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We produce the first astrophysically relevant numerical binary black hole gravitational waveform in a

higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters

consistent with GW150914, the first LIGO detection, in order-reduced dynamical Chern-Simons gravity, a

theory with motivations in string theory and loop quantum gravity. We present results for the leading-order

corrections to the merger and ringdown waveforms, as well as the ringdown quasinormal mode spectrum.

We estimate that such corrections may be discriminated in detections with signal to noise ratio ≳180–240,

with the precise value depending on the dimension of the GR waveform family used in data analysis.
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I. INTRODUCTION

Binary black hole mergers, as recently observed by

LIGO and Virgo [1], probe gravity in its most dynamical,

nonlinear regime. At some scale, Einstein’s theory of

general relativity (GR) must break down, and binary black

hole (BBH) mergers, by probing strong-field gravity, could

potentially contain signatures of beyond-GReffects.Amajor

scientific effort of gravitationalwave (GW)astronomy is thus

testing general relativity with gravitational wave observa-

tions from binary black hole systems [2,3].
However, current tests of general relativity are limited to

null-hypothesis (assuming GR) and parametrized tests

[2,4]. One future goal is to perform model-dependent tests,

in which beyond-GR theories of gravity are evaluated with

similarly precise methods as those used for GR predictions.

A major challenge in this program, however, is the absence

of numerical relativity gravitational waveforms in beyond-

GR theories through full inspiral, merger, and ringdown.

As Yunes et al. argued in [4], constraining “physics beyond

general relativity is severely limited by the lack of under-

standing of the coalescence regime in almost all relevant

modified gravity theories.”
Our goal in this study is to produce the first astrophysi-

cally relevant numerical relativity binary black hole gravi-

tational waveform in a higher-curvature theory of gravity.

Specifically, we will focus on dynamical Chern-Simons

(dCS) gravity, a beyond-GR effective field theory that adds

a scalar field coupled to spacetime curvature to the

Einstein-Hilbert action, and has origins in string theory

and loop quantum gravity [5–8]. To ensure well-posedness
of the evolution equations, we work in an order-reduction
scheme, perturbing the dCS scalar field and spacetime
metric around general relativity.

We extend our recent computation of leading order dCS

gravitational waveforms for binary black-hole head-on

collisions [9] to inspiraling systems. Namely, we focus on

a simulationwith parameters consistentwithGW150914, the

first LIGO detection, and the loudest so far [1,10].

A. Roadmap and conventions

We give an overview of our methods in Sec. II, and refer

the reader to previous papers, [9,11–13], for technical details.

We present the results, including dCS merger and ringdown

waveforms for a system consistent with GW150914, in

Sec. III. We conclude and discuss future work, including

implications for LIGO data analysis, in Sec. IV.

We set G ¼ c ¼ 1 throughout. Quantities are given in

terms of units ofM, the sum of the Christodoulou masses of

the background black holes at a given reference time [14].

Latin letters in the beginning of the alphabet fa; b; c; d…g
denote 4-dimensional spacetime indices, and gab refers to

the spacetime metric.

II. METHODS

A. Order-reduction scheme

The action of dynamical Chern-Simons gravity is

S≡

Z

d4x
ffiffiffiffiffiffi

−g
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2
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where the first term is the Einstein-Hilbert action of GR,

with the Planck mass denoted by mpl, the second term is a

kinetic term for the (axionic) scalar field ϑ, and the third

term couples ϑ to spacetime curvature through the parity-

odd Pontryagin density,

�RR≡ �RabcdRabcd: ð2Þ

Here, �Rabcd ¼ 1

2
ϵabefRef

cd is the dual of the Riemann

tensor, and ϵabcd ≡
ffiffiffiffiffiffi

−g
p ½abcd� is the fully antisymmetric

Levi-Civita tensor. The quantity l in the third term of

Eq. (1) is the dCS coupling constant with dimensions of

length, and physically represents the length scale below

which dCS corrections become relevant.

Varying the action Eq. (1) will lead to a set of field

equations which we refer to as the “full” equations of dCS.

It is unknown whether full dCS has a well-posed initial

value problem (IVP), though this possibility seems unlikely

[15]. This seems an apparent disqualification for a theory.

However, we do not take Eq. (1) as an action for an exact

theory. Rather we assume there is some well-posed under-

lying UV theory, and that a low-energy limit gives dCS as

an effective field theory (EFT).

