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ABSTRACT 

Driven by the increasing complexity of built environments, firefighters are 
often exposed to extensive wayfinding information which could cause high cognitive 
load and ineffective or even dangerous decision making. To reduce injuries and fatal 
incidents in firefighters’ line of duty, this study aims at measuring the cognitive load 
and identifying the source of such cognitive overload in wayfinding information 
review. We developed a Sternberg Test to induce cognitive load on participants 
pertaining to working memory development, where participants were required to 
memorize colors, letters, numbers, directions, icons, words, and letter combinations 
that are relevant to wayfinding tasks. We used an Electroencephalogram (EEG) device 
to monitor neural activities especially in frontal, parietal, and occipital areas of brain. 
The fast Fourier transformation (FFT) was applied to separate the sub-band energy. 
The speed of response in Sternberg Test and the EEG signals were compared to show 
the coherence between the results of the two methods in representing the cognitive load 
in the review test. Results indicate that the cognitive load arises from diverse 
information can be measured to help customize wayfinding information for controlled 
cognitive load of firefighters in wayfinding tasks.  

INTRODUCTION 

Firefighters work in extreme situations and operate highly psychological 
demanding tasks (Roja et al. 2009; Henderson et al. 2016). According to the report 
from National Fire Protection Association, 58,835 firefighter injuries occurred in the 
line of duty and 42 percent of firefighter injuries occurred at fireground in 2017 (Evarts 
and Molis 2018). Among all the accidents, firefighter disorientation is the root cause 
of firefighter fatalities defined by the National Institute of Occupational Safety and 
Health (Brennan 2011). In the investigation for disorientation cases from 1979 to 2001, 
heavy smoke which caused Prolonged Zero Visibility Conditions was developed in 100% 



of the cases (Mora 2003). Therefore, memorization becomes one of the major resources 
for firefighters to perform wayfinding on low visibility fireground.  

However, memorization before and after entering the fireground could both be 
challenging for the firefighters. Usually, firefighters have to take in a large amount of 
information all at once and make vital decisions (Davies 2015). This process would 
introduce tremendous cognitive load. Moreover, the severe pressure arises from limited 
time, life-threatening environment could further elevate their cognitive load and cause 
mental overload eventually (Galy 2012). It is critical to monitor firefighters’ cognitive 
load, help them better process demanding information, and thus, improve their 
performance on wayfinding and rescue tasks.  

Despite the criticality, there is a limited understanding on the connection 
between the types of information needed by firefighters and the cognitive overload on 
parts of human brain caused by them. We would not be able to identify the causes of 
cognitive overload without such an in-depth understanding. To narrow the knowledge 
gap between sources and cognitive overload, cognitive load introduced by information 
which firefighters frequently exposed to is measured in this research in order to, in the 
future, understand the relation between cognitive load and various types of information 
for individuals. 

LITERATURE REVIEW 

In this research we used Electroencephalography (EEG) as the main 
neuroimaging tool. EEG is a widely used neuroimaging technique which measure the 
electrical fields generated by the brain. EEG has proven to be an influential tool in 
cognitive monitoring (Antonenko et al. 2010). Due to the rapid propagation speed of 
electric fields, EEG has distinguished time domain resolution in imaging large-scale 
brain activity (He et al. 2018). However, three disadvantages have limited further 
application of EEG. Firstly, brain activity signals are often buried by noises from 
environment and body activities in raw EEG signals, which are called “artifacts” (Roy 
2019). Various processing methods must be used to acquire clean brain activity signals. 
Secondly, high inter-subject variability significantly limits the widely application of 
EEG devices. The variability originates from physiological differences between 
individuals. Finally, it is a non-stationary signal (Gramfort et al. 2013), which means 
data collected on the same subject at different time might hard to be generalized. 
Despite the existence of three prime drawbacks mentioned above, considerable 
researches have been conducted on measuring and classifying cognitive using EEG 
signals. 

