

1 **Natural Organic Matter (NOM) Imparts Molecular-Weight-Dependent Steric** 2 **Stabilization or Electrostatic Destabilization to Ferrihydrite Nanoparticles**

Zhixiong Li^{†1,2}, Sheyda Shakiba^{†2}, Ning Deng², Jiawei Chen^{1*}, Stacey M. Louie^{2*}, and Yandi Hu^{2*}

¹ State Key Laboratory of Biogeology & Environmental Geology, China University of Geosciences, Beijing 100083, PR China

² Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States

3 † Equal Contribution

4

5 *Corresponding authors:

6
7

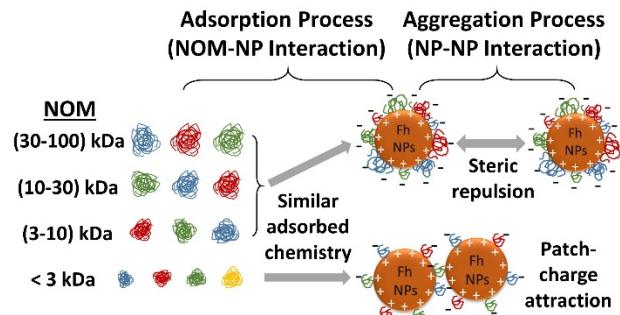
8 Phone and Fax: +86 10 8232678; Email: chenjiawei@cugb.edu.cn

9 Phone: 713-743-8646; Fax: 713-743-4260; Email: slouie@uh.edu

10 Phone: 713-743-4285; Fax: 713-743-4260; Email: yhull@uh.edu

11
12
13

14


15 Word count: 6387 text + (4 Figures + 1 Table)*300= 7887 words

16

17

TABLE OF CONTENTS FIGURE

18

19

20 ■ ABSTRACT

21 Ferrihydrite nanoparticles (Fh NPs) are ubiquitous in natural environments. However, their
22 colloidal stability and fate and transport behavior are difficult to predict in the presence of
23 heterogeneous natural organic matter (NOM) mixtures. Here, we investigated the adsorption and
24 aggregation behavior of Fh NPs exposed to NOM fractions with different molecular weights (MW).
25 The NOM fraction with MW < 3 kDa destabilized the NPs, resulting in accelerated aggregation
26 even at high C/Fe mass ratios, whereas higher MW NOM fractions imparted better colloidal
27 stability with increasing MW and C/Fe ratio. Despite differences in the functional group
28 composition of the bulk (dissolved) NOM fractions, all NOM fractions produced similar adsorbed
29 layer compositions on the NPs, suggesting minimal contribution of chemical properties to the
30 distinctive aggregation behavior. Rather, the higher adsorbed mass and larger size of the higher
31 MW fractions were key factors in stabilizing the NPs through steric repulsion, whereas the lowest
32 MW fraction had low adsorbed mass and was unable to counter electrostatic patch-charge
33 attraction when the NPs are positively-charged. This mechanistic understanding helps us predict
34 the transport and fate of Fh NPs and the associated contaminants in natural environments with
35 varying NOM compositions.

36

37

38 ■ INTRODUCTION

39 With iron (Fe) being the fourth most abundant element in Earth's crust, ferrihydrite (Fh,
40 iron hydroxide) nanoparticles (NPs), which can form through precipitation from solution, are
41 ubiquitous in many natural and engineered aquatic environments. Due to their high reactivity and
42 specific surface area, Fh NPs play essential roles in controlling the transport and fate of various
43 aqueous organic and inorganic contaminants.¹⁻³

44 Despite the importance of Fh NPs, their aggregation behavior, which controls the stability,
45 reactivity and transport of the NPs and associated contaminants,⁴ is far from well understood. In a
46 recent study by Liu et al., aggregation of Fh NPs was investigated in solutions with varied pH,
47 electrolytes and organic species.⁵ However, a detailed evaluation of the effects of natural organic
48 matter (NOM) chemistry and molecular weight (MW) on aggregation of Fh NPs was not reported.
49 NOM is comprised of a complex mixture of biomolecules and their decay products, and hence its
50 interactions with NPs can be difficult to predict. Both the adsorption of NOM and the subsequent
51 effect of adsorbed NOM on interparticle forces must be considered to understand NP aggregation.

52 For adsorbed mass, the chemical and physical properties of NOM, including functional
53 group composition, charge, and MW, can be important, but contradictory results have been
54 reported in the literature. Li et al. reported that the intermediate MW fractions of SRHA (2-6 kDa)
55 and large SRFA MW fractions (>3.5 kDa) preferentially adsorb onto nano zerovalent iron (nZVI).⁶
56 Other studies have reported preferential adsorption of lower,^{7, 8} intermediate,⁹ or higher¹⁰⁻¹² MW
57 fractions of NOM onto hematite, goethite, and magnetite. Preferential adsorption of higher MW
58 NOM onto Fh has been reported in some studies¹³⁻¹⁵ while Gentile et al. report preferential
59 adsorption of lower MW (i.e., non-colloidal) fractions of soil NOM.¹⁶ Chemical properties can
60 also influence NOM adsorption onto iron oxides. Carboxyl groups are often reported to bind to
61 iron oxides by ligand exchange;^{11, 17, 18} preferential adsorption of aromatic species is also
62 commonly reported onto iron oxide particles.^{9, 13-15, 17-19}

63 The preferential adsorption of NOM components with different MWs or chemistries onto
64 Fh NPs will determine the adsorbed mass, layer thickness, chemistry, and charge of the adsorbed
65 NOM, which can all influence the subsequent NP aggregation. A generalized prediction of the
66 effects of NOM on nanoparticles' aggregation behavior can hence be challenging because of the
67 variability in organic matter from different sources. A bottom-up approach has been applied in
68 prior studies²⁰⁻²⁵ to compare the effects of MW-fractionated NOM to provide a more fundamental
69 distinction of the role of different NOM components individually and in the complete mixture of
70 NOM, as summarized in the Supporting Information (SI), Table S1. In general, high MW fractions
71 of NOM imparted better colloidal stability for NPs, although two studies showed enhanced
72 flocculation with high MW (> 30 kDa) NOM fractions which was speculated to be caused by
73 bridging with divalent cations²² or displacement/overcoating of poly(vinyl pyrrolidone) coatings.²³

74 Three major knowledge gaps can be identified in the previous studies with MW-
75 fractionated NOM. Firstly, even though the adsorption process of molecular weight fractionated
76 NOM is clearly an important process affecting the aggregation, the adsorption was not thoroughly
77 investigated in the prior studies. Secondly, although electrostatic and steric effects have previously
78 been proposed as controlling mechanisms for aggregation, a detailed characterization of the
79 adsorbed NOM properties was lacking to provide direct evidence. Hence, a major fundamental
80 question could not be answered regarding which properties of the adsorbed NOM, either physical
81 (e.g., surface charge, adsorbed mass, MW of adsorbed species) or chemical (e.g., functional groups,
82 aromaticity) are the main controlling factors in the aggregation process? Finally, only negatively-
83 charged engineered NPs were investigated, whereas iron oxide NPs can be positively-charged at
84 environmentally relevant pH and the charge is susceptible to neutralization or charge reversal by
85 organic ligands such as NOM.^{16, 26}

86 By providing comprehensive characterization of the NOM-NP interactions, this study
87 achieves novel insights into the mechanisms by which NOM imparts either stabilization or
88 destabilization of positively-charged Fh NPs against aggregation.

89

90 ■ EXPERIMENTAL SECTION

91 **Synthesis and Characterization of Ferrihydrite Nanoparticles.** The Fh NP
92 synthesis was modified from the procedure by Tang et al.²⁷; detailed information is in the
93 Supporting Information (SI). The stock NP concentration was determined to be 1 g Fe/L by diluting
94 the NP stock 100 times with 2% nitric acid and soaking overnight, followed by quantification by
95 flame atomic absorption spectrometry (AAS, AAnalyst 200, PerkinElmer, Waltham, MA). After
96 drying in a vacuum desiccator at room temperature, the NPs was confirmed to be Fh (SI Figure
97 S1) by X-ray diffraction (XRD) (Miniflex600, Rigaku, Tokyo, Japan). The *z*-average
98 hydrodynamic diameter of the Fh NPs was \approx 30 nm, as measured in DI water by dynamic light
99 scattering (DLS) using a Malvern Zetasizer Nano ZS instrument (Malvern Instruments,
100 Worcestershire, UK). The isoelectric point (pH_{iep}) of the Fh NPs was determined to be 7.1 (SI
101 Figure S2) by measuring the zeta potential across pH 3 to 10 in 5 mM NaNO_3 solution (to impart
102 a consistent ionic strength), using the Smoluchowski fitting model (details in our previous
103 publication⁵). At pH = 5.5, which is the condition used for aggregation and adsorption experiments,
104 the zeta potential was 24.8 ± 1.6 mV (SI Figure S2). DLS was used to determine the aggregation
105 kinetics of Fh NPs in the absence of NOM in solutions containing varied NaCl concentrations (0
106 to 250 mM) to identify the critical coagulation concentration (CCC), by monitoring the *z*-average
107 hydrodynamic diameter of Fh NPs with a Malvern Zetasizer Nano ZS instrument (Malvern Nano
108 ZS, Malvern, Worcestershire, United Kingdom) every 15 s for 15 min. For each aggregation
109 experiment, 0.5 mL Fh NPs suspension (20 mg Fe/L) was mixed with 0.5 mL NaCl solution with
110 different concentrations, yielding a final NP concentration of 10 mg Fe/L ($\text{pH } 5.5 \pm 0.2$).
111 Immediately after mixing, the samples were vortexed for 2 s, inserted into the DLS chamber, and
112 measurement started immediately.