Truncating a high-energy theory to a low-energy EFT

has the potential to introduce extra time derivatives and

spurious or runaway solutions. These spurious solutions are

not the low-energy limit of solutions to the original high-

energy theory, and must be eliminated. Indeed the only

consistent way to handle solutions to an EFTare in a power

series in some small parameter ε. This leads to a perturba-

tive treatment which reduces the order of the differential

equations, and is considered to be the correct way to excise

spurious solutions (see [16–19] for more discussion and

examples). We thus perturb all fields around GR, as earlier

suggested in [11,20–22]. This ensures that the principal

symbol of the PDE at each order is the principal symbol of

the generalized harmonic formulation of GR, ensuring a

well-posed initial value problem.

We give details regarding the derivation of the equations

of motion for the order-reduction scheme in [11]. Here, we

briefly summarize the important points of the order-

reduction construction. We perturb the spacetime metric

and dCS scalar field around GR as

gab ¼ g
ð0Þ
ab þ

X

∞

k¼1

εkg
ðkÞ
ab ; ð3Þ

ϑ ¼
X

∞

k¼0

εkϑðkÞ: ð4Þ

Here, terms with superscript (0) refer to zeroth-order GR

fields, and ε is a dimensionless formal parameter counting

powers of l
2. We schematically illustrate this order-

reduction scheme in Fig. 1.

We can consistently set ϑð0Þ ¼ 0 in the background. The

leading-order dCS scalar field comes in at first order as ϑð1Þ,
with the equation of motion

□
ð0Þϑð1Þ ¼ mpl

8
l
2�RRð0Þ: ð5Þ

Similarly, we can consistently set g
ð1Þ
ab ¼ 0. The leading-

order dCS correction to the spacetime metric comes in at

second order as g
ð2Þ
ab , with the equation of motion

m2

plG
ð0Þ
ab ½g

ð2Þ
ab � ¼−mpll

2C
ð1Þ
ab ½g

ð0Þ
ab ;ϑ

ð1Þ�þT
ð1Þ
ab ½g

ð0Þ
ab ;ϑ

ð1Þ�: ð6Þ

Here, G
ð0Þ
ab is the linearized Einstein field equation operator

of the background, T
ð1Þ
ab is the canonical Klein-Gordon

stress energy tensor computed from ϑð1Þ and g
ð0Þ
ab

(cf. Eq. (11) in [9]), and C
ð1Þ
ab is a quantity computed from

the background spacetime curvature and ϑð1Þ (cf. Eq. (12)
in [9]).

We can scale out the l dependence (cf. [9,11]) by

defining new variables

g
ð2Þ
ab ≡

ðl=GMÞ4
8

Δgab; ϑð1Þ ≡
mpl

8
ðl=GMÞ2Δϑ: ð7Þ

Thus, Eqs. (5) and (6) become

□
ð0Þ
Δϑ ¼ �RRð0Þ; ð8Þ

G
ð0Þ
ab ½Δgab� ¼ −C

ð1Þ
ab ½Δϑ� þ

1

8
T
ð1Þ
ab ½Δϑ�: ð9Þ

Along with the nonlinear equations for the background

metric, Eqs. (8) and (9) are numerically coevolved to obtain

the leading-order dCS correction to the gravitational

waveforms.

B. Inspiral secular growth

In the order-reduction scheme, the motion of the black

holes is governed by the GR background. The GR back-

ground sources a dCS scalar field which in turn sources a

dCS metric deformation (cf. Fig. 1), but this perturbation to

the spacetime does not backreact onto the GR background.

Thus the trajectories of the black holes, and hence the rate

of inspiral, are purely determined by GR.

In full dCS gravity, however, the black holes will inspiral

faster than in GR because they lose energy to scalar

radiation and because the gravitational-radiation energy

loss is modified from GR. There is thus a discrepancy

between the rate of BBH inspiral in the order-reduction

scheme and in the “full” dCS theory, which leads to secular

breakdown of perturbation theory [23]. In particular, this

effect occurs on the radiation-reaction timescale, which

governs the motion of the black holes toward one another.
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The inspiral portion of the leading-order dCS modifi-

cation to the gravitational waveform will thus be contami-

nated by secular effects. Removing these effects, in

particular through renormalization, is the subject of future

work that we discuss in the Appendix A. Another potential

avenue for extending the accuracy of a perturbative scheme

to the full inspiral includes stitching to known post-

Newtonian expressions for the dCS modification to the

waveform in the early inspiral [21].

