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Abstract—Mutations play a significant role in evolution since
they lead to genomic diversity. Among different types of muta-
tions, duplication is thought to be one of the most important.
Motivated by the theory of evolution by duplication, we con-
sider a stochastic model for the evolution of sequences under
noisy tandem duplication, where segments of the sequences are
replicated and approximate copies are added to the sequence.
Our goal is to study the statistical properties of the sequence
after a given number of mutations. To do so, we study the k-mer
frequencies of the evolving sequence. We first bound the expected
frequencies of different k-mers after n mutations and relate the
convergence rate of the expected trajectories to the parameters of
the model (probabilities of different mutations). Then we extend
our analysis to second moments of the k-mer trajectories, which
allow us to better characterize their evolution. Finally, we will
demonstrate the application of the proposed methods to bounding
waiting times, the first such results for complex mutation systems.

I. INTRODUCTION

The vast amount of biological diversity is, for the most part,
the result of genomic mutations. One of the most influential
theories about the generation of new genetic material, which
is also well-supported by data [1], is Ohno’s evolution by
duplication [2]. Ohno hypothesizes that the origins of new
genes are copies of existing sequences, which have diverged
from the original to acquire new functions. Since the copies
are not essential for the organism’s survival, they are under
less evolutionary pressure to be conserved and are more free
to mutate. Ohno’s theory is supported by the abundance of
repetitive elements; for example the majority of the human
genome consists of repeated sequences [3].

In order to gain a better understanding of the generation
processes of new genetic sequences, which is dominated by
duplications, we consider a simple stochastic model for the
generation of new sequences through noisy tandem duplica-
tions. In our model, in each step, a substring is randomly
chosen and its copy is inserted in tandem. The copy however
is not always exact and may differ from the original. We study
how the frequencies of different k-mers (strings of length k)
change as more mutations occur. k-mer frequencies are of
interest since they allow us to determine the substrings that are
likely to be generated under different model parameters. Thus
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their analysis can provide a way to test hypothesis regarding
models of evolution. Furthermore, they can provide bounds on
the entropy, and thus the compressibility, of sequences [4].

Stochastic tandem duplication models have been studied, for
example, to analyze microsatellites [5], to estimate mutation
probabilities [6], and to estimate entropies [4], [7]. While
the analyses in these works are concerned with limit sets, in
this paper, we are interested in finite-time behavior. We first
present a linear recurrence for the expected k-mer trajectories.
While the recurrence cannot be solved explicitly, we establish
bounds on the expected trajectories and provide the rate of
convergence. We then extend our analysis to the second-
moment of the k-mer trajectories, characterizing the variation
around expected paths.

We then turn our attention to estimating waiting times. The
waiting time for a given string u in an evolutionary system
is the first time index in which u appears as a substring of
the evolving sequence. Waiting time problems are of interest
since appearances of new patterns in DNA sequences lead to
new biological functions and changes in physical attributes [1].
Furthermore, accumulated alterations in certain types of genes,
including oncogenes, tumor suppressor genes and genetic
instability genes, are known to be responsible for tumorige-
nesis [8]. Thus, understanding the time scales in which such
events take place is of importance in explaining evolutionary
trends and the study of diseases such as cancer [9].

A variety of waiting time problems have been studied in
the literature, e.g., in [9], [10]. In these works, however, the
sequence evolution model consists of independent mutations
at the nucleotide or gene level. For example [9] considers a
segment of L nucleotides and allows each to mutate indepen-
dently and uniformly. The type of sequence evolution model
assumed in these works simplifies the analysis but ignores
the possibility of complex mutations, such as duplications,
that lead to dependence among sequence positions. Here, we
provide upper and lower bounds on waiting time CDFs, which,
to the best of our knowledge, are the first such results for any
type of mutation other that iid substitutions.

After presenting the preliminaries in Section II, we study
the expected behavior of k-mer frequencies in Section III and
present upper bounds on the CDF of waiting times in Sec-
tion IV. The simplicity of the first-order analysis also allows
us to analytically study the effect of mutation probabilities



on waiting times. We study the second-moment behavior in
Section V, provide lower bounds on the CDF of waiting times
in Section VI, and conclude the paper in Section VII.

II. PRELIMINARIES AND NOTATION

For a positive integer n, we use [n] to denote the set
{1, . . . , n}. We denote the alphabet and all finite strings over
the alphabet by Σ and Σ∗, respectively, while Σk denotes
the set of all strings of length k, i.e., k-mers, over Σ. For
w,w′ ∈ Σ∗, the concatenation of w and w′ is denoted ww′.
The set of strings at Hamming distance d from w is denoted
Bd(w). Moreover, we use |w| to denote the length of w.
Vectors and strings are denoted by boldface letters such as
w, while scalars and symbols by normal letters, such as w.

