
1

The Entropy Rate of Some Pólya String Models
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Abstract—We study random string-duplication systems, which
we call Pólya string models. These are motivated by a class
of mutations that are common in most organisms and lead to
an abundance of repeated sequences in their genomes. Unlike
previous works that study the combinatorial capacity of string-
duplication systems, or in a probabilistic setting, various string
statistics, this work provides the exact entropy rate or bounds on
it, for several probabilistic models. The entropy rate determines
the compressibility of the resulting sequences, as well as quan-
tifying the amount of sequence diversity that these mutations
can create. In particular, we study the entropy rate of noisy
string-duplication systems, including the tandem-duplication,
end-duplication, and interspersed-duplication systems, where in
all cases we study duplication of length 1 only. Interesting
connections are drawn between some systems and the signature of
random permutations, as well as to the beta distribution common
in population genetics.

Index Terms—DNA storage, string-duplication systems, en-
tropy rate, Pólya string models

I. INTRODUCTION

SEVERAL mutation processes are known, which affect the
genetic information stored in the DNA. Among these are

transposon-driven repeats [22] and tandem repeats which are
believed to be caused by slipped-strand mispairings [25]. In
essence, these mutation processes take a substring of the DNA
and insert a copy of it somewhere else (in the former case),
or next to the original copy (in the latter). In human DNA, it
is known that its majority consists of repeated sequences [22].
Moreover, certain repeats cause important phenomena such as
chromosome fragility, expansion diseases, gene silencing [38],
and rapid morphological variation [15].

A formal mathematical model for studying these kinds of
mutation processes is the notion of string-duplication systems.
In such systems, a seed string (or strings) evolves over time
by successive applications of mutating functions. For example,
functions taking a substring of a string and copying it next to
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itself model mutation by tandem duplication. These string-
duplication systems were studied in the context of formal
languages (e.g., [24]) in an effort to place the resulting sets
of mutated sequences within Chomsky’s hierarchy of formal
languages, as well as to derive closure properties.

In the context of coding theory, string-duplication systems
were studied, motivated by applications to DNA storage in
living organisms. In such a storage scheme, information is
stored in the DNA of some organisms, and later read from
them or their descendants [35]. This information, however, is
corrupted by mutations. These include substitution errors, as
well as insertions and deletions – all of which have already
been extensively studied in the coding-theoretic community.
However, another type of error is that of duplication, modeled
mathematically by string-duplication systems.

Various aspects of string-duplication systems were studied,
geared towards a comprehensive coding solution to duplication
mutations. In [13], [16], the duplication mutation processes
were treated as a source, and their exponential growth rate,
i.e., their combinatorial capacity, studied. This provided in-
sights into the structure of error balls in the string-duplication
channel. Some error-correcting codes for tandem duplication
were presented in [17], [23]. The confusability of strings
under tandem duplication was studied in [6], the mutation
distance was bounded in [1], and more recently, [40] developed
reconstruction schemes for uniform tandem duplication.

A drawback of all the papers mentioned above is a combi-
natorial (adversarial) approach, whereas we suspect a scenario
involving DNA storage in living organisms must be proba-
bilistic. To address this gap, a probabilistic model was studied
in [12]. This model is not concerned with which mutated
strings are possible, but rather with which are probable. With
appropriate distributions applied to the choice of the mutated
point, the mutation length, and its final position, we obtain
an induced distribution on resulting strings. However, [12]
was not able to provide any exact entropy rate calculation
nor bounds, and managed to study only peripheral properties
of the resulting string distributions, namely the frequencies of
symbols and substrings.

Thus, the goal of this paper is to find the exact entropy
rate of probabilistic string-duplication systems, or bound it.
We also generalize the process to include noisy duplication.
The entropy of biological sequences is of interest for several
reasons. First, it provides a lower bound on the compressed
size of sequence data, against which we can evaluate the
performance compression methods. Second, entropy is a mea-
sure of diversity and complexity. The fact that biological
diversity arises from sequence diversity motivates studying
how sequence diversity is created through mutation. For
example, we may explore how the diversity of the output
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of a string system is influenced by model parameters, such
as the substitution rate. Third, entropy and other measures
of sequence complexity have been used to determine the
origin and/or the role of DNA sequences [11], [31], [39], for
example to classify protein-coding and non-coding regions of a
genome. While there have been many works studying entropy
of biological sequences, including [11], [21], [26], [34], they
have focused on estimating the entropy based on data rather
than finding the entropy as a function of model parameters.

The main contributions of this paper are exact expres-
sions for end-duplication systems and interspersed-duplication
systems, for all noise parameters. Additionally, we find the
exact entropy rate of noiseless tandem duplication and com-
plement tandem duplication, and bound the entropy rate of
the general noisy tandem-duplication system. Duplication is a
major mechanism for the generation of genetic material [30],
[37] and repeated sequences make up a significant part of
many genomes, including that of humans [22]. Many of the
repeated sequences, however, are not exact copies, pointing
to the presence of other mutations, such as substitutions.
Indeed, probabilistic models of tandem duplication studied in
the literature also allow substitutions and other point muta-
tions [5], [8], [14], [19], [20]. We thus study noisy duplication
models, where copies can deviate from the original sequence.
We note however that this is still an incomplete model and
does not consider mutations such as insertion, deletion, and
translocation, for the sake of simplicity. In all cases we study
duplication of length 1 only. As we later see, even for very
modest parameters this problem is challenging.

An important tool, widely used in the study of genetic drift
in population genetics, is a Pólya urn model. It consists of an
urn with balls of two different colors. In each step a ball is
randomly (independently and uniformly) chosen and returned
to the urn along with k new balls of the same color [9], [29],
[32], [33]. There are many extensions to this model, where
after each draw, a set of balls, whose number and composition
depends on the color of the drawn ball, are put into the urn.
However, in these models there is no structure on the balls in
the urn and only the number of balls of each color matters.
Thus, these models fail to apply to strings.

We therefore suggest extensions of the Pólya urn models to
what we call Pólya string models, in which the balls form
a string, which may be circular or linear, similar to bases
of a DNA molecule. A step in this model typically involves
choosing a random position (or equivalently a ball) in the
string, where a modification to the string – the mutation –
occurs. In this paper, we focus on models in which after
the draw, a sequence of balls is inserted to the string whose
composition and position depend on the local properties of the
string around the chosen position.

The paper is organized as follows. In Section II we fix our
notation and definitions that are used throughout the paper. In
Section III we find the exact entropy rate of end duplication.
In Section IV study tandem duplication. Section V presents
the entropy rate of interspersed duplication. We conclude in
Section VI by providing some insight and comparisons with
the combinatorial capacity and Pólya urn models.

II. PRELIMINARIES

Let Σ ≜ {0, 1} be the binary alphabet. Not all results
may be readily generalized to any finite alphabet. Thus, for
the sake of simplicity we focus on the binary case only, and
leave the generalization to future work. The elements of Σ are
referred to as letters (symbols). We use the notation common
to formal languages to describe strings over Σ. The set of
length-n strings (sequences) over Σ is denoted by Σn. We
let Σ∗ denote the set of all finite-length strings over Σ. The
unique empty string is denoted by ε. The set of all finite-length
non-empty strings is denoted by Σ+ ≜ Σ∗ \ {ε}.

To help with readability, we shall use the first lowercase
letters of the roman alphabet, e.g., a, b, c, . . . , to denote single
letters from the alphabet Σ. We shall use the last lowercase
letters of the roman alphabet, e.g., u, v, w, . . . , to denote
strings from Σ∗.

Let w ∈ Σ∗ be a string. We use |w| to denote the length of
w, i.e., the number of letters it contains. Obviously, |ε| = 0. If
w′ ∈ Σ∗, the concatenation of w and w′ is denoted ww′. For
i ∈ N, the ith letter of a string w ∈ Σ∗ (assuming |w| ⩾ i)
will be denoted by wi, i.e., w = w1w2 . . . w|w| with wj ∈ Σ
for all j.