In this paper, we will focus on the merger and ringdown

portions of the leading-order dCS correction to the gravi-

tational waveform. To mitigate secular effects from inspiral,

our goal is to start the evolution of the dCS fields Δϑ and

Δgab as close to merger as possible. However, starting a

binary black hole simulation close to merger creates a host

of problems involving initial data and initial transients

commonly called junk radiation [24–26]. We thus evolve a

standard BBH GR background simulation, and ramp on the

source terms for Δϑ and Δgab [cf. Eqs. (8) and (9)] starting
at some later time ts. We give more details about the ramp

functions in Appendix B.

C. Technical details

We use the same evolution framework as our previous

head-on collisions work [9], to which we refer the reader

for technical details. All of the computations are performed

using the Spectral Einstein Code (SpEC), which uses

pseudospectral methods and thus guarantees exponential

convergence in all of the fields. The main technical change

between the treatment of head-on collisions and inspiraling

mergers is tracking the orbiting black holes on the

computational grid, which is performed using the methods

of [27].

III. GW150914 RESULTS

In this section, we present the results of performing a

binary black hole simulation using the methods of Sec. II

for a system consistent with GW150914. In particular, we

compute the leading-order dCS modification to the merger

and ringdown waveforms. All presented waveforms are

asymptotic, computed from an expansion in 1=R for

extraction radius R [14], and hence should have near-field

effects removed.

A. Simulation parameters

While there is a distribution of mass and spin parameters

consistent with GW150914 [28,29], we choose to use the

parameters of SXS:BBH:0305, as given in the Simulating

eXtreme Spacetimes (SXS) catalog [30]. This simulation

was used in Fig. 1 of the GW150914 detection paper [10],

as well a host of follow-up studies [31–33]. The configu-

ration has initial dimensionless spins χA ¼ 0.330ẑ and

χB ¼ −0.440ẑ, aligned and antialigned with the orbital

angular momentum. The dominant GR spherical harmonic

modes of the gravitational radiation for this system are

ðl; mÞ ¼ ð2;�2Þ. The system has initial masses of

0.5497M and 0.4502M, leading to a mass ratio of

1.221. The initial eccentricity is ∼8 × 10−4. The black

holes merge at t ¼ 2533.8M, forming a common horizon

after ∼23 orbits. The remnant has final Christodoulou mass

0.9525M and dimensionless spin 0.692 purely in the ẑ
direction.

Note that the mass ratio and spins ðq; χA; χBÞ that best fit
GW150914 in GR may be different from the best-fit dCS-

modified waveform parameters, ðq0; χ0A; χ0B;l=GMÞ. In this
initial paper, we focus on just one set of background

parameters, but future work includes performing studies

in this extended parameter space to explore posterior

FIG. 1. Schematic of the order-reduction scheme, as outlined in

Sec. II A. We perturb the spacetime metric and dCS scalar field

around GR in order to ensure well-posedness of the evolution

equations. At zeroth order, we recover GR, and simply have a

vacuum GR BBH system. The curvature of this background in

turn sources the leading-order dCS scalar field (coming in at first

order, shown in pink and yellow) [cf. Eq. (8)]. This scalar field

and the curvature of the GR background then source the leading-

order dCS correction to the metric (coming in at second order,

shown in blue) [cf. Eq. (9)]. It is precisely this correction to the

spacetime metric that gives the leading-order dCS correction to

the gravitational waveform.

NUMERICAL RELATIVITY SIMULATION OF GW150914 … PHYS. REV. D 101, 104016 (2020)

104016-3



reconstructions and degeneracies, among other topics, as

we outline in Sec. IV.

B. dCS merger waveform

The main result of this paper is Fig. 2, which shows the

leading-order dCS correction to the gravitational waveform

for GW150914 during merger. We focus on the dominant

ðl; mÞ ¼ ð2;�2Þ modes of the gravitational radiation

(though we have access to gravitational wave modes from

l ¼ 2 to l ¼ 8), as these are the most important modes for

GW150914 observation and analysis [2,10,28]. The

ð2;−2Þ mode is consistent with being the complex con-

jugate of the (2, 2) mode so we only present results for the

latter.

