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Abstract—Genomic evolution can be viewed as string-editing
processes driven by mutations. An understanding of the statistical
properties resulting from these mutation processes is of value
in a variety of tasks related to biological sequence data, e.g.,
estimation of model parameters and compression. At the same
time, due to the complexity of these processes, designing tractable
stochastic models and analyzing them are challenging. In this
paper, we study two kinds of systems, each representing a
set of mutations. In the first system, tandem duplications and
substitution mutations are allowed and in the other, interspersed
duplications. We provide stochastic models and, via stochastic
approximation, study the evolution of substring frequencies for
these two systems separately. Specifically, we show that k-mer
frequencies converge almost surely and determine the limit set.
Furthermore, we present a method for finding upper bounds on
entropy for such systems.

Index Terms—String-duplication systems, substitution muta-
tion, entropy

I. INTRODUCTION

DUE to advances in DNA sequencing, vast amounts of
biological sequence data are available nowadays. Devel-

oping efficient methods for the analysis and storage of this
type of data will benefit from gaining a better mathematical
understanding of the structure of these sequences. Biological
sequences are formed by genomic mutations, which alter the
sequence in each generation to create a new sequence in the
next generation. These processes can be viewed as stochastic
string editing operations that shape the statistical properties of
sequence data.

In this paper, our goal is to gain a better understanding
of the evolution of sequences under random mutations. We
represent the evolutionary process as a stochastic system
in which an arbitrary initial string evolves through random
mutation events. In such systems, we will study the evolution
of the frequencies of words of length k, i.e., k-mers, as
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the sequence evolves. The analysis of k-mers has various
applications, including identifying functions and evolutionary
features [48]. Alignment-free sequence comparison also relies
on k-mer frequencies [54]. Their analysis is also of interest
because other statistical properties can be computed from k-
mer frequencies.

From an information-theoretic point of view, stochastic
sequence generation process through mutation can be viewed
as a source of information. We study the entropy of such
sources, which can be viewed as representing the complexity
of sequences generated by the source. Sequence complexity
measures, including entropy, have been used to determine the
origin and/or the role of DNA sequences [16], [43], [53], for
example to classify protein-coding and non-coding regions of
a genome. The entropy of a source also determines how well
the sequences it produces can be compressed, an increasingly
important problem given the growth of biological data.

Several types of mutations exist, including substitution, du-
plication, insertion, and deletion. Substitution refers to chang-
ing a symbol in the sequence, e.g., ACGTCT → ACGCCT.
Duplication mutations, where a segment of DNA (called the
template) is copied and inserted elsewhere in the genome,
may be of the tandem or interspersed type. In tandem du-
plication, the copy is inserted immediately after the template.
For example, from ACGTCT, we may obtain ACGTGTCT,
where the template is overlined and the copy is underlined.
For interspersed duplication, there is generally no relationship
between where the template is located and where the copy
is inserted. As an example, two possibilities for AGTTC
after a single interspersed duplication are AGTTAGTC and
AGAGTTTC. Our focus will be on duplication mutations,
which are thought to play a critical role in generating new
genetic material [42].

Tandem duplication is generally thought to be caused by
slipped-strand mispairings [41], where during DNA synthe-
sis, one strand in a DNA duplex becomes misaligned with
the other. Tandem duplications and substitutions, along with
other mutations, lead to tandem repeats, i.e., stretches of
DNA in which the same pattern is repeated many times.
Tandem repeats are known to cause important phenomena
such as chromosome fragility [50]. Interspersed duplications
are caused by transposons, or “jumping genes”, which are
elements in the genome that can “copy/paste” themselves into
different locations. Interspersed duplication is of interest as it
leads to interspersed repeats, which form 45% of the human
genome [29].

We will analyze two systems involving the types of duplica-
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tions discussed. The first system models a sequence evolving
through tandem duplications and substitutions (TDS) and
the second system represents interspersed duplications (ID).
Along with duplications, other types of mutations occur. But
for simplicity, our attention is limited to the aforementioned
systems, and we leave more comprehensive analysis to future
work. Furthermore, the significantly more complex effect of
natural selection is not considered.

In TDS systems, in each step, i) a randomly chosen sub-
string of the sequence is duplicated and inserted in tandem,
or ii) a position is chosen at random and the symbol in
that position is changed to one of the other symbols. In
ID systems, a string evolves through random interspersed-
duplication events, i.e., in each step, a random segment of the
string is duplicated and then inserted in a random position in
the string, independent of the position of the original segment.

Our analysis starts by considering how k-mer frequencies
evolve as mutations occur. To analyze their evolution, we use
the stochastic-approximation method, which enables modeling
of a discrete dynamic system by a corresponding continuous
system described by an ordinary differential equation (ODE).
For the TDS model, our approach allows us to compute
the limit for the frequency of any k-mer as a function of
model parameters. We will then use these results to provide
bounds on the entropy of sequences generated by tandem
duplications and substitutions. For the ID model, we show
that the frequencies of strings of length larger than one are, in
the limit, consistent with those of iid sequences; implying that
in a certain sense, a sequence evolving through interspersed
duplication is unrecognizable from an iid sequence. Note that
an iid sequence has the maximum entropy among sequences
with a given symbol distribution. The structure of the limit
set for k-mer frequencies in ID systems, however, leads to
trivial upper bounds on the entropy. However, in certain
cases these bounds are satisfied with equality. Parts of the
paper have been presented at the International Symposium on
Information Theory [17], [36]. Relative to those, the current
paper presents omitted proofs along with additional examples
and illustrations.

In previous work, the related problem of finding the com-
binatorial capacity of duplication systems has been studied.
The combinatorial capacity is related to entropy but is defined
based on the size of the set of sequences that can be generated
by the system, without considering their probabilities. The
combinatorial capacity is studied by [19], [25], for duplication
systems (without allowing other types of mutations) and
by [24] for systems with both tandem duplication and substi-
tution. Compared to combinatorial capacity, entropy, which is
studied in this paper, provides a more accurate measure of the
complexity and compressibility of sequences generated by the
system. For duplication systems and duplication/substitution
systems, entropy has been studied by [12]. While this work
considers a wider range of systems, it only allows duplications
involving single symbols. Furthermore, it does not study k-
mer frequencies. The stochastic-approximation framework has
been used for estimation of model parameters in tandem
duplication systems [18]. Estimating the entropy of DNA
sequences has been studied in [16], [35], [47]. However these

works focus on estimating the entropy from a given sequence,
rather than computing the entropy of a stochastic sequence
generation system that models evolution. Duplication systems
have also been studied in the context of designing error-
correcting codes [6], [11], [26], [31].

From a broader perspective, information theory has natural
applications in biology since the processing and transmis-
sion of information are ubiquitous in living organisms, from
genetic to ecological inheritance mechanisms [52]. Research
towards the intersection of information theory and biology can
be traced back to the paper "The information content and
error rate of living things" [9] in 1949 (just one year after
Shannon’s seminal paper on information theory). Since then,
efforts have been made to address many problems in biology
with information-theoretic methods, and have been successful
in areas such as predicting the correlation between DNA
mutations and disease, identifying protein binding sequences
in nucleic acids, and analyzing neural spike trains and higher
functionalities of cognitive systems [39]. Recently, due to the
symbolism of biological sequences, information theory has
found various applications in molecular biology, regarding
which [1], [2], [21] serve as excellent surveys. For exam-
ple, [33] introduced a universal sequence distance based on
the information theoretical concept of Kolmogorov complexity
and applied it in constructing genome phylogeny; [21] studied
the possibility of using mutual information for gene mapping
and marker clustering; and [40] studied the the minimum
number of reads required for an assembly DNA sequencing
algorithm to reconstruct the original sequence. Moreover, two
essential areas of information theory, data compression and
channel coding, both have direct and practical applications
in biology. Compressing biological data has become an in-
evitable need as the amount of biological sequencing data
grows explosively. Many compression algorithms have been
designed targeting DNA/RNA sequences [4], [5], [7], [8],
[28], [44]. This paper is related to this line of research since
determining the entropy of sequences provides bounds on
the performance of compression methods. On the other hand,
DNA storage is also attracting increased attention due to the
longevity and enormous information density of DNA. With
challenges arising from the existence of diverse error types in
DNA synthesis, replication, and sequencing, many techniques
in information theory, especially coding schemes, have been
studied and used to enhance the reliability of DNA storage
system [22], [27], [30], [32], [45], [49].

The rest of the paper is organized as follows. Notation and
preliminaries are given in the next section. In Section III,
we present the framework for the application of stochastic
approximation to our string-duplication systems. Section IV
contains the analysis of the evolution of k-mer frequencies in
tandem duplication systems and the proof of entropy bounds.
Section V is devoted to the analysis of k-mer frequencies in
strings undergoing random interspersed duplications. We close
the paper with concluding remarks in Section VI.

II. NOTATION AND PRELIMINARIES

For a positive integer m, let [m] = {1, . . . ,m}. For a finite
alphabet A, the set of all finite strings over A is denoted A∗,
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and the set of all finite non-empty strings is denoted A+. Also,
let Ak denote the set of k-mers, i.e., length-k strings, over
A. The elements in strings are indexed starting from 1, e.g.,
s = s1 · · · sm, where |s| = m is the length of s. For a string
u ∈ A∗, ui,j denotes the length-j substring of u starting at
ui. Furthermore, the concatenation of two strings u and v is
denoted by uv. For a non-negative integer j, and u ∈ A∗,
uj is a concatenation of j copies of u. Vectors and strings
are denoted by boldface letters such as x, while scalars and
symbols by normal letters such as x.

