitive
processes at the individual level, serving as the core of an intelligent
information system. In order to better explain the rationale and need
for Cog-DT, we examined digital twins literature and identified the
point of departure.

Digital Twins

The advancements of computational, informational, and communi-
cation technologies have driven the birth and evolution of digital
twins (DTs). A DT, originating from the manufacturing industry, is
the concept of designing, testing, manufacturing, and applying
a virtual copy of a physical system (Grieves and Vickers 2017;
Li et al. 2018). Grieves and Vickers (2017) defined a DT to be
a set of virtual information constructs that are designed to fully
describe a potential or existing physical manufactured product.
In its ultimate form, they believed that a DT should be able to pro-
vide all information relating to the product, from the microatomic
level to the macrogeometrical level. Even without such details, a
DT can still be a holistic digital representation of an individual
product that contains the attributes and behaviors of the real-life
object though modeling and data (Haag and Anderl 2018). Such
a DT can simulate the product’s actual behavior in a deployed envi-
ronment. In the manufacturing industry, a DT has been regarded
as a critical component of production systems to achieve Industry
4.0 (Uhlemann et al. 2017a, b). The potential application of DTs
spans many stages and areas, including design (Lu et al. 1997;
Maropoulos and Ceglarek 2010; Rosen et al. 2015), manufac-
turing (Schleich et al. 2017; Tao et al. 2018), service (Tao et al.

Shutdown maintenance 2D isometric plan 3D computer model The real project

Fig. 2. Engineering information for shutdown maintenance work is becoming increasingly complex, resulting in a more challenging task for workers.

Phonological Loop

Visual Processor

Episodic Buffer

Central Executive

Phonological

Visuospatial 
`

Spatial Info Cognitive Processes

Maps, signage, symbols, 
pictures, textual/verbal info...

WORKING MEMORYSENSORY MEMORY LONG-TERM 
MEMORY

Permanent 
knowledge about 

patterns 

 Intrinsic and Extraneous Cognitive Load
Scope of this research

Germane 
Cognitive Load

Real-time 
Measure

Fig. 3. Information-cognition relationships are complex. (Adapted from Baddeley 2000, 2012; Baddeley and Hitch 1974.)

© ASCE 04019052-3 J. Manage. Eng.

 J. Manage. Eng., 2020, 36(2): 04019052 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f F
lo

rid
a 

on
 0

5/
15

/2
0.

 C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



2018), simulation (Boschert and Rosen 2016), data management
(Abramovici et al. 2016; Uhlemann et al. 2017a, b), and life-cycle
analysis (Quintana et al. 2010; Tuegel et al. 2011).

Recently, the concept of DTs has started to expand into the con-
ceptualization and development of smart cities. This is an unprec-
edented growth of the concept of DTs, from the manufacturing
system, which usually has a relatively small and clearly defined
boundary, to large, open, and complex urban systems (Park et al.
2017). A smart city DT, as argued by Mohammadi and Taylor
(2017), is a digital replica of a city that includes its infrastructure,
human dynamics, spatial and temporal information flow, and physi-
cal and virtual connectivity. Powered by data from citywide the
internet of things (IoT) and analytical capacities, a smart city
DT will be able to explore what-if scenarios that can contribute
to sustainable growth, socioeconomic resilience, and better infra-
structure performance (Mohammadi and Taylor 2019; Rouse and
Serban 2011).

Our review on the existing DT literature has identified a poten-
tial gap of modeling resident behaviors at the individual level. Most
DT studies focus on modeling the processes and behaviors at the
system level. To achieve the promise of smart city DTs, the digital
representations of urban residents need to reflect the complexities
of human nature, especially for the purpose of simulating decision-
making and human behavior. One critical perspective of incorpo-
rating individuality is modeling the cognitive processes in a DT
(Boschert and Rosen 2016). No two persons share the same cog-
nition processes, and thus personalized systems are needed (Cabeza
and Nyberg 2000). These systems, built on cutting-edge technol-
ogy in human sensing, neuroimaging, data mining, and cognitive
mapping, will be able to maneuver a large amount of data in real
time, map cognitive processes, evaluate cognitive loads, develop
control strategies, and provide effective feedback. Developing such
personalized information systems will be a critical step to creating
cognitive digital twin models.