In order to make this waveform useful for LIGO

data analysis, we must reintroduce the dCS coupling

parameter l, and present the full, second-order accurate

dCS curvature waveform as [cf. Eq. (7)],

Ψ4 ¼ Ψ
ð0Þ
4

þ Ψ
ð2Þ
4
; ð10Þ

Ψ
ð2Þ
4

≡
ðl=GMÞ4

8
ΔΨ4; ð11Þ

where ΔΨ4 is the linearized curvature perturbation (with

the dCS coupling scaled out) computed from the variable

Δgab [cf. Eq. (9)]. Thus, given one numerical simulation,

we can generate a family of waveforms parametrized by l

by simply multiplying and adding using Eq. (10).

In Fig. 3, we show the total, second-order accurate dCS

gravitational waveform for three choices of coupling

parameter l=GM. When comparing two different wave-

forms with each other, we are allowed to make an overall

time shift, but the background Ψ
ð0Þ
4

and correction Ψ
ð2Þ
4

of

the same waveform may not be shifted relative to each

other. We have shifted the time axis on Ψ
ð0Þ
4

and Ψ
ð2Þ
4

to the

peak time of the real part of Ψ
ð0Þ
4
. We see a time-dependent

modification in the phase of the total waveform in Fig. 3.

We plot the results on a logarithmic scale in Fig. 4 for

clarity. The time dependence of the phase shift is crucial for

the dCS correction to be nondegenerate with the back-

ground GR waveform. The sign of the shift is consistent

with the intuition that a dCS-corrected binary inspirals

more quickly, since energy can be lost through the scalar

FIG. 2. Leading-order dCS correction to the gravitational

waveform for a system with parameters consistent with

GW150914 (cf. Sec. III A). As we discuss in Sec. III E, this

merger gravitational waveform is not contaminated by secular

effects. In the upper panel, we show the waveform correction for

low, medium, and high numerical resolutions. The curve labeled

“Earlier start” shows a waveform with a slightly earlier dCS start

time (25M before, cf. Sec. III E), which lies between the different

numerical resolution waveforms. In the lower panel, we show the

fractional differences (normalized by the complex amplitudes)

between the low, medium, and high resolutions, showing that the

waveform converges with numerical resolution. We show the

fractional difference between the highest resolution waveform

and the “Earlier start” waveform, and find that this lies within the

numerical error bounds of the merger waveform. We thus

conclude that there is no significant amplitude difference caused

by an earlier start time. Hence, our merger waveform is not

contaminated by secular effects. Note that all of the waveforms

are presented with the dCS coupling ðl=GMÞ4 scaled out, and

this factor must be reintroduced for the results to be physically

meaningful.

FIG. 3. Second-order accurate dCS gravitational waveforms,

for three choices of dCS coupling constant, l=GM. We add the

leading-order dCS correction to the gravitational waveform (from

Fig. 2) to the background GR gravitational waveform of the

system, to give the total dCS waveform [cf. (10)]. The value

l=GM ¼ 0 corresponds to GR, with no dCS modifications. The

value l=GM ¼ 0.226 corresponds to the largest-allowed value

for the perturbative scheme to be valid (cf. Sec. III F). The

l=GM ¼ 0.3 curve is included to visually emphasize the shape of

alteration provided by the dCS correction.
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field. Thus the waveform should have an earlier merger

than the pure GR waveform.

C. Mismatch

Let us now compute the mismatch between the dCS

waveform and the corresponding GR waveform. Note that

we do not optimize over different background GR param-

eters, but rather compute the mismatch for the waveform

presented in Sec. III B for l=GM ¼ 0 (GR) and l=GM ¼
0.226 (the maximal allowed value by the instantaneous

regime of validity in Sec. III F). Using the methods of

Sec. VII of [34], we compute the strain mismatch with the

Advanced-LIGO design sensitivity noise curve [35]. For an

optimally oriented binary with total mass 68 M⊙, we

compute a mismatch, optimizing over time and phase shift,

of 8.6 × 10−5. This is an approximate upper bound on the

mismatch, which we will analyze more carefully in future

work.

We can estimate a minimum SNR necessary to distin-

guish between GR and the dCS-corrected waveforms. We

follow the distinguishability criterion Eq. (G13) of [36],

M≳
D

2SNR2
; ð12Þ

where D counts the number of parameters in the model

used by data analysis (cf. Appendix G in [36] for a

derivation of this expression). Using this criterion, we find

a lower limit on the minimum SNR for distinguishability,

SNR≳ 80
ffiffiffiffi

D
p

: ð13Þ

What should the value ofD, the number of parameters in

the data analysis waveformmodel, be? The largest value for

D for a circular binary would be D ¼ 9 for parameters

λ⃗ ¼ fm1; m2; χ⃗1; χ⃗2;lg, where m1;2 are the masses of the

two holes (note that this can also be reparametrized in terms

of the chirp mass M and mass ratio q), and χ⃗1;2 are the

3-dimensional spins of the black holes. The dCS coupling

parameter l is an additional parameter in a beyond-GR

analysis. Gravitational wave data analysis often does not

make use of the full 8-dimensional GR parameter space,

however. In the LIGO parameter estimation study for

GW150914 [28], two waveform models were used:

EOBNR [37] and precessing IMRPhenom, (cf. [38]).