We now describe a stochastic string system representing
the evolution of a string under random mutations. Consider an
initial string s0 and a process where in each step n a random
transform, or “mutation”, Mn, is applied to sn, resulting in
sn+1. Let M be the set of all possible mutations. To each
m ∈ M we assign a certain probability. We are, in particular,
interested in noisy duplication mutations. For integers d ≥ 0
and ℓ ≥ 1, the noisy duplication T d

ℓ : Σ∗ → Σ∗ is defined as

∀w ∈ Σ∗, T d
ℓ (w) = uaa′v,

where a is a substring of w of length ℓ chosen uniformly
at random, u and v are strings such that w = uav, and
a′ ∈ Bd(a), chosen uniformly at random.

In a noisy duplication system, the set of permitted mutations
is M = {T d

ℓ : ℓ′ ≤ ℓ ≤ ℓ′′, 0 ≤ d ≤ ℓ}, where ℓ′, ℓ′′ ∈ Z>0.
The mutation in step n is chosen to be T d

ℓ with probability
qdℓ , independently of other steps. That is, for each n, P(Mn =
T d
ℓ ) = qdℓ . Recall that conditioned on Mn = T d

ℓ , a substring a
of length ℓ is randomly chosen and an approximate copy a′ ∈
Bd(a) of a is inserted into the string. The distribution over
mutations, conditioned on a mutation occurring, is denoted by
q =

(
qdℓ
)
ℓ,d

.
We denote the length of sn by Ln and let ℓn = Ln−Ln−1.

Generally, since a noisy duplication T d
ℓ adds length ℓ to the

evolving string, {ℓn} is a sequence of iid random variables
whose distribution is determined by q. In this paper, however,
we only study systems with a fixed duplication length ℓ, i.e.,
systems which permit mutations M = {T d

ℓ : 0 ≤ d ≤ ℓ},
for some ℓ ∈ Z>0, and leave more complex systems to future
work.

For a string u ∈ Σ∗, denote the number of appearances
of u in sn as µu

n , and its frequency as xu
n = µu

n/Ln, where
sn is interpreted as a circular string to avoid complications
arising from boundaries. For example, if sn = ACGAC, then
µAC
n = 2, xAC

n = 2
5 . For any ordered set U ⊆ Σ∗, we define

µn = (µu
n)u∈U , and xn = (xu

n)u∈U . Thus µn is a vector
representing the number of appearances of u ∈ U in the string
s at time n and xn is the normalized version of µn.

Let τu(m) be the smallest n such that the sequence sn con-
tains m occurrences of u and, as shorthand, let τu = τu(1).

III. EXPECTED BEHAVIOR IN NOISY DUPLICATION
STRING SYSTEMS

In this section, we study the expected trajectory of xn =
(xu

n)u∈Σk . Our first step is expressing E[xn] as a recurrence.

Theorem 1. In a noisy duplication string system with distri-
bution q and with xn = (xu

n)u∈Σk , we have

E[xn+1]− E[xn] = AE[
xn

Ln+1
] (1)

for some square matrix A whose elements are determined by
q and k, and whose eigenvalues have non-positive real parts.

The matrix A is called the characteristic matrix of the
system for k-mers. In [4], [6] this theorem is proved for similar
systems and thus its proof is omitted here. There, the theorem
is used as part of a stochastic approximation framework to find
almost-sure limit sets/points for xn as n → ∞. The matrix A
can be computed through a method similar to [4].

In the next theorem, we consider the case in which A is
diagonalizable. Let m = |Σ|k so that A ∈ Rm×m. We pick
a set V consisting of m linearly independent eigenvectors of
A as a basis for Rm. Having chosen V as a basis, we study
the expected trajectory of xn by representing xn in this basis
and then by bounding the coefficients of this representation.
Our analysis in this paper is limited to cases in which A has
only real eigenvalues. In all examples that we have studied,
the eigenvalues of A are indeed real. We conjecture that this
holds for all noisy duplication systems.

Let V = {vs : 1 ≤ s ≤ m} and let λs be the corresponding
eigenvalue of vs, 1 ≤ s ≤ m. For each n ≥ 0, we write

xn =
m∑
s=1

αs
nvs for some αs

n ∈ R. We provide upper and

lower bounds on each αs
n.