113 **NOM fractionation.** To prepare the NOM fractions, 150 mg of Suwannee River NOM
114 (SRNOM) (Cat. No. 1R101N, International Humic Substances Society, St. Paul, MN) was

115 dissolved in 60 mL Milli-Q water. After adjusting pH to 7 with NaOH, the solution was rotated
116 end-over-end overnight at 20 rpm. Then, the solution was filtered through a 0.2 μ m PES membrane
117 (EMD Millipore, Burlington, MA) to remove any undissolved SRNOM. A series of Amicon Ultra-
118 15 centrifugal filters (EMD Millipore) with decreasing MW cut-offs (MWCO) of 100 kDa, 30 kDa,
119 10 kDa, and 3kDa were used for MW fractionation. Filter units were centrifuged at 4714 rpm
120 (4000 \times g) (Eppendorf 5804, Hamburg, Germany) for 10, 30, 40, and 60 min for MWCO 100 kDa,
121 30 kDa, 10 kDa, and 3 kDa, respectively. All filter units were pre-rinsed by centrifuging with Milli-
122 Q water three times, and the dissolved total organic carbon (TOC) concentration in the final filtrate
123 was negligible (0.42 ± 0.14 mg C/L). Sequential fractionation (schematic in SI Figure S3) was
124 performed to obtain > 100 kDa SRNOM fractions, then 30 to 100 kDa (SRNOM_{30-100kDa}), 10 to 30
125 kDa (SRNOM_{10-30kDa}), 3 to 10 kDa (SRNOM_{3-10kDa}), and finally < 3 kDa (SRNOM_{<3kDa}). Briefly,
126 the filtrate from each higher MWCO filter was utilized in each following stage of the sequential
127 filtration. The retentate fractions were rinsed in the filter unit with Milli-Q water to remove any
128 remaining lower MW NOM until the filtrate showed minimal observable color, after which the
129 concentrated retentate was recovered and diluted with a measured quantity of Milli-Q water for
130 further use. The concentration as C in each fraction was measured by TOC analysis. The
131 cumulative mass recovery across the entire sequential filtration was $\sim 85\%$. All stock solutions of
132 fractionated and unfractionated NOM (SRNOM_{unfractionated}) were stored in the dark at 4 °C.

133 **Characterization of MW distributions of NOM.** The unfractionated and
134 fractionated NOM were characterized by size exclusion chromatography (SEC) using a Superdex
135 75 10/300 GL column (GE Healthcare, Chicago, Illinois) on an Agilent 1290 Infinity system
136 (Agilent, Santa Clara, CA) including a binary pump, degasser, autosampler, Agilent 1260 UV-vis
137 diode array detector, DAWN HELEOS II multi angle light scattering (MALS) detector (Wyatt
138 Technology, Santa Barbara, CA), and Optilab T-rEX differential refractive index (dRI) detector
139 (Wyatt Technology). The sample injection volume was 100 μ L and flowrate was 0.5 mL/min. In
140 “ideal” SEC theory, analytes do not interact with the stationary phase and elution time corresponds

141 only to the molecular size. However, in practice, NOM shows adsorptive or repulsive interactions
142 with the Superdex column that vary with the ionic strength of the eluent.²⁰ Therefore, MALS was
143 used to directly quantify MW independently of elution time, using the Zimm model in the Wyatt
144 ASTRA software (7.1.2.5) with the dRI detector as the concentration source (dn/dc of 0.146 mL/g
145 for SRNOM);²⁸ details are in the SI. Furthermore, we take advantage of the NOM/column
146 interactions to tune the mobile phase such that each MW fraction elutes within the usable
147 separation and measurement range of the column (between the void volume and solvent volume).
148 For the unfractionated NOM and fractions with MW cutoff > 10 kDa, a mobile phase of phosphate
149 buffer (4 mM, pH 7) with NaCl (25 mM) results in elution of higher MW components after the
150 void volume.^{20, 21} For NOM fractions with MWCO < 10 kDa, a lower ionic strength phosphate
151 buffer (2 mM) was chosen to elute low MW components prior to the solvent peak (which produces
152 a negative dRI signal).²⁰

153 **Quantification of adsorbed mass of NOM onto Fh NPs.** Batch adsorption
154 experiments were performed to investigate the adsorption of unfractionated and fractionated NOM
155 onto Fh NPs (10 mg Fe/L). The adsorbed carbon concentration for samples with initial
156 concentrations of 5 mg C/L or 10 mg C/L in 150 mM NaCl (identified as CCC in the absence of
157 NOM, SI Figure S4) were obtained by solution depletion (measuring the change in carbon
158 concentration due to adsorption) using a TOC analyzer (TOC-L, Shimadzu, Kyoto, Japan). For the
159 SRNOM_{<3kDa} fraction, destabilization of the NPs was observed, and an additional sample with an
160 initial NOM concentration of 20 mg C/L was analyzed to further investigate the distinct
161 aggregation behavior.

162 For sample preparation, the NP stock (1 g Fe/L) was bath sonicated for 30 minutes before
163 sample preparation. Solutions containing NOM and NaCl with a total volume of 6 mL were mixed
164 with 6 mL diluted NP suspensions (20 mg Fe/L) and vortexed for 2 s. The mixture pH was $5.5 \pm$
165 0.2 ($n = 15$). To have consistent NP-NOM exposure time with the aggregation experiments (*vide*
166 *infra*), samples were held at room temperature for 15 minutes. The dissolved (unadsorbed) NOM

167 was isolated from the Fh NPs by centrifuged in an Amicon 100 kDa centrifugal ultrafiltration unit
168 (Millipore Sigma, Burlington, MA) at 4714 rpm ($4000\times g$) for 2 minutes (Eppendorf 5804,
169 Hamburg, Germany). Filters were prewashed ten times with NaCl (150 mM), and a total sample
170 volume of 12 mL was filtered. Controls for each NOM type and concentration containing no NPs
171 were prepared with the same procedure, and the adsorbed NOM concentration onto NPs was
172 determined by subtracting the remaining NOM concentration as C in the filtrate of the NP samples
173 from the corresponding NP-free control.

174 **Characterization of adsorptive fractionation of the NOM.** To investigate
175 adsorptive fractionation by MW of the NOM onto Fh NPs, SEC-UV₂₈₀ chromatograms (detector
176 wavelength at 280 nm) for each of the NOM fractions were compared before versus after
177 adsorption to NPs. The same solutions prepared for batch TOC measurements (the 100 kDa filtrate
178 for the Fh-NOM mixtures, and the control NOM filtrate with no NPs) were measured using the
179 SEC method reported above.

180 Additionally, to investigate the possible preferential adsorption of aromatic compounds
181 relative to the TOC,²⁹ batch UV-vis absorbance spectra of NOM fractions before (filtrate of NP-
182 free control) and after adsorption to NPs (filtrate of the NP-NOM mixtures) were collected using
183 a UV-2600 spectrophotometer (Shimadzu, Columbia, MD). Specific UV absorbances were
184 calculated by dividing the UV absorbance at 280 nm by the TOC concentration.

185 Finally, to compare the functional groups of the different NOM fractions in the bulk NOM
186 versus those adsorbed to the NPs, ATR-FTIR spectra were collected on a Nicolet iS50 FTIR
187 spectrometer (Thermo Fisher Scientific, Waltham, MA) with a diamond/ZnSe single reflection
188 ATR crystal (PIKE Technologies, Fitchburg, WI). The spectra of the bulk NOM fractions were
189 obtained after drying 6 μ L of the NOM solutions ($pH \approx 5.5$) onto the ATR crystal. After each set
190 of batch adsorption experiments onto the Fh NPs, the NPs with adsorbed NOM were washed in
191 the centrifugal ultrafiltration units with Milli-Q water to remove any unadsorbed or loosely
192 attached NOM. Then, the NOM-coated Fh NPs were deposited and dried on the ATR crystal. All

193 spectra were acquired from (800 to 4000) cm^{-1} at 2 cm^{-1} resolution, with 200 scans averaged per
194 spectrum and processed by background subtracting the spectrum of the clean ATR crystal.

195 **Fh NPs aggregation and zeta potential measurements with NOM presence.**
196 To investigate the effect of NOM on NP aggregation, we conducted similar DLS experiments in
197 the presence of 150 mM NaCl (the CCC value in the absence of NOM) and the unfractionated or
198 fractionated NOM with concentrations of 10 or 5 mg C/L. The aggregation experiments followed
199 the same procedure stated above and the detailed DLS setting can be found in supporting
200 information (SI Section 2.5). The solution containing NaCl and NOM was mixed with an equal
201 volume of Fh NPs suspension. The zeta potentials of the Fh NPs after interacting with NOM were
202 also measured at the end of the 15-min size measurements. We note that although NOM has been
203 reported to self-aggregate or contain \approx 20 to 30 nm particles for soil humic acids or aquatic NOM
204 in the presence of divalent cations,³⁰⁻³³ here the light scattering of all SRNOM fractions in 150
205 mM NaCl is close to the background scattering measured on DI water (both measured with
206 attenuator setting of “11”, i.e., the widest aperture), and not significant relative to the aggregating
207 NPs (see SI Section 3.1).

208 **Single-Particle Inductively Coupled Plasma Mass Spectroscopy (spICP-MS).**
209 To better understand the fractal structure of the aggregates, DLS measurements of aggregate
210 hydrodynamic diameter were compared to the Fe amount in each aggregate, evaluated as the
211 equivalent spherical NP diameter by spICP-MS. A Thermo Fisher Scientific iCAP RQ quadrupole
212 ICP-MS (ThermoFisher Scientific, Waltham, MA) operating in single particle mode was used for
213 spICP-MS data acquisition, monitoring the ^{57}Fe intensity. For spICP-MS measurement, dilution of
214 the Fh suspensions is required to ensure each recorded spike represents a single aggregate³⁴⁻³⁹. The
215 optimized dilution factors of Fh suspensions were selected at 1000 times, and the measured Fh
216 particle concentrations were in the range of (1 to 5) \times 10^5 particles/mL. The spICP-MS analysis
217 was initiated immediately after dilution by Milli-Q water; preliminary tests showed that the
218 dilution process did not lead to rapid dissolution of Fh NPs.