The EOBNR model has 4 intrinsic GR parameters λ⃗ ¼
fm1; m2; χeff ; χpg, where χeff corresponds to the compo-

nent of the spins along the orbital angular momentum,

and χp corresponds to the perpendicular component.

This would correspond to D ¼ 5 for our purposes.

The IMRPhenom model, meanwhile, uses 4 of the 6 spin

degrees of freedom, which corresponding to D ¼ 7. See

also the parameter estimation in GWTC-1 [1], which

provides an updated analysis. Perhaps the smallest value

of D would be D ¼ 3, corresponding to λ⃗ ¼ fM; χeff ;lg,
as M and χeff are parameters LIGO can most robustly

measure (cf. [1]). Thus, let us quote values for D ¼
f3; 5; 7; 9g, giving

SNRfD ¼ 3; 5; 7; 9g≳ f138; 179; 211; 240g: ð14Þ

Let us quote the detectability SNR as the range SNR≳

180–240, with the precise value depending on the dimen-

sion of the parameter estimation model. It is beyond the

scope of this study to consider which class of models

should be used specifically, as well as the biases introduced

by only including a subspace of the full 9 dimensional

parameter space (see [39] for recent work in this direction).

D. dCS ringdown waveforms

Let us now repeat the dCS ringdown analysis of [9] to

compute the leading-order modifications to the GW150914

quasinormal mode (QNM) spectrum. We fit the dominant

(2, 2) mode. Using three overtones, we are able to fit all the

way to the peak ofΨ4, in line with the results of [33,40]. We

show the ringdown modification fit in Fig. 5 (cf. Fig. 7 of

[9]). We give the leading-order dCS modifications to the

QNM frequency and damping time, with the dCS coupling

parameter scaled out in Table I.

E. dCS secular growth during inspiral

As predicted in Sec. II B, we see secular growth during

the inspiral in the leading-order dCS waveforms, Ψ
ð2Þ
4
. In

Fig. 6, we show the results for Ψ
ð2Þ
4

for simulations with

various dCS start times (and hence different times over

which to accumulate secular growth). We see that the

longest dCS simulations have the largest amplitudes ofΨ
ð2Þ
4

at merger, and the shortest dCS simulations have compa-

rably small amplitudes. Thus, when physically interpreting

the inspiral results, we must remove the secular growth

accumulated over the inspiral phase, which is work in

progress that we discuss in Appendix A.

FIG. 4. Same as Fig. 3, but on a logarithmic scale to better

show the phase difference between the GR and dCS corrected

waveforms.
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To trust our waveform, we must ensure it is not

contaminated by secular effects. We performed 5 additional

simulations with different start times for turning on the dCS

correction. In Fig. 7, we look at the peak amplitude of the

waveform as a function of inspiral length. We see that the

secular growth, as reflected in the peak amplitude, behaves

quadratically with the length of the dCS simulation. The

waveform we presented in Secs. III B and III D correspond

to an inspiral length of 200M. Since this is near the

quadratic minimum, it shows minimal sensitivity to length

and minimal secular contamination. In Fig. 2 we have also

plotted waveforms with length 225M. Note that the differ-

ence in amplitudes between the two waveforms is smaller

than the difference in amplitude we see between different

numerical resolutions of waveforms with inspiral length of

200M. Thus, we conclude that the merger waveform

presented in Sec. III B is not contaminated by secular effects.

FIG. 5. Quasinormal mode fits for the post-merger spectrum of

rΨ
ð2Þ
4

(dashed pink curve), the leading-order dCS gravitational

radiation. We show the dominant (2, 2) mode of the radiation, fit

to the three least-damped overtones. The solid colored curve

corresponds to the real part of rΨ
ð2Þ
4
. For reference, we have

plotted the real part of rΨ
ð0Þ
4

in dashed gray. This is similar to

Fig. 7 of [9], which was done for a head-on collision in order-

reduced dCS.