Proposed Cognition Digital Twins for Personalized
Information Systems

Overview

Building a cognition-driven, personalized information system does
not only involve information filtering and presenting. A tailored
information system can only respond to a person’s needs in search-
ing, digesting, and using information necessary for the successful
completion of a task if the profile is based on historical data. An
information system without a robust database and analytical system
to store, process, and analyze an individual’s actions cannot support
effective training or action during operations, even if it is equipped
with the most advanced visualization technologies. To establish the
basis of information personalization, we propose using Cog-DT,
a cognitive profile model of information-taking preference and
behavioral patterns at the individual level. This personalized infor-
mation system dynamically and automatically customizes UI to
specific users based on their unique Cog-DT model. The Cog-
DT model can be tracked by quantifying individual reactions to
different types, quantities, and display methods of information dur-
ing VR training. Cognitive data of individuals can be integrated as a
necessary part of their personal files. Just as personality can be
used to model the behavioral patterns of a person, the unique
information-taking patterns captured by the Cog-DT model also
exhibit individual differences and help tailor UI to reduce their cog-
nitive load. Fig. 4 illustrates the concept map of a Cog-DT enabled

information system. A detailed explanation to the concept map is
provided in the rest of this section.

Step 1: VR Training to Collect Raw Data about
Information Personality

The first step is using a VR training platform to collect the personal
cognitive process of information intake. The key is the develop-
ment of VR model modules that accurately reconstruct various fa-
cility shutdown scenarios for training purposes. We have developed
a VR training platform (Fig. 5) to include valuable field knowledge
(Du et al. 2018a, b; Shi et al. 2016, 2017).

To examine how specific individuals react to the perceived
information, we need to collect the real-time cognitive load (CL)
during training. Cog-DT highlights the importance of differentiat-
ing separate types of CL as a multidimensional construct. Based
on the cognitive load theory and Baddeley’s model of working
memory (Baddeley 2012), Cog-DT measures cognitive load as a
summation of intrinsic CL (related to task difficulty) and extrane-
ous CL (related to received information). Although psychometrics-
based cognitive load measurements [e.g., NASATLX Survey Task
Load Test (Hart 2006)] have been well validated, they have rarely
been used as a working instrument in real-time monitoring. The
proposed Cog-DT features the real-time monitoring of (and adap-
tation to) a person’s cognitive status. Psychometric-based methods

Info Personality 
Model

#1: Digital Twin Model Training

#2: Digital Twin driven UI adaption

Info 
stimuli

Experiments to 
collect 

Neuroimaging Data 

Specific types of cognitive load 
guide different areas of display

Fig. 4. Concept map of Cog-DT–enabled personalized information
system.

Fig. 5. VR simulation platform for information personality data
collection.
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can only measure cognitive load after the task is done. In this sce-
nario, it would be too late to execute any real-time interventions to
prevent the occurrence of cognitive overload. To overcome this
challenge, Cog-DT uses a comprehensive CL index based on a va-
riety of psychological and neurobiological metrics, including neu-
roimaging, physiological, and ergonomic metrics. Based on a
comprehensive literature review, the 14 metrics for real-time CL
measurement metrics are used as listed in Table 1.

Step 2: Digital Twin Modeling of Human Cognition

Whereas most existing DT models concentrate on replicating
physical processes and systems, this research will focus on repro-
ducing human cognitive processes in cyber simulation. The pro-
posed Cog-DT is modeled and implemented in two phases.
Phase 1 is for modeling the fundamental patterns of the person’s
cognitive reactions to different information stimuli, which we
call “information personality” in this research. This is done by
obtaining neuroimaging data during VR training. We use fNIRS
to track the hemodynamic reactions of representative brain areas
(i.e., the activation levels of these brain areas) in simulated
information-processing tasks. Once the data are collected, a base
model will be built to formulate a person’s possible cognitive re-
action patterns (measured as the hemodynamic reaction strength) in
different information-processing scenarios. Phase 2 pertains to the
monitoring of a person’s real-time cognitive status using portable
fNIRS and optimizing the formats and contents of delivered infor-
mation to minimize cognitive load. The hemodynamic reactions
of the brain will be continuously tracked and compared with the
base model developed in Phase 1, and an optimization algorithm
(e.g., gradient descent) will identify the best strategy for reducing
real-time hemodynamic reactions of brain areas related to specific
types of information.