The number of occurrences of a symbol a ∈ Σ in the string
w is denoted by |w|a. If w ̸= ε, then the frequency of a ∈ Σ
in w is defined by fra(w) ≜ |w|a/|w|.

For a natural number n ∈ N we use [n] to denote the set
[n] ≜ {1, 2, . . . , n}. We also recall the definition of the binary
entropy function, H2 : [0, 1] → [0, 1] defined as

H2(x) ≜ −x log2(x)− (1 − x) log2(1 − x).

Example 1. Let w = 0011 and w′ = 001. We have that w4 =
1, ww′ = 0011001 with |w|0 = 2 and |ww′|0 = 4. Also,
fr0(w) = 1/2 while fr0(ww′) = 4/7. □

The Pólya string model may be quite generally defined.
Intuitively, the model takes a starting string, and in a sequence
of steps, mutates it over time. A formal definition follows.

Definition 2. A Pólya string model is defined by S = (Σ, s, T),
where Σ is a finite alphabet, S(0) = s ∈ Σ+ is a seed string,
and T : Σ∗ → Σ∗ is a non-deterministic duplication rule. The
string model is the following discrete-time random process: For
all i ∈ N set S(i) = T(S(i − 1)).

Several rule choices parallel the combinatorial (determinis-
tic) systems studied in [13], and are special cases of the general
stochastic systems studied in [12]. In particular, we define the
following three Pólya string models, which we study in the rest
of the paper. All three models share the fact that the mutation
rule chooses a random location in the string it is given, and
duplicates the single symbol appearing in that location. The
duplicate symbol however is noisy, namely, it may be seen as
if having passed through a binary asymmetric channel. The
rules differ in the location the new symbol is inserted. The
three models are defined as follows:

a) End Duplication: For any real numbers δ0, δ1 ∈
[0, 1], the end-duplication system is defined as Send

δ0,δ1
=

(Σ, s, Tend
δ0,δ1

), where for all w ∈ Σ+,

Tend
δ0,δ1

(w) ≜ uavb.
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w = u a v a

0

1

b

0

1
δ1

δ0

1 − δ1

1 − δ0

End Duplication Tandem Duplication Interspersed Duplication

u a v b u a b v u′ b v′

(s.t. uav = u′v′)

Figure 1. A step in the three Pólya string models: A random position in the word w is chosen. The letter a in that position is fed to an asymmetric binary
channel whose output is b. The letter b is either placed at the end (for end duplication), after the letter a (for tandem duplication), or in some random position
(for interspersed duplication).

Here u, v ∈ Σ∗, a, b ∈ Σ, uav = w, the length |ua| is
chosen randomly independently and uniformly from [|w|],
and Pr(a = b|a = i) = 1 − δi. In essence, this non-
deterministic rule chooses a uniformly random position in w,
and duplicates the letter there at the end of the word. If the
chosen bit is a = 0, the duplicated symbol is complemented
with probability δ0, and similarly, if a = 1 the duplicated bit is
complemented with probability δ1. The end-duplication model,
while not corresponding to a common type of biological
mutation, is a relatively simple point of departure that provides
intuition into duplication systems.

b) Tandem Duplication: Similarly, for any real numbers
δ0, δ1 ∈ [0, 1], the tandem-duplication system is defined as
Stan

δ0,δ1
= (Σ, s, Ttan

δ0,δ1
), where for all w ∈ Σ+,

Ttan
δ0,δ1

(w) ≜ uabv.

Here u, v ∈ Σ∗, a, b ∈ Σ, uav = w, the length |ua| is
chosen randomly independently and uniformly from [|w|],
and Pr(a = b|a = i) = 1 − δi. This time, the Ttan

δ0,δ1
rule

chooses a uniformly random position in w, and duplicates
the letter there right after its original position. If the chosen
bit is a = 0, the duplicated symbol is complemented with
probability δ0, and similarly, if a = 1 the duplicated bit is
complemented with probability δ1. The tandem-duplication
system is motivated by tandem-duplication mutations, which
are caused by polymerase slippage, also known as slipped-
strand mispairing. During DNA replication, the polymerase
responsible for constructing the new DNA strand may “slip,”
thereby creating an extra copy of a segment of the genome
next to the original in the next generation [5], [25].

c) Interspersed Duplication: Finally, for any real num-
bers δ0, δ1 ∈ [0, 1], the interspersed-duplication system is
defined as Sint

δ0,δ1
= (Σ, s, Tint

δ0,δ1
), where for all w ∈ Σ+,

Tint
δ0,δ1

(w) ≜ u′bv′.

Here u, v, u′, v′ ∈ Σ∗, a, b ∈ Σ, uav = w = u′v′. The
length |ua| is chosen randomly independently and uniformly
from [|w|]. Additionally, the length |u′b| is also chosen
randomly independently and uniformly from [|w|+ 1]. As for
the inserted letter b, Pr(a = b|a = i) = 1 − δi. Intuitively,
the Tint

δ0,δ1
rule chooses a uniformly random position in w, and

duplicates the letter there to a uniformly chosen position. Like
before, if the chosen bit is a = 0, the duplicated symbol is
complemented with probability δ0, and similarly, if a = 1
the duplicated bit is complemented with probability δ1. This
system is a simplified representation of biological interspersed
duplications. These mutations result from mobile elements in
the genome, called transposons or jumping genes, which can
copy and paste themselves in different locations [22].

A step in each of the three Pólya string systems described
above is depicted in Figure 1.

Given a Pólya string system S, the set of choices leading
from S(0) to S(n) is denoted by H(n) and is referred to as the
history of the sequence. More precisely, if S(i) was obtained
from S(i− 1) by taking the symbol in the jth position, passing
it through the binary asymmetric channel to obtain the symbol
b, and inserting it in the ℓth position, we encode this step using
the tuple Hi ≜ (j, b, ℓ). The history is then the concatenation
of steps, namely,

H(n) ≜ H1,H2, . . . ,Hn.

The entropy rate of the process S is defined as

h(S) ≜ lim sup
n→∞

1
n

H(S(n)),

where H is the entropy function,

H(S(n)) ≜ − ∑
w∈Σ∗

Pr(S(n) = w) log2 Pr(S(n) = w).

Since H(S(n)|H(n)) = 0,

h(S) = lim sup
n→∞

1
n

I(S(n);H(n)),
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where I denotes mutual information. Thus h(S) can be viewed
as quantifying the amount of information that the sequence
contains about its history. The problem of identifying the
duplication history is of interest in the study of evolution
and, in particular, has been investigated for tandem repeats [3],
[10], [14], [36]. The mutual information I(S(n);H(n)) can be
used to find bounds on the error of identifying the duplication
history through Fano’s inequality [7].

Finally, we note that since S is a tuple S = (Σ, s, T), its
entropy rate, h(S), depends not only on the channel parameters
of T, but also on the choice of seed string s. This will become
evident in the scenarios studied later in the paper.

III. END DUPLICATION

We start our exploration of Pólya string systems with the
end-duplication system. We distinguish between two cases that
require different treatment. We first study the end-duplication
system where the duplicated bit is unchanged (i.e., never
complemented).

A. The Noiseless Channel: δ0 = δ1 = 0
Theorem 3. Let Σ = {0, 1}, s ∈ Σ+ be a seed string, and
denote t0 ≜ |s|0, t1 ≜ |s|1. If t0, t1 ⩾ 1, then the entropy rate
of S = Send

0,0 = (Σ, s, Tend
0,0 ) is

h(Send
0,0 ) =

∫︂ 1

0
β(p; t0, t1)H2(p)dp

=
log2 e
t0 + t1

((t0 + t1)Ht0+t1 − t0Ht0 − t1Ht1),

where

β(p; t0, t1) ≜
(t0 + t1 − 1)!

(t0 − 1)!(t1 − 1)!
pt0−1(1 − p)t1−1,

is the pdf for the Beta(t0, t1) distribution, and where Hm
denotes the mth harmonic number,

Hm ≜
m

∑
i=1

1
i

.