TABLE I. Fitted QNM parameters for the postmerger gravita-

tional radiation for the GW150914 simulation considered in this

study (cf. Sec. III A). Each row corresponds to one of the three

dominant overtones of the (2, 2) mode of the radiation. The

quantity ω
ð2Þ
ð2;2;nÞMf is the leading-order dCS modification of the

QNM frequency (multiplied by the final mass Mf ), while

τ
ð2Þ
ð2;2;nÞ=Mf is the leading-order dCS modification to the damping

time (divided by the final mass Mf ). In each case, the dCS

coupling parameter ðl=GMÞ4 is scaled out. For this simulation,

the final mass isMf ¼ 0.9525M, and the final dimensionless spin

is χf ¼ 0.692, purely in the ẑ direction.

n ðl=GMÞ−4ωð2Þ
ð2;2;nÞMf ðl=GMÞ−4τð2Þð2;2;nÞ=Mf

0 −0.437� 0.03 −8.13� 0.25

1 3.92� 0.14 220.1� 6.5

2 −1.54� 0.04 146.9� 6.4

FIG. 6. Secular growth in leading-order dCS gravitational

waveforms as function of the length of the waveform. Each

colored curve corresponds to a simulation with a different start

time for the dCS fields (as discussed in Sec. II B), with the same

GR background simulation for each. We label each curve by the

time difference between the peak of the waveform and the start

time of ramping on the dCS field (minus the ramp time). We see

that simulations with earlier dCS start times have higher

amplitudes at merger, having had more time to accumulate

secular growth.

FIG. 7. Peak amplitude of the dCS correction to the gravita-

tional waveform as a function of inspiral length. We show the

length relative to the peak of the waveform (as in Fig. 6). The

dashed black vertical line corresponds to the length of the dCS

merger simulation we present in this paper. The peak amplitude

serves as a measure of the amount of secular growth in the

waveform (cf. Fig. 6). We see that the peak amplitude increases

quadratically with inspiral length (as shown by the quadratic fit in

dashed green).
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F. Regime of validity

Besides the previously discussed secular breakdown,

there is also an instantaneous regime of validity. Since we

work in a perturbative scheme, at each instant there is a

finite radius of convergence in l=GM. We estimate this

value using the formalism in [9,22], by comparing the size

of the leading-order correction Δgab to the background

metric g
ð0Þ
ab . If the correction becomes comparable to the

background, it is no longer justified to neglect the omitted

higher-order terms in the expansion. For the waveform

presented in Fig. 2, the maximum allowed value of l=GM,

as a function of time, attains its minimum value at merger,

where the strong-field effects are greatest, and hence

the dCS metric deformation is largest. Here we find

ðl=GMÞmax ≈ 0.226. If we take a total mass M ∼ 68 M⊙

(consistent with GW150914 [28]), we can use our pertur-

bative treatment to make self-consistent calculations up to

lmax ≈ 23 km. That is, if data analysis using this waveform

leads to a constraint tighter than l < lmax, the use of

perturbation theory was consistent, and the constraint is

valid—even for “full” dCS theory.

IV. CONCLUSIONS AND FUTURE WORK

In this study, we have produced the first astrophysically

relevant numerical relativity binary black hole gravitational

waveform in a higher-curvature theory of gravity. We have

focused on dynamical Chern-Simons gravity, a quadratic

gravity theory with origins in string theory and loop

quantum gravity [5], extending our previous results for

binary black hole head on collisions in dCS to inspiraling

systems [9].

We have focused on a BBH system with parameters

consistent with GW150914, the first LIGO detection

[28,31] (cf. Sec. III A). In Sec. III B, we presented the

leading-order dCS correction to the merger gravitational

waveform, with minimal secular effects. In Sec. III D, we

repeated our quasi-normal mode analysis presented in [9],

analyzing the leading-order dCS correction to the ringdown

waveform, and extracting the corresponding modifications

to the frequencies and damping times of the quasi-normal

modes.

In Sec. III E, we showed the presence of secular growth

during the inspiral portion of the leading-order dCS

gravitational waveform, as theoretically predicted in

Sec. II B. While we address possible avenues for removing

this secular growth in Appendix A, we focused in this study

on the merger and ringdown portions of the waveform.