219 The Fh samples were prepared following the same procedure as the aggregation
220 experiments for DLS measurements, with Fh (10 mg Fe/L) in NOM (10 mg C/L or 5 mg C/L) and
221 NaCl (150 mM) mixed solution. Both the freshly mixed solution and solution after aggregation for
222 15 min were measured. Based on the measured Fe amount in each aggregate, the particle size was
223 calculated using the chemical structure as $\text{Fe}_2\text{O}_3 \cdot 2.5\text{H}_2\text{O}$ ^{27, 40} and a density of 3.8 g/cm³ for Fh
224 NPs⁴¹ with the spherical-shape assumption. All measurements were repeated three times, average
225 value and standard deviations for particle size and concentration were calculated. Details about
226 spICP-MS measurements and size calculations are in the SI.

227 **Fractal dimension analysis by static light scattering.** Static light scattering was also
228 conducted to directly evaluate the fractal dimension of large aggregates in batch samples prepared
229 as for the aggregation experiments. Scattering intensities at various detector angles were measured
230 on a Wyatt DAWN HELEOS II MALS detector and analyzed as reported in prior studies and
231 detailed in the SI.

232

233 ■ RESULTS AND DISCUSSION

234 **Different MW fractions of SRNOM produce physically distinctive but
235 chemically similar adsorbed layers on Fh NPs**

236 *Effect of MW on adsorbed mass and layer thickness*

237 The successful sequential fractionation of SRNOM to produce distinct MW fractions was
238 confirmed by SEC-MALS (chromatograms in Figure S5; average MWs in Table 1). The adsorbed
239 masses and adsorptive fractionation of the SRNOM samples onto the Fh NPs were then evaluated
240 in solution depletion experiments by batch TOC and SEC analysis, respectively. As expected, each
241 NOM fraction produces a higher adsorbed mass at higher C/Fe ratios, $R = 1$, compared to $R = 0.5$
242 (Figure 1). Furthermore, the adsorbed mass of the SRNOM fractions generally increases with MW,
243 indicating higher adsorbed mass of higher MW fractions of SRNOM to Fh NPs (Figure 1). This
244 result is consistent with preferential adsorption of higher MW NOM onto Fh reported by Lv et

245 al.¹³ Wang et al.,¹⁴ and Coward et al.¹⁵ using electrospray ionization - Fourier transform ion
246 cyclotron resonance mass spectrometry (ESI-FT-ICRMS), and by Ding et al.¹⁸ using fluorescence
247 spectroscopy.

248 To gain further insight into the adsorption process, SEC-UV₂₈₀ difference chromatograms
249 for the dissolved (unadsorbed) NOM remaining after versus before adsorption were compared (SI
250 Figure S6) to distinguish whether any MW components preferentially adsorb to the Fh NPs. Table
251 1 compares the weight-averaged MW, M_w , of the adsorbed species to that of the bulk NOM before
252 adsorption. While the more monodisperse SRNOM_{3-10kDa}, SRNOM_{10-30kDa}, and SRNOM_{30-100kDa}
253 fractions did not show substantial changes in M_w upon adsorption, preferential adsorption of the
254 higher MW components was observed for SRNOM_{unfractionated} and SRNOM_{<3kDa}, as is also apparent
255 in the chromatograms (SI Figure S6). This adsorptive fractionation from the more polydisperse
256 samples is consistent with several previous reports for unfractionated NOM adsorbing to iron oxide
257 particles¹⁰⁻¹² and can explain why the unfractionated NOM (containing a broader variety of high
258 and low affinity species) does not fall within the monotonic trend between adsorbed mass and MW
259 observed across the more monodisperse, pre-fractionated NOM (Figure 1). It is noted that Gentile
260 et al. reported that only the small MW fraction of a boreal forest soil extract could adsorb onto the
261 Fh NPs;¹⁶ the difference is likely because the soil extract included very large (> 100 nm) colloidal
262 NOM that did not adsorb, whereas the SRNOM fractions used here (< 100 kDa filtrates, estimated
263 pore size ~9 nm)⁴² corresponds to the “small” MW soil NOM that adsorbed.

264 Finally, the number of adsorbed NOM molecules per Fh NP was estimated (Figure 1,
265 calculations in the SI), using the adsorbed mass from TOC and M_w of the adsorbed NOM from
266 SEC (Table 1). Previously, Tipping found that while the adsorbed mass of humic acids onto
267 goethite increased with MW, the adsorbed number concentrations were similar after normalizing
268 for MW.¹² Here, the estimated number of adsorbed molecules per NP appears to be inversely
269 correlated with the MW of the NOM fraction, in contrast to the trend in adsorbed mass. The higher
270 adsorbed mass for a lower adsorbed number of molecules can suggest a thicker adsorbed layer for

271 the higher MW fractions (schematic in Figure 1), although direct measurements of layer thickness
272 would be required for confirmation. However, advanced techniques such as small angle neutron
273 scattering (SANS) and disc centrifugal sedimentation (DCS), low-energy ion scattering (LEIS),
274 and flow field-flow fractionation (FFF), and may further require the particles to be monodisperse
275 and unaggregated. Hence, direct measurements of layer thickness remain a major challenge.⁴³

276 *Effect of functional group composition on adsorbed layer chemistry*

277 Since the chemical composition (particularly aromatic and carboxyl species) has been
278 reported to influence NOM adsorption onto iron oxide NPs,^{9, 11, 13-15, 17-19} UV-vis and ATR-FTIR
279 spectroscopy were conducted to explore any differences in functional group composition of the
280 adsorbed species across the NOM fractions. The specific UV absorbance (SUVA) of the bulk NOM
281 fractions (SI Figure S7), which is an indicator of the aromaticity of the NOM,^{29, 44} increases with
282 MW up to 100 kDa, consistent with results by Shen et al. for fractionated SRNOM.²² After
283 interacting with the Fh NPs, SUVA of the unadsorbed NOM was slightly lower than before
284 adsorption (SI Figure S7), consistent with some preferential adsorption of aromatic components,
285 with the largest difference observed for the unfractionated SRNOM.

286 ATR-FTIR spectra of the unfractionated and fractionated SRNOM before and after
287 adsorption onto Fh NPs were also compared. All SRNOM fractions before adsorption (Figure 2a)
288 show major peaks at 3390 and 1710 cm⁻¹ (attributed to the O–H stretch for alcohols and C=O
289 stretch of protonated carboxylic acids (COOH), respectively), 1600 cm⁻¹ (aromatic alkenes,
290 conjugated carbonyl, or deprotonated carboxyl groups (COO⁻)), and 1395 cm⁻¹ (COO⁻ or the C–O
291 stretch of phenolic groups).⁴⁵⁻⁴⁹ SRNOM_{unfractionated} and SRNOM_{<3kDa} also show an additional peak
292 at 1120 cm⁻¹, attributed to the C–O stretch of alcohols or carbohydrates.^{45, 50}

293 Two changes are observed in the FTIR spectra upon adsorption (Figure 2b): the 1710 cm⁻¹
294 peak is less apparent in the adsorbed NOM on the NPs than the bulk NOM for all of the fractions,
295 and the 1120 cm⁻¹ peak in SRNOM_{unfractionated} and SRNOM_{<3kDa} does not appear to adsorb
296 substantially to the Fh NPs. These results are consistent with the previously reported participation

297 of carboxyl groups in ligand exchange upon binding to iron oxides^{11, 17} (requiring deprotonation
298 of the carboxylic acid), and a relatively low affinity of carbohydrates (reported for some but not
299 all types of NOM^{18, 51}). Since the carbohydrate group did not adsorb onto the Fh NPs, the adsorbed
300 NOM coatings appear to have similar functional group compositions regardless of MW (Figure
301 2b). Prior NP aggregation studies with fractionated NOM were not able to provide chemical
302 characterization of NOM functional groups both *before* and *after* adsorption,²⁰⁻²⁴ except for Zhou
303 et al.²⁵ who only characterize the fractionated NOM after adsorption. Here, although the functional
304 groups of fractionated NOM showed significant difference before adsorption, no significant
305 difference was observed after adsorption. Hence, the NOM layers formed by different MW
306 fractions on the Fh NPs differ primarily in physical properties (adsorbed mass, adsorbed molecular
307 size) rather than chemical properties.

308 In this section, a comprehensive characterization of adsorbed NOM both before and after
309 adsorption helped us to fill the research gap from the previous studies . The selective adsorption
310 of certain chemical compositions for all NOM fractions could minimize the contribution from
311 chemical properties of fractionated NOM to their effects on NPs' aggregation, as discussed
312 hereafter. Our findings can help understand fractionated NOM effects on other NPs' aggregation.

313

314 **Characterization of adsorbed NOM discovered the dominant mechanisms**

315 Both inhibition and enhancement of NP aggregation by NOM have been reported.^{21-23, 26,}
316 ⁵²⁻⁵⁴ However, the specific mechanisms by which NOM with different MWs impart differing
317 degrees of NP stabilization are not well understood. Here, detailed characterization of NOM
318 adsorption informs a more mechanistic understanding of aggregation results.

319 First, CCC of Fh NPs without NOM was determined as \approx 150 mM NaCl at pH 5.5 (SI
320 Figure S4). This CCC is slightly lower than the reported CCC of 200 mM NaCl at pH = 5.0 \pm 0.1
321 in our previous study,⁵ which is consistent with the slightly higher pH in the current study and
322 hence less positive zeta-potential for Fh NPs with pH_{iep} around 7 (SI Figure S2). According to

323 Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the lowered electrostatic repulsive forces
324 between the less positively charged Fh NPs can result in a lower CCC value, as measured here.

