

GeSn on Insulators (GeSnOI) towards Mid-Infrared Integrated Photonics

1 **Xiaoxin Wang¹, Alejandra Cuervo Covian¹, Lisa Je¹, Sidan Fu¹, Haofeng Li,¹ James Piao,^{1,2}**
2 **and Jifeng Liu¹**

3 ¹Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755,
4 USA

5 ² Epitaxial Laboratory, Inc. 5818 E Molloy Road, Syracuse, NY 13211, USA

6 *** Correspondence:**
7 Jifeng.Liu@dartmouth.edu

8 **Keywords:** **GeSn, Direct band gap; Crystallization; Photonic Integration; Mid infrared;**
9 **Optical gain; Photodetector**

10 **Abstract**

11 In recent years, Ge and Ge_{1-x}Sn_x materials and devices have achieved rapid progress in integrated
12 photonics. However, conventional heteroepitaxy of active photonic devices compromises the area on
13 Si for CMOS electronics, limiting the scale of integration. Furthermore, it is not possible to grow GeSn
14 epitaxially on amorphous and/or flexible substrates towards 3D photonic integration in mid infrared
15 (MIR) regime. Here we present low-temperature crystallization of direct bandgap, high crystallinity
16 Ge_{1-x}Sn_x (0.08< x <0.26) on amorphous dielectrics insulators (GeSnOI) towards 3D and flexible MIR
17 integrated photonics. Utilizing eutectically-enhanced crystallization, an extraordinarily large average
18 grain size of ~100 μm has been achieved in blanket GeSn films crystallized on SiO₂ layers, flexible
19 glass, and polyimide substrates alike. Furthermore, using Sn nanodot enhanced composition
20 enhancement (NICE), we have achieved an average Sn composition as high as 26 at. % to further
21 extend the optical response of GeSn towards $\lambda=3\text{-}5 \mu\text{m}$. The achieved Sn composition of 8-26 at.% far
22 exceeds that of the equilibrium solubility limit of < 1 at.%, even though the crystallization temperature
23 of 350-450 °C far exceeds the typical epitaxial growth temperature of GeSn. This result indicates that
24 crystallization from a-GeSn may offer better metastability compared to direct epitaxial growth of GeSn.
25 Attesting to the high crystallinity, a peak optical gain of 2900 cm⁻¹ with a lifetime approaching 0.1 ns
26 is achieved at $\lambda=2200\text{-}2350 \text{ nm}$ at 300 K. The gain lifetime is on the same order as epitaxial GeSn, and
27 it is >100x longer than the direct gap transition in Ge, confirming the indirect-to-direct band gap
28 transition in GeSn at ~9 at. Sn composition. Moreover, a prototype p-GeSn/n-Si photodiode from a-
29 GeSn crystallization achieves 100 mA/W responsivity at $\lambda=2050 \text{ nm}$ and T=300 K, approaching the
30 level of some commercial PbS detectors. The device also demonstrates photovoltaic behavior and a
31 low dark current density of 1 mA/cm² at -1V reverse bias, comparable to epitaxial Ge/Si photodiodes.
32 These results indicate that crystallization of GeSnOI offers a promising solution for active devices
33 towards 3D MIR photonic integration and/or MIR photonics on flexible substrates.

34 **1 Introduction**

35 Integrated photonics has achieved rapid progress in the past two decades. An almost complete set of
36 passive and active photonic components have been developed on the silicon-on-insulator (SOI)

37 platform, including waveguides, couplers, splitters, filters, polarizers, (de)multiplexers, modulators,
 38 switches and photodetectors [1, 2]. Many of these devices are being standardized in Silicon Photonics
 39 Process Design Kits (PDK) under the American Institute for Manufacturing Photonics (AIM
 40 Photonics) [3]. Ge has played an important role in active photonic devices for integrated photonics [4-
 41 6] due to its pseudo direct bandgap behavior [7] and compatibility with Si complementary metal oxide
 42 semiconductor (CMOS) technology. More recently, $\text{Ge}_{1-x}\text{Sn}_x$ materials [8-14] and devices [15-21] have
 43 become an active field of research since an indirect-to-direct bandgap transition occurs at $x \sim 0.06-0.11$
 44 (depending on the level of strain). GeSn also brings about a great opportunity for integrated active
 45 photonic devices in mid-infrared (MIR) regime ($\lambda = 3-5 \mu\text{m}$) [22-25] for sensing and imaging
 46 applications since the direct bandgap can be decreased to $< 0.5 \text{ eV}$ for $x > 0.09$.