Consider an initial string s0 and a process where in each
step a random transform, or “mutation”, is applied to sn,
resulting in sn+1. To avoid the complications arising from
boundaries, we assume the strings sn are circular, with a
given origin and direction. Let the length of sn be denoted
by Ln. To a duplication of length ℓ, which may be tandem
or interspersed depending on the model under study, we
assign probability qℓ. For TDS systems, in which substitutions
are present, we denote the probability of substitution with
q0. For ID systems, we let q0 = 0. The position of the
template in duplication mutations is chosen at random among
the |sn| possible options. For interspersed duplication, the
position at which the copy is inserted is also chosen randomly.
Furthermore, for substitution mutations, the position of the
symbol that is substituted is chosen randomly. We assume
there exists M such that qℓ = 0 for all ℓ ⩾ M . Hence, we
have

∑M−1
ℓ=0 qℓ = 1.

For a string u ∈ A+, denote the number of appearances of
u in sn as µu

n , and its frequency as xu
n , where xu

n = µu
n/Ln.

For example, if sn = ACGAC, then µAC
n = 2, xAC

n = 2
5 .

Furthermore, for any set U ⊆ A+, we define µn = (µu
n)u∈U ,

and xn = (xu
n)u∈U . Thus µn is a vector representing the

number of appearances of u ∈ U in the string s at time n and
xn is the normalized version of µn.

We now provide an informal review of some concepts from
probability theory that will be of use in this paper. For further
detail, we refer the reader to [10]. For a sequence of random
variables yn, n = 0, 1, 2, . . ., the filtration Fn associated with
the process represents the information provided by y0, . . . , yn.
Formally, Fn is the sigma-algebra σ(y0, . . . , yn). The process
yn is a martingale if E[yn+1|Fn] = yn. Intuitively, this
says that given knowledge of what has happened so far, the
expected value of y in the future is equal to its current value.
The process yn is called a martingale difference sequence
if E[yn+1|Fn] = 0. Moreover, we introduce two important
results about martingales in the following, Doob’s conver-
gence theorem and the Hoeffding-Azuma inequality. Doob’s
martingale convergence theorem states that if a martingale yn
satisfies supn E[|yn|] < ∞, then almost surely y∞ = limn yn
exists and is finite in expectation. The Hoeffding-Azuma
inequality states that for a martingale yn, if |yn − yn−1| ⩽ cn
almost surely, then for all positive integers N and all positive
reals λ,

Pr(|yn − y0| ⩾ λ) ⩽ 2 exp

(
−λ2

2
∑N

n=1 c
2
n

)
.

We let {Fn} be the filtration [10] generated by the random

variables {xn, Ln}, which roughly speaking represents the
information contained in all xi and Li with 0 ⩽ i ⩽ n.

Before proceeding to the analysis of k-mer frequencies, we
present two results for the evolution of symbol frequencies (1-
mers). These results can be viewed as extensions of results for
Pólya urn models [37]. In such models, a random ball is chosen
from an urn containing balls of different colors. The chosen
ball is returned to the urn, along with a predetermined number
of balls of the same color. It is known that, conditioned on
the present state, the expected ratio of the balls of each color
(equivalent to symbol frequencies) in the future is equal to
the present value and therefore by definition is a martingale
and converges almost surely. While strings are more complex
objects than urns, we describe similar results that are valid
for any duplication process in which for each i, all i-substring
of s have the same chance of being duplicated. In particular,
these results hold both for TDS systems with q0 = 0 and for
ID systems.

Theorem 1. In a duplication system with q0 = 0, the random
variables xa

n, a ∈ A, are martingales and converge almost
surely.

Proof: Suppose a ∈ A. We have

E
[
xa
n+1|Fn

]
= E

[
µa
n+1

Ln+1

⏐⏐⏐⏐Fn

]
= E

[
E
[
µa
n+1

Ln+1

⏐⏐⏐⏐Fn, ℓ

]⏐⏐⏐⏐Fn

]
= E

[
µa
n + ℓxa

n

Ln + ℓ

⏐⏐⏐⏐Fn

]
= xa

n.

We thus have E
[
xa
n+1|Fn

]
= xa

n and so xa
n is a martingale.

Since it is nonnegative, by the martingale convergence theo-
rem, it converges almost surely.

Remark. The above theorem does not in fact require the dis-
tribution q to be constant and bounded. Under our assumption
that q is so, we can in addition obtain the following result on
the probability of xa

n deviating from its starting value.

Theorem 2. For all a ∈ A and n ⩾ 1 we have

Pr(|xa
n − xa

0 | ⩾ λ) ⩽ 2e−λ2L0/(2M
2) .

Proof: Since qi = 0 for i ⩾ M or i ⩽ 0, µa
n−1

Ln−1+M ⩽
µa
n

Ln
⩽

µa
n−1+M

Ln−1+M . Thus

−
Mµa

n−1

Ln−1(Ln−1 +M)
⩽

µa
n

Ln
−

µa
n−1

Ln−1
⩽

M(Ln−1 − µa
n−1)

Ln−1(Ln−1 +M)
,

implying that⏐⏐xa
n − xa

n−1

⏐⏐ ⩽ M max
{
Ln−1 − µa

n−1, µ
a
n−1

}
Ln−1(Ln−1 +M)

⩽
M

Ln−1 +M
⩽

M

L0 + n− 1 +M
⩽

M

L0 + n
.

Let cn = M
L0+n so that

⏐⏐xa
n − xa

n−1

⏐⏐ ⩽ cn and note that

n∑
i=1

c2i = M2
n∑

i=1

1

(L0 + i)
2 ⩽ M2

ˆ n

0

dt

(L0 + t)
2

=
M2

L0
− M2

L0 + n
=

M2n

L0(L0 + n)
⩽

M2

L0
.
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By the Hoeffding-Azuma inequality [20], since {xa
n : n =

0, 1, 2, . . .} is a martingale and
⏐⏐xa

n − xa
n−1

⏐⏐ ⩽ cn, we have

Pr(|xa
n − xa

0 | ⩾ λ) ⩽ 2 exp

(
−λ2

2
∑n

i=1 c
2
i

)
⩽ 2 exp

(
−λ2L0

2M2

)
.

The preceding theorem implies that it is unlikely for the
composition of a long DNA sequence to change dramatically
through random duplication events of bounded length. Such
changes, if observed, are likely the result of context-dependent
duplications or other biased mutations.

Unfortunately, this simple martingale argument does not ex-
tend to xu

n when |u| > 1. Therefore, for analyzing such cases,
we use the more flexible technique of stochastic approximation
as described in the sequel.

III. STOCHASTIC APPROXIMATION
FOR DUPLICATION SYSTEMS

In this section, we present an overview of the application
of stochastic approximation in the analysis of duplication
systems. By using stochastic approximation, our goal is to
study how the k-mer frequencies vector xn changes with n
by finding a differential equation whose solution approximates
xn.

A. Preliminaries

We start by providing the definitions used in this section.
For any positive integer d, a subset of Rd is said to be closed if
it contains its boundary, and is said to be compact if it is both
closed and bounded. Moreover, a subset of Rd is connected if
it is not a union of two nonempty separated sets [46]. A set A
is an invariant set of an ODE dzt/dt = f(zt) if it is closed
and zt′ ∈ A for some t′ ∈ R implies that zt ∈ A for all
t ∈ R. The invariant set A is internally chain transitive with
respect to the ODE dzt/dt = f(zt), provided that for every
y ,y′ ∈ A and positive reals T and ϵ, there exist N ⩾ 1 and
a sequence y0, . . . ,yN with yi ∈ A, y0 = y , and yN = y′

such that for 0 ⩽ i < n, if z0 = yi, then for some t ⩾ T , zt

is in the ϵ-neighborhood of yi+1 [3].
We will also make use of the following theorem, which

enables studying the behavior of a discrete dynamical system
through a system of differential equations.

Theorem 3. (Stochastic Approximation Theorem [3, Theo-
rem 2].) Let {zn, n ⩾ 0} be a bounded discrete stochastic
process in Rd with

zn+1 = zn + a(n)[h(zn) +Mn+1], n ⩾ 0,

where {Mn, n ⩾ 0} is a bounded martingale difference
sequence in Rd with E[Mn+1|zm,Mm,m ⩽ n] = 0 almost
surely, h : Rd → Rd is a Lipschitz map, and {a(n), n ⩾ 0}
are positive scalars satisfying

∑
n a(n) = ∞,

∑
n a(n)

2 < ∞.
Then {zn, n ⩾ 0} converges almost surely to a compact
connected internally chain transitive invariant set of the ODE

żt = h(zt), t ⩾ 0.

Note the dual use of the symbol z; the meaning is however
clear from the subscript.

B. Stochastic Approximation in Duplication Systems

We present a set of conditions that will allow us to adapt
duplication systems to the stochastic approximation frame-
work, described in Theorem 3. Let Eℓ[ · ] denote the expected
value conditioned on the fact that the length of the duplicated
substring is ℓ and let δℓ = Eℓ

[
µn+1|Fn

]
− µn. In the case

of substitution, we let ℓ = 0. We consider the following
conditions.
(A1) There exists M ∈ N such that qi = 0 for i ⩾ M .
(A2) µn+1 − µn, and thus δℓ, are bounded.
(A3) xn is bounded.
(A4) For each ℓ, δℓ is a function of xn only, so we can write
δℓ = δℓ(xn).
(A5) The function δℓ(xn) is Lipschitz.