To collect the data for the Cog-DT modeling, a controlled
Sternberg working memory test (Sternberg 1969) is used to
(1) standardize the modeling of information personality and cog-
nitive activities and (2) collect continuous data about the complete
picture of the cognitive impacts of different kinds of information.
Participating workers are asked to finish a dual task: (1) primary

task—Sternberg working memory test. As illustrated in Fig. 6(a),
workers are asked to take a Sternberg working memory test, which
involves the presentation of a list of information items to memorize
(encoding period; 2 s in total), followed by a memory retention
period (2 s) during which the subject must maintain the list of items
in memory, and a retrieval period (2 s) in which the workers answer
if a given item appears. Between the two sessions is a short fixation
phase (0.5 s). The Sternberg test is repeated 300 times for each
worker (32.5 min in total). The working memory accuracy is used
as a direct indicator of cognitive load, as suggested by the literature
(Brunken et al. 2003; Engle 2016; Jonides et al. 1997; Tracy and
Albers 2006). According to Mayer’s multimedia learning theory,
adjustable information items include symbols, orientation (spatial
information), words, letters, numbers, shapes and combinations;
(2) secondary task—pipe maintenance. As shown in Fig. 6(b),
while the worker is taking the Sternberg test, he or she will also
be asked to maintain a pipe skid following a given procedure with
20 steps.

The data gained from the Sternberg tests will first inform a quan-
titative model of information personality. The cognitive load and
multimedia learning theories indicate that the two most relevant
dimensions of information to a person’s cognitive load (Baddeley
2000, 2012; Baddeley and Hitch 1974) are information quantity
(intrinsic cognitive load) and information type (extraneous cogni-
tive load). Hence, the proposed system focuses on modeling infor-
mation personality from these two dimensions. The first dimension,
denoted as Iq, refers to how much meaningful content is delivered
in a message, that is, the information that is directly relevant and
contributing to the task. The second dimension, denoted as It, in-
dicates whether the information is more abstractly displayed (such
as textual instructions) or more visually displayed (such as an in-
teractive map). The outcome is the measure of a specific type of
cognitive load CLi. The ground truth about each type of CLi is built
upon the corresponding Sternberg test scores. Data from the experi-
ments will be used in a multivariate regression analysis to find the
information personality function CLi ¼ fðIq; ItÞ, as illustrated in
Fig. 7. The dots show the current cognitive load measures (hypo-
thetical), and the arrows indicate the most efficient way of reducing
cognitive load.

Table 1. Real-time cognitive load metrics

Category Real-time cognitive sensing Evidence

Neuroimaging 1. Functional near-infrared spectroscopy (fNIRS): A noninvasive brain
imaging method quantifying brain blood changes using near-infrared
light; less affected by motions.

2. Electroencephalogram (EEG): A noninvasive brain imaging method
monitoring electrical changes on the skin; can be affected by motions.

Anderson et al. (2011b), Antonenko et al. (2010),
Cabeza and Nyberg (2000), Fehrenbacher and Djamasbi
(2017), Ferrari and Quaresima (2012), Gevins et al.
(2016), Gregson et al. (1993), Haapalainen et al. (2010),
and Sauseng et al. (2004, 2005)

Physiological 1. Gaze focus (GF): Gaze focus tracking over points of interest.
2. Eye movement frequency (EMF): Pixels moved per second.
3. Eye blink rate (EBR): Eye blinks per minute.
4. Pupillary dilation (PD): Task-invoked pupillary response in diameter

change.
5. Electrocardiogram (ECG)a: The electrical activity of the heart.
6. Respiratory (RES)a: Total volume and respiratory rate.
7. Galvanic skin response (GSR): Electrical resistance change of the skin.
8. Heat flux rate (HFR)a: Rate of skin heat transfer.
9. Electromyography (EMG)a: Muscle activities.