47 So far, most of the Si-based integrated photonic devices, especially Ge and GeSn active devices,
 48 are achieved via *planar* electronic-photonic integration, where photonic components are integrated
 49 with CMOS circuitry on the same single-crystal Si layer (Figure. 1a). However, heteroepitaxy of Ge
 50 and GeSn consumes real estate on single crystal Si, thereby significantly sacrificing CMOS area for
 51 photonic devices. This issue is manifested by the scanning electron microscopy (SEM) and
 52 transmission electron microscopy (TEM) images in the inset of Figure. 1a, showing that the cross-
 53 sectional dimensions of a waveguide-integrated Ge photodetector is $\sim 20\times$ bigger than CMOS
 54 transistor in 32 nm technology node due to the fundamental optical diffraction limit. Moreover, the
 55 planar integration approach has to introduce some modifications to existing CMOS process flow in
 56 order to accommodate the epitaxial growth as well as the vertical dimension of photonic devices [26],
 57 making it hard to implement in $< 45 \text{ nm}$ CMOS technology nodes. In addition, it is not possible to
 58 epitaxially grow Ge or GeSn on amorphous substrates (such as polymers) for flexible integrated
 59 photonic circuits, either. Therefore, in large-scale electronic-photonic integration it would be ideal to
 60 adopt a monolithic 3D integration approach, moving the photonic circuits to the metal/dielectric
 61 interconnect level above the CMOS layer (Figure. 1b). The ability to achieve high crystallinity Ge or
 62 GeSn on amorphous dielectrics would offer great flexibility in photonic integration since active
 63 photonic devices could be grown on any layer or substrate at any designated region.

64 In this paper, we present low-temperature crystallization of direct bandgap, high crystallinity $\text{Ge}_{1-x}\text{Sn}_x$ with x up to 0.26 (i.e. 26 at.%) on amorphous dielectrics and flexible substrates towards monolithic
 65 3D photonic integration and flexible MIR photonics. Utilizing eutectically enhanced crystallization in
 66 Ge-Sn system, a very low nucleation rate and high lateral growth rate can be achieved, leading to an
 67 extraordinarily large grain size of $\sim 100 \mu\text{m}$ in blanket GeSn films crystallized on thermally grown SiO_2
 68 layers, flexible Willow glass, fused silica, and polyimide substrates alike. The crystallization
 69 temperature range of $380-450 \text{ }^\circ\text{C}$ is also compatible with back-end-of-line CMOS processing and
 70 polyimide flexible substrates. Furthermore, using Sn nanodot induced composition enhancement
 71 (NICE), we have achieved an average Sn composition as high as 26 at.%. Attesting to the high material
 72 quality of crystallized GeSn, a high optical gain $\sim 2900 \text{ cm}^{-1}$ with a lifetime of 0.1 ns have been achieve
 73 at $\lambda = 2200-2350 \text{ nm}$ at room temperature from crystallized GeSn with 9 at.% Sn. The peak gain
 74 coefficient is comparable to III-V semiconductors. The gain lifetime is on the same order as epitaxial
 75 GeSn, and it is $> 100\times$ longer than that of Ge, confirming the indirect-to-direct band gap transition in
 76 Ge $_{1-x}\text{Sn}_x$ at $x \geq 0.09$. Furthermore, a prototype p-GeSn/n-Si photodiode achieves 100 mA/W
 77 responsivity at $\lambda = 2050 \text{ nm}$ and 300 K, comparable to some PbS MIR photodetectors. The GeSn/Si
 78 photodiode also demonstrates photovoltaic behavior and a low dark current density of 1 mA/cm^2 at -
 79 1V reverse bias, comparable to epitaxial Ge/Si photodiodes. These results indicate that GeSn
 80 crystallized on dielectrics offers a promising solution for active devices in 3D photonic integration.