Theorem 2. Consider a noisy tandem duplication system with
mutations M = {T d

ℓ : 0 ≤ d ≤ ℓ}, where ℓ ∈ Z>0,
and characteristic matrix A. If A is diagonalizable with real
eigenvalues, such that λs ≥ −L0

2 for all 1 ≤ s ≤ m, then:
1) For 1 ≤ s ≤ m such that λs = 0 or αs

0 = 0,

E[αs
n] = αs

0 ∀n ∈ N.

2) For 1 ≤ s ≤ m such that λs ̸= 0 and αs
0 ̸= 0,

T s
n <

E[αs
n]

αs
0

< Us
n, (2)

where

Us
n = (

λs + Ln

λs + L1
)

λs
ℓ eλ

2
s/(L1ℓ)(1 +

λs

Ln
),

T s
n = (

λs + Ln

λs + L1
)

λs
ℓ eλ

2
s/(Lnℓ)(1 +

λs

L1
),

and Ln = L0 + nℓ.

Proof: From (1), we have
m∑
s=1

E[αs
n]vs =

m∑
s=1

E[αs
n−1]vs +

m∑
s=1

E[αs
n−1]

A

Ln
vs.



For a given s, we thus find

E[αs
n] =

(
1 +

λs

Ln

)
E
[
αs
n−1

]
= αs

0e
∑n

i=1 f(i),

where
f(i) = log

(
1 +

λs

L0 + iℓ

)
.

It is clear that if λs = 0 or αs
0 = 0, then E[αs

n] = αs
0. It

remains to prove the bounds on E[αs
n] when αs

0 ̸= 0 and
λs < 0. We note that f ′(i) = ℓ( 1

L0+iℓ+λs
− 1

L0+iℓ ), which is
positive and continuous for i ∈ [1,∞) since λs < 0. It can be
shown by applying Euler’s summation formula [11] that

n∑
i=1

f(i) <

ˆ n

1

f(x)dx+ f(n).

For the integral, we haveˆ n

1

f(x)dx =
1

ℓ

[
λs log

(
λs + Ln

λs + L1

)
+Ln log

(
1+

λs

Ln

)
− L1 log

(
1+

λs

L1

)]
.

Since x− x2 ≤ log(1+ x) ≤ x for −1/2 ≤ x ≤ 0, we obtain

log

(
1 +

λs

Ln

)
≤ λs

Ln
,− log

(
1 +

λs

L1

)
≤

(
λs

L1

)2

− λs

L1
,

and thereforeˆ n

1

f(x)dx ≤ λs

ℓ

[
log

(
λs + Ln

λs + L1

)
+

λs

L1

]
.

The desired result follows from f(n) = log(1 + λs/Ln). The
proof for the lower bound is similar.

Recall that λs ≤ 0. From the theorem, the behaviors of both
Us
n and T s

n are dominated by (Ln+λs

L1+λs
)

λs
ℓ , which is Θ(n

λs
ℓ )

as n → ∞. This implies that when E[xn] is represented in an
eigenbasis, for an eigenvector whose corresponding eigenvalue
λ is not 0, its component in E[xn] converge to 0 at the rate of
nλ/ℓ, while for eigenvectors whose corresponding eigenvalues
are 0, their components remains unchanged and determine
the expected value of the limit of xn. Among all nonzero
eigenvalues, the largest one determines the convergence rate.

Similar, but more involved, results can be found when A
is not diagonalizable. However, in all systems that we have
investigated, the characteristic matrices are diagonalizable. We
conjecture that this is always the case, i.e., the characteristic
matrix of a noisy duplication systems is always diagonaliz-
able. In the rest of the paper, we are only concerned with
diagonalizable characteristic matrices.

Example 1. We demonstrate the bounds given in the theorem
for a simple noisy duplication system over the alphabet {0, 1}
with following parameters

M = {T 0
1 , T 1

1 }, q = (q01 , q
1
1) = (1− δ, δ). (3)

Specifically, in each step, a random symbol a is chosen
uniformly from the evolving string, and a symbol b is inserted
immediately after a, where q01 = P(b=a) = 1 − δ and
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Figure 1: Coefficient of v2 in E[xn] vs the number of mutations in a
noisy duplication string system with Σ = {0, 1}, s0 = 1101100111,
q11 = 0.9, q01 = 0.1.

q11 = P(b̸=a) = δ. The vector xn = (x00
n , x01

n , x10
n , x11

n )T

denotes the frequencies of 2-mers. The characteristic matrix
of this system for 2-mers can be shown to be

A =

⎡⎢⎢⎣
−2δ 1− δ δ 0
δ −1 0 δ
δ 0 −1 δ
0 δ 1− δ −2δ

⎤⎥⎥⎦. (4)