10. Heart rate-blood pressure product (RPP)a: Heart rate and systolic blood
pressure.

Brunken et al. (2003), Chen et al. (2012), Engström et al.
(2005), Fehrenbacher and Djamasbi (2017), Ferreira
et al. (2014), Fredericks et al. (2005), Grassmann et al.
(2016), Haapalainen et al. (2010), Hess and Polt (1964),
Hyönä et al. (2007), Kahneman and Beatty (1966),
Klingner et al. (2011), Nourbakhsh et al. (2012), Paas
et al. (2003), Recarte and Nunes (2000), Scholey et al.
(1999), Shi et al. (2007), Van Gerven et al. (2004),
Verner et al. (2013), and Zekveld et al. (2011)

Ergonomic 1. Tapping frequency (TF): The tapping frequency of feet and fingers.
2. Gait patterns (GP)a: Gait variability such as change to stride length.

Kee et al. (1983), Martin and Bajcsy (2011), Sprenger
et al. (2011), and Tracy and Albers (2006)

aMetrics that may be significantly affected by bodily movement but are still worthy of testing with sensor fusion.
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For Cog-DT, cognitive load is measured by brain activation
patterns as reactions to different information stimuli. Cognition
literature shows that specific brain areas are activated at different
levels in information-processing tasks, depending on what kinds
of information are overloaded. Our system monitors 18 brain areas
concurrently and pictures the overall patterns of brain activity. We
apply a multivariate analysis to correspond to the activation levels
of the 18 brain areas with a specific information stimulus or
combinations of multiple types of information (e.g., phonological
and visuospatial information). The “heat map” of brain activation,
mathematically modeled in our study, represents the cognitive
reaction pattern.

The modeling of information personality only reflects the static
general pattern of a person’s information-cognition relationship. In
order to achieve a real-time intervention, we also need to be able to
predict the dynamic changes of cognitive activities, that is, where
the current cognitive status is and where it is going. Little has been
done to model and predict the continuous changes of raw neuro-
imaging data. As a result, we propose to use a recurrent neural net-
work (RNN) (Mikolov et al. 2010) to fit and predict the fNRIS raw
data. Fig. 8 illustrates an example of the fNIRS data prediction in
Channel 5 of Participant 12. Channel 4 in our experiment measures
the activation level in the middle frontal gyrus of the brain’s frontal
cortex, which plays a role in sensory information retrieval (Stark
et al. 2010). The x-axis shows the time interval of fNIRS data sam-
pling. Because the sampling rate is 7.8125 data points per second,

each interval refers to 1=7.8125 s. The y-axis shows the relative
brain activation level measured as hemodynamic responses (levels
of oxygen consumption). Specifically, a reading of 0 refers to the
baseline of brain activation, with the reading being established by
measuring brain activities when a test subject is completely relaxed.
The values in the y-axis show how much more or less oxygen was
consumed at a certain point as a ratio to the baseline reading. For
example, a value of 2.0 means the current oxygen consumption is
twice as high as the baseline. Given the features of fNIRS data, we
used a sliding window of 40 s to predict the oxygen consumption
level in the next 20 s. The example shown in Fig. 8 indicates that
RNN can predict significant changes to oxygen consumption
within the next 20 s, and thus is an effective prediction tool for
potential cognitive overload.

Step 3: Adaptive Information Based on Digital Twin
Models of Human Cognition

Ultimately, the personalized information system will customize in-
formation based on the Cog-DT model of each individual to reduce
the risk of cognitive overload. Specifically, the Cog-DT model will
help determine: (1) what information format should be presented,
considering symbols, orientation (spatial information), words, let-
ters, numbers, shapes, and combinations; (2) when the information
should be presented (time); and (3) how the information should be
presented (the syntactical issue). Percentages of standardized and

Pictures: Du Lab 
(b)(a)

Fig. 6. Examining the relationship between information and cognitive load based on a revised Sternberg working memory test; test subjects will finish
the Sternberg test while maintaining a pipe skid: (a) primary task—Sternberg working memory test. Test subjects need to memorize the info provided
and answer if it appeared based on memory and (b) secondary task—VR pipe maintenance task. Test subjects will be asked to maintain a pipework
following given instructions. We programmed motion tracking and interaction function.