82 **2 Substrate-Independent GeSn Crystallization on Amorphous Insulators**

83 The basic idea of crystallizing amorphous GeSn at low temperatures originates from the eutectic phase
 84 diagram of the Ge-Sn system [4, 11]. According to the equilibrium phase diagram, a Ge-rich solid
 85 phase is in equilibrium with a Sn-rich liquid phase at temperatures $>231^{\circ}\text{C}$. While the exact
 86 temperature and solubility no longer applies to the crystallization of amorphous GeSn (a-GeSn) since
 87 it is not in thermodynamic equilibrium, the formation of a small amount of liquid Sn is indeed observed.
 88 During the crystallization process of a-GeSn thin films upon thermal annealing, which involves
 89 rearrangement of atoms into a long-range ordered diamond cubic structure, the Sn-rich liquid phase
 90 greatly enhances atomic diffusion, and subsequently, the lateral growth of the Ge-rich GeSn solid
 91 phase. Hence, crystallization of a-GeSn is expected to occur at a relatively low temperature with a fast
 92 lateral growth rate. This process is somewhat similar to liquid phase epitaxy except that there is no
 93 single crystal template. We call it “eutectically-enhanced crystallization” (EEC). Note that a *dramatic*
 94 *difference* between the crystallization of a-GeSn and the solidification of liquid-phase GeSn is that the
 95 incorporation of Sn into the Ge-rich solid phase could far exceed the equilibrium solubility (~ 1 at.%)
 96 in the former case because the initial state of a-GeSn is far from equilibrium. Furthermore, because of
 97 the lower surface energy of Sn compared to Ge, the Sn-rich liquid phase would segregate at the grain
 98 boundaries and on the surface of crystallized GeSn. Subsequently, the excess Sn can be easily and
 99 selectively etched away using HCl solution, leaving the crystallized GeSn for integrated photonic
 100 device fabrication [4, 11, 22, 27-30].

101 **2.1 Blanket GeSn Thin Film Crystallization**

102 To investigate the crystallization of GeSn thin films, a- $\text{Ge}_{1-x}\text{Sn}_x$ ($0 < x < 0.20$) thin films are deposited
 103 on thermally grown SiO_2 (5-10 nm thick) on Si, Corning’s flexible Willow glass substrates [31], fused
 104 silica, and polyimide foils by co-evaporating Ge and Sn in a Kurt Lesker Lab 18 Physical Vapor
 105 Deposition (PVD) machine. The base vacuum of the system is better than 5×10^{-8} Torr before the co-
 106 evaporation process. Over the course of our studies, the purity of Sn evaporation sources has been
 107 improved from 99.999% (5Ns) to 99.99999% (7Ns), while semiconductor grade Ge has been used in
 108 all studies. The deposition rate of Ge is typically 0.08 nm/sec, and the Sn deposition rate is adjusted to
 109 achieve different a-GeSn compositions. The deposited a-GeSn thin films are annealed at 380-450 °C
 110 in N_2 for crystallization. Alternatively, the samples can be crystallized by rapid thermal annealing
 111 (RTA) or locally crystallized by a focused laser beam followed by furnace annealing. The excess Sn
 112 after the crystallization is etched away by 37.2% HCl: H_2O solution.

113 Irrespective of the substrate, we found the following common features of a-GeSn crystallization:
 114 (1) *A high lateral growth rate vs. a very low nucleation rate, leading to an extraordinarily large*
 115 *average grain size of $\sim 100 \mu\text{m}$ when crystallizing blanket $\text{Ge}_{1-x}\text{Sn}_x$ films with $0.08 < x < 0.15$.* (2) *Well-*
 116 *defined crystallization temperature resembling thermodynamic phase transition.* This feature is
 117 drastically different from the kinetics-dominated crystallization of amorphous Si. The crystallization
 118 temperature of a-GeSn decreases with the increase of Sn composition [11], and no crystallization will
 119 occur even at 5 °C below the crystallization temperature after prolonged annealing for several hours.
 120 Once above the crystallization temperature, on the other hand, the crystallization can be completed
 121 within 90 seconds in RTA. This phenomenon is in line with the well-defined eutectic temperature in
 122 the Ge-Sn equilibrium phase diagram, although the actual crystallization temperature of a-GeSn is
 123 beyond the description of the phase diagram due to its non-equilibrium nature. (3) *A strong (111)*
 124 *preferred orientation due to minimization of surface energy on amorphous layers* [11, 22, 27, 28]. As
 125 will be discussed later, this preferred (111) orientation also has a beneficial effect on the strain
 126 engineering of GeSn towards direct gap semiconductors.