Our ultimate goal is to make these beyond-GR wave-

forms useful for LIGO and Virgo tests of general relativity

[2,3]. While a natural conclusion would be to generate

enough beyond-GR waveforms to fill the BBH parameter

space, build a surrogate model, and use this for model-

dependent parameter estimation (cf. [29]), an important

first step is to study the degeneracies between beyond-GR

waveforms and waveforms in pure general relativity. We

have found nondegeneracy with GR in the limit of infinite

signal to noise ratio in the dCS black hole shadow [13], and

in the quasinormal mode spectrum [9], but a realistic

analysis must include detector noise. We will inject our

beyond-GR waveforms into LIGO noise and compute

posteriors recovered using present LIGO parameter esti-

mation and testing-GR methods [3,28,41,42]. This in turn

serves as a degeneracy study, testing the degeneracy of a

dCS-corrected waveform with GR waveforms with differ-

ent parameters in the presence of LIGO noise.

Additionally, our methods are fully general [12], and thus

can be used for Einstein dilaton Gauss-Bonnet (EDGB)

gravity, another higher curvature theory. While simulations

of the leadingorderEDGBscalar field on aBBHbackground

have been performed [43], we can go one order higher and

obtain the leading-order EDGB correction to the gravita-

tional waveform. This is forthcoming work, and we have

alreadydemonstrated the leading-order numerical stability of

rotating BHs in EDGB with our methods [44]. EDGB,

however, has dipolar radiation during the inspiral, with the

leading-order post-Newtonian correction to the inspiral

entering at −1 PN order relative to GR (dCS enters at 2

PN relative toGR) [21]. Thus secular effects should be larger

in EDGB than in dCS. However, if one can control these

secular effects, or show minimal contamination, EDGB

should enjoy more stringent constraints than dCS.
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APPENDIX A: STRATEGIES FOR REMOVING

SECULAR GROWTH

A common feature of perturbative approximations to

near-oscillatory dynamical systems is the tendency to

develop unbounded secular divergence from the exact

physical solution [23]. Of course, once such growth reaches

a magnitude such that the secularly growing solution

competes with the small parameter of the expansion, the

solution should not be trusted at all. However, prior to that

point, the secular growth represents an expanding deviation
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from the hypothetical exact solution. This growth degrades

the precision of the approximate solution. Because of

secular growth, the scale of the error term in the expansion

of the solution of Eqs. (8) and (9) should no longer be

estimated asOððl=GMÞ4Þ, but instead should be estimated

as OðΔÞ, where

Δ ¼
�

l

GM

�

4 t

T
; ðA1Þ

and T is the radiation-reaction timescale.

These secularly growing perturbed solutions are not

intrinsically erroneous, but instead represent a nontrivial

evolution of the background parameters of the system. For

the dCS expansion relevant to this paper, those background

parameters can be thought of as the initial data parameters

of the inspiral [46], such as the mass and spin of the black

holes, or as parameters relevant to the waveform, such as

the amplitude and phase. Different parametrizations are

similarly valid, but give rise to distinct details in how the

mitigation strategies are formulated. The secular growth

does present a practical problem for solutions, though, as

numerical results will eventually drift from the perturbative

domain of validity (cf. Sec III F), and fail to approximate

the true dynamics at long timescales.

In the dCS perturbed system, the secular drift is most

obvious in the frequency parameter of the binary, which

then manifests itself as an approximately quadratic in time

∼t2=T2 drift of the orbital phase parameter (see Sec. II B).

The body of this paper describes the robust results for near

merger and ringdown of the binary that can be obtained by

enforcing that the Δ of Eq. (A1) is within an acceptable

tolerance level throughout the simulation, which is vali-

dated in Sec. III F.

To illustrate why such effects arise, consider the generic

perturbed equations of motion approximating a linear

second-order hyperbolic differential equation DðgÞ ¼ 0:

Dð0Þðgð0ÞÞ ¼ 0; ðA2aÞ

Dð0Þðgð1ÞÞ ¼ Dð1Þðgð0ÞÞ; ðA2bÞ

where g ¼ gð0Þ þ ϵgð1Þ þOðϵ2Þ and D ¼ Dð0Þ þ ϵDð1Þ þ
Oðϵ2Þ. Consider a set of homogeneous solutions gð0ÞðCiÞ to
Eq. (A2a) parametrized by constants Ci. Consider then a

linearized differential operator Dð1Þ with properties such

that

Dð1Þðgð0ÞÞ ¼
X

i

βi
δgð0ÞðĈiÞ

δĈi

; ðA3Þ

for a set of coefficients βi approximately constant over some

sufficiently short time and new set of approximate constants

Ĉi. Then Eq. (A2b) is solved by g
ð1Þ ¼ αðxμÞgð0Þðtβi þ ĈiÞ,

for α determined by the coefficients of the derivatives inDð0Þ.
The secular growth can then be seen in the linear dependence

of the arguments in the solution of gð1Þ.
The statements of the previous paragraph can be extended

to more generic systems and parameters, and can be used to

determine the sets of functions in an appropriate decom-

position of the space of possible right-hand sides of

Eq. (A2b) that give rise to secular growth. The exploration

of the nature of the growing solutions and methods to

mitigate the secular growth are the topics of several math-

ematical publications, e.g., [47,48], and references therein.