Proof: Fix any w ∈ Σn, and denote k0 ≜ |w|0, k1 ≜
|w|1, hence k0 + k1 = n. If we write w = w1w2 . . . wn, with
wi ∈ Σ, we can now find that

Pr(S(n) = sw)

=
n

∏
i=1

|sw1 . . . wi−1|wi

|sw1 . . . wi−1|

=
t0(t0 + 1) . . . (t0 + k0 − 1)t1(t1 + 1) . . . (t1 + k1 − 1)

(t0 + t1)(t0 + t1 + 1) . . . (t0 + t1 + k0 + k1 − 1)
= f (t0, t1, k0, k1)

≜
(t0 + t1 − 1)!(t0 + k0 − 1)!(t1 + k1 − 1)!
(t0 − 1)!(t1 − 1)!(t0 + t1 + k0 + k1 − 1)!

. (1)

We note that this probability does not depend on the order of
bits in w. Thus, let us denote by Ak0 the event that S(n) = sw,
and |w|0 = k0. Obviously,

Pr(Ak0) =

(︃
n
k0

)︃
f (t0, t1, k0, n − k0). (2)

We now have,

h(S)

= lim sup
n→∞

1
n

H(S(n))

= − lim sup
n→∞

1
n ∑

w∈Σn

(︂
f (t0, t1, |w|0, |w|1)

· log2 f (t0, t1, |w|0, |w|1)
)︂

= − lim sup
n→∞

1
n

n

∑
k0=0

Pr(Ak0) log2 f (t0, t1, k0, n − k0)

= − lim sup
n→∞

1
n

n

∑
k0=0

(︂
Pr(Ak0)

· log2
(t0 + k0 − 1)!(t1 + n − k0 − 1)!

(t0 + t1 + n − 1)!

)︂
− 1

n
log2

(t0 + t1 − 1)!
(t0 − 1)!(t1 − 1)!

,

and we note that the last term is o(1). We also have,

(t0 + k0 − 1)!(t1 + n − k0 − 1)!
(t0 + t1 + n − 1)!

=
1

t0 + t1 + n − 1

(︃
t0 + t1 + n − 2

t0 + k0 − 1

)︃−1
.

Thus,

h(S) = lim sup
n→∞

1
n

n

∑
k0=0

Pr(Ak0) log2

(︃
t0 + t1 + n − 2

t0 + k0 − 1

)︃
.

To obtain the desired form, we further simplify the expres-
sion for h(S). First, by the well known approximation to the
binomial coefficient (e.g., see [28]), we have(︃

t0 + t1 + n − 2
t0 + k0 − 1

)︃
= 2n(H2(k0/n)+o(1)).

Second, we note that for any fixed ℓ ∈ N,

(m + ℓ)!
m!

= mℓ(1 + O(1/m)).

Thus, we may rewrite (2) as

Pr(Ak0) =
(t0 + t1 − 1)!

(t0 − 1)!(t1 − 1)!
· (k0 + t0 − 1)!

k0!
· (k1 + t1 − 1)!

k1!

· n!
(n + t0 + t1 − 1)!

=
(t0 + t1 − 1)!

(t0 − 1)!(t1 − 1)!
·

kt0−1
0 kt1−1

1
nt0+t1−1

· (1 + O(1/k0 + 1/k1 + 1/n))

=
1
n
· β

(︃
k0

n
; t0, t1

)︃
· (1 + O(1/k0 + 1/(n − k0) + 1/n)).
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Putting this all together and using standard calculus techniques
we obtain, for all 0 < ϵ < 1

2 ,

h(S)

= lim sup
n→∞

1
n

n

∑
k0=0

Pr(Ak0) log2

(︃
t0 + t1 + n − 2

t0 + k0 − 1

)︃

= lim sup
n→∞

(1−ϵ)n

∑
k0=ϵn

1
n

β

(︃
k0

n
; t0, t1

)︃
H2

(︃
k0

n

)︃
(1 + o(1)) + ϕ(ϵ)

=
∫︂ 1−ϵ

ϵ
β(p; t0, t1)H2(p)dp + ϕ(ϵ),

where 0 ⩽ ϕ(ϵ) ⩽ 2ϵ. Taking the limit as ϵ → 0+, we prove
the first claim.

We continue to prove the second claim. Consider the
following integral:∫︂ 1

0
pt0+ϵ(1 − p)t1−1 dp. (3)

We use a Taylor series to obtain,

pϵ = 2ϵ log2 p =
∞

∑
i=0

ϵi(ln 2)i

i!
(log2 p)i.

Plugging this in (3) we get∫︂ 1

0
pt0+ϵ(1 − p)t1−1 dp

=
∞

∑
i=0

ϵi(ln 2)i

i!

∫︂ 1

0
pt0(1 − p)t1−1(log2 p)i dp. (4)

We recall the definition of the gamma function (e.g., see
[18, Ch. 11]),

Γ(x) ≜
∫︂ ∞

0
tx−1e−t dt.

Additionally, Γ(x + 1) = xΓ(x), and in particular, for all
m ∈ N, Γ(m + 1) = m!. We also recall the beta function,

B(x, y) ≜
∫︂ 1

0
tx−1(1 − t)y−1 dt =

Γ(x)Γ(y)
Γ(x + y)

,

for all x, y ∈ R, x, y > 0. Thus, (3) becomes∫︂ 1

0
pt0+ϵ(1 − p)t1−1 dp

=
Γ(t0 + ϵ + 1)Γ(t1)

Γ(t0 + t1 + ϵ + 1)

=
(t1 − 1)!

(t0 + t1 + ϵ)(t0 + t1 + ϵ − 1) . . . (t0 + ϵ + 1)

=
(t1 − 1)!

(t0 + t1)(1 + ϵ
t0+t1

) . . . (t0 + 1)(1 + ϵ
t0+1 )

=
(t1 − 1)!t0!
(t0 + t1)!

· 1
(1 + ϵ

t0+t1
) . . . (1 + ϵ

t0+1 )
.

Using a Taylor series,

e
ϵ

t0+t1 = 1 +
ϵ

t0 + t1
+ O(ϵ2).

Hence,∫︂ 1

0
pt0+ϵ(1 − p)t1−1 dp

=
(t1 − 1)!t0!
(t0 + t1)!

· e−
(︂

1
t0+t1

+···+ 1
t0+1

)︂
ϵ
+ O(ϵ2)

=
(t1 − 1)!t0!
(t0 + t1)!

· e−(Ht0+t1−Ht0)ϵ + O(ϵ2).

Yet another Taylor series we get

e−(Ht0+t1−Ht0)ϵ = 1 − (Ht0+t1 −Ht0)ϵ + O(ϵ2).

Plugging this back, we obtain∫︂ 1

0
pt0+ϵ(1 − p)t1−1 dp

=
(t1 − 1)!t0!
(t0 + t1)!

(1 − (Ht0+t1 −Ht0)ϵ) + O(ϵ2). (5)

By equating the coefficient of ϵ1 in (4) and (5) we get

ln 2
1!

∫︂ 1

0
pt0(1 − p)t1−1(log2 p)dp

= − (t1 − 1)!t0!
(t0 + t1)!

(Ht0+t1 −Ht0).

We now repeat the same process, but instead of starting with
(3), we take ∫︂ 1

0
pt0−1(1 − p)t1+ϵ dp,

and we get

ln 2
1!

∫︂ 1

0
pt0−1(1 − p)t1(log2(1 − p))dp

= − (t0 − 1)!t1!
(t0 + t1)!

(Ht0+t1 −Ht1).

Finally,

h(S) =
∫︂ 1

0
β(p; t0, t1)H2(p)dp

=
(t0 + t1 − 1)!

(t0 − 1)!(t1 − 1)!