127 Figure 2a shows a top-view SEM **image** of a crystallized $\text{Ge}_{0.913}\text{Sn}_{0.087}$ film on 5 nm-thick thermally
 128 grown SiO_2 on Si. Grain boundaries can be clearly observed in the low magnification SEM **image** in
 129 Figure 2a, with *huge* grain sizes on the order of 0.1-1 mm, or 3-4 orders larger than the GeSn thin film
 130 thickness (316 nm in this case, as revealed in Figure 2b). This is an *extraordinary* result for
 131 semiconductor thin film crystallization, where typically the grain size is on the same order as the
 132 thickness of the thin film [32]. This observation indicates a slow nucleation rate vs. an extremely fast
 133 lateral growth rate during GeSn crystallization induced by the EEC mechanism. Electron backscatter
 134 diffraction (EBSD) analyses show that each grain predominantly consists of micro-twins as a result of
 135 lateral growth from the same nucleation center upon crystallization [11, 27, 28]. Figures 2b and c show
 136 the cross-sectional SEM **image** and the corresponding energy dispersion X-ray spectroscopy (EDS)
 137 mapping for compositional analyses, respectively. Ge and Sn are both distributed uniformly in the
 138 films without any Sn segregation. The Sn composition from the EDS mapping analysis is 8.7 ± 0.2 at.
 139 %. The biaxial tensile strain is determined to be $\sim 0.2\%$ by combining X-ray diffraction (**XRD**) with
 140 Raman spectroscopy analyses, as detailed in [22]. Furthermore, the strong (111) texture of the
 141 crystallized GeSn thin films leads to a relatively low **Poisson**'s ratio and a higher **dilatational** strain
 142 under biaxial tensile stress due to the largest inter-planar spacing between (111) planes [22]. These
 143 factors favor indirect-to-direct gap transition [22], in contrast to compressive strain in their [001]
 144 oriented epitaxial counterparts.

145 Figure 3 further demonstrates that the EEC mechanism of a-GeSn is equally applicable to flexible
 146 Willow glass substrate, polyimide substrate, and fused silica substrate alike [27, 33]. Large grain sizes
 147 of 0.1-1 mm are maintained in all these cases for $\text{Ge}_{0.91}\text{Sn}_{0.09}$ thin films. In Figure 3b, the center of
 148 nucleation can also be clearly seen, from which the grain grows radially. The polyimide substrate also
 149 shows some micro wrinkles upon GeSn crystallization due to thermal stress. These wrinkles are similar
 150 to surface texturing used in solar cells and can potentially be engineered to enhance the absorption in
 151 GeSn. Furthermore, while it is impossible to directly measure the transmittance spectrum of epitaxial
 152 GeSn thin films on Si at $\lambda < 1200$ nm due to the absorption of the Si substrate, the $\text{Ge}_{0.91}\text{Sn}_{0.09}$ thin films
 153 crystallized on transparent fused silica substrates reveals both the fundamental direct gap at $\lambda \sim 2400$
 154 nm and the secondary direct gap at $\lambda \sim 1150$ nm in the transmittance spectrum (Figure 3d). Interestingly,
 155 in this case the second direct gap is almost exactly twice the first direct gap, which could make a
 156 significant impact on the performance of GeSn lasers due to up-conversion from the first to the second
 157 conduction valley through Auger process. These results not only demonstrate substrate-independent,
 158 high quality GeSn crystallization, but also show that such studies could offer *more* information about
 159 the band structure of GeSn inaccessible to their epitaxial counterparts. We will come to this point again
 160 in Section 3.

161 2.2 Controlling the Nucleation Location upon GeSn Thin Film Crystallization

162 While large grains with high crystallinity are achieved in crystallizing blanket GeSn thin films, the
 163 nucleation remains a stochastic process and there is no control of the nucleation site. To pre-define the
 164 nucleation sites before crystallization annealing, we have developed three approaches: (1) Sn
 165 micropattern induced nucleation [33]; (2) laser seeded nucleation [27-29]; and (3) nanotip induced
 166 nucleation [27, 28].