Around 1999, researchers discovered that the electrical activity in the brain 
have four distinct rhythms separated in frequency, including delta waves, theta waves, 
alpha waves, and beta waves (Başar 2012). In the research from Berka et al. (Berka et 
al. 2007), absolute and relative power spectrum were used as the metric for mental 
workload. A linear discriminant function analysis was applied to correlates the power 
spectrum to the mental workload assessed by both subjective and objective 
performance metrics. The research validated the feasibility of using power spectrum as 
the metric for mental workload by using other performance metrics. But the metric is 



invented to describe the cognitive load for the whole brain. In 2009, Holm et al. 
presented a two-channel EEG-based index, theta Fz / alpha Pz ratio. It was later be 
widely used in generally measuring subject’s cognitive load (Dan 2017). But the metric 
is still measuring the cognitive load for the whole brain, which is not suitable for 
identification purpose. The Theta to Alpha Ratio (TAR) for the individual channel was 
also invented to assess the cognitive load for individual channels (Bian et al. 2014). 
After the flourishing of machine learning techniques, spatial information becomes more 
and more important for EEG data. Autoencoder was applied to evaluate the binary 
cognitive task load level (low versus high) for single channel signal (Yin and Zhang 
2016). Multi-channel EEG signals were used as the input to the Convolutional Neural 
Network (CNN) (Zhang and Wang 2017), Recurrent Neural Network (RNN) (Hefron 
et al. 2017), and the Convolutional Recurrent Neural Network (Hefron et al. 2018). The 
impact on model performance from individual differences were decreased using Neural 
Networks and the sufficient diversity of individuals data could largely overcome the 
non-stationarity of EEG signals. However, the output for Neural Networks are in low 
resolution and the cognitive load generated by diverse types of information are yet to 
be identified.  

Thus, a method to generate cognitive load from various types of information, 
an EEG metric, and a classifier are to be found to relate the cognitive load and the type 
of source information. In this research, the method and the metric will be selected and 
validated that cognitive load is generated, and the metric is capable to identify the load.  

EXPERIMENT 

Cognitive load is the load imposed on the cognitive system when human is 
performing a task (Sweller 1988). It represents the used amount of working memory 
resources in cognitive psychology. As a result, Sternberg Test (Sternberg 1969), a well-
proven working memory test, was applied in this research to simulate task-driven 
cognitive load scenarios. Because the short-term memory is part of the working 
memory, subject’s cognitive load would be increased throughout the test (Sweller 
2011). Then, EEG was used to measure the electrical activity produced by the brain to 
assess the cognitive load on subjects during the test.  

 



 

Figure 1 Schematic diagram of Sternberg Test 

 

As illustrated in Figure 1, subjects were asked to take a Sternberg working 
memory test, which involves presentation of a list of wayfinding information items to 
memorize (encoding or learning period), followed by a memory retention period during 
which the subject must maintain the list of items in memory, and a retrieval period in 
which the subject will answer if a given item appeared. There is a short period of 
fixation phase between two sessions. 
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Figure 2 Examples of information items in Sternberg Test 

 



To stimulate cognitive load increases, the Sternberg Test were repeated 153 
times with different sets of images for each subject. As the example shown in Figure 2, 
the 153 tests contain 2 sets of color, 21 sets of letters, 22 sets of numbers, 29 sets of 
orientations, 25 sets of shapes, 20 sets of daily words, 8 sets of firefighter related words, 
and 26 sets of letter combinations to induce cognitive load similar to that firefighters 
potentially could bear. During the test, subjects’ response time were recorded and the 
Enobio 32 from Neuroelectrics® was attached to a subject’s head to collect EEG 
signals. The referenced EEG data were transmitted wirelessly to a computer for further 
analysis.  