(A1) holds by assumption. From this follows (A2) since
for each k-mer, a mutation can create or eliminate a bounded
number of occurrences. Additionally, (A3) holds because each
element of xn is between 0 and 1. The correctness of (A4)
and (A5) will be shown for each system.

To understand how xn varies, our starting point is its
difference sequence xn+1 − xn. We note that

xn+1 − xn = E[xn+1 − xn|Fn] + (xn+1 − E[xn+1|Fn]).

For the first term of the right side of (III-B), we have

E[xn+1 − xn|Fn] =

M−1∑
ℓ=0

qℓ(Eℓ[xn+1|Fn]− xn)

=

M−1∑
ℓ=0

qℓ

(
µn + δℓ(xn)

Ln + ℓ
− µn

Ln

)

=

M−1∑
ℓ=0

qℓ
Lnδℓ(xn)− ℓµn

Ln(Ln + ℓ)

=

M−1∑
ℓ=0

qℓ
δℓ(xn)− ℓxn

Ln + ℓ

=
1

Ln

M−1∑
ℓ=0

qℓhℓ(xn)
(
1 +O

(
L−1
n

))
=

1

Ln
h(xn)

(
1 +O

(
L−1
n

))
, (1)

where hℓ(xn) = δℓ(xn) − ℓxn, h(xn) =
∑M−1

ℓ=0 qℓhℓ(xn),
and where we have used 1/(Ln + ℓ) =

(
1 +O

(
L−1
n

))
/Ln,

which follows from the boundedness of ℓ (see (A1)).
Furthermore, for the second term of the right side of (III-B),

we have

xn+1 − E[xn+1|Fn] =
µn+1

Ln+1
− E

[
µn+1

Ln+1

⏐⏐⏐⏐Fn

]
=

1 +O
(
L−1
n

)
Ln

(
µn+1 − E

[
µn+1|Fn

])
=

1

Ln

(
1 +O

(
L−1
n

))
Mn+1, (2)
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where Mn+1 = µn+1 − E
[
µn+1|Fn

]
. Note that Mn is a

bounded martingale difference sequence.
From (III-B), (1), and (2), we find

xn+1 = xn +
1

Ln

(
h(xn) +Mn+1 +O

(
L−1
n

))
,

where we have used the fact that h(xn)
(
1 +O

(
L−1
n

))
=

h(xn) + O
(
L−1
n

)
. This follows from the boundedness of

h(xn), which in turn follows from the boundedness of δℓ(xn)
for all 0 ⩽ ℓ < M . We note that h determines the overall
expected behavior of the system.

In the rest of the paper, the element of δℓ(xn) that
corresponds to u is denoted by δuℓ (xn). More precisely,
δuℓ (xn) = Eℓ[µ

u
n+1 − µu

n |Fn]. This notation also extends to
h.

An additional condition requires
∑

n 1/|sn| = ∞ and∑
n 1/|sn|

2
< ∞, which can be proven using the Borel-

Cantelli lemma [20] if q0 < 1. Given these and our discussion
above, the following theorem, which relates the discrete sys-
tem describing xn to a continuous system, follows directly
from Theorem 3.

Theorem 4. The vector of k-mer frequencies xn converges al-
most surely to a compact connected internally chain transitive
invariant set of the ODE dxt/dt = h(xt).

IV. TANDEM DUPLICATION WITH SUBSTITUTION

In this section, we study the behavior of a system that allows
tandem duplication and substitution mutations. First, we will
determine the limits of the frequencies of k-mers. Then, after
presenting a theorem relating the limits to entropy, we find
bounds on the entropy of these systems.

Let U = Ak, so µn is the vector of all k-mer occurrences,
and xn is the vector of all k-mer frequencies. From Section III
we know that we can use the differential equation dxt/dt =
h(xt) to determine the limit of k-mer frequencies. To find the
differential equation, in Theorem 8, we determine δuℓ (xn) for
ℓ with qℓ > 0 and u ∈ U , where it can be observed that (A.4)
and (A.5) hold in our model

In the next subsection, we will give some necessary defi-
nitions. We will then prove that δuℓ (xn) is a linear function
of xn, which leads to a linear first-order differential equa-
tion. This linear form facilitates determining the asymptotic
behavior of the k-mer frequencies. We will then show that
the entropy of stochastic string systems can be related to the
capacity of semiconstrained systems defined by the limit set
of the k-mer frequencies. Leveraging the simple form of the
limits for systems with tandem duplications and substitutions,
we will provide bounds on the entropy of these systems.

A. Preliminaries

The following definitions will be useful for finding δℓ(xn).

Definition 1. For u ∈ A∗ and m ∈ N+, define ϕm(u) to be
a sequence of length |u| whose i-th element is determined by
whether the symbol in position i of u equals the symbol in

position i−m. More specifically, the i-th element of ϕm(u)
is

ϕm(u)i =

{
0, m+ 1 ⩽ i ⩽ |u|, ui = ui−m

X, otherwise

where X is a dummy variable. Let the lengths of the maximal
runs of 0s immediately after the initial Xm and at the end of
ϕm(u) be denoted by lum and rum, respectively.

Note that either of lum or rum may be equal to 0. If ϕm(u) =
Xm0|u|−m, then lum = rum = |u| − m. Otherwise, we have
ϕm(u) = Xm0l

u
mY 0r

u
m , for some Y that starts and ends with

X.

Example. For A = {A,C,G,T}, we have

u =ACAACCACCAACAAC,

ϕ3(u) =XXX 0 0X 0 0 0 0X 0 0 0 0,

and lum = 2, and rum = 4.

Remark. A duplication of length m is equivalent to inserting
m zeros into ϕm(u). In the above example, u may come from
u′ = ACAACCAACAAC after a length 3 tandem duplication
with the overlined substring as the template and ϕ3(u) can
be viewed as the result of inserting 3 zeros into ϕ3(u

′) =
XXX00X0X0000 between the two overlined symbols.

To enable us to succinctly represent the results, we then
define several functions. These functions relate u to the
frequencies of other substrings that can generate u via appro-
priate duplication events. For example, consider the sequence
u = ACACAGAG, for which ϕ2(u) = XX000X00. This
sequence can be created through duplications of length 2 from
ACAGAG (in two ways) and from ACACAG. These correspond
to runs of 0 of length 2 in ϕ2(u).

Definition 2. For a sequence u and positive integers m, z with
m+ z ⩽ |u|+ 1, define

Dz,m(u) = u1,z−1uz+m,|u|+1−z−m,

the sequence obtained from u by removing the subsequence
uz,m, i.e., by removing symbols in positions z, . . . , z+m−1.

Example. For u = ACGTA, z = 3,m = 2, we have u3,2 =
GT and D3,2(ACGTA) = ACA.

Definition 3. For a string u and positive integers m, z with
m+ z ⩽ |u|+ 1, define

Gu
m(x) =

∑
z

xDz,m(u), (3)

where the sum is over all z that are the indices of the
start of (not necessarily maximal) runs of 0s in ϕm(u), i.e.,
(ϕm(u))z,m = 0m.

Example. For u = GACCACCA,m = 3, we have ϕ3(u) =
XXXX0000 and (ϕ3(u))5,3 = (ϕ3(u))6,3 = 03. Therefore
Gu

3 (x) = 2xGACCA.

There is a slight abuse of notation in the definition of G
above (as well as the definitions of F and M below). While the
argument of G is x = (xv)v∈Ak , on the right side of (3), xw
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for sequences w with |w| < k may appear. We note however
that xw can be obtained from x by summing over the elements
of x corresponding to strings that include w as a prefix.

New occurrences of u can also be generated from strings
that are not of the form Dz,m(u). For example, consider the
sequence u = ACGACTG, for which ϕ3(u) = XXX00XX.
This sequence can be created through a length-3 tandem
duplication from CGACTG and GACTG, where the part that
is to be duplicated is overlined. The following definitions will
be of use in the analysis of this type of duplication.

Definition 4. For a sequence u and a positive interger m,
define

Fu
m,l(x) =

min(lum,m−1)∑
i=1

xui+1,|u|−i ,

Fu
m,r(x) =

min(rum,m−1)∑
i=1

xu1,|u|−i .

In the special case where ϕm(u) = Xm0|u|−m and |u| ⩽
2m− 2, we will benefit from the following definition.

Definition 5. For a sequence u and a positive integer m s.t.
ϕm(u) = Xm0|u|−m and |u| ⩽ 2m− 2, define

Mu
m(x) =

m−1∑
b=|u|−m+1

xub+1,m−bu1,b .

We define Mu
m(x) = 0 if ϕm(u) ̸= Xm0|u|−m.

Definition 6. For a sequence u, define B1(u) to be the set of
sequences which are at Hamming distance 1 from u.

Example. For A = {A,C,G,T}, u = AC, we have B1(u) =
{GC,CC,TC,AA,AG,AT}.

Definition 7. For u,v ∈ A∗, define the indicator function
I(u,v) as following,

I(u,v) =

{
1, if u = v

0, otherwise
.

B. Evolution of k-mer Frequencies

We first find δℓ(x) = (δuℓ (x))u∈U for ℓ > 0 (duplication)
and then for ℓ = 0 (substitution). When analyzing δuℓ (x), we
only consider substrings u of length |u| > ℓ, which simplifies
the derivation. The frequencies of shorter substrings can be
found by summing over the frequencies of longer substrings.