Fig. 7. Two hypothetical examples of information personality.
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personalized information will also be determined based on personal
data. The engineering information display options are defined for
a specific cognitive load according to (1) m categorical levels of
information quantity Iq and (2) n categorical options of information
type It. By converting continuous values of the two information
dimensions Iq and It into categorical options, the optimization
search will be much easier. Then, the display options will be de-
ployed in different areas of the display device (i.e., a headset), with
each area showing a certain type of information. The information
quantity and type of each display area will be dynamically adjusted
based on the real-time measure of each corresponding type of cog-
nitive load, as well as the established Cog-DT model. Based on the
unique nature of information personality, a gradient descent algo-
rithm will be applied to find the most effective way of reducing
cognitive load by adjusting the specific display design. Eventually,
this personalized information system will feature in a closed loop of
model training, model implementation, and model improvement, as
illustrated in Fig. 4. The graphic attributes of the display will also
be adjusted according to Cleveland and McGill’s graphic percep-
tion theory (Cleveland and McGill 1984), with elements including
shading, color saturation, volume, area, positions, and so on.

Human Subject Experiment to Test Cog-DT

In this section, we introduce a study (n ¼ 16) testing the concept of
digital models of human cognition. Specially, we will present the
cognitive data collection setup for collecting training data for the
digital twin model, the analysis of cognitive patterns under different
information stimuli, and the feasibility of the prediction of cogni-
tive activities. The findings are foundational to the further testing of
the proposed personalized information system.

Cognitive Data Collection Setup

In this study, we used NIRx Sport 2 (NIRx, Berlin), a portable
fNIRS device to collect real-time brain activities (NIRx 2019),
as illustrated in Fig. 9. fNIRS maps brain activities through hemo-
dynamic (blood) responses associated with neuron behavior
(Izzetoglu et al. 2004). Given its accuracy and portability, fNIRS
has been successfully implemented as a control signal for brain-
computer interface (BCI) systems (Coyle et al. 2007). NIRx Sport
2 is a multimodal brain and physiological assessment system with
64-channel NIRS imaging capabilities including automatic gain
control, plus eight-channel E*G analog recording capabilities. It

has been proven effective in scanning brain activities in various
studies (Hu et al. 2016; Ivkovic et al. 2014; Strangman et al.
2018; Zhang et al. 2014). The challenge we faced was integrating
fNIRS devices with VR devices. Our system requires neuroimaging
data collection and VR experiments to happen simultaneously, but
most off-the-shelf products do not consider this necessity. The VR
headset used in this research originally had a plastic cap that con-
flicted with the cap of the NIRx system. We replaced the plastic cap
with a strap. We also redesigned the NIRx cap to give enough space
for the VR headset straps. It was added in the revised manuscript.
Fig. 9 shows that the two systems are working together effectively.

Then the 16 test subjects were asked to perform: (1) a Sternberg
test (Fig. 10) and (2) a VR pipe maintenance task (Fig. 11), as pre-
viously discussed. Each experiment lasted for about 1.0–1.5 h,
and the fNIRS data were continuously collected. Fig. 12 illustrates
the different engineering information instructions provided in the
experiment.

Data Collection

The data on the fNIRS and other psychological aspects (not shown
in this paper) listed in Table 1 were collected in the experiments.
The 18 channels monitored in our experiment covered the frontal

RNN could predict significant increases in oxygen 
consumption, indicating a possible cognitive overload. 

Actual 

Forecast 

Fig. 8. Example of predicting cognitive activities (fNIRS) with RNN.