325 Then, Fh aggregation experiments were conducted at pH = 5.5 in 150 mM NaCl with
326 SRNOM at different C/Fe mass ratios, R , of 1 and 0.5 to investigate the effect of NOM on Fh NP
327 aggregation. Figure 3 reports the z -average hydrodynamic diameter; the intensity-averaged
328 diameters are provided in SI (S8) along with raw correlation functions (S9) and are consistent with
329 the z -average trends in Figure 3.

330 At both mass ratios, the introduction of SRNOM_{<3kDa} unexpectedly resulted in a more
331 rapid increase of size than that observed in the absence of NOM (discussed separately, *vide infra*).
332 On the other hand, the higher MW SRNOM samples were able to stabilize the NPs against
333 aggregation. At $R = 1$ (Figure 3a), the hydrodynamic size of Fh NPs was fully stabilized in the
334 presence of SRNOM_{30-100kDa} and SRNOM_{10-30kDa} and only slightly increased in the presence of
335 SRNOM_{unfractionated} (from 67.4 to 84.2 nm) and SRNOM_{3-10kDa} (59.4 to 76.1 nm) during the 15 min
336 measurements. At lower concentrations of SRNOM ($R = 0.5$, Figure 3b), significant inhibition of
337 Fh NPs aggregation is still observed for the highest MW fractions (SRNOM_{30-100kDa} and
338 SRNOM_{10-30kDa}). However, SRNOM_{3-10kDa} only partially inhibited NP aggregation, and
339 SRNOM_{unfractionated} did not impart any observable stabilization relative to the NOM-free case.
340 These results are consistent with prior reports of NOM fractions with higher MW providing
341 stronger colloidal stabilization of gold and silver NPs than lower MW fractions.^{20, 21, 23}

342 The degree of NP stabilization generally correlates with the adsorbed mass of NOM
343 (Figure 1): NPs with adsorbed masses of > 270 mg C/mg Fe tend to be fully stabilized against
344 aggregation, whereas those with < 200 mg C/mg Fe are not. However, a closer evaluation of the
345 data indicates that adsorbed mass alone cannot fully predict the NP aggregation behavior. Notably,
346 adsorbed masses were similar for SRNOM_{unfractionated} at $R=1$ (230 ± 10 mg C/ g Fe) and SRNOM₃₋
347 _{10kDa} at $R=0.5$ (223 ± 14 mg C/ g Fe), but the SRNOM_{unfractionated} fully stabilized the NPs whereas
348 SRNOM_{3-10kDa} did not. These NOM coatings differed primarily in the M_w of the adsorbed species

349 (Table 1). Hence, the larger M_w adsorbed NOM likely produced a thicker layer and imparted
350 stronger steric stabilization.

351 NOM chemistry has also been postulated to influence NP aggregation, with higher
352 aromaticity correlating to higher adsorption and better stabilization.^{55, 56} However, the influences
353 of aromaticity and MW are often indistinguishable because these properties typically co-vary for
354 NOM. Here, differences in SUVA across the MW fractions were less apparent than the differences
355 in MW (for example, comparing SRNOM_{10-30kDa} to SRNOM_{30-100kDa}, SI Figure S7). Therefore,
356 aromaticity does not appear as important as MW in the adsorption and aggregation process.
357 Furthermore, for the aforementioned case with similar adsorbed masses for SRNOM_{unfractionated} and
358 SRNOM_{3-10kDa}, the SRNOM_{unfractionated} provided enhanced colloidal stability despite having a lower
359 SUVA than SRNOM_{3-10kDa}. Beyond aromaticity, the similarity in the ATR-FTIR spectra of the
360 adsorbed NOM across all MW fractions (Figure 2b) further indicates that the differences in Fh NP
361 aggregation cannot be explained by the functional group composition of the adsorbed NOM.

362 Finally, electrostatic interactions imparted by the negatively-charged NOM could also
363 affect the aggregation behavior of the Fh NPs. Hence, zeta potential was measured at the end of
364 the aggregation experiments (Figure S10). In all cases, a net charge reversal of Fh NPs from
365 positive to negative was observed after NOM adsorption. However, except for SRNOM_{<3kDa}, the
366 zeta potential was generally similar across all NOM fractions, and no significant difference was
367 observed comparing $R = 1$ and 0.5 for each fraction. Therefore, electrostatic interactions could not
368 explain the differences in aggregation behavior for the SRNOM fractions larger than 3 kDa.

369 While previous studies have also concluded that the higher MW fractions of NOM could
370 provide better stability of NPs (SI Table S1),²⁰⁻²⁵ the full characterization of adsorbed mass,
371 adsorptive fractions, and adsorbed layer chemistry presented here provide new, direct evidence to
372 confirm that steric repulsion is the main mechanism by which higher MW SRNOM inhibits the
373 aggregation of Fh NPs at high ionic strengths near the CCC of bare NPs.

374

375 **Effect of MW-fractionated NOM on positively-charged NPs**

376 In the presence of SRNOM_{<3kDa}, instead of inhibiting aggregation, a sudden “jump” of the
377 initial size from 30 nm to \approx 500 nm occurred under both C/Fe ratios of 1 and 0.5 (Figure 3). While
378 the SRNOM_{<3kDa} adsorption produces a less negative zeta-potential than the other SRNOM
379 fractions, the rapid increase in Fh aggregate sizes in the presence of SRNOM_{<3kDa} should not be
380 attributable to simple charge neutralization, since the rate of size increase was faster than without
381 NOM at the CCC of 150 mM NaCl, which is presumably the maximum (diffusion-limited)
382 aggregation rate of the Fh NPs by charge screening, following classical DLVO theory. Therefore,
383 the results would not be consistent with simple charge neutralization, as proposed by Gentile et al.
384 to explain Fh NP aggregation by NOM extracted from a boreal forest soil.¹⁶

385 We first hypothesized that a higher concentration of SRNOM_{<3kDa} may be able to produce
386 higher adsorbed mass to inhibit aggregation similarly to the other fractions. To test this hypothesis,
387 the C/Fe ratio for SRNOM_{<3kDa} was increased to 2, 5, and 10. However, the rapid size increase
388 occurs even at high C concentrations (SI Figure S11). Adsorption experiments at $R = 0.5, 1$, and 2
389 showed that the adsorbed mass of SRNOM_{<3kDa} has already plateaued at a maximum of 157 ± 17
390 mg C/g Fe when $R = 1$ (SI Figure S12), much lower than the adsorbed mass of the higher MW
391 NOM fractions, indicating a low adsorption affinity of SRNOM_{<3kDa}.

392 Secondly, we hypothesized that the rapid jump in the initial hydrodynamic size could be
393 attributed to the formation of a loose “branching” configuration of Fh NP aggregates through a
394 bridging effect by SRNOM_{<3kDa}, as has been postulated in other studies to explain an apparent
395 enhanced aggregation observed by DLS.⁵⁷⁻⁵⁹ DLS measurements could dramatically overestimate
396 the aggregation number (i.e. number of NPs per aggregate) of a “branched” fractal aggregate, due
397 to the use of hydrodynamic size as the basis for aggregate size. To test this hypothesis, spICP-MS
398 was conducted. spICP-MS diameters are expected to be smaller than the DLS hydrodynamic
399 diameters, since spICP-MS directly measures the mass of Fe in each aggregate and then calculates
400 a “diameter” of each aggregate with spherical shape assumption and known density and formula.

401 This equivalent spherical “diameter” from spICP-MS underestimates the actual physical size, but
402 is more representative of the aggregation number (as reported previously for Au and Ag NPs).^{39,}
403 ^{60, 61} The cutoff of the background Fe intensity (measured on deionized water) during the spICP-
404 MS measurement was \approx 200,000 counts per second (cps) (Figure 4), which would correspond to a
405 Fh NP diameter of \approx 134 nm (SI eq S2); spikes with intensities higher than 300,000 cps
406 (background + 3 standard deviation) were regarded as single aggregate. The Fh NP aggregate
407 diameter with SRNOM_{<3kDa} was 180 ± 20 nm by spICP-MS (SI Figure S13, Table S2). For other
408 conditions without SRNOM or with SRNOM_{3-10kDa}, their initial sizes were below the spICP-MS
409 detection limit (134 nm), indicating that no large aggregates formed initially under these conditions,
410 consistent with the DLS measurements. After aggregation for 15 min, particle sizes increased to $>$
411 180 nm for the samples without SRNOM, as well as samples with SRNOM_{<3kDa} at C/Fe = 1 and
412 SRNOM_{3-10kDa} at C/Fe = 0.5 (SI Figure S13(a), (c), and (d), Table S1), indicating the aggregate
413 mass was high under these conditions.

414 Additionally, we obtained the fractal dimensions (d_f) of the Fh aggregates by static light
415 scattering. The d_f were 1.8 ± 0.1 and 1.7 ± 0.1 for the samples without SRNOM and containing
416 SRNOM_{<3kDa}, respectively (Figure S14). This result is consistent with previously reported data
417 around 1.7 suggesting cluster-cluster aggregation in the ferrihydrite NPs¹⁶ and suggests both
418 aggregates formed through electrostatic destabilization rather than NOM-bridging flocculation,
419 which would be expected to produce a lower d_f (looser aggregate structure).²⁶ The three orthogonal
420 and complementary measurements (DLS, spICP-MS, and static light scattering) all consistently
421 suggest that the rapid increase of the initial DLS size with SRNOM_{<3kDa} was due to “true”
422 aggregation of Fh NPs due to electrostatic destabilization, rather than bridging by SRNOM_{<3kDa} to
423 form a loose fractal structure.