We first analyze the case in which ℓ > 0. We present
three lemmas and then use them to prove a general form for
δℓ(x), ℓ > 0. Suppose a duplication of length ℓ occurs in
sn, resulting in sn+1. The number of occurrences of u may
change due to the duplication event. To study this change, we
consider the k-substrings of sn that are eliminated (do not
exist in sn+1) and the k-substrings of sn+1 that are new (do
not exist in sn). Any new k-substring must intersect with both
the template and the copy in sn+1. Likewise, an eliminated k-
substring must include symbols on both sides of the template
in sn, i.e., the template must be a strict substring of the

sn+1

Case 1 u

Case 2 u

Case 3 u

Case 1 u

Case 2 u

Case 3 u

Figure 1. Possible cases for new occurrences of u in sn+1. Cases above
and below sn+1 correspond to ℓ + 1 ⩽ k < 2ℓ and k ⩾ 2ℓ, respectively.
The hatched boxes, from left to right, are the template and the copy.

k-substring that includes neither its leftmost symbol nor its
rightmost symbol. As an example, suppose

sn = vACGTAGATw, sn+1 = vACGTAGTAGATw, (4)

where ℓ = 3, the (new) copy is underlined and the template
is overlined, and v,w ∈ A∗. Let k = 5, the new 5-substrings
are GTAGT, TAGTA, AGTAG, GTAGA and the eliminated
substring is GTAGA. Note that here the two GTAGA substrings
are counted as different. Formally, let

sn = a1 · · · aiai+1 · · · ai+ℓai+ℓ+1 · · · a|sn|,
sn+1 = a1 · · · aiai+1 . . . ai+ℓai+1 . . . ai+ℓai+ℓ+1 . . . a|sn|,

where the substring ai+1 · · · ai+ℓ is duplicated. The new k-
substrings created in sn+1 are

yb = ai+ℓ+1−bai+ℓ+2−b . . . ai+ℓai+1ai+2 . . . ai+k−b,

for 1 ⩽ b ⩽ k − 1. Note that we have defined yb such that
the first element of the copy, ai+1, is at position b+ 1 in yb.
The k-substrings eliminated from sn are ai−c+1 · · · ai+k−c,
for 1 ⩽ c ⩽ k − ℓ− 1.

For a given u, let Yb denote the indicator random variable
for the event that yb = u, that is, the duplication creates a
new occurrence of u in sn+1 in which the first symbol of
the copy is in position b + 1. In example denoted by (4), if
u = TAGTA, then y3 = u and thus Y3 = 1.

Furthermore, let W denote the number of occurrences of u
that are eliminated. We have

δuℓ (x) =
( k−1∑

b=1

Eℓ[Yb|Fn]
)
− Eℓ[W |Fn]

=
( k−1∑

b=1

Eℓ[Yb|Fn]
)
− (k − ℓ− 1)xu, (5)

where the second equality follows from the fact that each of
the k − ℓ − 1 eliminated k-substrings are equal to u with
probability xu.

To find δuℓ , it suffices to find Eℓ[Yb|Fn], or equivalently,
Pr(Yb = 1|Fn, ℓ). We consider different cases based on the
value of b, which determines how u overlaps with the template
and the copy. These cases are illustrated in Figure 1 and are
considered in Lemmas 5–7, whose proofs are given in the
Appendix.
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Lemma 5 (Case 1). For 1 ⩽ b < min(ℓ, k − ℓ+ 1),

Eℓ[Yb|Fn] = xub+1,k−bI(u1,b,u1+ℓ,b).

Lemma 6 (Case 2). Suppose min(ℓ, k−ℓ+1) ⩽ b < max(k−
ℓ+ 1, ℓ). If k ⩾ 2ℓ, then

Eℓ[Yb|Fn] = xu1,b−ℓub+1,k−bI(ub−ℓ+1,ℓ,ub+1,ℓ),

and if ℓ+ 1 ⩽ k ⩽ 2ℓ− 2, then

Eℓ[Yb|Fn] = xub+1,ℓ−bu1,bI(u1,k−ℓ,uℓ+1,k−ℓ).

Lemma 7 (Case 3). For max (k − ℓ+ 1, ℓ) ⩽ b ⩽ k − 1,

Eℓ[Yb|Fn] = xu1,bI(ub−ℓ+1,k−b,ub+1,k−b).

Based on Lemmas 5–7, we then prove the following The-
orem. We will use the three lemmas above to break the
summation of (5) into three parts and then simplify them to
get a generalized expression.

Theorem 8. For an integer ℓ > 0 and a string u =
u1u2 · · ·uk, if ℓ+ 1 ⩽ k < 2ℓ, then

δuℓ (x) = Fu
ℓ,l(x) + Fu

ℓ,r(x) +Mu
ℓ (x)− (k − 1− ℓ)xu,

and if k ⩾ 2ℓ,

δuℓ (x) = Fu
ℓ,l(x) + Fu

ℓ,r(x) +Gu
ℓ (x)− (k − 1− ℓ)xu. (6)

Proof: From (5), we can write

δuℓ (x) =
( k−1∑

b=1

Eℓ[Yb|Fn]
)
− (k − ℓ− 1)xu

=

min(ℓ−1,k−ℓ)∑
b=1

Eℓ[Yb|Fn] +

max(k−ℓ,ℓ−1)∑
b=min(ℓ,k−ℓ+1)

Eℓ[Yb|Fn]

+

k−1∑
b=max(k−ℓ+1,ℓ)

Eℓ[Yb|Fn]− (k − ℓ− 1)xu. (7)

By Lemma 5, we have

min(ℓ−1,k−ℓ)∑
b=1

Eℓ[Yb|Fn] =

min(ℓ−1,k−ℓ)∑
b=1

xub+1,k−bI(u1,b,u1+ℓ,b)

=

min(ℓ−1,k−ℓ)∑
b=1

xub+1,k−bI(ϕℓ(u)ℓ+1,b, 0
b)

=

min(ℓ−1,k−ℓ,luℓ )∑
b=1

xub+1,k−b

=

min(ℓ−1,luℓ )∑
b=1

xub+1,k−b

= Fu
ℓ,l(x), (8)

where the fourth equality follows from the fact that luℓ ⩽ k−ℓ.

Similarly, using Lemma 7, it can be shown that
k−1∑

b=max (k−ℓ+1,ℓ)

Eℓ[Yb|Fn]

=

k−1∑
b=max (k−ℓ+1,ℓ)

xu1,bI(ub−ℓ+1,k−b,ub+1,k−b)

=

k−1∑
b=max (k−ℓ+1,ℓ)

xu1,bI(ϕℓ(u)b+1,k−b, 0
k−b)

=

k−1∑
b=max (k−ℓ+1,ℓ,k−ruℓ )

xu1,b

=

k−1∑
b=max (k−ℓ+1,k−ruℓ )

xu1,b

=

min (ruℓ ,ℓ−1)∑
i=1

xu1,k−i

= Fu
ℓ,r(x), (9)

where the fourth equality follows from ruℓ ⩽ k − ℓ and the
fifth equality comes from setting i = k − b.

To complete the proof, we need to show that Eℓ[Yb|Fn]
summed over the range min(ℓ, k − ℓ + 1) ⩽ b ⩽ max(k −
ℓ, ℓ− 1) reduces to Gu

ℓ (x) or Mu
ℓ (x) as appropriate.

From Lemma 6, if ℓ+ 1 ⩽ k ⩽ 2ℓ− 2, then
max (k−ℓ,ℓ−1)∑

b=min (ℓ,k−ℓ+1)

Eℓ[Yb|Fn] =

ℓ−1∑
b=k−ℓ+1

Eℓ[Yb|Fn]

=

ℓ−1∑
b=k−ℓ+1

xub+1,ℓ−bu1,bI(u1,k−ℓ,uℓ+1,k−ℓ)

=

ℓ−1∑
b=k−ℓ+1

xub+1,ℓ−bu1,bI(ϕℓ(u)ℓ+1,k−ℓ, 0
k−ℓ)

= Mu
ℓ (x), (10)

and if k = 2ℓ− 1, also
max (k−ℓ,ℓ−1)∑

b=min (ℓ,k−ℓ+1)

Eℓ[Yb|Fn] = 0 = Mu
ℓ (x). (11)

Finally, if k ⩾ 2ℓ, from the same lemma, we find
max (k−ℓ,ℓ−1)∑

b=min (ℓ,k−ℓ+1)

Eℓ[Yb|Fn] =

k−ℓ∑
b=ℓ

Eℓ[Yb|F ]

=

k−ℓ∑
b=ℓ

xu1,b−ℓub+1,k−bI(ub−ℓ+1,ℓ,ub+1,ℓ)

=

k−ℓ∑
b=ℓ

xu1,b−ℓub+1,k−bI(ϕℓ(u)b+1,ℓ, 0
ℓ) = Gk(u), (12)

where the last step follows from the definition of Gk.
Summing over the expressions provided by (8)-(12) pro-

vides the desired result.
In the case of ℓ = 0, δℓ(x) is given by the following

theorem.
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Theorem 9. For a string u of length k, we have

δu0 (x) =
1

|A| − 1

∑
v∈B1(u)

xv − kxu. (13)

Before proving the theorem, we give an example for A =
{1, 2, 3}:

δ1230 (x) =
1

2
(x223+x323+x113+x133+x121+x122)−3x123

Proof: A new occurrence of u results from an appropriate
substitution in some v ∈ B1(u), which has probability
xv/(|A| − 1). On the other hand, an occurrence of u is
eliminated if a substitution occurs in any of its k positions. So
the expected number occurrences that vanish is kxu.