For δ < 1/2, A is diagonalizable with four distinct eigen-
values: λ1 = 0, λ2 = −2δ, λ3 = −1, λ4 = −2δ − 1. So
we pick a basis of R4 which is composed of 4 eigenvectors
vi, 1 ≤ i ≤ 4, corresponding to λi, 1 ≤ i ≤ 4, respectively:

[
v1 v2 v3 v4

]
=

⎡⎢⎢⎣
1/(2 + 4δ) −1 −1 1
δ/(1 + 2δ) 0 1 −1
δ/(1 + 2δ) 0 −1 −1
1/(2 + 4δ) 1 1 1

⎤⎥⎥⎦. (5)

Since λ1 = 0, the limit of E[xn] is v1 (it can be shown
that xn converges to v1 almost surely) and the other com-
ponents vanish at the corresponding rates. Figure 1 shows
this for the coefficient α2

n when q11 = 0.1, q01 = 0.9, and
s0 = 1101100111. The figure illustrates the upper bound,
lower bound, and the expected value as n ranges from 0 to
50. The average value for α2

n from 5000 independent trials of
the process is also given.

IV. BOUNDING WAITING TIMES BY MEAN TRAJECTORIES

In this section, we derive bounds on the waiting times for
the appearances of k-mers based on the behavior of average
trajectories characterized by Theorem 2. This will enable us to
quantify the effect of mutation probabilities on waiting times.

Let n̂u be such that E[µu
n ] ≃ 1 for n = n̂u. If E[µu

n ] is
increasing, for n ≪ n̂u, the probability of the existence of u
in sn is small and thus we can view n̂u as a rough estimate for
τu. More precisely, as shown below, under certain conditions,
the probability that τu ≤ n̂/M scales as 1/M .

A comparison of the expected waiting times and n̂ for an
example system is given in Figure 2, where expected waiting



times are obtained by averaging over simulation trials and n̂11

and n̂12 are calculated using (1). It can be seen that n̂12 has a
much smaller relative error. This is due to the higher variance
of µ11

n , which is discussed further in Section VI.

Theorem 3. For u ∈ Σk, if E[xu
n ] is non-decreasing in n,

P(τu ≤ n) ≤ (1 + max(k − ℓ, 0))E[µu
n ].

The theorem provides an upper bound on the CDF of τu. It
can also be extended to provide upper bounds for the CDF of
τu(m). We omit the proof of the theorem. We demonstrate an
analytical application of the theorem via an example in this
section and a computational application in Section VI.

Consider a system with parameters given in (3) but over the
alphabet Σ = {0, 1, 2}. Let s0 be a string consisting of 0’s.
In this case, we can actually have a slightly stronger result,
namely, P(τu ≤ n) ≤ (1 + δ)E[µu

n ], with a similar proof.
We can study analytically how the waiting time for 12 varies
as δ → 0. Let xn be the vector of 2-mer frequencies. After
finding the characteristic matrix A, from Theorem 2,

E[x12
n ] =

1

2
δ2(Cn − 1 + log

Ln

L1
+

1

Ln
) +O(δ3). (6)

where
(L1 − 1)2

(Ln − 1)L1
e

1
Ln < Cn <

L1 − 1

Ln
e

1
L1 .

For n̂ = n̂12 = 2/δ2

log(2/δ2) , we have E[µu
n̂ ] = 1 + o(1) and,

furthermore, for a constant M > 1, P(τ12 ≤ n̂
M ) ≤ 1+o(1)

M .
Hence, 2/δ2

M log(2/δ2) is a lower bound for τ12 that holds with
probability at least 1/M .

V. SECOND-ORDER ANALYSIS

In this section, we present two theorems for computing the
variance of k-mer frequencies xu

n for all u ∈ Σk.

Theorem 4. Consider a noisy duplication system as in Theo-
rem 2. For a k-mer v, denote its index in xn by iv . For any
two k-mers v,w ∈ Σk (not necessarily distinct), we have

E[xv
n+1x

w
n+1]−

(
Ln

Ln+1

)2

E[xv
nx

w
n ] =

dT
v,w

(Ln+1)2
E[yn]+(

Ln

Ln+1

)2(
1

Ln
E[xw

n BT
ivxn] +

1

Ln
E[xv

nB
T
iwxn]

)
(7)

where B = A+ ℓI , Biv and Biw are the iv-th and the iw-th
row of B, respectively, yn is the vector of the frequencies of
the (2k− 2)-mers, and dv,w is a constant vector independent
of n.

Note that both BT
iv
xn and BT

iw
xn in (7) are linear functions

of k-mer frequencies. Based on this fact, we have the following
theorem.