424 A possible explanation for these findings is that the negatively-charged SRNOM_{<3kDa}
425 forms heterogeneous, “patchy” coatings on the surface of positively-charged Fh NPs, leading to
426 attractive forces between oppositely-charged patches.⁶² The acceleration of NP aggregation by

427 patch-charge attraction has previously been reported in the presence of protein,⁶³ polyelectrolytes⁶⁴
428 and NOM.^{26, 65} Prior studies suggested that patch-charge attraction can result in restructuring of
429 hematite NP aggregates over time.⁴⁹ Here, the relatively low adsorbed mass of SRNOM_{<3kDa}
430 (Figure 1) compared to the higher MW NOM fractions is consistent with a patchy coating and
431 inability to impart steric repulsion to inhibit NP aggregation. Evaluating Fh aggregation using the
432 higher MW NOM fractions at a lower C/Fe ratio of 0.2 also showed accelerated aggregation
433 (Figure S15), providing corroborating evidence that insufficient adsorbed mass of NOM (resulting
434 in a patchy coating and heterogeneously charged surface) can result in patch-charge attraction.
435 Besides the coverage degree, the patch-charge attraction could also depend on the size of Fh NPs,⁶²
436 which proved by investigating the effect of negative charged sulfide (S-II) on Fh NPs aggregation.
437 However, this is out of our scope, and further study need to be addressed in the future.

438 Previous studies reported the inhibition of NP aggregation by SRNOM_{<3kDa} on PVP coated
439 Ag NPs, fullerene or graphene oxide NPs,²²⁻²⁴ which is opposite to our observation of promoted
440 NP aggregation by SRNOM_{<3kDa} on positively charged ferrihydrite NPs. In these previous studies,
441 the NPs were negatively charged and the reported inhibition mechanisms were enhanced
442 electrostatic repulsion²³ or steric repulsion by negatively charged NOM coatings^{22, 24} (Table S1).
443 In contrast, here the < 3 kDa NOM fraction was observed to promote NP aggregation due to the
444 opposite charges of the ferrihydrite NPs and NOM. The observation and mechanisms discovered
445 here may be useful to predict the effect of fractionated NOM on the colloidal stability of other NPs,
446 such as aluminum oxides and TiO₂, that can be positively charged at environmentally relevant pH
447 conditions. Moreover, prior studies reporting patch-charge attraction only used DLS to investigate
448 the aggregation rate,⁶³⁻⁶⁵ here we have demonstrated the first application to our knowledge of
449 spICP-MS and static light scattering in combination with DLS as an effective and novel method
450 to provide stronger evidence distinguishing whether the apparent acceleration of aggregation is
451 attributable to patch-charged attractive forces, rather than bridging. Such method could be adopted
452 for the characterization of other nano-aggregates.

453

454 **ENVIRONMENTAL IMPLICATIONS**

455 In this study, a systematic characterization of fractionated NOM both before and after
456 adsorption onto NPs was conducted to achieve a solid discussion to rule out or support the various
457 mechanisms that have previously been speculated. To our knowledge, this is the first report of the
458 similarity in adsorbed layer chemistry across different MW fractions of NOM regardless of the
459 difference before adsorption, allowing us to distinguish the importance of the physical properties
460 of the adsorbed NOM (MW and adsorbed mass) over chemical properties in the aggregation
461 process. The MW largely controls the adsorbed mass of SRNOM and subsequent steric
462 stabilization/electrostatic destabilization of the NPs, whereas functional group composition is
463 relatively unimportant. The approach presented here can also be a good guidance for future studies
464 to understand the fate and transport of NPs in natural systems with different NOM compositions.

465 Furthermore, our study first highlights that the mechanisms by which fractionated NOM
466 stabilizes or destabilizes NPs were significantly different for NPs with opposite charge states to
467 the NOM. For the lowest MW SRNOM species, a low adsorbed mass resulted in accelerated
468 aggregation of the Fh NPs, due to patch-charge attraction between positively charged NP surface
469 and the negatively charged NOM which only partially covers the NPs. Such effects could not occur
470 for the negatively charged NPs. Our unique findings can have broad implications for the effects of
471 fractionated NOM on other positively charged NPs.

472 Results here can be useful to begin developing semi-empirical models to predict
473 aggregation behavior of Fh NPs in the presence of NOM, given investigation of a wider range of
474 conditions (e.g. pH and ionic strength) and different types of NOM. Given that prior studies
475 observed bridging flocculation by high MW NOM,²² future studies could investigate the effects of
476 the NOM fractions on positively-charged NPs such as Fh (at pH < 7) with divalent cations such as
477 Ca²⁺. Additional studies can also investigate the relative influence of MW and chemistry when the
478 NPs are initially coated by large polymers such as polyvinylpyrrolidone (PVP).²³ Thus, detailed

479 characterization of the properties of adsorbed layer could be addressed to explain the mechanisms.

480 Overall, this knowledge will be critical to understand the transport behavior of Fh NPs and
481 the associated contaminants, which are ubiquitous in natural systems. This research can inspire
482 additional studies to investigate the effect of NOM adsorption on the role of Fh NPs as well as
483 other natural NPs in the colloid-mediated transport of inorganic and organic pollutants in natural
484 environments.

485

486 ASSOCIATED CONTENT

487 Supporting Information

488 Details about Fh NP characterization, SRNOM fractionation, SEC-MALS analysis, spICP-MS
489 analysis, zeta potential measurements, and additional aggregation data are provided in SI. This
490 information is available at <http://pubs.acs.org>.

491

492 AUTHOR INFORMATION

493 Corresponding Author

494 * Emails: chenjiawei@cugb.edu.cn; slouie@uh.edu; yhul1@uh.edu

495

496 Notes

497 The authors declare no competing financial interest.

498

499 ACKNOWLEDGMENTS

500 This material is based upon work supported by the National Natural Science Foundation of China

501 (No. 41731282, 41472232) and the U.S. National Science Foundation (No. 1705511).

502 Measurement of spICP-MS by Ning Deng was supported by the US Department of Energy (DOE),

503 Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences

504 Division and University of Houston High Priority Research Large Equipment Grant. We thank

505 China Scholarship Council for a 1-year fellowship to Zhixiong Li (No. 201806400050). We also

506 thank Michael Harold for use of the FTIR instrument, Gregory V. Lowry for the SEC column, and

507 Charisma Lattao for laboratory assistance.

508

509

510 **REFERENCES**

511

512 1. Michel, F. M.; Ehm, L.; Antao, S. M.; Lee, P. L.; Chupas, P. J.; Liu, G.; Strongin, D. R.;
513 Schoonen, M. A. A.; Phillips, B. L.; Parise, J. B., The structure of ferrihydrite, a nanocrystalline
514 material. *Science* **2007**, *316*, (5832), 1726-1729.

515 2. Dai, C.; Hu, Y., Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II),
516 Pb(II), and Cr(III): metal hydrolysis and adsorption. *Environ. Sci. Technol.* **2015**, *49*, (1), 292-300.

517 3. Fritzsche, A.; Bosch, J.; Rennert, T.; Heister, K.; Braunschweig, J.; Meckenstock, R. U.;
518 Totsche, K. U., Fast microbial reduction of ferrihydrite colloids from a soil effluent. *Geochim.
519 Cosmochim. Acta* **2012**, *77*, 444-456.

520 4. Guénet, H.; Davranche, M.; Vantelon, D.; Gigault, J.; Prévost, S.; Taché, O.; Jaksch, S.; Pédrot,
521 M.; Dorcet, V.; Boutier, A.; Jestin, J., Characterization of iron-organic matter nano-aggregate
522 networks through a combination of SAXS/SANS and XAS analyses: impact on As binding.
523 *Environ. Sci. Nano* **2017**, *4*, (4), 938-954.

524 5. Liu, J.; Louie, S. M.; Pham, C.; Dai, C.; Liang, D.; Hu, Y., Aggregation of ferrihydrite
525 nanoparticles: effects of pH, electrolytes, and organics. *Environ. Res.* **2019**, *172*, 552-560.

526 6. Li, Z.; Lowry, G. V.; Fan, J.; Liu, F.; Chen, J., High molecular weight components of natural
527 organic matter preferentially adsorb onto nanoscale zero valent iron and magnetite. *Sci. Total
528 Environ.* **2018**, *628-629*, 177-185.

529 7. Kang, S.; Xing, B., Humic acid fractionation upon sequential adsorption onto goethite.
530 *Langmuir* **2008**, *24*, (6), 2525-2531.

531 8. Illés, E.; Tombácz, E., The role of variable surface charge and surface complexation in the
532 adsorption of humic acid on magnetite. *Colloids Surf. A Physicochem. Eng. Asp.* **2003**, *230*, (1-3),
533 99-109.

534 9. Zhou, Q.; Maurice, P. A.; Cabaniss, S. E., Size fractionation upon adsorption of fulvic acid on
535 goethite: equilibrium and kinetic studies. *Geochim. Cosmochim. Acta* **2001**, *65*, (5), 803-812.

536 10. Ko, I.; Kim, J.-Y.; Kim, K.-W., Adsorption properties of soil humic and fulvic acids by
537 hematite. *Chem. Speciation Bioavailability* **2005**, *17*, (2), 41-48.

538 11. Gu, B.; Schmitt, J.; Chen, Z.; Liang, L.; McCarthy, J. F., Adsorption and desorption of different
539 organic matter fractions on iron oxide. *Geochim. Cosmochim. Acta* **1995**, *59*, (2), 219-229.

540 12. Tipping, E., Adsorption by goethite (α -FeOOH) of humic substances from three different lakes.
541 *Chem. Geol.* **1981**, *33*, (1-4), 81-89.

542 13. Lv, J.; Zhang, S.; Wang, S.; Luo, L.; Cao, D.; Christie, P., Molecular-scale investigation with
543 ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron
544 oxyhydroxides. *Environ. Sci. Technol.* **2016**, *50*, (5), 2328-2336.