(︄ ∫︂ 1

0
pt0(1 − p)t1−1(log2 p)dp

+
∫︂ 1

0
pt0−1(1 − p)t1(log2(1 − p))dp

)︄

=
log2 e
t0 + t1

((t0 + t1)Ht0+t1 − t0Ht0 − t1Ht1),

thus, proving the second claim as well.
We comment that the case of either t0 = 0 or t1 = 0 in

Theorem 3 is not interesting since then we have only strings
of repeated symbols, and therefore, entropy rate of 0.

B. The Noisy Channel: δ0 + δ1 > 0

We move on to the case where the duplicated bit is passed
through a noisy asymmetric binary channel. Calculating the
entropy rate explicitly is not a simple task. This is due to
the fact that in contrast to the previous case of Send

0,0 , the
probability of obtaining a specific sequence is not a function
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of the frequency of symbols as in (1). This is demonstrated in
the following example.

Example 4. Consider S = Send
1,1 (Σ, s, Tend

1,1 ), with s = 01.
Calculating the probability of the sequences S(3) = 01110 and
S(3) = 01011 for we obtain

Pr(Send
1,1 (3) = 01110) =

1
2
· 1

3
· 3

4

̸= 1
2
· 2

3
· 2

4
= Pr(Send

1,1 (3) = 01011).

□

The following lemma will be instrumental in finding the
entropy rate of Send

δ0,δ1
.

Lemma 5. Let Σ = {0, 1}, s ∈ Σ+ be a seed string,
and denote S = Send

δ0,δ1
= (Σ, s, Tend

δ0,δ1
). If for any real

ϵ1, ϵ2 > 0, there exists N ∈ N such that for all n ⩾ N,
Pr(|fr0(S(n))− α| ⩽ ϵ1) ⩾ 1 − ϵ2 for some real α ∈ [0, 1],
then

h(Send
δ0,δ1

) = H2(α(1 − δ0) + (1 − α)δ1).

Proof: For our convenience, let g : [0, 1] → [0, 1] be
defined as g(x) ≜ x(1 − δ0) + (1 − x)δ1. Fix some real
δ > 0. Since H2(g(x)) is continuous, by the Heine-Cantor
Theorem H2(g(x)) is uniformly continuous. Thus, there exists
ϵ1 > 0 such that for all x1, x2 ∈ [0, 1], |x1 − x2| ⩽ ϵ1 implies

|H2(g(x1))− H2(g(x2))| ⩽
1
2

δ.

We note that for S = Send
δ0,δ1

, and all w ∈ Σn+|s|, we have

Pr(S(n + 1) = w0 | S(n) = w) = g(fr0(w)).

Additionally, by the theorem requirements we are assured we
can find N ∈ N such that for all n ⩾ N we have

Pr(|fr0(S(n))− α| ⩽ ϵ1) ⩾ 1 − 1
2

δ. (6)

For the rest of the proof, we consider the underlying sample
space to be the space of all infinite sequences,

ΣN ≜ {a1a2a3 . . . : ∀i ∈ N, ai ∈ Σ}.

A distribution µ on ΣN is induced by evolving from the seed s
according to S. Thus, S(n) is a random variable taking values
from Σ|s|+n, whose distribution is the marginal of µ on the
first |s|+ n coordinates (sometimes called the (|s|+ n)-length
cylinder). Namely, the event S(n) = w is the set{︂

v ∈ ΣN : vi = wi for all i ∈ [n + |s|]
}︂

.

Similarly, we define Si to be the projection of µ on the (|s|+
i)th coordinate, i.e., the event Si = a is the set{︂

v ∈ ΣN : vi+|s| = a
}︂

.

Let us define the event,

F ≜
{︂

v ∈ ΣN : ∀n ⩾ N, |fr0(v1 . . . vn)− α| ⩽ ϵ1

}︂
,

and denote by Fc its complement. We obtain that,

h(S) = lim sup
n→∞

1
n

H(S(n))

⩽ lim sup
n→∞

1
n

(︃
H(S(n) | F) +

1
2

δH(S(n) | Fc)

)︃
⩽ lim sup

n→∞

1
n

H(S(n) | F) +
1
2

δ

(a)
= lim sup

n→∞

1
n

n

∑
i=1

H(Si | S(i − 1), F) +
1
2

δ

(b)
⩽ lim sup

n→∞

1
n

(︄
N

∑
i=1

H(Si)

+
n

∑
i=N+1

H(Si | S(i − 1), F)

)︄
+

1
2

δ

(c)
⩽ lim sup

n→∞

1
n

(︃
N + (n − N)

(︃
H2(g(α)) +

δ

2

)︃)︃
+

1
2

δ

= H2(g(α)) + δ

where (a) follows from the chain rule for entropy, (b) follows
since conditioning reduces entropy, and (c) follows since

H(Si | S(i − 1), F) = H2(g(fr0(S(i − 1))))

and from (6).
Using similar reasoning,

h(S) = lim sup
n→∞

1
n

H(S(n))

⩾ lim sup
n→∞

1
n

(︃
1 − 1

2
δ

)︃
H(S(n) | F)

= lim sup
n→∞

1
n

(︃
1 − 1

2
δ

)︃ n

∑
i=1

H(Si | S(i − 1), F)

⩾ lim sup
n→∞

1
n

(︃
1 − 1

2
δ

)︃ n

∑
i=N+1

H(Si | S(i − 1), F)

⩾ lim sup
n→∞

1
n

(︃
1 − 1

2
δ

)︃
(n − N)(H2(g(α))− δ

2
)

= (1 − 1
2

δ)(H2(g(α))− δ

2
)

⩾ H2(g(α))− δ,

where the last inequality follows from the fact that 1
2 δ(H(α)−

δ
2 ) ⩽

1
2 δ.

We now have

H2(g(α))− δ ⩽ h(S) ⩽ H2(g(α)) + δ.

Taking the limit as δ → 0+ gives the claimed result.
The next step in finding the entropy rate of Send

δ0,δ1
is to find

the (almost sure) limit of the frequency of symbols. We make
use of the following definition.

Definition 6. Let (xn)n∈N be a sequence of real numbers,
evolving according to the equation xn+1 = xn + a · f (xn)
for some function f : R → R and a constant a ∈ R,
a > 0. We say that x′ is an equilibrium point of the recursion
xn+1 = xn + a · f (xn) if f (x′) = 0.
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We prove the next lemma using stochastic approximation
(for a comprehensive study see [4]).

Lemma 7. Let Σ = {0, 1}, s ∈ Σ+ be a seed string, and denote
S = Send

δ0,δ1
= (Σ, s, Tend

δ0,δ1
), where δ0 + δ1 > 0. Then

lim
n→∞

fr0(S(n)) =
δ1

δ0 + δ1

almost surely.

Proof: Let t0 ≜ |s|0 and t1 ≜ |s|1. We further define

xn ≜ |S(n)|0, zn ≜ fr0(S(n)) =
xn + t0

n + t0 + t1
.

Let g : [0, 1] → [0, 1] be defined as

g(x) ≜ x(1 − δ0) + (1 − x)δ1.

Note that for any w ∈ Σn+|s|,

Pr(S(n + 1) = w0 | S(n) = w) = g(zn),

and that z0 = t0
t0+t1

. We write

xn+1 = xn + ξn+1

where ξn+1 = 1 if the (n + 1)st appended symbol (due to
mutation) is a 0, and ξn+1 = 0 otherwise. A simple calculation
yields

zn+1 = zn +
1

n + 1 + t0 + t1
(ξn+1 − zn)

= zn +
(g(zn)− zn) + (ξn+1 − g(zn))

n + 1 + t0 + t1
.

The main goal is to find the limit points of the sequence zn.
Let Mn ≜ ξn − g(zn−1), and note that Mn is a martingale

difference sequence. Indeed, if Fn is the σ-algebra generated
by σ(zm, Mm, m ⩽ n) then

E[Mn+1 | Fn] = E[ξn+1 | Fn]− g(zn)

= g(zn)− g(zn)

= 0.