Theorem 5. In any given noisy duplication system with k-mer
frequencies xn, let rn = (E[xv

nx
w
n ])v,w∈Σk . We have(

rn+1

E[yn+1]

)
=

⎡⎣( Ln

Ln+1

)2(
I + G

Ln

)
D

(Ln+1)2

0 I +
Ay

Ln+1

⎤⎦( rn
E[yn]

)
,

(8)
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Figure 2: Expected waiting times for 11 and 12 and n̂11, n̂12 vs δ

for Σ = {0, 1, 2}, s0 = 0000000000, q01 = 1− δ, q11 = δ.

where G,L are both constant matrices uniquely determined by
the system, and Ay is the characteristic matrix of this system
for (2k − 2)-mers.

We omit the proof of Theorems 4 and 5 and the explicit
forms of matrices G,D,dv,w due to space limitation. Note
that using (8), rn can be computationally determined. Indeed,
rn can also be written as a product of matrices and the same
approach as in Theorem 2 can be taken to derive analytical
bounds on rn. However, we leave this to future work and
provide examples demonstrating the computational application
of the theorem in the next section.

Figure 3a compares the variance of x12
n computed using (8)

with the sample variance of 10000 independent trials in the
system with parameters given by (3) with Σ = {0, 1, 2}, s0 =
0000000000, and δ = 0.2. Note that since x12

n is bounded, the
variance cannot increase unbounded. Indeed, if xu

n converges
to a single point, the variance vanishes.

VI. BOUNDING WAITING TIMES BY SECOND MOMENTS

In this section, we derive bounds on the waiting time using
the first- and second-order analyses of Sections III and V. We
first use Chebyshev’s inequality to find the range where most
of the trajectories lie and then infer bounds on the waiting
time.

Let u ∈ Σk be a k-mer and σu
n be the standard deviation

of µu
n . By Chebyshev’s inequality,

P(E[µu
n ]− γσu

n ≤ µu
n ≤ E[µu

n ] + γσu
n ) > 1− 1

γ2
, (9)

for any γ > 0. Therefore, by computing the expected value
and variance of µu

n using Theorems 1, 4 and 5, we can bound
µu
n in a range that contains most of the probability mass.
Note that for any positive integer n, µu

n ≥ m is a sufficient
(but not necessary) condition for τu(m) ≤ n. Hence, from (9),

P(τu(m) ≤ n) ≥ P(µu
n ≥ m) > 1− 1

γ2
, (10)
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(a) Variance of x12
n vs the number of mutations.
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(c) Bounds on P(τ12(m) ≤ n) for m = 1, 100.
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Figure 3: Second-order analysis for a noisy duplication string system with Σ = {0, 1, 2}, s0 = 0000000000, q11 = 0.8, q01 = 0.2.

where γ = (E[µu
n ] −m)/σu

n . This tells us that we are likely
to see m occurrences of u in the sequence not long after the
expected number of occurrences of u hits m, thus providing
a lower bound on the CDF P(τu(m) ≤ n) and a probabilistic
upper bound on τu(m).

Example 2. Consider the noisy duplication system with
parameters given by (3) and Σ = {0, 1, 2}. Let s0 =
0000000000, γ = 3, δ = 0.2. Figure 3b provides an interval
for µ11

n and µ12
n that has probability at least 8/9. We can

observe that the variance of µ11
n is much larger than that of

µ12
n . This is in agreement with Figure 2, where it is observed

that n̂u, obtained based on average trajectories, better matches
the waiting time for u = 12 compared to u = 11. The
higher variance of µ11

n is likely due to its high autocorrelation,
which means that as soon as an instance of 1 is created,
many instances of 11 can be produced by duplicating it. When
variance is high, (9) will lead to loose or trivial bounds.

Figure 3c illustrates lower and upper bounds on the CDF of
τ12(m) for m = 1, 100, where the upper bounds are based on
Section IV. The sharpness of the curves in the figure implies
that in fact, most of the probability of τ12(m) is concentrated
in a small interval. In particular, the bounds provide the order
of magnitude of the waiting times.

VII. CONCLUSION

We studied the finite-time behavior of noisy duplication
string systems by representing the average trajectories of the
frequencies of k-mers in an eigenbasis of the characteristic
matrix of the system. We showed the coordinate corresponding
to eigenvalue λ ̸= 0 converges to 0 with rate approximately
nλ/ℓ. We also provided a method for computing the second
moment of k-mer frequencies, as well as bounds on the CDFs
of waiting times, which are the first such bounds for any type
of mutation other than independent substitution.
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