167 Figures 4a and b show examples of Sn micropattern induced nucleation. In Figure 4a, a ~ 5 μm
 168 diameter Sn microdot is defined on top of a-GeSn by photolithography followed by crystallization
 169 annealing. Clearly, the Sn microdot serves as a nucleation center from which the $\text{Ge}_{0.91}\text{Sn}_{0.09}$ crystals
 170 grow radially. The Sn microdot also melts and dewets into smaller Sn nanodots upon crystallization
 171 annealing, as shown in the inset of Figure 4a. As discussed earlier, Sn can be removed selectively using
 172 HCl solution after crystallization, offering a convenient approach to define the nucleation sites on
 173 GeSn. Figure 4b further shows two Sn microstrips patterned on top of a-GeSn followed by
 174 crystallization annealing. Both Sn microstrips serve as nucleation centers for GeSn. Therefore, the

175 GeSn grains grow perpendicular to the two Sn microstrips, respectively, and impinge each other almost
 176 exactly in the middle of the two Sn microstrips. This observation further confirms that Sn micropatterns
 177 on top of a-GeSn can be engineered to effectively control the nucleation and lateral growth of
 178 crystalline GeSn.

179 An example of laser-seeded crystallization of $\text{Ge}_{0.89}\text{Sn}_{0.11}$ is shown in Figures 5a and b [28]. A laser
 180 beam at $\lambda=514$ nm is scanned at one end of a $2 \mu\text{m} \times 38 \mu\text{m}$ rectangular a-GeSn strip to seed the
 181 nucleation of GeSn before furnace annealing. The optical power at the sample surface is measured to
 182 be 2-3 mW during the laser annealing, and the focal spot is ~ 300 nm in diameter using a $100\times$ objective
 183 lens. The scan rate is $\sim 1 \mu\text{m/sec}$. Subsequently, the a-GeSn microstrip with a laser seeded nucleation
 184 region on one end is annealed at 440°C for 30 minutes. Figure 5b shows the EBSD mapping of the
 185 crystallized strip. Two twinning grains are formed at first from the nucleation site seeded by laser
 186 annealing. During the lateral crystal growth along the length direction upon furnace annealing, one of
 187 the seed grains (pink) overgrows the other (blue) and becomes dominant. Remarkably, this grain spans
 188 almost the entire strip length of $38 \mu\text{m}$, large enough for active photonic devices such as waveguide-
 189 coupled modulators or photodetectors. There are a few sporadic twin boundaries inside the microstrip,
 190 which are optoelectronically benign since these are coherent interfaces without dangling bonds to
 191 induce deep-level defect centers.

192 Figures 5c and d show an example of nanotip induced nucleation [27, 28]. When there is a high
 193 curvature surface, such as a nanotip on an a-GeSn micropattern (e.g. the nanotip on the left side of
 194 Figure 5c), the local phase transition/crystallization temperature decreases with the tip radius r as
 195 described by the Gibbs-Thomson Equation:

$$196 \quad T_m(r) = T_m(\infty) - \frac{2T_m(\infty)\sigma_{sl}}{\Delta H_f(\infty)\rho_s r} \quad (1)$$

197 Here $T_m(r)$, $T_m(\infty)$, σ_{sl} , $\Delta H_f(\infty)$, and ρ_s are the nanotip crystallization temperature, bulk material
 198 crystallization temperature (i.e. $r=\infty$), solid/Sn liquid interfacial energy, heat of fusion of the phase
 199 transition, and the atomic density of the solid phase, respectively. Therefore, if we anneal an a-GeSn
 200 micropattern with a high curvature nanotip at a temperature between $T_m(r)$ and $T_m(\infty)$, only the
 201 nanotip region will crystallize to form a single nucleus. This nucleus at the nanotip will subsequently
 202 seed the lateral growth of GeSn across the entire micropattern, leading to a piece of single crystal
 203 material. In Figure 5c, a GeSn microtaper pattern with different nanotip curvatures ($r=45 \text{ nm}$, 103 nm
 204 and 185 nm , respectively) is annealed at 420°C for 30 minutes. Since the tip on the left has a much
 205 smaller radius than the other two, upon temperature ramping nucleation first starts at this nanotip. This
 206 is supported by the EBSD mapping in Figure 5d. An $18 \mu\text{m}$ -long single crystal grain (in blue) that
 207 occupies $\sim 80\%$ of the entire GeSn microtaper is formed, seeded by the high curvature nanotip on the
 208 left. There are grains growing from the other two tips on the right hand side, too, but their sizes much
 209 smaller than the dominant single crystal grain. A small amount of sporadic grains mostly form twin
 210 boundaries with the dominant single crystal grain. This result proves that the growth of single crystal
 211 GeSn on amorphous dielectric layers can indeed be seeded by the high curvature nanotip on an a-GeSn
 212 micropattern. Additionally, the microtaper structure in Figures 5c and d also facilitates mode
 213 conversion and optical coupling with waveguides, as has been applied to waveguide-coupled
 214 photodetectors [4, 34].