Hence, the limiting differential equation zn is expected to track
is given by

żt = g(zt)− zt. (7)

In order for the differential equation to have a unique solution
for any z0, we need to show that g(z)− z is Lipschitz [4, Ch.
11, Theorem 5]. Indeed,

|(g(z)− z)− (g(y)− y)| = |(δ0 + δ1)(z − y)|,

which means that g(z)− z is (δ0 + δ1)-Lipschitz. Solving the
differential equation we obtain the solution

zt =
δ1

δ0 + δ1
+

(︃
t0

t0 + t1
− δ1

δ0 + δ1

)︃
e−t(δ0+δ1).

From the solution of the differential equation, it is clear
that the set [0, 1] is an invariant set (any trajectory starting at
[0, 1] and evolves according to zt will remain in the set). Also,
we see that the point z∗ ≜ δ1

δ0+δ1
is an equilibrium point and

since g(z) is contraction (i.e., |g(z1)− g(z2)| ⩽ |z1 − z2|)

 0
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Figure 2. A contour plot of h(Send
δ0 ,δ1

).

it has only one equilibrium point (this is due to the Banach
fixed-point theorem [2]). Hence, using [4, Corollary 4]1, zn
converges almost surely to z∗.

We remark that for δ0 = δ1 = 0, we obtain in (7) that
żt = 0, which means that there is no singular attraction point
(there is no stable equilibrium point). Hence, in order to use
the same method, we need to evaluate the probability of every
possible limiting point. This, as we know from the formula
for h(Send

0,0 ) from Theorem 3, is a function of the seed string,
and is related to the beta distribution.

We can now state the entropy rate for Send
δ0,δ1

with δ0 + δ1 >
0.

Theorem 8. Let Σ = {0, 1}, s ∈ Σ+ be a seed string, and
denote S = Send

δ0,δ1
= (Σ, s, Tend

δ0,δ1
), where δ0 + δ1 > 0. Then

h
(︂

Send
δ0,δ1

)︂
= H2

(︃
δ1

δ0 + δ1

)︃
= H2

(︃
δ0

δ0 + δ1

)︃
.

Proof: By Lemma 7 we obtain the limiting frequencies of
S(n). Then, by using Lemma 5 we obtain the desired result.

Figure 2 shows a contour plot of the entropy rate of Send
δ0,δ1

.

IV. TANDEM DUPLICATION

We turn our attention in this section to tandem-duplication
Pólya string models. We again consider several cases sepa-
rately, depending on the parameters of the binary asymmetric
channel, δ0 and δ1. We find the exact entropy rate of Stan

0,0 , and
relate the entropy rate of Stan

1,1 to a combinatorial property of
permutations. Finally, we upper bound the entropy rate of the
general Stan

δ0,δ1
.

A. The Noiseless Channel: δ0 = δ1 = 0

The entropy rate of the noiseless case is simple.

1Note that [4, Corollary 4] uses the notion of internally chain transitive. In
our case, since z∗ is a unique equilibrium point we obtain that the singleton
{z∗} is the internally chain transitive set in [0, 1].
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n = 0 :

n = 1 :

n = 2 :

n = 3 :

0
ε

01
1

011
21

0111
321

0101
231

0110
213

010
12

0110
312

0100
132

0101
123

Figure 3. The tree of sequences that can be obtained starting from s = 0
using the Ttan

1,1 rule for n ⩽ 3. The first line in each node is the sequence and
the second line is its history permutation.

Theorem 9. Let Σ = {0, 1}, s ∈ Σ+ be a seed string, and
denote S = Stan

0,0 = (Σ, s, Ttan
0,0 ). Then

h(Stan
0,0 ) = 0.

Proof: A crude counting argument suffices for the proof.
Consider the initial string S(0), and denote the number of runs
in it by r. Obviously any tandem-duplication operation extends
existing runs and never creates new runs. Thus, obtaining S(n)
may be viewed as an action of throwing n balls into r bins.
The total number of resulting strings (regardless of probability)
is given exactly by (n+r−1

r−1 ) ⩽ (n + r − 1)r−1. Maximum
entropy will be attained by a uniform distribution over those
strings, and even in that case we get

h(Stan) ⩽ lim sup
n→∞

1
n

log2(n + r − 1)r−1 = 0.

A lower bound of 0 is trivial since we have at least one string
for each length n ⩾ |s|.

B. The Complementing Channel: δ0 = δ1 = 1
Next, we consider Stan

1,1 , where the duplicated bit is always
complemented. For simplicity, in what follows we assume that
the seed string is S(0) = s = 0. We note then that S(1) = 01
always. As an example, a possible history leading to S(3) =
0110 is

0 → 01 → 010 → 0110, (8)

where in each step the new symbol is in bold.
The history of S(n) can be encoded as a permutation of

length n, called its history permutation, as follows: Replace
each 0 or 1 with the number of the turn in which they were
added to the sequence. For example, the history given in (8)
corresponds to the history permutation 312:

0 → 01 → 010 → 0110,
ε → 1 → 12 → 312.

Note that since 0 is always in the starting position, we drop
it to obtain a permutation of [n]. It is clear that this provides
us with a bijection between permutations of [n] and a history
resulting in a sequence S(n) = 01w, w ∈ {0, 1}n−1. This
bijection will be useful in what follows.

The tree in Fig. 3 illustrates the history permutations and
the sequences arising from them for n ⩽ 3. Since all histories

are equally likely, all leaves at the same level in the tree are
equally likely. Note however that not all sequences are equally
likely as multiple histories may lead to the same sequence.
For example, from Fig. 3, it is clear that Pr(S(3) = 0101) =
2 · Pr(S(3) = 0100).

The following definitions will be useful. For n ∈ N let Sn
denote the symmetric group of permutations over [n]. Recall
that the ith letter of S(n), for i ∈ [n+ 1], is denoted by Si(n).
Furthermore, if w ∈ Σ∗, and 1 ⩽ i ⩽ j ⩽ |w|, then we denote
wj

i ≜ wiwi+1 . . . wj. For S(n), this notation becomes Sj
i(n).

For a permutation π ∈ Sn, define its signature sig(π) =
u ∈ {0, 1}n−1 such that

ui ≜

{︄
0, if πi > πi+1,
1, if πi < πi+1,

for i ∈ [n − 1], i.e., ascents are marked by 1 and descents by
0. We also define, for each u ∈ {0, 1}n−1,

Ψu ≜ {π ∈ Sn : sig(π) = u}.

The following lemma is useful in computing the entropy rate
of the system.

Lemma 10. Let Σ = {0, 1}, and denote S = Stan
1,1 = (Σ, s =

0, Ttan
1,1 ). Then for all u ∈ Σn−1,

Pr(S(n) = 01u) =
|Ψu|

n!
.

Proof: Let the set of history permutations in S that lead to
01w be denoted by Π01w. For technical reasons, we will need
to consider also S′ = (Σ, s = 1, Ttan

1,1 ) (which differs from
S by starting with the seed string 1 instead of 0). Obviously
S and S′ are isomorphic, by simply complementing all bits.
Similarly, we denote the set of history permutations in S′ that
lead to 10w by Π10w.

To prove the claim, it suffices to show that for all w ∈ Σ∗,

|Π01w| = |Π10w| = |Ψw|. (9)

We show this by proving that the sizes of all sets satisfy
the same recursion with the same initial values. The initial
conditions for all recursions are

|Π01ε| = |Π10ε| = |Ψε| = 1,

where ε is the empty string.
We start by providing two recursions for |Ψw|. For v ∈ Σn,

let

Tv ≜ {i ∈ [n + 1] : (vi−1 = 1 or i = 1)
and (vi = 0 or i = n + 1)},

Uv ≜ {i ∈ [n + 1] : (vi−1 = 0 or i = 1)
and (vi = 1 or i = n + 1)},

be the set of positions where 1 to 0 and 0 to 1 transitions occur
(except at the boundaries). For example for v = 0011010, we
have Tv = {1, 5, 7} and Uv = {3, 6, 8}.