C. ODE and the Limits of Substring Frequencies

Theorems 8 and 9 provide expressions for δℓ(x) for 0 ⩽
ℓ ⩽ M − 1. With these results in hand, we can formulate
an ordinary differential equation (ODE) whose limits are the
same as those of the substring frequencies of interest, x =
(xu)u∈Ak , where k ⩾ M .

We first show that δuℓ (x) can be written as a linear com-
bination of the elements of x, i.e., a linear combination of
xv,v ∈ Ak. To see this, note that on the right side in
expressions for δuℓ in Theorems 8 and 9, terms of the form
xw appear where |w| ⩽ k. We can replace xw with

∑
v x

v ,
where the summation is over all strings v of length k such
that w is a prefix of v. For example, consider the alphabet
{1, 2, 3} and k = 3. From Theorem 8, we have

δ1212 (x) = x12 + x21

= x121 + x122 + x123 + x211 + x212 + x213.

For 0 ⩽ ℓ < M , let Aℓ be the matrix satisfying δℓ(x) −
ℓx = Aℓx. Based on the argument above, such a matrix exists
and can be computed from Theorems 8 and 9. Furthermore,
let

A =

M−1∑
ℓ=0

qℓAℓ. (14)

Note that hℓ(x) = Aℓx and h(x) =
∑

ℓ qℓhℓ(x) = Ax.
For example, consider q0 = α, q1 = 1 − α, A = {0, 1},

and x = (x00, x01, x10, x11). From Theorems 8 and 9, it can
be shown that

A0 =

⎛⎜⎜⎝
−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2

⎞⎟⎟⎠, A1 =

⎛⎜⎜⎝
0 1 0 0
0 −1 0 0
0 0 −1 0
0 0 1 0

⎞⎟⎟⎠.

and

A =

⎛⎜⎜⎝
−2α 1 α 0
α −(1 + α) 0 α
α 0 −(1 + α) α
0 α 1 −2α

⎞⎟⎟⎠. (15)

Theorem 10. Consider a tandem duplication and substitution
system with distribution q = (qℓ)0⩽ℓ<M over these mutations,
with q0 < 1, and let A be the matrix defined for this system
by (14). The frequencies of substrings u of length k ⩾ M ,

(xu)u∈Ak , converge almost surely to the null space of the
matrix A.

Proof: We first show that the resulting ODE is stable by
showing that every eigenvalue of matrix A is either 0 or has a
negative real part. This is done by applying the Gershgorin
circle theorem [51] to the columns of A (see e.g., (15)).
According to the Gershgorin circle theorem, every eigenvalue
of A lies within at least one of the closed discs D1, . . . , D|A|k

in the complex plain, where the i-th disc centers at the i-
th diagonal entry of A with radius equal to the sum of the
absolute values of the non-diagonal entries in the i-th column.
Since in each column, the diagonal element is the only element
that can be negative, it suffices to show that each column of
A sums to 0, which then implies that the rightmost point of
each circle is the origin. Thus, each eigenvalue of A is either
0 or has a negative real part.

We now show that each column of Aℓ sums to zero for any
ℓ. Fix v ∈ U and consider the column in Aℓ that corresponds
to xv . We denote this column by Av

ℓ for simplicity. To identify
the element in Av

ℓ that corresponds to u (i.e., the element in A
in the column corresponding to v and the row corresponding
to u), we must consider expressions for hu

ℓ (x) = δuℓ (x)−ℓxu

and check if xv appears on the right side. The coefficient of
xv in δuℓ (x) − ℓxu is exactly the entry of Av

ℓ in the row
corresponding to xu. For ℓ > 0, from (5) and Lemmas 5–7,
we can see that the only term with a negative coefficient is
−(k − 1)xu, and the terms with nonnegative coefficients are∑k−1

b=1 Eℓ[Yb|Fn]. Therefore the case in which xv appears in
δuℓ (x)−ℓxu with negative coefficient happens only when u =
v, which implies that Av

ℓ has exactly one negative entry, which
equals −(k−1). Then we study the case in which xv appears
in δuℓ (x)−ℓxu with a nonnegative coefficient. By Lemmas 5–
7, this happens if and only if xv = Eℓ[Yb|Fn] for some 1 ⩽
b ⩽ k−1. Note that Eℓ[Yb|Fn] has different forms when b has
different values. Inspecting the proofs of Lemmas 5–7 shows
that for each value of b ∈ [k−1], there is precisely one u such
that xv = Eℓ[Yb|Fn]. Hence, for each b ∈ [k− 1], xv appears
in hu

ℓ with a nonnegative coefficient, and the coefficient is 1.
For example, for b = 1, from Lemma 5, this u is equal to
vℓv1,k−1. Since there are k − 1 possible choices for b, the
sum of all nonnegative coefficients is k− 1, which is also the
sum of all nonnegative entries in Av

ℓ . Therefore the sum of all
entries in Av

ℓ , and thus every column in Aℓ, is 0, as desired.
For ℓ = 0, we have hu

ℓ (x) = δuℓ (x), where δuℓ (x) is given in
Theorem 9. The column corresponding to xv has a negative
term equal to −k and k(|A| − 1) positive terms, where each
of the positive terms is equal to 1

|A|−1 , so the sum is again 0.
We have shown that all eigenvalues are either 0 or have

negative real parts. For any valid initial point x0, the sum of
the elements must be 1. Furthermore, each element must be
nonnegative. The fact that the columns of A sum to 0 shows
that the sum of the elements of any solution xt also equals
1 as dxt/dt = Axt. Furthermore, since only diagonal terms
in A can be negative, each element of xt is also nonnegative.
Thus xt is bounded.

By the Jordan canonical from theorem [38], any square
matrix over C can be decomposed into the form QBQ−1 for
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some invertible matrix Q. Here

B =

⎛⎜⎜⎜⎝
B1

B2

. . .
Bm

⎞⎟⎟⎟⎠
is a block diagonal matrix consisting of Jordan blocks, and
the Jordan blocks have the form

Bi =

⎛⎜⎜⎜⎜⎜⎝
λi 1

λi 1
. . . . . .

λi 1
λi

⎞⎟⎟⎟⎟⎟⎠, for all i,

where λi is one of the eigenvalues of the original matrix. So
we can write A = PJP−1 for some invertible matrix P ,

where J =

(
J ′ 0
0 J ′′

)
and J ′ and J ′′ are square matrices

corresponding to the eigenvalue λ = 0 and other eigenvalues
respectively. Let yt = P−1xt, so that ẏt = Jyt, which
we can write in the form u̇t = J ′ut and ẇt = J ′′wt

with yt = (ut,wt)
T . Let C be any compact internally

chain transitive set of the ODE ẏt = Jyt. We first show
that if y = (u,w) ∈ C, then w = 0. Consider the flow
starting from y0 = (u0,w0)

T ∈ C with w0 ̸= 0. We have
wt = eJ

′′
w0. Since J ′′ has only eigenvalues with negative

real parts, ∥wt∥ ⩽ c0e
−c1t∥w0∥ for t ⩾ 0 and some constants

c0, c1 > 0. If y = (u,w) ∈ C, then w is also in an internally
chain transitive set of lower dimension. For T, ϵ > 0, let
w(1), . . . ,w(n) = w(1) be a chain of points such that the flow
of ẇt = J ′′wt starting at w(i) meets the ϵ-neighborhood of
w(i+1) after a time ⩾ T . We thus have

∥w(i+1)∥ ⩽ c0e
−c1T ∥w(i)∥+ ϵ. (16)

Since T, ϵ are arbitary, we choose them such that c0e−c1T <
1/2 and c0e

−c1T ∥w(1)∥ < ϵ < ∥w(1)∥/2 if ∥w(1)∥ > 0.
Hence, ∥w(2)∥ ⩽ c0e

−c1T ∥w(i)∥ + ϵ < 2ϵ and by induction
∥w(i+1)∥ ⩽ c0e

−c1T ∥w(i)∥ + ϵ < 2ϵ for i > 1. This leads
to a contraction since it implies that ∥w(n)∥ = ∥w(1)∥ < 2ϵ.
Thus ∥w(1)∥ = 0 and for any y = (u,w)T ∈ C we must
have w = 0.

Next, note that since xt is bounded, so is yt. Hence for
y = (u,0)T ∈ C, eJ

′tu must be a constant since it contains
no exponential terms (λ = 0) and cannot contain a polynomial
term in t with degree ⩾ 1 (because of boundedness). So all
flows initiated in C are constant. The same must hold for
all flows in D, for any D that is an internally chain transitive
invariant set of the ODE ẋt = Axt. Hence, any point in x ∈ D
must be in the null space of A, that is, Ax = 0.

For the matrix A of (15), for 0 < α < 1, the vector in the
null space whose elements sum to 1, and thus the limit of xn,
is

1

2(1 + 3α)
(α+ 1, 2α, 2α, α+ 1)

T
. (17)

If we let α = 1
4 as an example, the limit of xn then is

lim
n→∞

(x00
n , x01

n , x10
n , x11

n )T = (
5

14
,
1

7
,
1

7
,
5

14
)T . (18)

Figure 2. 2-mer frequencies vs the number of mutations in a tandem
duplication and substitution system, with A = {0, 1}, s0 = 0100010, q0 =
1
4
, and q1 = 3

4
.

Figure 2 shows the result of simulation of the above TDS
system, where A = {0, 1}, s0 = 0100010, q0 = 1

4 and q1 =
3
4 . As the number n of mutations increases, the frequency
vector xn converges to the analytical result (18). Note that
the limits do not depend on the initial sequence s0.