215 2.3 Sn Nanodot-Induced Composition Enhancement (NICE) in GeSn Crystallization

216 In crystallizing blanket a-GeSn thin films, the highest substitutional Sn composition achieved is ~ 10
 217 at.% [11, 33], limited by surface and grain boundary segregation of Sn. RTA can help to suppress Sn
 218 segregation and increase the Sn composition to ~ 11 at.%. Using GeSn micropatterns and laser-seeded
 219 or nanotip-seeded crystallization, the Sn composition has been further increased to 14-15 at.% [28, 29]

220 since most of the large-angle grain boundaries, which tend to induce Sn segregation, are eliminated.
 221 However, to extend the optical response of GeSn towards the MIR window at $\lambda=3\text{-}5\text{ }\mu\text{m}$, an increase
 222 of Sn composition beyond 20 at.% is needed. To address this challenge, we have recently developed
 223 NICE growth approach [35, 36]. This method, counter-intuitively, is *exactly opposite to the*
 224 *conventional approach* of synthesizing diamond cubic GeSn. Since metallic β -Sn is
 225 thermodynamically more stable than diamond cubic α -Sn at $>13^\circ\text{C}$ in bulk materials, conventionally
 226 researchers try their best to avoid the nucleation of metallic β -Sn during GeSn growth. In sharp
 227 contrast, this novel NICE approach utilizes a “*reverse nucleation*” method to dissolve β -Sn nanodots
 228 below the critical size of nucleation into the Ge matrix, thereby achieving an average composition of
 229 26 at. % Sn in Ge.

230 The fundamental principle of the NICE approach is schematically shown in Figure 6a. According
 231 to the well-known nucleation theory, the nucleus of β -Sn has to reach a critical size, r^* , in order to
 232 implement the phase separation from the diamond cubic matrix of Ge or GeSn (labeled as “ α -GeSn”
 233 in Figure 6b). Any β -Sn nucleus smaller than r^* would dissolve back into the diamond cubic lattice to
 234 minimize the Gibbs free energy of the Ge-Sn system. This is because the nucleation of β -Sn creates
 235 new interfaces with the diamond cubic α -GeSn matrix, which increases the interfacial energy that
 236 dominates the total Gibbs free energy of nanostructure due to the large surface-to-volume ratio.

237 Based on this inspiration, if we can first deliberately make β -Sn nanodots with sizes smaller than
 238 r^* , they will be readily dissolved into Ge upon Ge deposition and crystallization annealing, thereby
 239 breaking through the existing solubility limit. As schematically shown in Figure 6b, we first deposit a
 240 layer of β -Sn nanodots (<50 nm in diameter and <30 nm in height, see the inset of Figure 6b) on
 241 SiO_2/Si , then cap the Sn nanodots with evaporated amorphous Ge (a-Ge). This process artificially
 242 creates a huge amount of Ge/Sn interfaces. Upon crystallization annealing at $300\text{-}500\text{ }^\circ\text{C}$, these
 243 nanodots should dissolve into Ge and form crystalline GeSn with high Sn composition in order to
 244 eliminate the Ge/Sn interfaces and decrease the total Gibbs free energy (according to Figure 6a).
 245 Therefore, the NICE growth approach for high Sn composition is based on dissolving β -Sn nanodots
 246 into the diamond cubic lattice of Ge.