Fig. 9. Setting up fNIRS for one of the subjects.
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cortex and premotor and motor cortex areas, which are believed
to correspond to memory, logical thinking, and skill acquisition
(Cabeza and Nyberg 2000). Fig. 13 illustrates the changes in oxy-
gen consumption in the 18 channels over 40 s, and Fig. 14 shows

the oxygen consumption of both sides of the brain over 25 min
when exposed to the following information stimuli: symbols,
orientation (spatial information), words, letters, numbers, shapes
and combinations, which we call “base information components”

Fig. 10. Establishing the baseline of digital twin cognition modeling using Sternberg tests.

Fig. 11. Collecting brain activity data while performing VR training and pipe maintenance tasks.

Test subject learning the task instructed as isometric drawing (2D) 
and written instruction (phonological). 

Test subject learning 
procedures in 3D and VR. 

Fig. 12. Different types of engineering information were given.
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Fig. 14. Brain activity (18 channels) change of Subject 03 over 25 min; X = time (s), and Y = oxygen consumption (mmol=L).

Fig. 13. Temporal data of 18 channels (18 brain areas) of Subject 03 over 40 s; X is seconds, Y is oxygen consumption measures in
mol=L.
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in this research. The assumption is that once we successfully model
the cognitive patterns for these base information components, we
can test the predictivity in a much more realistic setup.

Data Analysis

Two analyses were performed to test the concept of Cog-DT.
First, we performed a classification analysis to test if there were
identifiable differences in the cognitive patterns (measured by
fNIRS data) among seven information stimuli (data labels):
Phonological-letters, Phonological-numbers, Spatial-orientations,
Visual-shapes, Visual-symbols, Phonological-words, and mixed in-
formation. Each of the 18 channels tracked by fNIRS represents a
dimension in the data space, and each type of information stimuli
represents the data label. Then, a multivariate discriminant analysis
(Kennedy et al. 1980) was used to classify the classes. An impor-
tant point is that the raw fNIRS data should be processed with a
hemodynamic response function (HRF) before the classification
analysis to reflect the real brain activities (Lindquist et al. 2009).
In neural science, hemodynamics refers to the body’s reactions to
physical and mental activities by homeostatically adjusting its
blood flow to deliver resources (such as oxygen and glucose) to
stressed brain areas to continue their functions (Iadecola 2004).
HRFs are the proven shapes of nutrition change curves that corre-
spond to known blood flow patterns that are essential for the main-
tenance of neurons, astrocytes, and other cells of the brain. The
procedure of HRF analysis is to: (1) divide the continuous raw
fNIRS data into sections called “events,” which represent the be-
ginning and ending of the information stimulus in our experiment;
(2) overlay the established HRF of memory and skill-gaining cog-
nitive processes on each of the event sections; and (3) perform a
F-test to examine the similarity between the raw fNIRS data
and the HRF. Results are shown as a number from 0 to 1, show-
casing different levels of brain area activation under the external
stimuli. The processed data were then used in the multivariate
discriminant analysis. Our results indicate that there are identifi-
able differences among the seven information stimuli shown as
excellent prediction rates of the classification analysis, as shown
in Table 2.

Afterward, we also performed RNN analyses to test the predict-
ability of the cognitive activities measured as the fNIRS oxygen
consumption data. RNN was selected because it has been proven
to be a highly effective way of analyzing time series data (Connor
et al. 1994). Compared to other methods, RNN is more robust to the

noise in the data and can capture the nonlinearity more effectively
(Ho et al. 2002). Fig. 15 illustrates the RNN prediction of the 18
channels of Subject 12’s fNIRS data.

Discussion and Conclusions

This paper introduces the methods, procedures, and tools for a
cognition-driven, personalized information system as a key compo-
nent of the intelligent ICT for future smart cities. Knowing that ICT
advancements and smart city technologies will generate an unprec-
edented amount of information for residents and professional work-
ers, a personalized information system is proposed as a solution for
potential cognitive overload issues. The core component of the
personalized information system is Cog-DT, a digital replica of
a person’s cognitive process in relation to information processing.
Cog-DT includes a VR platform that collects information prefer-
ence data during training, contains the modeling and optimization
algorithm of DT modeling of human cognitions, and has an
adaptive UI design based on real-time cognitive load measures and
Cog-DT models. By dynamically adjusting the contents and for-
mats of presented information, the personalized information system
is expected to reduce the real-time cognitive load of individuals
while still maintaining an effective performance.