Let us consider the two extreme cases. As α → 1, all four
2-substrings become equally likely, each with probability 1/4.
Note however that our analysis is not applicable to q0 = α = 1
since the condition

∑
n 1/|sn|2 < ∞ is not satisfied. On the

other hand, for a small probability of substitution, 0 < α ≪ 1,
almost all 2-substrings are either 00 or 11, as expected. For
α = 0, the null space is spanned by z1 = (1, 0, 0, 0)T and
z2 = (0, 0, 0, 1)T and the limit set is {az1 + (1 − a)z2 :
0 ⩽ a ⩽ 1}. In this case, the asymptotic behavior of k-mer
frequencies will depend on the initial sequence s0.

D. Bounds on Entropy

We now turn to provide upper bounds on the entropy.
We first formally define the entropy, and then argue that the
entropy is upper bounded by the capacity of an appropriately
defined semiconstrained system [13]–[15].

Consider the string sn, obtained from s0 by n rounds
of mutations, as described previously. Its expected length is
E[|sn|] = |s0| + n

∑M−1
ℓ=1 ℓqℓ. We define the entropy after n

rounds as

Hn =
1

E[|sn|]
·H(sn)

= − 1

E[|sn|]
∑

w∈A∗

Pr(sn = w) log|A| Pr(sn = w), (19)

and the entropy H∞ = lim supn→∞ Hn. We note that H(sn)
is the usual entropy of sn (except for the fact that we use
base-|A| logarithms instead of the usual base-2 logarithms).

It is common to define the entropy of DNA sequences based
on the limit of block entropies [23], [34], [47]. Specifically,
let hk = −

∑
u∈Ak pu log pu, where pu is the probability
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of observing u. Entropy is then obtained as hk+1 − hk for
k → ∞. This definition may lead to misleading results. For
example, consider a string system in which sn is the De Bruijn
sequence of order n (which contains all strings of length
n precisely once), obtained according to some deterministic
algorithm. Based on block entropies, the entropy of the system
can be shown to equal log |A|, while the system is in fact
deterministic. The definition in (19) gives the correct entropy,
i.e., 0, since there is only one possibility for sn for each n.

Let us recall some definitions concerning semiconstrained
systems (see [14]). Fix k and let P(Ak) denote the set of
all probability measures on Ak. A semiconstrained system is
defined by Γk ⊆ P(Ak). The set of the admissible words of
the semiconstrained system, denoted B(Γk), contains exactly
all finite words over the alphabet A whose k-mer distribution
is in Γk. Let Bn(Γk) = B(Γk) ∩An. An expansion of Γk by
ϵ > 0 is defined as

Bϵ(Γk) =

{
ξ ∈ P(Ak) : inf

ν∈Γk

∥ν − ξ∥TV ⩽ ϵ

}
,

where ∥ · ∥TV denotes the total-variation norm. Thus, Bϵ(Γk)
contains all the measures in Γk as well as those which are
ϵ-close to some measure in Γk. The capacity of Γk is then
defined as

cap(Γk) = lim
ϵ→0+

lim sup
n→∞

1

n
log|A||Bn(Bϵ(Γk))|,

which intuitively measures the information per symbol in
strings whose k-mer distribution is in (or “almost” in) Γk.

Theorem 11. For the mutation process described above, for
k ∈ N+, if the vector of the frequencies x of strings of length
k converges almost surely to a set Γk, then H∞ ⩽ cap(Γk) .

Proof: Fix some positive real number ϵ > 0. Denote by
X the indicator random variable defined by

X =

{
0 ||sn| − E[|sn|]| ⩾ ϵn,

1 otherwise.

By Hoeffding’s inequality,

Pr(X = 0) ⩽ 2 exp

(
− 2ϵ2

(M − 1)2
n

)
.

We also note that |sn| ⩽ |s0|+ (M − 1)n for all n.
Now, let Y be the indicator random variable defined by

Y =

{
0 xn ̸∈ Bϵ(Γk),

1 otherwise.

We know that xn converges almost surely to some point in
Γk as n → ∞, and thus, there exists N(ϵ) such that for all
n ⩾ N(ϵ),

Pr(Y = 0) ⩽ ϵ.

We combine X and Y by defining the indicator random
variable,

Z = X · Y.

By the union bound,

Pr(Z = 0) ⩽ ϵ+ 2 exp

(
− 2ϵ2

(M − 1)2
n

)
. (20)

Using standard bounds on the joint entropy and conditional
entropy,

H(sn) ⩽ H(sn, Z) = H(sn|Z) +H(Z).

By (20), for large enough n, we have

H(Z) ⩽ H2

(
ϵ+ 2 exp

(
− 2ϵ2

(M − 1)2
n

))
log|A| 2,

where H2(x) = −x log2 x− (1− x) log2(1− x) is the binary
entropy function.

We also have

H(sn|Z) = H(sn|Z = 0) +H(sn|Z = 1).

For the first summand, by the definition of conditional entropy,
and after replacing the unknown distribution with a uniform
one to obtain an upper bound, we get

H(sn|Z = 0)

⩽

(
ϵ+ 2 exp

(
− 2ϵ2

(M − 1)2
n

))
log|A|

⏐⏐⏐⏐⏐⏐
|s0|+(M−1)n⋃

i=1

Ai

⏐⏐⏐⏐⏐⏐
⩽

(
ϵ+ 2 exp

(
− 2ϵ2

(M − 1)2
n

))
· log|A|(|s0|+ (M − 1)n+ 1).

Similarly, for the second summand,

H(sn|Z = 1) ⩽

(
1− ϵ− 2 exp

(
− 2ϵ2

(M − 1)2
n

))

· log|A|

⎛⎝ E(|sn|)+ϵn∑
i=E(|sn|)−ϵn

|Bi(Bϵ(Γk))|

⎞⎠
⩽ log|A|

⎛⎝ E(|sn|)+ϵn∑
i=E(|sn|)−ϵn

|Bi(Bϵ(Γk))|

⎞⎠.

However, by the definition of the capacity of semiconstrained
systems, for all large enough n,

|Bi(Bϵ(Γk))| ⩽ |A|i·cap(Bϵ(Γk))+ϵ
.

It follows that

H(sn|Z = 1) ⩽ log|A|

(
2ϵn|A|(E(|sn|)+ϵn)(cap(Bϵ(Γk))+ϵ)

)
.

Combining all of these together,

Hn =
1

E(|sn|)
·H(sn)

⩽
1

E(|sn|)
log|A|

(
2ϵn|A|(E(|sn|)+ϵn)(cap(Bϵ(Γk))+ϵ)

)
+

ϵ+ 2 exp
(
− 2ϵ2

(M−1)2n
)

E(|sn|)
(|s0|+ (M − 1)n+ 1)

+
1

E(|sn|)
H2

(
ϵ+ 2 exp

(
− 2ϵ2

(M − 1)2
n

))
log|A| 2.
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Figure 3. Entropy bound vs the probability of substitution, with A = {0, 1}.

Taking lim supn→∞ of both sides we obtain

H∞ ⩽

(
1 +

ϵ∑M−1
i=1 iqi

)
· (cap(Bϵ(Γk)) + ϵ)

+
ϵ(M − 1)∑M−1

i=1 iqi
+H2(ϵ) log|A| 2.

Finally, taking limϵ→0+ of both sides, we obtain the claim.

Remark. We comment that if Γk = {ξk}, i.e., Γk contains a
single shift-invariant measure1, then cap(Γk) has a nice form
for all k ∈ N+ (see [14], [15]):

cap(Γk) = −
∑

a1...ak∈Ak

ξa1...ak

k log|A|
ξa1...ak

k

ξ̄
a1...ak−1

k

,

where ξ̄k is the marginal of ξk on the first k− 1 coordinates,
i.e., ξ̄a1...ak−1

k =
∑

b∈A ξ
a1...ak−1b
k . Furthermore, ∀k ∈ N+,

cap(Γk) ⩾ cap(Γk+1),

which follows from the fact that cap(Γk) can be viewed as
the conditional entropy of a symbol given the k − 1 previous
symbols in a stationary process.

Using the preceding remark and Theorem 11, we can find
a series of upper bounds on a given system:

cap(Γ1) ⩾ cap(Γ2) ⩾ · · · ⩾ cap(Γk) ⩾ · · · ⩾ H∞,

with Γk being the limit of (xu)u∈Ak .
In particular, for the system whose limit is given by (17),

we have ξ0 = ξ1 = 1/2, ξ00 = ξ11 = (α+1)/2(1+3α), ξ01 =
ξ10 = α/7. It then follows that for this system H∞ ⩽

H2

(
2α

1+3α

)
= cap(Γ2). We can also compute cap(Γk) for

k = 3, 4, . . .. Figure 3 shows the entropy bound we find using
2-mer and 3-mer frequencies. The two bounds are close, which

1A shift-invariant measure ξk ∈ P(Ak) is a measure that satisfies∑
a∈A ξawk =

∑
a∈A ξwa

k for all w ∈ Ak−1. The k-mer distributions
of cyclic strings are always shift invariant, and thus a converging sequence of
such measures also converges to a shift-invariant measure.

Figure 4. Contour plot of entropy bounds, with A = {0, 1}, k = 3, q0 =
1− α− β, q1 = α, q2 = β.

suggests that we may be close to the exact entropy values.
However, in the absence of a lower bound, this conjecture
cannot be verified. The figure shows that when there is only
one possible duplication length, the source of diversity is
substitution, as may be expected. As α → 1, the relative
number of substitutions increases, causing Γk to be close to
the uniform distribution, and the entropy tends to 1. On the
other hand, as α → 0, only duplications occur. This leads to
the generation of low complexity sequences that consists of
long runs of 0s and 1s, and thus entropy that is close to 0.