247 The preliminary demonstration of NICE growth is shown in Figure 6b-d. The inset of Figure 6b
 248 shows an AFM image of nominally 5 nm-thick β -Sn evaporated onto SiO_2/Si . Sn dewets on SiO_2 during
 249 the deposition, leading to the self-assembly of nanodots. The average diameter of the Sn dots is 45 nm
 250 and the height is ~ 30 nm. The XRD data of the as-deposited β -Sn nanodots are shown in Figure 6c
 251 (step (1)), demonstrating a strong (200) preferred orientation. Remarkably, after depositing nominally
 252 20 nm-thick a-Ge on the β -Sn nanodots, the β -Sn(200) peak is already almost completely replaced by
 253 the (111) peak of nanocrystalline, diamond cubic structured GeSn (step (2)). Moreover, after
 254 crystallization annealing at $450\text{ }^\circ\text{C}$ for 15 min, the β -Sn(200) peak completely disappears and the α -
 255 SnGe (111) peak becomes sharper due to improved crystallinity after annealing (step (3)). Therefore,
 256 we can conclude that β -Sn is completely dissolved into the diamond cubic lattice of GeSn after the
 257 crystallization annealing, confirming our hypothesis based on the nucleation theory in Figure 6a.
 258 Compared to the pure Ge reference sample, the (111) peak of crystallized GeSn is drastically shifted
 259 to lower diffraction angle (indicating a larger lattice constant) due to the significant Sn alloying (Figure
 260 6c, step (3)). From the peak shift in the XRD data, we estimate an average composition of 26-27 at.-%
 261 Sn in crystallized GeSn. Figure 6d further shows a cross-sectional SEM image and the corresponding
 262 EDS mapping of the crystallized GeSn sample grown by NICE approach. The Sn-rich region at the
 263 bottom and Ge-rich cap at the top can be clearly observed. An average Sn composition of 26 at.% Sn
 264 is confirmed, and the bottom Sn-rich region shows a Sn composition as high as ~ 40 at. %, indicating
 265 that NICE approach has a great potential to achieve even higher Sn composition for covering the entire
 266 MIR window of $\lambda=3\text{-}5\text{ }\mu\text{m}$.

267

268 **3 Optical Gain Dynamics of Crystallized Direct Gap GeSnOI**

269 As an approach to evaluate the optoelectronic quality of crystallized GeSnOI discussed in Section 2 as
 270 well as to elucidate some fundamental questions about the GeSn band structure near the indirect-to-
 271 direct gap transition, we performed ultrafast pump-probe optical gain dynamic measurements on the
 272 0.2% tensile strained $\text{Ge}_{0.913}\text{Sn}_{0.087}\text{OI}$ sample shown in Figure 2. This sample provides a composition
 273 close to the indirect-to-direct transition with high crystallinity and large grains on mm-scale so that
 274 grain boundaries have negligible effect on the pump-probe measurement. We aim at addressing two
 275 fundamental questions:

276 (1) *Is the high lasing threshold observed from optically pumped GeSn lasers mainly due to the*
 277 *intrinsic band structure (i.e. insufficient directness of the bandgap) or is it because of extrinsic defects?*
 278 Recently, optically pumped GeSn lasers have achieved dramatic progress [18, 20, 21, 23-25], yet the
 279 threshold pump power density increases from ~ 100 to 1000 kW/cm^2 as the temperature increases from
 280 77 K to 180 K, orders of magnitude higher than bulk homojunction direct gap III-V lasers [37]. Even
 281 at 10K, the threshold pump power density is still $>> 10 \text{ kW/cm}^2$, compared to $<< 1 \text{ kW/cm}^2$ from GaAs
 282 lasers. The threshold does not show significant decrease even at higher Sn compositions of 16-18 at.%,
 283 which are supposed to have better direct gap performance, even though the maximal operation lasing
 284 temperature does increases. Therefore, it is important to find out the key limiting factors of the lasing
 285 threshold.

286 (2) *What is the intrinsic crossover composition for the indirect-to-direct bandgap transition in $\text{Ge}_{1-x}\text{Sn}_x$?* This issue is still controversial theoretically and experimentally, with the Sn content ranging from
 287 6.5 at.% to 10 at.% at the transition point from different reports [10, 14, 38-40]. The increase of the
 288 integrated photoluminescence (PL) intensity with the decrease of temperatures has been applied as an
 289 evidence to prove the direct fundamental bandgap of epitaxial $\text{Ge}_{1-x}\text{Sn}_x$, in contrast to the behavior of
 290 direct gap emission in Ge. However, it has been found recently that there are possible pitfalls associated
 291 with this criterion. For example, Pezzoli et al. [41] reported that $\text{Ge}_{0.95}\text{Sn}_{0.05}$ coherently grown on Ge
 292 buffer layer (with -0.8% compressive strain) also shows a similar PL enhancement at lower
 293 temperatures in spite of its indirect gap nature. In fact, it is well known that even indirect gap
 294 semiconductors (such as Si) tends to show higher PL intensity at lower temperatures due to less non-
 295 radiative recombination. On the other hand, demonstration of lasing can provide evidence for direct
 296 gap GeSn at low temperatures, but cannot directly prove that the same composition remains direct gap
 297 at room temperature since GeSn lasers operating at 300 K are still not available. Thus, direct
 298 measurement of the carrier dynamics and optical gain lifetime is required to undoubtedly determine
 299 the directness of the fundamental bandgap of $\text{Ge}_{1-x}\text{Sn}_x$, especially at room temperature.