For u ∈ Σn, we can construct a permutation of [n+ 1] with
the signature u recursively by first determining the position of
n + 1. The set of valid positions for n + 1 is precisely the set
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Tu. Suppose we place n + 1 in position i ∈ Tu. We now need
to construct two permutations with signatures ui−2

1 and un
i+1,

each with a subset of [n]. We can choose the set of elements
for each of these two permutations in ( n

i−1) ways. Hence,

|Ψu| = ∑
i∈Tu

(︃
n

i − 1

)︃⃓⃓⃓
Ψui−2

1

⃓⃓⃓⃓⃓⃓
Ψun

i+1

⃓⃓⃓
.

Similarly, by deciding where to place 1 (instead of n + 1), we
can show that

|Ψu| = ∑
i∈Uu

(︃
n

i − 1

)︃⃓⃓⃓
Ψui−2

1

⃓⃓⃓⃓⃓⃓
Ψun

i+1

⃓⃓⃓
.

We now return to Π01u and Π10u. Note that (9) holds
trivially if u is the empty string. Suppose (9) holds for all
u ∈ Σn−1. Fix u ∈ Σn and consider the sequence 01u as the
result of the Pólya string model. In the permutations in Π01u,
the set of valid positions for 1 is precisely the set of positions
in Tu. To see this note that in a permutation describing the
history of 01u, the element 1 can only correspond to the last
element in a run of 1s in the string 01u. Specifically, the
element 1 can be placed in position 1 iff u starts with a 0
(since the bold 1 in 01u is the last 1 in a run); 1 can be
placed in position 2 ⩽ i ⩽ n iff ui−1ui = 10; and finally, 1
can be placed in position n + 1 iff un = 1 (again, the last 1
in a run of 1s).

Hence, we can construct these permutations recursively by
first determining the position of 1 in them, and

|Π01u| = ∑
i∈Tu

(︃
n

i − 1

)︃⃓⃓⃓
Π01ui−2

1

⃓⃓⃓⃓⃓⃓
Π10un

i+1

⃓⃓⃓
= ∑

i∈Tu

(︃
n

i − 1

)︃⃓⃓⃓
Ψui−2

1

⃓⃓⃓⃓⃓⃓
Ψun

i+1

⃓⃓⃓
.

Similarly, for Π10u, u ∈ Σn, the possible positions for 1 are
precisely those in Uu as now 1 in the history permutation
should correspond to the last 0 in a run of 0s in the string
10u. So 1 can be placed in position 1 iff u starts with a 1;
it can be placed in position 2 ⩽ i ⩽ n iff ui−1ui = 01; and
finally it can be placed in position n + 1 if su = 0. We thus
have

|Π10u| = ∑
i∈Tu

(︃
n

i − 1

)︃⃓⃓⃓
Π10ui−2

1

⃓⃓⃓⃓⃓⃓
Π01un

i+1

⃓⃓⃓
= ∑

i∈Tu

(︃
n

i − 1

)︃⃓⃓⃓
Ψui−2

1

⃓⃓⃓⃓⃓⃓
Ψun

i+1

⃓⃓⃓
.

This completes the proof of (9) for all u ∈ Σ∗.
As Lemma 10 shows, in order to find h(Stan

1,1 ) with seed
string s = 0, we need to find the asymptotics of the probability
that a uniformly chosen permutation from Sn has a given
signature, as n → ∞. We do not yet know how to attain
this goal, and instead, use simplified versions of it to obtain
bounds on the aforementioned entropy rate.

Theorem 11. Let Σ = {0, 1}, and denote S = Stan
1,1 = (Σ, s =

0, Ttan
1,1 ). Then,

5 log2 e − 2
6

⩽ h(Stan
1,1 ) ⩽ H2

(︃
1
3

)︃
.

Proof: Define the process S as follows. Suppose we
uniformly and independently choose random reals in [0, 1]
denoted by X1, X2, . . . . We note that for any i ̸= j, Pr[Xi =
Xj] = 0, and so with probability 1 the sequence X1, . . . , Xn
induces a uniformly chosen permutation from Sn. Let

Si =

{︄
1, if Xi < Xi+1

0, if Xi > Xi+1
(10)

for i ∈ N. Thus, S1 . . . Sn−1 form the signature of a uniformly
chosen permutation from Sn. It follows from Lemma 10 that
for any n and u ∈ Σn−1, we have

Pr(S(n) = 01u) = Pr(Sn−1
1 = u).

Note that the strings in S evolve by changing at a random
position, but S can be viewed as evolving by changing at the
end, and thus is easier to analyze.

We now have,

h(S) = lim sup
n→∞

1
n

H(S(n)) = lim sup
n→∞

1
n

H
(︂

Sn−1
1

)︂
= lim sup

n→∞

1
n

n−1

∑
i=1

H
(︂

Si|S
i−1
1

)︂
(11)

Before proceeding with the proof, we show a simpler lower
bound than the one given in the theorem. For i ∈ N, since
Si−1

1 → Xi → Si, i.e., they form a Markov chain, we have
H(Si|S

i−1
1 ) ⩾ H(Si|Xi). Furthermore, Pr(Si = 0|Xi = x) =

x. Thus from (11) we find

h(S) ⩾ H
(︁
Si|Xi

)︁
=
∫︂ 1

0
H2(x)dx =

log e
2

⩾ 0.7213.

With the same approach we can prove the stronger lower
bound in the theorem. Note that Si−2

1 → Xi−1 → S̄i
i−1. So

H(Si|S
i−1
1 ) ⩾ H(Si|Si−1, Xi−1)

=
∫︂ 1

0
xh0(x)dx +

∫︂ 1

0
(1 − x)h1(x)dx,

where

h0(x) = H
(︁
Si|Si−1 = 0, Xi−1 = x

)︁
,

h1(x) = H
(︁
Si|Si−1 = 1, Xi−1 = x

)︁
.

We have

h0(x) = H2

(︃
1
x

∫︂ x

0
y dy

)︃
= H2

(︂ x
2

)︂
,

h1(x) = H2

(︃
1

1 − x

∫︂ 1

x
(1 − y)dy

)︃
= H2

(︃
1 − x

2

)︃
.

Hence,

H(Si|S
i−1
1 ) =

∫︂ 1

0
xH2

(︂ x
2

)︂
dx+∫︂ 1

0
(1 − x)H2

(︃
1 − x

2

)︃
dx =

5 log e − 2
6

⩾ 0.8689.



10

Now we turn to proving the upper bound. Note that

h(S) = lim sup
n→∞

1
n

n−1

∑
i=1

H
(︂

Si|S
i−1
1

)︂
⩽ lim sup

n→∞

1
n

n−1

∑
i=1

H
(︁
Si|Si−1

)︁
= H(S2|S1)

=
1
2
(︁

H(S2|S1 = 0) + H(S2|S1 = 1)
)︁

=
1
2
· 2 · H2

(︃
1
3

)︃
⩽ 0.9183,

since by integrating over the values of X3
1 , we find

Pr
(︁
S2 = 0|S1 = 0

)︁
=

∫︁ 1
0 dx1

∫︁ x1
0 dx2

∫︁ x2
0 dx3∫︁ 1

0 dx1
∫︁ x1

0 dx2
=

1/6
1/2

=
1
3

as well as Pr
(︁
S2 = 1|S1 = 1

)︁
= 1

3 .
Both methods used in the proof of the preceding theorem

can be extended to obtain better bounds, at the cost of more
tedious proofs. For example, for the upper bound we can have

h(Stan
1,1 ) ⩽ H(S4|S2, S3)

Let Pijk = Pr(S2 = i, S3 = j, S4 = k). By integration, we
find

(P000, P001, . . . , P111) =
1

24
(1, 3, 5, 3, 3, 5, 3, 1).