DATA ANALYSIS 

We collected data of male subjects (݊ ൌ 5) aging from 22 to 28 with the average 
at 24.8 in this research to find disparities. All of them are graduate students in College 
of Engineering in Northeastern Univerity. Among them, one subject did two 
experiments to provide information in investigating personal varieties. The recorded 
EEG data was processed using EEGLAB, an open source toolbox in Matlab (Delorme 
and Makeig 2004). A bandpass filter from 1Hz to 50 Hz was applied as the first step to 
extract clean EEG signals. PREP-pipeline (Bigdely-Shamlo et al. 2015) was applied to 
the signal to detrend and to remove line-noise. Then, independent component analysis 
(ICA) (Onton and Makeig 2006) and ADJUST (Mognon et al. 2011) were applied on 
the data to detect and reject artifacts efficiently and automatically to remove artifacts 
generated by muscles and eye movements.  

After the clean EEG data was acquired after preprocessing, fast Fourier 
transform (FFT) was applied on the time domain signal to acquire alpha and theta wave. 
The alpha and theta band energy were calculated on frequency domain using equations 
below. 
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In which, ܺሺ݂ሻ represents the frequency domain energy from the result of FFT, ܧఏ, ܧఈ 
and ܧ௧௢௧  are, in separate, theta sub band energy, alpha sub band energy, and total 
energy, ܧ௥ఏ and  ܧ௥ఈ are theta and alpha band relatively energy respectively, and TAR 



is short for the Theta to Alpha Ratio. Pearson correlation is calculated between recorded 
response time and TAR value to check the reliability of TAR.  

RESULTS 

The TAR oscillates due to the fluctuation of EEG signal. A Moving-Average 
(MA) filter is applied on the ܧఏ ఈܧ , , and ܴܶܣ  through the following difference 
equation to smoothen the figure and visualize general trends.  

ሺ݊ሻݕ ൌ ܾሺ1ሻݔሺ݊ሻ ൅ ܾሺ2ሻݔሺ݊ െ 1ሻ ൅ ⋯൅ ܾሺ݉ሻݔሺ݊ െ ݉ሻ 

in which ݕሺ݊ሻ and ݔሺ݊ሻ represent the output from the filter and input to the filter at ݊th 
point respectively, ܾሺ݉ሻ is the ݉th element of a predefined ܾ array. In this case, the 
window length is selected to be ݉ and ݉ elements in ܾ are 1 ݉⁄ . Smoothened TAR 
results are as illustrated in 

 

Figure 3. 



 

Figure 3 TAR results smoothened by ࢓ ൌ ૛૙ 

In the figure above, x axis is the ݊ in the MA filter difference equation and y 
axis is the TAR. Vertical dash line marks the end of last types of images and the start 
of a new set of tasks. Lines with diverse colors represent the TAR index for individual 
channels over the test. Legends were hidden and no additional pattern applied for lines 
to avoid confusion and keep the figure clean. Changes of cognitive load introduced by 
information images in Sternberg Test for certain part of brain could be illustrated by 
the trend of lines. Based on the design of Sternberg Test, the mapping from test 
numbers to types of information images are listed in Error! Reference source not 
found.. 

Table 1 Map between test numbers and types of images 

Types Test Numbers 
Color 1 to 2 

Letters 3 to 23 
Numbers 

Orientations 
24 to 45 
46 to 74 

Shapes 75 to 99 



Daily words 
Firefighter related words 

Letter combinations 

100 to 119 
120 to 127 
128 to 153 

 

The result of Pearson Correlation showed relatively low ߩ  values and 
comparably high ܲ values because of the oscillation of EEG TAR index. An MA filter 
with the window size of 20 is applied on both response time and TAR to minimize the 
fluctuation of TAR data and achieve better Pearson Correlation result. Results are listed 
below.  