Our results indicate that the specific types of cognitive loads
related to different information stimuli are distinguishable and
modelable. This finding sets a solid foundation for the proposed
Cog-DT and is expected to advance smart city and DT knowledge
in two ways. First, Cog-DT echoes the urgent need for a person-
alized information system to tackle the potential information over-
load issues driven by the unprecedented accessibility to large
amounts of real-time information in future smart cities. Existing
literature has recognized the importance of optimizing information
systems to control cognitive load (Campbell et al. 2008; Kruijff
et al. 2014; Nunez 2017; Reeves et al. 2004). Yet, most literature
only focuses on giving generalized design recommendations rather
than providing personalized solutions. Their assumption is that
certain principals of design will work well with the overall popu-
lation (Reeves et al. 2004). However, this assumption is question-
able because cognitive science literature has already discovered that
individual-level differences in receiving information are major
contributors to varying task performances (Cornoldi et al. 1991).
Cog-DT employs neuroimaging technologies and algorithms to
track and model the cognitive profiles of individuals. The data
will then be used to guide the dynamic change of information con-
tent and format for the specific individual. This personalized infor-
mation system solution will transform the ICT into an adaptive
framework.

Second, this study tests the concept of using digital twin mod-
eling for human cognition. Although digital twins have gained pop-
ularity, most applications focus on reproducing physical processes
and systems, such as Boschert and Rosen (2016), Glaessgen and
Stargel (2012), and Tao et al. (2018). Simulating human behaviors
has been investigated, such as evacuation behaviors (Zheng et al.
2009), yet little has been done to examine if human cognition is
modelable and able to be simulated with digital twins. This work
is one of the first efforts on cognitive digital twins.

Several limitations of the current study have been identified
as potential topics for future investigation. First, it must be admitted
that neurocentric cognitive prediction is still constrained by limited
knowledge on brain functions (Blakemore and Decety 2001;
Haggard 2008). The literature finds that, given complex tasks and
changing environments, the variability of neurophysiological data
is often too far beyond a modelable level to generate any effective

Table 2. Classification results of 14 subjects

Subject ID
Percent

misclassified —2LogLikelihood

1 7.284 50.6144
2 6.662 7.92326
3 8.596 80.4007
4 4.636 45.8853
5 5.298 75.4885
6 4.636 56.6448
7 6.662 6.53595
8 8.609 84.3487
9 4.636 43.1822
10 9.272 170.38
11 7.947 105.973
12 9.986 18.8986
13 3.3112 57.2329
14 6.6225 72.2801

Note: Data from two subjects are missing because of quality issues.
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Fig. 15. RNN fit and predication of fNIRS raw data (Subject 12).
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intent prediction mode (Marcos et al. 2013). The future agenda
of this study will be focusing on the validation of the proposed
cognitive modeling and simulating with advancements in neural
science and deep learning. We also expect a more thorough experi-
ment to reveal what types of information are more suitable to be
presented in two-dimensional (2D), three-dimensional (3D), and
VR environments. Second, we recognize the importance of iden-
tifying the minimum number and variety of worker training data
for Cog-DT modeling; however, the answer can be very complex
and is beyond the scope of the current study. Specifically, the mini-
mum data requirement varies across people, driven by how much
variation is observed in cognitive data. This paper focuses on

introducing the framework, method, and tools for modeling a per-
son’s cognitive process (which are foundational to the personalized
information system). Determining the specific data requirements
for each individual deserves future investigation. Third, although
we recognize that a detailed introduction to the functionality, algo-
rithms, and specific UI designs of the proposed personalized infor-
mation system will be helpful, this paper focuses on introducing
the framework and tools for developing Cog-DTand corresponding
information system, and thus such intricacies are in the agenda of
the future. In the future, we will also incorporate environmental
simulations, such as temperature, ventilation, and so on, in the VR
platform to help trigger realistic behaviors.

Fig. 15. (Continued.)
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