Figure 4 shows the entropy bound computed using 3-mer
frequencies for the case in which A = {0, 1}, q1 = α, q2 =
β and q0 = 1 − α − β. So in this system, duplications of
lengths 1 and 2 are both possible. It can be seen that similar
to Figure 3, even a small probability of substitution leads to
relatively high values of entropy. Furthermore, we note that, as
may be expected, longer duplications lead to a smaller value
of entropy.

V. INTERSPERSED DUPLICATION

In this section, we study the evolution of k-mer frequen-
cies of the interspersed-duplication system, also using the
stochastic-approximation technique.

Let U =
⋃k

i=1 Ai, i.e., the set consisting of all non-empty
strings of length at most k. Also, let the vectors xn and µn

be defined as before using U .

Theorem 12. Consider u ∈ U . In an interspersed-duplication
system, for ℓ < |u|, we have

δuℓ =− (|u| − 1)xu
n +

ℓ∑
i=1

xu1,i
n x

ui+1,|u|−i
n

+

ℓ∑
i=1

x
u1,|u|−i
n x

u|u|−i+1,i
n

+

|u|−ℓ−1∑
i=1

x
u1,iui+ℓ+1,|u|−ℓ−i
n x

ui+1,ℓ
n .
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Proof: The term −(|u| − 1)xu
n accounts for the ex-

pected number of lost occurrences of u in sn as a result
of inserting the duplicate substring. To illustrate, assume
A = {A,C,G,T}, u = ACT and ℓ = 1. An occurrence of
u = ACT will be lost if for example an occurrence of the
symbol G is duplicated and inserted after A in this occurrence
of u, since it becomes AGCT. The probability that a certain
occurrence is lost equals |u|−1

Ln
. Since there are µu

n such
occurrences, the expected number of lost occurrences of u
equals µu

n
|u|−1
Ln

= xu
n(|u| − 1). Note that if the symbol T is

duplicated and inserted after C in an occurrence of ACT, we
still count the original occurrence as lost, but count a new
occurrence in the resulting ACTT, as seen in what follows.
We now explain the first summation above. This summation
represents the newly created occurrences of u where the first
i symbols come from the duplicate and the next |u| − i are
from the substring that starts after the point of insertion of the
duplicate. There are µ

u1,i
n occurrences of u1,i. The duplicate

ends with one of these with probability µ
u1,i
n

Ln
= x

u1,i
n .

Furthermore, the duplicate is inserted before an occurrence of
ui+1,|u|−i with probability x

ui+1,|u|−i
n . Hence, the probability

of a new occurrence created in this way is xu1,i
n x

ui+1,|u|−i
n , and

so is the expected number of such new occurrences. The role
of the second summation is similar, except that the duplicate
provides the second part of u. The last summation accounts
for new occurrences of u in which the duplicate substring
forms a middle part of u of length ℓ and previously existing
substrings contribute a prefix of length i and a suffix of length
|u|−ℓ−i. In terms of our running example with u = ACT and
ℓ = 1, one such new occurrence is created if C is duplicated
and inserted after A in an occurrence of AT. The probability
of such an event is x

u1,iui+ℓ+1,|u|−ℓ−i
n x

ui+1,ℓ
n = xAT

n xC
n, where

i = 1.

Theorem 13. For ℓ ⩾ |u|, we have

δuℓ =− (|u| − 1)xu
n +

|u|−1∑
i=1

x
u1,|u|−i
n x

u|u|−i+1,i
n

+

|u|−1∑
i=1

xu1,i
n x

ui+1,|u|−i
n + (ℓ− |u|+ 1)xu

n .

Proof: The first two summations are similar to the first
two summations for the case of ℓ < |u|, but a term cor-
responding to the third summation is not present. The term
(ℓ− |u|+ 1)xu

n corresponds to the cases in which a new
occurrence of u is created as a substring of the duplicate
substring.

Note that δuℓ depends only on xn and is Lipschitz since
xn ∈ [0, 1]

|U |. Thus, (A.4) and (A.5) hold.

Since hu
ℓ (xn) = δuℓ (xn) − ℓxu

n , we have for ℓ < |u| and

ℓ ⩾ |u|, respectively,

hu
ℓ (xn) =− (ℓ+ |u| − 1)xu

n +

ℓ∑
i=1

xu1,i
n x

ui+1,|u|−i
n

+

ℓ∑
i=1

x
u1,|u|−i
n x

u|u|−i+1,i
n

+

|u|−ℓ−1∑
i=1

x
u1,iui+ℓ+1,|u|−ℓ−i
n x

ui+1,ℓ
n (21)

hu
ℓ (xn) =− 2(|u| − 1)xu

n + 2

|u|−1∑
i=1

xu1,i
n x

ui+1,|u|−i
n (22)

Recall that hℓ(x) = (hu
ℓ (x))u∈U . So from (21) and (22),

we can find the ODE dxt/dt = h(xt) =
∑M−1

ℓ=1 qℓhℓ(xt).
As an example, if k = 3 and A = {A,C}, then U =
(A,C,AA,AC,CA,CC,AAA, . . . ,CCC) and some of the equa-
tions of the ODE system are

d

dt
xA
t =

d

dt
xC
t = 0,

d

dt
xAA
t = −2xAA

t + 2
(
xA
t

)2
,

d

dt
xAC
t = −2xAC

t + 2xA
t x

C
t ,

d

dt
xAAC
t = −(4− q1)x

AAC
t + 2xA

t x
AC
t + (2− q1)x

C
t x

AA
t .

(23)

For a vector x that contains the elements (xa)a∈A and for
v ∈ A∗, define p(v,x) =

∏
a∈A(x

a)
nv(a), where nv(a) is the

number of occurrences of a in v, and note that p(vw,x) =
p(v,x)p(w,x). We now turn to find the solutions to the ODE
dxt/dt = h(xt).

Lemma 14. Consider the ODE dxt/dt = h(xt) where
h(x) =

∑M−1
ℓ=1 qℓhℓ(x) and the elements of hℓ(x) are given

by (21) and (22). The solution to this ODE is

xv
t = p(v,x0) +

∑
i

bvi e
−dv

i t, v ∈ U, (24)

where x0 = xt|t=0; the range of i in the summation is finite;
and bvi and dvi are constants with dvi > 0.

Proof: We prove the lemma by induction. The claim (24)
holds for v ∈ A, since the equations for xa

t , a ∈ A, are of
the form dxa

t /dt = 0 and so xa
t = xa

0 . Fix u ∈ U such
that |u| > 1, and assume that (24) holds for all v ∈ U such
that |v| < |u|. We show that it also holds for u, i.e., xu

t =
p(u,x0)+

∑
i b

u
i e

−du
i t. Using the assumption, we rewrite (21)

and (22) as

hu
ℓ (xt) = −(ℓ+ |u| − 1)(xu

t − p(u,x0)) +
∑
i

b
′

ie
−d

′
it

for ℓ < |u|, and

hu
ℓ (xt) = −2(|u| − 1)(xu

t − p(u,x0)) +
∑
i

b
′′

i e
−d

′′
i t
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for ℓ ⩾ |u|, where b
′

i, d
′

i, b
′′

i , d
′′

i are constants with d
′

i, d
′′

i > 0.
Hence, hu(xt) can be written as

hu(xt) = −cu(xu
t − p(u,x0)) +

∑
i

b
′′′

i e−d
′′′
i t,

where cu = 2|u| − 2 −
∑|u|−1

ℓ=1 qℓ(|u| − 1− ℓ), and b
′′′

i , d
′′′

i

are constants with d
′′′

i > 0. Thus the solution to the ODE
dxu

t /dt = hu(xt) is

xu
t = e−cu t̂ ec

ut
′(
cup(u,x0) +

∑
i

b
′′′

i e−d
′′′
i t

′)
dt

′
+ b̄e−cut

= p(u,x0) +
∑
i

bui e
−du

i t,

where b̄, bui , d
u
i are some constants, with dui > 0 (note that

cu > 0 since |u| > 1). This completes the proof.
For example, the solutions to (23) with q1 = 0 are

xA
t = xA

0 ,

xC
t = xC

0 ,

xAA
t =

(
xA
0

)2
+ bAA1 e−2t,

xAC
t = xA

0x
C
0 + bAC1 e−2t,

xAAC
t =

(
xA
0

)2
xC
0 + bAAC1 e−2t + bAAC2 e−4t,

where bAAC1 = xA
0 b

AC
1 + xC

0b
AA
1 .

In the next theorem, we use Lemma 14 to characterize
the limits of the frequencies of substrings in interspersed-
duplication systems.

Theorem 15. Let U =
⋃k

i=1 Ai, and let xn = (xu
n)u∈U

be the vector of frequencies of these strings at time n in
an interspersed-duplication system. The vector xn converges
almost surely. Furthermore, its limit x∞ satisfies

xu
∞ =

∏
a∈A

(xa
∞)

nu(a)
, for all u ∈ U.

Note that the existence of the limits xa
∞ of xa

n, for a ∈ A,
was also shown in Theorem 1.

Proof: From Theorem 4, we know that the limit set of
xn is an internally chain transitive invariant set of the ODE
described by (21) and (22). Let this set, which consists of
points of the form y = (yv)v∈U , be denoted by H . Since for
each u ∈ U , xu

n ∈ [0, 1], we can assume that H ⊆ [0, 1]
|U |

without any loss of generality. We now use these facts to show
that yu = p(u,y) for each y ∈ H and u ∈ U .