545 14. Wang, Y.; Zhang, Z.; Han, L.; Sun, K.; Jin, J.; Yang, Y.; Yang, Y.; Hao, Z.; Liu, J.; Xing, B.,
546 Preferential molecular fractionation of dissolved organic matter by iron minerals with different
547 oxidation states. *Chem. Geol.* **2019**, *520*, 69-76.

548 15. Coward, E. K.; Ohno, T.; Plante, A. F., Adsorption and molecular fractionation of dissolved
549 organic matter on iron-bearing mineral matrices of varying crystallinity. *Environ. Sci. Technol.*
550 **2018**, *52*, (3), 1036-1044.

551 16. Gentile, L.; Wang, T.; Tunlid, A.; Olsson, U.; Persson, P., Ferrihydrite nanoparticle
552 aggregation induced by dissolved organic matter. *J. Phys. Chem. A* **2018**, *122*, (38), 7730-7738.

553 17. Han, L.; Sun, K.; Keiluweit, M.; Yang, Y.; Yang, Y.; Jin, J.; Sun, H.; Wu, F.; Xing, B.,
554 Mobilization of ferrihydrite-associated organic carbon during Fe reduction: Adsorption versus
555 coprecipitation. *Chem. Geol.* **2019**, *503*, 61-68.

556 18. Ding, Y.; Liu, M.; Peng, S.; Li, J.; Liang, Y.; Shi, Z., Binding characteristics of heavy metals
557 to humic acid before and after fractionation by ferrihydrite. *Chemosphere* **2019**, *226*, 140-148.

558 19. Gu, B.; Mehlhorn, T. L.; Liang, L.; McCarthy, J. F., Competitive adsorption, displacement,
559 and transport of organic matter on iron oxide: I. Competitive adsorption. *Geochim. Cosmochim.
560 Acta* **1996**, *60*, (11), 1943-1950.

561 20. Louie, S. M.; Tilton, R. D.; Lowry, G. V., Effects of molecular weight distribution and
562 chemical properties of natural organic matter on gold nanoparticle aggregation. *Environ. Sci.
563 Technol.* **2013**, *47*, (9), 4245-4254.

564 21. Louie, S. M.; Spielman-Sun, E. R.; Small, M. J.; Tilton, R. D.; Lowry, G. V., Correlation of
565 the physicochemical properties of natural organic matter samples from different sources to their
566 effects on gold nanoparticle aggregation in monovalent electrolyte. *Environ. Sci. Technol.* **2015**,
567 *49*, (4), 2188-2198.

568 22. Shen, M.; Yin, Y.; Booth, A.; Liu, J., Effects of molecular weight-dependent physicochemical
569 heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and
570 di-valent electrolyte solutions. *Water Res.* **2015**, *71*, 11-20.

571 23. Yin, Y.; Shen, M.; Tan, Z.; Yu, S.; Liu, J.; Jiang, G., Particle coating-dependent interaction of
572 molecular weight fractionated natural organic matter: impacts on the aggregation of silver
573 nanoparticles. *Environ. Sci. Technol.* **2015**, *49*, (11), 6581-6589.

574 24. Shen, M.; Hai, X.; Shang, Y.; Zheng, C.; Li, P.; Li, Y.; Jin, W.; Li, D.; Li, Y.; Zhao, J.; Lei, H.;
575 Xiao, H.; Li, Y.; Yan, G.; Cao, Z.; Bu, Q., Insights into aggregation and transport of graphene oxide
576 in aqueous and saturated porous media: Complex effects of cations with different molecular weight
577 fractionated natural organic matter. *Sci. Total Environ.* **2019**, *656*, 843-851.

578 25. Zhou, Q.; Ouyang, S.; Ao, Z.; Sun, J.; Liu, G.; Hu, X., Integrating biolayer interferometry,
579 atomic force microscopy, and density functional theory calculation studies on the affinity between
580 humic acid fractions and graphene oxide. *Environ. Sci. Technol.* **2019**, *53*, (7), 3773-3781.

581 26. Amal, R.; Raper, J. A.; Waite, T. D., Effect of fulvic acid adsorption on the aggregation kinetics
582 and structure of hematite particles. *J. Colloid Interface Sci.* **1992**, *151*, (1), 244-257.

583 27. Tang, Y.; Michel, F. M.; Zhang, L.; Harrington, R.; Parise, J. B.; Reeder, R. J., Structural
584 properties of the Cr(III)-Fe(III) (oxy)hydroxide compositional series: insights for a nanomaterial
585 "solid solution". *Chem. Mater.* **2010**, *22*, (12), 3589-3598.

586 28. Shakiba, S.; Hakimian, A.; Barco, L. R.; Louie, S. M., Dynamic intermolecular interactions

587 control adsorption from mixtures of natural organic matter and protein onto titanium dioxide
588 nanoparticles. *Environ. Sci. Technol.* **2018**, *52*, (24), 14158-14168.

589 29. Karanfil, T.; Schlautman, M. A.; Erdogan, I., Survey of DOC and UV measurement practices
590 with implications for SUVA determination. *J. Am. Water Works Assn.* **2002**, *94*, (12), 68-80.

591 30. Xu, F.; Yao, Y.; Alvarez, P. J. J.; Li, Q.; Fu, H.; Yin, D.; Zhu, D.; Qu, X., Specific ion effects
592 on the aggregation behavior of aquatic natural organic matter. *J. Colloid Interface Sci.* **2019**, *556*,
593 734-742.

594 31. Österberg, R.; Mortensen, K., Fractal dimension of humic acids. *Eur. Biophys. J.* **1992**, *21*, (3),
595 163-167.

596 32. Österberg, R.; Mortensen, K., The growth of fractal humic acids: cluster correlation and gel
597 formation. *Radiat. Environ. Biophys.* **1994**, *33*, (3), 269-276.

598 33. Österberg, R.; Lindqvist, I.; Mortensen, K., Particle size of humic acid. *Soil Sci. Soc. Am. J.*
599 **1993**, *57*, (1), 283-285.

600 34. Martin, J. D.; Frost, P. C.; Hintelmann, H.; Newman, K.; Paterson, M. J.; Hayhurst, L.; Rennie,
601 M. D.; Xenopoulos, M. A.; Yargeau, V.; Metcalfe, C. D., Accumulation of silver in Yellow Perch
602 (*Perca flavescens*) and Northern Pike (*Esox lucius*) from a lake dosed with nanosilver. *Environ.*
603 *Sci. Technol.* **2018**, *52*, (19), 11114-11122.

604 35. Lee, W.-W.; Chan, W.-T., Calibration of single-particle inductively coupled plasma-mass
605 spectrometry (SP-ICP-MS). *J. Anal. At. Spectrom.* **2015**, *30*, (6), 1245-1254.

606 36. Liu, J.; Murphy, K. E.; MacCuspie, R. I.; Winchester, M. R., Capabilities of single particle
607 inductively coupled plasma mass spectrometry for the size measurement of nanoparticles: a case
608 study on gold nanoparticles. *Anal. Chem.* **2014**, *86*, (7), 3405-3414.

609 37. Geertsen, V.; Barret, E.; Gobeaux, F.; Lacour, J.-L.; Taché, O., Contribution to accurate
610 spherical gold nanoparticle size determination by single-particle inductively coupled mass
611 spectrometry: a comparison with small-angle x-ray scattering. *Anal. Chem.* **2018**, *90*, (16), 9742-
612 9750.

613 38. Hadioui, M.; Merdzan, V.; Wilkinson, K. J., Detection and characterization of ZnO
614 nanoparticles in surface and waste waters using single particle ICPMS. *Environ. Sci. Technol.* **2015**,
615 *49*, (10), 6141-6148.

616 39. Merrifield, R. C.; Stephan, C.; Lead, J., Determining the concentration dependent
617 transformations of Ag nanoparticles in complex media: Using SP-ICP-MS and Au@Ag core-shell
618 nanoparticles as tracers. *Environ. Sci. Technol.* **2017**, *51*, (6), 3206-3213.

619 40. Fan, S.; Cao, B.; Deng, N.; Hu, Y.; Li, M., Effects of ferrihydrite nanoparticle incorporation
620 in cementitious materials on radioactive waste immobilization. *J. Hazard. Mater.* **2019**, *379*,
621 120570.

622 41. Hiemstra, T.; Van Riemsdijk, W. H., A surface structural model for ferrihydrite I: Sites related
623 to primary charge, molar mass, and mass density. *Geochim. Cosmochim. Acta* **2009**, *73*, (15), 4423-
624 4436.

625 42. Ladner, D. A.; Steele, M.; Weir, A.; Hristovski, K.; Westerhoff, P., Functionalized nanoparticle

626 interactions with polymeric membranes. *J. Hazard. Mater.* **2012**, *211-212*, 288-295.

627 43. Louie, S. M.; Tilton, R. D.; Lowry, G. V., Critical review: impacts of macromolecular coatings
628 on critical physicochemical processes controlling environmental fate of nanomaterials. *Environ.*
629 *Sci. Nano* **2016**, *3*, (2), 283-310.

630 44. Li, C.-W.; Benjamin, M. M.; Korshin, G. V., Use of UV spectroscopy to characterize the
631 reaction between NOM and free chlorine. *Environ. Sci. Technol.* **2000**, *34*, (12), 2570-2575.

632 45. Croué, J.-P.; Korshin, G. V.; Benjamin, M. M., *Characterization of natural organic matter in*
633 *drinking water*. American Water Works Association: 2000.

634 46. Max, J.-J.; Chapados, C., Infrared spectroscopy of aqueous carboxylic acids: comparison
635 between different acids and their salts. *J. Phys. Chem. A* **2004**, *108*, (16), 3324-3337.