The problems of secular growth in approximate solutions

to binary black hole inspirals have been noticed, and at

least partially addressed, in other calculational contexts.

Particularly, post-Newtonian approximation [49] and self-

force black hole perturbation theory [50] encounter these

challenges when applied to long-duration inspirals.

A simple solution to the problem is to “stitch” together

results from different starting points of the evolutions

[51,52]. The analogous method for the dCS computation

in this paper would be to transition between the inspiral

predicted by different start times tS of the dCS computation.

Such simple methods, however, will fail to recover the

phase accuracy we seek for gravitational wave predictions.

A full solution to the secular growth problem is to infer the

slow evolution of the parameters of the background

solution (e.g., phase and amplitude drift of the waveform),

and use that slow evolution to adjust the background

solution while performing appropriate alterations to the

perturbed solution to ensure that the full equations of

motion remain satisfied to the desired precision. The

presentation of these types of methods can be found in

various sources [46,48,53,54], and some of the most prom-

ising techniques are referred to in the literature as “multi-

scale” methods and “dynamical renormalization group”

methods.

The main challenges in implementing a method to bring

the phase evolution back into the background solution are

(1) inferring the rate of the phase evolution from a given

secularly growing perturbative solution, and (2) applying

that correction while maintaining desired precision. The

task of performing the background correction is made all

the more difficult without the formulaic luxury of exact

analytic backgrounds that prior work has enjoyed. We

intend to handle in future work the task of extracting the

phase drift from a secularly growing solution by a well-

chosen fit to a linear combination of candidate homo-

geneous waveform of the g
ð2Þ
ab perturbed metric and a slowly

drifting numerical solution.

An adiabatic solution should then be available by

evolving the slowly varying parameters of the pure-GR

background solution through the space of perturbative

solutions. In forthcoming work, we address the feasibility

of performing that adiabatic evolution as a postprocessing

step to waveforms obtained from a family of short-duration
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approximate dCS evolutions such as those presented in

this paper.

APPENDIX B: RAMPING ON DCS

SOURCE TERMS

As discussed in Sec. II B, our goal is to start the dCS

simulations as close to merger as possible, in order to avoid

secular growth effects from the inspiral. We thus aim to

ramp on the source terms for Δgab and Δϑ [as governed by

Eqs. (8) and (9)] at some start time ts close to merger.

Consider some ramp function of the form

fðtÞ ¼

8

>

>

<

>

>

:

0 t < ts

FðtÞ ts ≤ t ≤ ts þ tramp

1 ts þ tramp < t;

ðB1Þ

where FðtÞ smoothly ramps from 0 to 1 with a specified

number of derivatives matching at each endpoint. The

required number of derivatives depends on the order of the

integration scheme. Here tramp is the characteristic ramp

time of FðtÞ. We ramp on the dCS fields by replacing l2 →

fðtÞl2 in the evolution equations, and ramp on the scalar

field source as

□
ð0Þ
Δθ ¼ fðtÞ�RRð0Þ: ðB2Þ

We similarly ramp on the dCS metric deformation as

G
ð0Þ
ab ½Δgab� ¼ −fðtÞCð1Þ

ab ½Δθ� þ
1

8
T
ð1Þ
ab ½Δθ�: ðB3Þ

For the above equation, recall that in Eq. (6), there is a

factor of l2 in the Cab term, and thus for the scheme to be

consistent we must include a factor of fðtÞ in front of C
ð1Þ
ab .

In practice, we choose a function of the form (between ts
and ts þ tramp)

t� ≡ ðt − tsÞ=tramp;

FðtÞ ¼ t5�ð126þ t�ð−420þ t�ð540þ t�ð−315þ 70t�ÞÞÞÞ:
ðB4Þ

We plot the ramped scalar field source term fðtÞ�RR in

Fig. 8 to show the character of this function.
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