Table 2 Pearson Correlation between TAR and Reaction Time 

Subject Number ࣋ value ࡼ value 
1 0.8550 4.8600 ൈ 10ିସସ 
2 0.3589 5.2318 ൈ 10ି଺ 

3 1st trial 0.9093 4.4009 ൈ 10ିହ଻ 
3 2nd trial 

4 
5 

0.8789 
0.9477 
0.9525 

2.1384 ൈ 10ିହ଴ 
2.9199 ൈ 10ି଻଺ 
7.0251 ൈ 10ି଼଴ 

 

Table 2 indicates that there is a positive correlation between TAR and response 
time at a high confidence level except subject 2. Considering the response time has 
been taken as one of the most significant part of subject performance (Barrouillet et al. 
2007), the correlation indicates the Moving Average TAR could be taken as a direct 
cognitive load indicator.  

DISCUSSION 



Firstly, individual differences are observed. According to the result in 

 

Figure 3, it could be observed that five subjects have shows distinct TAR 
performance during the test. For example, for subject 2, cognitive load increases 
significantly when the subject was exposed to numbers information. But the cognitive 
load for subject 4 merely shows a slight increase during the same procedure. Subject 1 
and subject 3 at first trial have had a sharp decrease in TAR, indicating the fact that 
numbers brings relatively low mental burden in working memory development. Similar 
variations arising from the individual differences are also found in the rest types of 
images except for the color images due to the lack of tests.  

Secondly, the non-stationarity for individual subject could be found in the 
result. The comparison between two sets of data from subject 3 reveals a potential that 
subjects may learn from the previous trial. Besides the remarkable contrast on cognitive 
behaviors in numbers information and letter combination information, subject 3 
achieves some progress in the rest part of the test. In orientation tests, cognitive load 
stayed stable at a level during the first trial. But the cognitive load decreased 
significantly at the second trial. More significantly, the range of fluctuation of TAR in 
the second trial is smaller than the first one. This might be the result of both the training 
effect from the previous trial and the non-stationarity inherited by EEG. However, the 
sharp drop from test number 99 to 119 in the first trial is not because of the change of 



mental workload. It is mainly as the consequence of a huge peak existence in the alpha 
band energy. This might arise from a several-seconds eyes closure. 

Lastly, the spatial correlation could be observed from the same performance in 
most of the channels. In the figure of TAR of Subject 2, some parts of brain have a 
relatively high cognitive load and those channels follows similar trends which are 
different from others. Those channels are from parietal and occipital parts of brain and 
part of them are in the visual cortex. The separation might reveal higher visual demand 
or the lack of baseline data. In the rest five figures, channels are highly spatially 
correlated, which are mainly because of the conductance of tissues and skull.  

CONCLUSIONS 

The massive cognitive load introduced by extensive information was increasing 
the level of danger in making vital decisions for firefighters. The understandings in the 
resources of personal cognitive load are necessary to decrease the potentiality of 
cognitive overload and control the load within a safe level. In this research, we 
performed an experiment to trigger specific cognitive load arising from a certain type 
of information and an automatic EEG processing method based on EEGLAB and 
plugins. Theta to Alpha Ratio was selected as the assessment of the cognitive load 
separated in 32 channels.  

The result of this research reveals that the design of experiment is capable to 
generate various cognitive, the automatic EEG processing method is sufficient in 
extracting true brain activity signals, and the TAR is capable to quantify the cognitive 
load of individual channels.  

The study, as a first step of measuring cognitive load in the context of Sternberg 
tests, can be expanded in multiple ways. First, future work could employ a new design 
of Sternberg Test which provides the subjects enough time to relax between different 
types of information to exclude the influence from the previous type. The new test 
could provide better resource for classification and identification of cognitive load 
which could help us identify the source of mental workload during firefighter’s training 
period and, as a result, optimize the information delivery for individuals. Second, the 
automatic EEG proessing method would enable the real-time whole-brain cognition 
measurement, which will be of help to monitor the cognitive status of firefighters and 
make decisions to prevent overload. The method could further be applied on workers 
in other high hazardous conditions to improve their performance in decision making. 
Also, individual differences and the spatial correlation are to be decreased with the 
application of Neural Networks with the TAR as input and the effect of non-stationarity 
could also be attenuated with enough diversity of individuals data.  
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