636 47. Francioso, O.; Sanchez-Cortes, S.; Tugnoli, V.; Ciavatta, C.; Sitti, L.; Gessa, C., Infrared,
637 raman, and nuclear magnetic resonance (^1H , ^{13}C , and ^{31}P) spectroscopy in the study of fractions of
638 peat humic acids. *Appl. Spectrosc.* **1996**, *50*, (9), 1165-1174.

639 48. Mudunkotuwa, I. A.; Grassian, V. H., Biological and environmental media control oxide
640 nanoparticle surface composition: the roles of biological components (proteins and amino acids),
641 inorganic oxyanions and humic acid. *Environ. Sci. Nano* **2015**, *2*, (5), 429-439.

642 49. Chen, J.; Gu, B.; LeBoeuf, E. J.; Pan, H.; Dai, S., Spectroscopic characterization of the
643 structural and functional properties of natural organic matter fractions. *Chemosphere* **2002**, *48*, (1),
644 59-68.

645 50. Senesi, N.; Miano, T. M.; Provenzano, M. R.; Brunetti, G., Spectroscopic and compositional
646 comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various
647 origin. *Sci. Total Environ.* **1989**, *81-82*, 143-156.

648 51. Eusterhues, K.; Rennert, T.; Knicker, H.; Kögel-Knabner, I.; Totsche, K. U.; Schwertmann, U.,
649 Fractionation of organic matter due to reaction with ferrihydrite: coprecipitation versus adsorption.
650 *Environ. Sci. Technol.* **2011**, *45*, (2), 527-533.

651 52. Philippe, A.; Schaumann, G. E., Interactions of dissolved organic matter with natural and
652 engineered inorganic colloids: a review. *Environ. Sci. Technol.* **2014**, *48*, (16), 8946-8962.

653 53. Liu, J.; Legros, S.; von der Kammer, F.; Hofmann, T., Natural organic matter concentration
654 and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles.
655 *Environ. Sci. Technol.* **2013**, *47*, (9), 4113-4120.

656 54. Ottofuelling, S.; Von der Kammer, F.; Hofmann, T., Commercial titanium dioxide
657 nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and
658 prediction of aggregation behavior. *Environ. Sci. Technol.* **2011**, *45*, (23), 10045-10052.

659 55. Deonarine, A.; Lau, B. L. T.; Aiken, G. R.; Ryan, J. N.; Hsu-Kim, H., Effects of humic
660 substances on precipitation and aggregation of zinc sulfide nanoparticles. *Environ. Sci. Technol.*
661 **2011**, *45*, (8), 3217-3223.

662 56. Jiang, Y.; Raliya, R.; Liao, P.; Biswas, P.; Fortner, J. D., Graphene oxides in water: assessing
663 stability as a function of material and natural organic matter properties. *Environ. Sci. Nano* **2017**,
664 *4*, (7), 1484-1493.

665 57. Liu, X.; Wazne, M.; Chou, T.; Xiao, R.; Xu, S., Influence of Ca^{2+} and Suwannee river humic
666 acid on aggregation of silicon nanoparticles in aqueous media. *Water Res.* **2011**, *45*, (1), 105-112.

667 58. Luo, M.; Huang, Y.; Zhu, M.; Tang, Y.-n.; Ren, T.; Ren, J.; Wang, H.; Li, F., Properties of
668 different natural organic matter influence the adsorption and aggregation behavior of TiO_2
669 nanoparticles. *J. Saudi Chem. Soc.* **2018**, *22*, (2), 146-154.

670 59. Wilkinson, K. J.; Stoll, S.; Buffle, J., Characterization of NOM-colloid aggregates in surface
671 waters: Coupling transmission electron microscopy staining techniques and mathematical
672 modelling. *Fresenius J. Anal. Chem.* **1995**, *351*, (1), 54-61.

673 60. Chang, Y.-j.; Shih, Y.-h.; Su, C.-H.; Ho, H.-C., Comparison of three analytical methods to
674 measure the size of silver nanoparticles in real environmental water and wastewater samples. *J.*
675 *Hazard. Mater.* **2017**, *322*, 95-104.

676 61. El Hadri, H.; Louie, S. M.; Hackley, V. A., Assessing the interactions of metal nanoparticles
677 in soil and sediment matrices—a quantitative analytical multi-technique approach. *Environ. Sci.*
678 *Nano* **2018**, *5*, (1), 203-214.

679 62. He, L.; Xie, L.; Wang, D.; Li, W.; Fortner, J. D.; Li, Q.; Duan, Y.; Shi, Z.; Liao, P.; Liu, C.,
680 Elucidating the Role of Sulfide on the Stability of Ferrihydrite Colloids under Anoxic Conditions.
681 *Environ. Sci. Technol.* **2019**, *53*, (8), 4173-4184.

682 63. Sheng, A.; Liu, F.; Xie, N.; Liu, J., Impact of proteins on aggregation kinetics and adsorption
683 ability of hematite nanoparticles in aqueous dispersions. *Environ. Sci. Technol.* **2016**, *50*, (5), 2228-
684 2235.

685 64. Gillies, G.; Lin, W.; Borkovec, M., Charging and aggregation of positively charged latex
686 particles in the presence of anionic polyelectrolytes. *J. Phys. Chem. B* **2007**, *111*, (29), 8626-8633.

687 65. Smith, B. M.; Pike, D. J.; Kelly, M. O.; Nason, J. A., Quantification of heteroaggregation
688 between citrate-stabilized gold nanoparticles and hematite colloids. *Environ. Sci. Technol.* **2015**,
689 *49*, (21), 12789-12797.

690

691

692

693 **Tables and Figures**

694

695

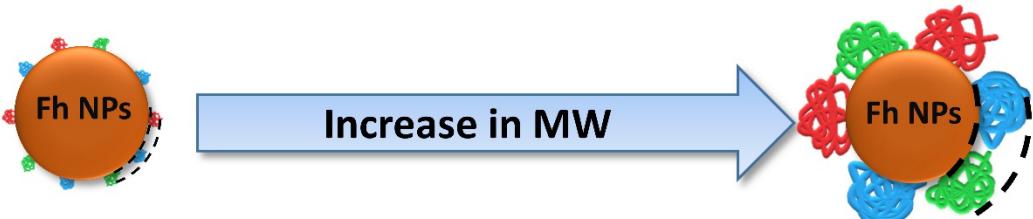
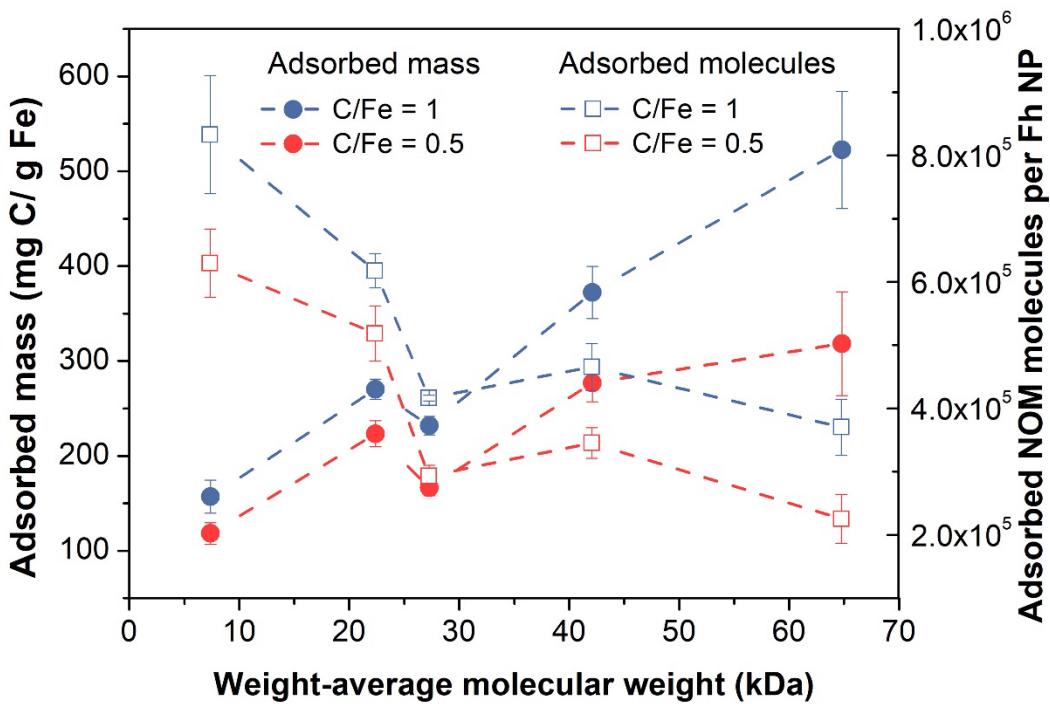
Table 1. Weight-average molecular weight of the SRNOM fractions before and after adsorption.

SRNOM Fractions	NOM Stock Solutions		Adsorption Experiments			
	M_w across the entire distribution ¹ (kDa)	M_w across the entire distribution ² (kDa)		M_w at peak maximum ³ (kDa)		
		Before adsorption	Adsorbed NOM	Before adsorption	Adsorbed NOM	
Unfractionated	27.3	25.7	34.4	15.4	24.8	
<3 kDa ⁴	7.4	8.4	10.3	6.8	8.3	
(3-10) kDa	22.4	23.6	24.0	19.0	19.2	
(10-30) kDa	42.1	42.3	42.4	34.0	35.2	
(30-100) kDa	64.8	61.2	61.3	66.4	62.1	

696 ¹Calculated as $\frac{\sum C_i M_{w,i}}{\sum C_i}$ across the chromatograms in Figure S5, where C_i is the mass
 697 concentration from RI detection and $M_{w,i}$ is the weight-averaged molecular weight at each time
 698 point i from the Zimm analysis of the MALS data (using RI for concentration).