Hence

H(S4|S2 = 0, S3 = 0) = H(S4|S2 = 1, S3 = 1) = H2

(︃
2
8

)︃
,

H(S4|S2 = 0, S3 = 1) = H(S4|S2 = 1, S3 = 0) = H2

(︃
3
8

)︃
.

So

h(Stan
1,1 ) ⩽ 2 · 1

6
H2

(︃
2
8

)︃
+ 2 · 1

3
H2

(︃
3
8

)︃
⩽ 0.9067.

C. The Noisy Channel: δ0 + δ1 > 0

Lastly, we address the general noisy case of Stan
δ0,δ1

, with
δ0 + δ1 > 0. The methods used for finding the entropy rate of
Send

δ0,δ1
need to be extended: instead of studying the frequencies

of letters, we shall study the frequencies of pairs of adjacent
letters. To that end, we need to extend some definitions.

Let w ∈ Σn, n ∈ N, and let u ∈ Σk, k ∈ N, where k ⩽ n.
The number of occurrences of u in w as a substring is denoted
by |w|u, formally defined as

|w|u ≜
⃓⃓⃓{︂

i ∈ [n] : wi+n−1
i = u

}︂⃓⃓⃓
,

where indices are taken cyclically, i.e., wn is followed by w1.
We also extend the definition of frequency,

fru(w) ≜
|w|u
|w| .

Lemma 12. Let Σ = {0, 1}, s ∈ Σ+ a seed string, and denote
S = Stan

δ0,δ1
= (Σ, s, Ttan

δ0,δ1
), where δ0 + δ1 > 0. Then

lim
n→∞

⎛⎜⎜⎝
fr00(S(n))
fr01(S(n))
fr10(S(n))
fr11(S(n))

⎞⎟⎟⎠

=
1

(1 + δ0 + δ1)(δ0 + δ1)

⎛⎜⎜⎝
(1 − δ0 + δ1)δ1

2δ0δ1
2δ0δ1

(1 − δ1 + δ0)δ0

⎞⎟⎟⎠,

almost surely.

Proof: To avoid cumbersome notation, let us denote

xu
n ≜ |S(n)|u, zn ≜

⎛⎜⎜⎝
fr00(S(n))
fr01(S(n))
fr10(S(n))
fr11(S(n))

⎞⎟⎟⎠.

Let Fn be the filtration generated by zn.
We first find the expected change in the multiplicities xu

n+1
for u ∈ {00, 01, 10, 11}. To do so, we need to find the number
of new occurrences of 00 and the number of occurrences that
are eliminated by a mutation. First, we consider u = 00. A
new occurrence of u appears if 0 is duplicated or if the 1 in
an occurrence of 10 is complement-duplicated (i.e., resulting
in 100). An occurrence of 00 is eliminated if its first 0 is
complement-duplicated. Thus

E[x00
n+1 − x00

n |Fn] = z0
n(1 − δ0) + z10

n δ1 − z00
n δ0

= z00
n (1 − 2δ0) + z01

n (1 − δ0) + z10
n δ1.

Similarly, we have

E
[︂

x01
n+1 − x01

n |Fn

]︂
= z00

n δ0 + z11
n δ1,

E
[︂

x10
n+1 − x10

n |Fn

]︂
= z00

n δ0 + z11
n δ1,

E
[︂

x11
n+1 − x11

n |Fn

]︂
= z01

n δ0 + z10
n (1 − δ1) + z11

n (1 − 2δ1).

By stacking these equations, we find A′ such that

E[xn+1 − xn|Fn] = A′zn.

By letting A ≜ A′ − I, we find

A =

⎛⎜⎜⎝
−2δ0 1 − δ0 δ1 0

δ0 −1 0 δ1
δ0 0 −1 δ1
0 δ0 1 − δ1 −2δ1

⎞⎟⎟⎠.

Using stochastic approximation, We can relate the behavior
of zn to the ODE żt = Azt (see [4]). In particular, zn
converges almost surely to the null space of A. From this,
the theorem follows.

The entropy rate of a source of strings whose limiting
substring frequencies are known, was studied in [27], and an
upper bound provided. We use this result to upper bound the
entropy rate.
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Figure 4. A contour plot of the upper bound on h(Stan
δ0 ,δ1

) of Theorem 13.

Theorem 13. Let Σ = {0, 1}, s ∈ Σ+ a seed string, and denote
S = Stan

δ0,δ1
= (Σ, s, Ttan

δ0,δ1
), where δ0 + δ1 > 0. Then

h(Stan
δ0,δ1

) ⩽
δ1

δ0 + δ1
H2

(︃
1 − δ0 + δ1

1 + δ0 + δ1

)︃
+

δ0

δ0 + δ1
H2

(︃
1 − δ1 + δ0

1 + δ0 + δ1

)︃
.

Proof: Let z∞ ≜ (z00
∞ , z01

∞ , z10
∞ , z11

∞ )T be the limit given
by Lemma 12. From [27], the entropy rate is upper bounded
above by

h(S) ⩽ − ∑
u1u2

zu1u2
∞ log

zu1u2
∞

zu1u2
∞ + zu1ū2

∞
,

where u1, u2 ∈ {0, 1} and ūi = 1 − ui. From this, by
substituting the expression for z∞ given in Lemma 12, the
claim follows.

The upper bound on the entropy rate of Stan
δ0,δ1

is shown in
a contour plot in Figure 4.

We briefly discuss two extreme cases. For δ0 = δ1 = 1
2 , the

upper bound states that h(Stan
1/2,1/2) ⩽ 1, which holds trivially.

Indeed, it is not difficult to see that in fact h(Stan
1/2,1/2) =

1 since random bits are inserted at random positions in the
sequence.

For δ0 = δ1 = 1, this upper bound equals H2(1/3) =
0.9183, which is the same as the upper bound given by
Theorem 11. The lower bound given by that theorem is 0.8689,
which indicates that for this case, the gap between the upper
bound and the true value is small.

We also discuss a similar string-duplication system that
has already been studied in [14], [27]. In general, such
comparisons can be useful to decide between proposed mu-
tation models for a given sequence, especially biological
sequences. In that system, instead of tandem duplications that
are probabilistically noisy, independent tandem duplications
and substitutions are allowed. We compare the behavior of
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Figure 5. (a) An upper bound on h(Stan
δ,δ ), and (b) an upper bound on h(Stsb

δ ).

that system with Stan
δ,δ for some δ ∈ [0, 1]. Specifically, we

compare the bound of Theorem 13 for δ = δ0 = δ1,

h(Stan
δ,δ ) ⩽ H2

(︃
1

1 + 2δ

)︃
,

with an upper bound for the system in which tandem dupli-
cations and substitutions occur with probabilities 1− δ and δ,
respectively, at a random position in the sequence. We refer to
this system as Stsb

δ . The definition of the entropy rate for Stsb
δ

is slightly different, to accommodate the fact that the length
of the sequence does not necessarily grow in each step. It is
shown in [27] that the entropy rate of this system is bounded
from above by

h(Stsb
δ ) ⩽ H2

(︃
2δ

1 + 3δ

)︃
.

The bounds are compared in Fig. 5. The bounds suggest
that the systems behave differently when δ is away from 0.
In particular, h(Stsb

δ ) ⩽ 0.9709 and h(Stan
δ,δ ) = 1 for p =

1/2. For this value of p, in Stsb
δ half of the mutations are

duplications, which make substrings 00 and 11 more likely
than what is expected in a random sequence, leading to an
entropy rate of less than 1.

V. INTERSPERSED DUPLICATION

Finally, we consider the case of interspersed duplication.
While seemingly a more elaborate duplication rule (proba-
bilistic both when choosing the bit to duplicate, as well as the
insertion position), we now show that it has the same entropy
rate as end duplication.

Theorem 14. Let Σ = {0, 1}, s ∈ Σ+ be a seed string, and
denote

Send = Send
δ0,δ1

= (Σ, s, Tend
δ0,δ1

),

Sint = Sint
δ0,δ1

= (Σ, s, Tint
δ0,δ1

).