Suppose to the contrary that there exist y ∈ H and u ∈ U
such that yu ̸= p(u,y). Among all possible choices for such y
and u, choose the ones where the length |u| of u is minimum.
We know that the length of u will be at least 2 since ya =
p(a,y) for all a ∈ A. Hence, for all v ∈ A∗ with |v| < |u|,
and all z ∈ H , we have zv = p(v, z). Using this fact, one
can show that if x0 ∈ H , the solution to the ODE described
by (21) and (22) will have the form xu

t = p(u,x0) + be−cut,
where b = xu

0 − p(u,x0) and cu ⩾ |u| by a similar proof as
Lemma 14.

By the definition of internal chain transitivity, for any ϵ > 0
and T > 0, there exist N ⩾ 1 and a sequence y0, . . . ,yN with
yi ∈ H , y0 = yN = y such that for 0 ⩽ i < N , if x0 = yi,

then there exists t ⩾ T such that xt is in the ϵ-neighborhood of
yi+1. Suppose x0 = yi and suppose for t′ ⩾ T , xt′ is in the
ϵ-neighborhood of yi+1. Since H is invariant, we know that
yi ∈ H and therefore xu

t′ = p(u,yi)+(yu
i −p(u,yi))e

−cut′ .
So we have⏐⏐yui+1−xu

t′

⏐⏐ = ⏐⏐⏐yui+1−p(u,yi)−(yui −p(u,yi))e
−cut′

⏐⏐⏐ ⩽ ϵ.

(25)

Furthermore, since for a ∈ A, xa
t′ = p(a,yi) = yai , we also

have ⏐⏐yai+1 − yai
⏐⏐ ⩽ ϵ. (26)

So if p(u,yi+1) > 0, we have,

p(u,yi)− p(u,yi+1)

⩽
∏
a∈A

(yai+1)
nu(a)

(∏
a∈A

(
yai+1 + ϵ

yai+1

)nu(a)

− 1

)

⩽
∏
a∈A

(
1 +

ϵ

yai+1

)nu(a)

− 1

⩽

⎛⎝1 +
ϵ

min
a∈A

yai+1

⎞⎠|u|

− 1, (27)

and if p(u,yi+1) = 0,

p(u,yi)− p(u,yi+1) ⩽ ϵnu(a). (28)

Thus, from (25), (27) and (28), it follows that

yui+1 − p
(
u,yi+1

)
⩽ e−cuT + ϵ+O(ϵ). (29)

In particular, (29) holds for i = N − 1, i.e.,

yu − p(u,y) ⩽ e−cuT +O(ϵ).

But we can make the right side of the above inequalities
arbitrary small by choosing T large enough and ϵ small
enough. Thus yu = p(u,y), which is a contradiction. Hence,
for each y ∈ H and u ∈ U , we have yu = p(u,y), and the
theorem follows.

The theorem shows that for u ∈ A∗, the frequency of u
converges to the frequency of same in an iid sequence where
the probability of a ∈ A equals xa

∞. Figure 5 illustrates an
example, obtained via simulation, where the system starts with
s0 = AGCGTATGCG and duplications of lengths 4 and 6
occur with equal probability. As the number n of duplications
increases, the frequency vector xn becomes more compatible
with that of an iid sequence. For example for n = 15000,
we have xAC

n = 0.0251 ≃ xA
nx

C
n = 0.0266, xGT

n = 0.0872 ≃
xG
nx

T
n = 0.0880, and xGGG

n = 0.0992 ≃
(
xG
n

)3
= 0.1084.

The limit set for (xu)u∈Ak implied by Theorem 15 in-
cludes the uniform distribution. As a result, the application
of Theorem 11 leads to the trivial upper bound of |A|. It thus
appears that determining the entropy of ID systems requires
determining not only the limit set for the k-mer frequencies
but also their limiting distribution, as well as results that
can relate this distribution to entropy. We leave pursuing this
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Figure 5. Symbol frequencies vs the number of duplications in an
interspersed-duplication system, with s0 = AGCGTATGCG, and q4 = q6 =
1/2.

direction to future work. Nevertheless, the fact that the k-
mer frequencies are similar to those in iid sequences, suggest
that interspersed duplication leads to high entropy. At least
for certain special cases, this is indeed the case. For binary
(A = {0, 1}) interspersed duplications of length 1, the entropy
is found in [12] as

log2 e

t0 + t1
((t0 + t1)Ht0+t1 − t0Ht0 − t1Ht1), (30)

where t0 and t1 are the numbers of 0s and 1s in s0, respec-
tively, and Ht is the t-th Harmonic number. For t0 = t1 → ∞,
the entropy can be shown to equal 1.

VI. CONCLUSION

We studied the limiting behavior of two stochastic du-
plication systems, tandem duplication with substitution and
interspersed duplication. We used stochastic approximation
to compute the limits of k-mer frequencies for tandem du-
plications and substitutions. We also provided a method for
determining upper bounds on the entropy of these systems.
For interspersed duplication system, we established that k-
mer frequencies tend to the corresponding probabilities in
sequences generated by iid sources. This suggests that these
systems have high entropy, and the structure of the limit set for
k-mers prevents us from obtaining non-trivial upper bounds.
Many problems are left open. First, for tandem duplication and
substitution systems, other mutations, such as deletions were
not studied; and for interspersed duplication, substitutions,
deletions and other mutations were not considered. Moreover,
for interspersed duplication, providing nontrivial upper bounds
on the entropy requires further research. While we conjecture
that the upper bounds presented here are close to actual values,
lower bounds on the entropy are needed to verify this claim.
Since this work was limited to the asymptotic analysis of these
systems, more research is required to quantify their finite-time
behavior.

APPENDIX

We give the proofs of Lemmas 5–7 in this appendix.
Recall that the lemmas give us the expected number of new
occurrences of a k-mer u in three different cases according
to the relative position of the newly created substring and the
template sequence, as illustrated in Figure 1.

A. Lemma 5 (Case 1)

In this case we have 1 ⩽ b < min(ℓ, k−ℓ+1) (regardless of
whether k ⩾ 2ℓ or k < 2ℓ), the new occurrences of u always
contain some (but not all) of the template and all of the new
copy. This scenario is labeled as Case 1 in Figure 1.

Suppose Yb = 1. Since the copy and the template are
identical, elements of u that coincide with the same positions
in these two substrings must also be identical. So a necessary
condition for Yb = 1 is

u1,b = u1+ℓ,b.

Assume this condition is satisfied. Then Yb = 1 if and only if
the sequence starting at the beginning of the template in sn
is equal to ub+1,k−b, which has probability xub+1,k−b .

As an example for k ⩾ 2ℓ, consider

sn = v1234567w,

sn+1 = v1231234567w, where Yb = 1 for b = 1,

u1 = u4 = 3,

where v,w ∈ A∗, u is overlined, and the copy is underlined.
Note that sn contains ub+1,k−b = 123456. For k < 2ℓ,
consider

sn = v1234w,

sn+1 = v1231234w, where Yb = 1 for b = 1,

u1 = u4 = 3.

B. Lemma 6 (Case 2)

In Case 2, u either i) contains both the template and
the copy completely, or ii) intersects with both but contains
neither. Note that this case cannot occur if k = 2ℓ− 1.

First, assume k ⩾ 2ℓ. The condition on b translates to ℓ ⩽
b < k − ℓ+ 1 and the new occurrence of u contains both the
template and the copy. This is labeled as Case 2 in Figure 1
(below sn+1). With the same logic as in Case 1, it is clear
that we need

ub−ℓ+1,ℓ = ub+1,ℓ,

Assuming this condition is satisfied, we have Yb = 1 if and
only if the substring u1,b−ℓub+1,k−b occurs in sn at a certain
position, which occurs with probability xu1,b−ℓub+1,k−b .

For example, consider

sn = v412356w,

sn+1 = v412312356w, where Yb = 1 for b = 4,

u2,3 = u5,3 = 123.

Now suppose ℓ+1 ⩽ k ⩽ 2ℓ− 2. The condition on b from
the statement of the lemma is k − ℓ + 1 ⩽ b < ℓ. The new
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occurrence of u contains some (but not all) of the elements of
the template and some (but not all) of the elements of the copy,
as illustrated in Figure 1, Case 2, above sn+1. The following
constraint on u must hold

u1,k−ℓ = uℓ+1,k−ℓ,

implying that ϕℓ(u) = Xℓ0k−ℓ. For example, consider

sn = v123w,

sn+1 = v123123w, where Yb = 1 for b = 2,

u1 = u4 = 2.

We have Yb = 1 iff the sequence starting at the beginning
of the template in sn is equal to ub+1,ℓ−bu1,b, which has
probability xub+1,ℓ−bu1,b .

C. Lemma 7 (Case 3)

In this case, we have max (k − ℓ+ 1, ℓ) ⩽ b ⩽ k − 1
(regardless of whether k ⩾ 2ℓ or k < 2ℓ), the new occurrence
of u contains the template and some (but not all) of the
elements of the copy. This is labeled as Case 3 in Figure 1.
The constraint on u is

ub−ℓ+1,k−b = ub+1,k−b.

As examples, consider

sn = v456123w,

sn+1 = v456123123w, where Yb = 1 for b = 6,

u4 = u7 = 1,

for k ⩾ 2ℓ, and

sn = v4123w,

sn+1 = v4123123w, where Yb = 1 for b = 4,

u2 = u5 = 1,

for ℓ < k < 2ℓ.
We have Yb = 1 if and only if u1,b occurs in sn at a certain

position, which has probability xu1,b .
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