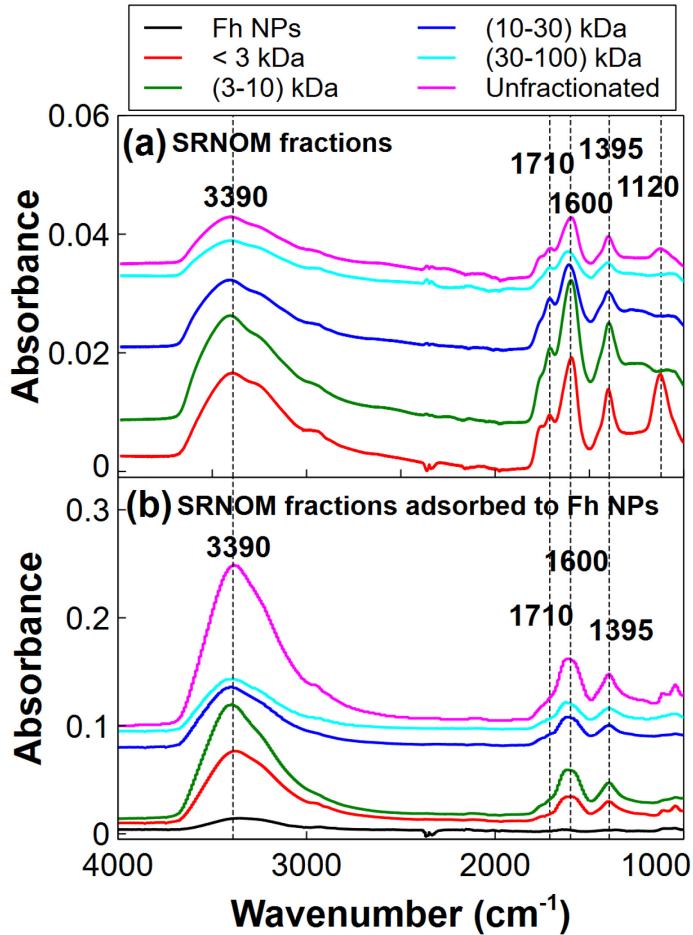
699 ²Calculated as in Footnote 1 for the chromatograms in Figure S6, except estimating C_i from the
 700 UV absorbance at 280 nm because of the low RI signal for the 10 mg/L C concentrations used in
 701 the experiments; $M_{w,i}$ is based on elution time using the measurements in Figure S5. The raw
 702 chromatogram is used for the dissolved NOM before adsorption, and the difference chromatogram
 703 for the adsorbed NOM.

704 ³Taken as a single M_w at the peak maximum in the chromatograms in Figure S6. The raw
 705 chromatogram is used for the dissolved NOM before adsorption, and the difference chromatogram
 706 for the adsorbed NOM.



707 ⁴Note adsorptive fractionation observed in the chromatograms (Figure S6) is not apparent here
 708 because the lowest molecular weight species produce low MALS signal and are excluded from the
 709 M_w analysis.

710

711


712

713

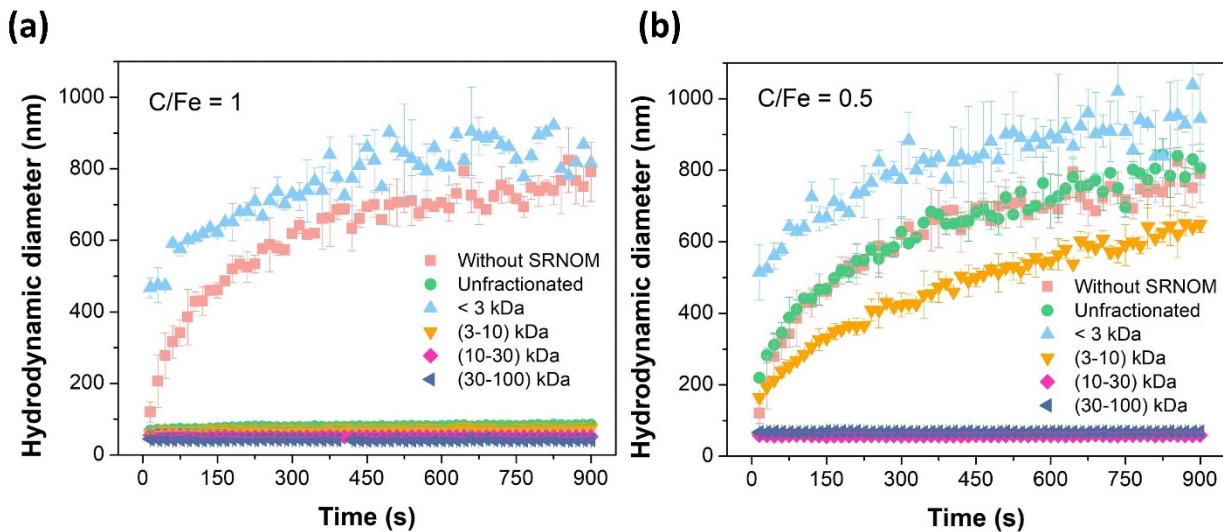
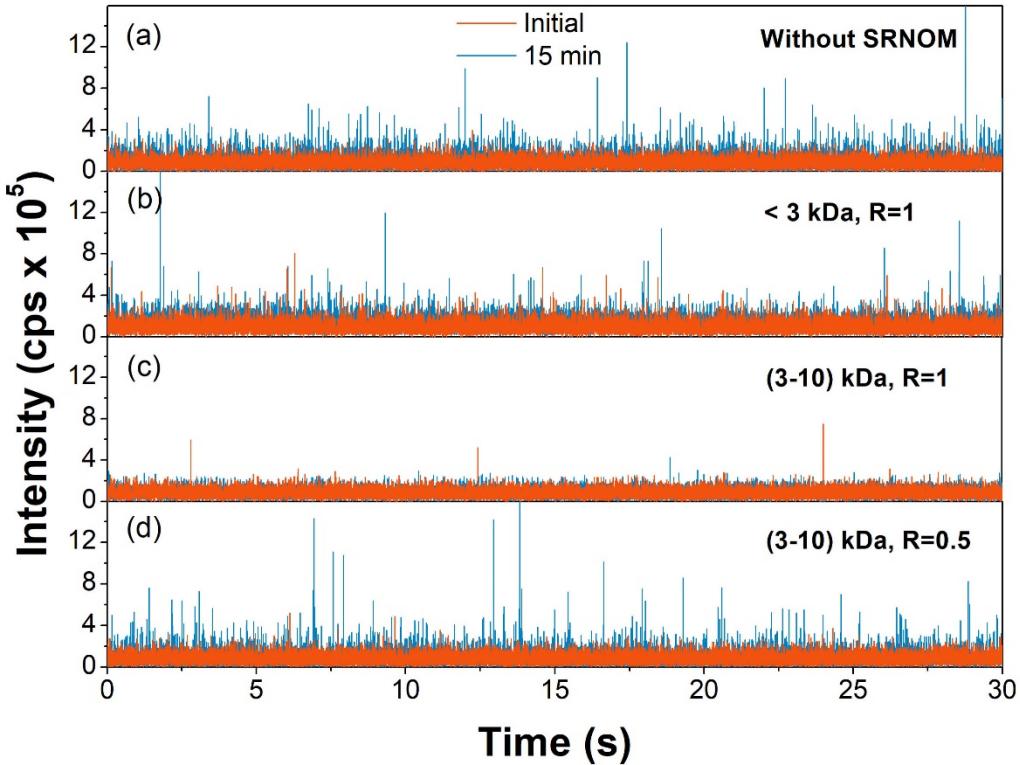

714
715
716
717

Figure 1. Adsorbed carbon concentration and adsorbed NOM molecules versus weight-average molecular weight of the stock solution of each NOM fraction at $R = 1$ and 0.5 . The weight-average molecular weight of SRNOM $_{<3\text{kDa}}$, SRNOM $_{3-10\text{kDa}}$, SRNOM $_{\text{unfractionated}}$, SRNOM $_{10-30\text{kDa}}$, and SRNOM $_{30-100\text{kDa}}$ are 7.4, 22.4, 27.3, 42.1, 64.8 kDa, respectively). Error bars represent the standard deviation of $n = 2$ samples. The lines displayed are only to guide the eye.



718
719
720

Figure 2. ATR-FTIR spectra for NOM fractions before adsorption (a) and after adsorption onto Fh NPs (b). The spectra for the NOM fractions were obtained by drying 6 μL of the liquid solutions ($\text{pH} \approx 5.5$) onto the diamond/ZnSe ATR crystal. To collect the NOM-coated NPs, samples were prepared following the same procedure as the batch adsorption experiment and washed with Milli-Q water to remove unadsorbed NOM, then dried onto the ATR crystal. All spectra were acquired from (800 to 4000) cm^{-1} and processed by background subtracting the clean diamond/ZnSe crystal spectrum.

Figure 3. Aggregation kinetic profiles of Fh NPs at $\text{pH} = 5.5 \pm 0.2$ in 150 mM NaCl solution, with or without SRNOM (unfractionated or fractionated) with different C/Fe ratios: (a) C/Fe = 1 and (b) C/Fe = 0.5. Error bars represent the standard deviation of $n = 2$ samples.

724
725
726

Figure 4. Raw intensity plot of Fh NPs with time scans using spICP-MS. (a) without SRNOM; (b) SRNOM_{<3kDa} C/Fe = 1; (c) SRNOM_{3-10kDa} C/Fe = 1; (d) SRNOM_{3-10kDa} C/Fe = 0.5. Note : The cutoff of the background intensity was selected at 200000 cps, which was corresponding to ~ 134 nm according to eq S2 in SI. Multiple spikes showing up beyond 300000 cps (background + 3σ) for samples (a), (b), and (d) indicating the presence of aggregates larger than 134 nm. More spICP-MS data are available in SI Figure S13.