Then
h(Sint

δ0,δ1
) = h(Send

δ0,δ1
).
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Proof: We first require some general arguments, in
preparation for the proof for the entropy rate. Consider an
interspersed-duplication process, starting with the seed s, and
running for n mutation steps. Denote the bit generated in
the ith mutation step, 1 ⩽ i ⩽ n, by b|s|+i. We also use
b1b2 · · · b|s| = s to denote the bits of the seed string.

The bits, however, do not appear in the order of generation
(as they do in end duplication), since they are inserted in
random places. Thus, if after n mutations we reach a string
w ∈ Σ|s|+n, then

w = b(π) ≜ bπ(1)bπ(2) · · · bπ(|s|+n),

for some permutation π ∈ S|s|+n that satisfies

π−1(1) < π−1(2) < · · · < π−1(|s|), (12)

since the order of the bits of the seed string is maintained. For
example, we may have

s = S(0) = b1b2b3b4 = 0011,
S(1) = b1b2b3b5b4 = 00101,
S(2) = b1b6b2b3b5b4 = 010101,

and π = [1, 6, 2, 3, 5, 4].
Let us denote the set of permutations satisfying (12) by Pn,

and hence, |Pn| = (n + |s|)!/|s|!. Since the insertion position
at each mutation step is chosen independently and uniformly,
the probability of each permutation is exactly,

1
|s|+ 1

· 1
|s|+ 2

· · · · · 1
|s|+ n

=
|s|!

(n + |s|)! ,

i.e., the overall permutation is chosen uniformly from Pn.
Let us now denote,

t0 ≜ |s|0 , t1 ≜ |s| − t0,

k0 ≜
⃓⃓⃓
b|s|+1 · · · b|s|+n

⃓⃓⃓
0

, k1 ≜ n − k0,

namely, t0 and t1 denote the number of zeros and ones
(respectively) in the seed string, and k0 and k1 denote the
number of zeros and ones (respectively) in the bits generated
due to mutations.

We say π1, π2 ∈ Pn are equivalent, denoted π1 ∼ π2, if
b(π1) = b(π2). This is clearly an equivalence relation. For
π ∈ Pn, let Eπ denote the equivalence class of π. Computing
|Eπ | is hard, but it suffices for us to bound it by

k0!k1! ⩽ |Eπ | ⩽ (t0 + k0)!(t1 + k1)!.

For the lower bound, we permute only the newly generated
zeros between themselves, and similarly the ones, while keep-
ing the bits of the seed in their place. For the upper bound,
we permute all zeroes between themselves, and similarly the
ones, thus, perhaps reaching some permutations that are not
in Pn.

Lastly, denote by Ak0 the event that that among the n bits
generated due to mutations, exactly k0 are zeros, and the rest,
k1 = n − k0 are ones. Also, let Bint(n, k0) denote the set of
strings w ∈ Σ|s|+n, |w|0 = k0 + t0, that may be obtained from

s using n interspersed-duplication mutations. It then follows
that if w ∈ Bint(n), then

(t0 + t1)!k0!k1!
(t0 + t1 + k0 + k1)!

Pr(Ak0) ⩽ Pr(Sint(n) = w)

⩽
(t0 + t1)!(t0 + k0)!(t1 + k1)!

(t0 + t1 + k0 + k1)!
Pr(Ak0).

This means that

Pr(Sint(n) = w) = Pr(Ak0) · 2−n(H2(k0/n)+o(1)),

as well as ⃓⃓⃓
Bint(n, k0)

⃓⃓⃓
= 2n(H2(k0/n)+o(1)).

We are now ready to prove our claims. First, we look at the
noiseless case, δ0 = δ1 = 0. The probability, Pr(Ak0), has
already been given in (2). We therefore get,

h(Sint) = lim sup
n→∞

1
n

H(Sint(n))

= lim sup
n→∞

1
n

n

∑
k0=0

Pr(Ak0) log2

⃓⃓⃓
Bint(n, k0)

⃓⃓⃓
=
∫︂ 1

0
β(p; t0, t1)H2(p)dp

= h(Send),

exactly as in the proof of Theorem 3.
The second (and last) case is δ0 + δ1 > 0. Denote α ≜

δ1/(δ0 + δ1). By Lemma 7, for any ϵ1, ϵ2 > 0, there exists
N ∈ N such that for all n ⩾ N, Pr(

⃓⃓
fr0(Sint(n))− α

⃓⃓
⩽

ϵ1) ⩾ 1 − ϵ2. Then,

h(Sint)

= lim sup
n→∞

1
n

H(Sint(n))

= lim sup
n→∞

1
n

(︄
∑⃓⃓⃓

k0+t0
n+|s| −α

⃓⃓⃓
⩽ϵ1

Pr(Ak0) log2

⃓⃓⃓
Bint(n, k0)

⃓⃓⃓

+ ∑⃓⃓⃓
k0+t0
n+|s| −α

⃓⃓⃓
>ϵ1

Pr(Ak0) log2

⃓⃓⃓
Bint(n, k0)

⃓⃓⃓)︄

⩽ max
x∈[α−ϵ1,α+ϵ1]

H2(x) + ϵ2. (13)

On the other hand,

h(Sint)

= lim sup
n→∞

1
n

H(Sint(n))

= lim sup
n→∞

1
n

(︄
∑⃓⃓⃓

k0+t0
n+|s| −α

⃓⃓⃓
⩽ϵ1

Pr(Ak0) log2

⃓⃓⃓
Bint(n, k0)

⃓⃓⃓

+ ∑⃓⃓⃓
k0+t0
n+|s| −α

⃓⃓⃓
>ϵ1

Pr(Ak0) log2

⃓⃓⃓
Bint(n, k0)

⃓⃓⃓)︄

⩾ (1 − ϵ2) min
x∈[α−ϵ1,α+ϵ1]

H2(x). (14)
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Taking the limit of (13) and (14) as ϵ1, ϵ2 → 0+, we obtain

h(Sint) = H2(α) = h(Send),

as claimed.

VI. CONCLUSION

In this paper we defined and studied three Pólya string mod-
els. We determined the exact entropy rate of end duplication,
Send

δ0,δ1
, and interspersed duplication, Sint

δ0,δ1
, both for any noise

parameters δ0 and δ1. We also found the exact entropy rate of
noiseless tandem duplication, Stan

0,0 , as well as we connected the
entropy rate of complement tandem duplication, Stan

1,1 , with the
signatures of random permutations. Finally, we upper bounded
the entropy rate of general noisy tandem duplication, Stan

δ0,δ1
.

We make several interesting observations. First, had we
used a Pólya urn model instead of a string model, then no
difference would have been observed between tandem and
end duplication. Indeed, the distribution of 0’s and 1’s in both
cases is the same. However, when considering the structure of
a string, the difference between the two comes to light.

Many other differences are apparent between the combina-
torial capacity (found in [13]) and the entropy rate studied
here, and we point a few:

• While the combinatorial capacity of (noiseless) end du-
plication is known to be 1, in the probabilistic model, the
entropy rate varies depending on the starting string.

• Similarly, for the complement tandem-duplication model,
it is easy to show that the combinatorial capacity is 1,
while the entropy rate is bounded away from both 0 and
1.

• The entropy rate of Send
δ0,δ1

is equal to that of Sint
δ0,δ1

, which
is not generally the case when using the combinatorial
capacity.

Many open questions remain. Obvious ones include the
determination of h(Stan

δ0,δ1
) for all values of δ0 and δ1. We

also note that the systems studied in the current paper are
limited to duplications of length 1, while genomic duplication
mutations are observed for a large range of duplication lengths.
Thus, extending the results to longer duplication lengths is an
important open task. Other noise models are also of interest.
For example, one might be interested in models in which
mutation steps either duplicate or substitute a letter (e.g.,
see [14], [27]). Finally, more elaborate distributions may be
studied, including context-sensitive duplication rules.
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