300 Femtosecond (fs) pump-probe studies provides an ideal approach to address these two fundamental
 301 questions. The peak optical gain measured at 0 time delay between the pump and probe pulses provides
 302 information about the maximal *intrinsic* optical gain from the direct band-to-band transitions since the
 303 measurement timescale of $< 60 \text{ fs}$ is faster than any recombination process [42, 43]. On the other hand,
 304 the optical gain lifetime measurement provides affirmative information about the nature of the bandgap
 305 (indirect vs. direct) as well as any likely *extrinsic* factors (e.g. defects) that limits the injected carrier
 306 lifetime.

307 A challenge for ultrafast pump-probe measurement of GeSn, though, is that most of the epitaxial
 308 GeSn layers are grown on Ge buffers, which can complicate the pump-probe carrier dynamics analysis
 309 due to carrier diffusion between GeSn and the Ge buffer as well as nonlinear effects in Ge such as
 310 two-photon absorption (TPA). Direct crystallization of high crystallinity GeSnOI provides a possible
 311 approach to circumvent the complication of Ge buffers. The thin SiO_2 layer also prevents photo-
 312 generated carrier diffusion from GeSn into the Si substrate, offering a more accurate evaluation of the
 313 injected carrier density. Therefore, ultrafast pump-probe measurements on our GeSnOI samples reveals
 314 important information about the optical gain and carrier dynamics inherent to GeSn.

316 **3.1 Ultrafast Pump-Probe Measurement Setup**

317 Our experiments are carried out using a setup similar to what has been described in [30] and [42]. In
 318 order to investigate the optical gain spectrum in the $\text{Ge}_{0.913}\text{Sn}_{0.087}\text{OI}$ material, we first measure the
 319 power-dependent ultrafast pulse transmittance spectra (at high injection level) and compare it to the
 320 linear transmittance spectrum measured by a Jasco V-570 UV-VIS-IR spectrometer with a Jasco ISN-
 321 470 integrating sphere (at negligible injection level). For the ultrafast measurements, the incident light
 322 consist of broadband, <60 fs pulses covering the wavelength range of 1850~2400 nm. These are the
 323 idler pulses from an optical parametric amplifier (OPA, Spectra-Physics OPA-800C) pumped by high-
 324 energy pulses at $\lambda=800$ nm seeded by a Spectra-Physics Tsunami Ti:Sapphire laser and amplified by
 325 Spectra-Physics Spitfire-Pro amplifier. In power-dependent ultrafast transmittance spectra
 326 measurements, the focal spot is in Gaussian profile with a beam waist of 90 μm , as measured by razor-
 327 blade method. In pump-probe measurements, the pump beam spot waist is increased to 200 μm in order
 328 to make sure that the probe spot overlaps with it in the center. Since the focal spot size is much smaller
 329 than the grain size of ~ 1 mm, we adjust the beam position so that it is focused within a single grain
 330 during the pump-probe measurement. The transmitted light was then detected by a thermoelectric (TE)-
 331 cooled (at -65 °C) PbS detector with responsivity covering the wavelength range of 1-3 μm . The
 332 detector output was amplified by a lock-in amplifier triggered by the pulse repetition frequency of 1
 333 kHz.

334 Figure 7a shows the spectrum of the <60 fs incident pulse used in this study. The higher energy
 335 photons near the peak wavelength of the pulse at $\lambda\sim 2000$ nm inject a large amount of carriers into the
 336 GeSn thin films, thereby inducing population inversion, optical bleaching and optical gain for the lower
 337 energy photons in the same pulse near the direct band gap of $\text{Ge}_{0.913}\text{Sn}_{0.087}$ at $\lambda=2200\text{-}2300$ nm. This
 338 measurement is a good approach to probe the maximal transient gain with minimal time delay between
 339 the excitation of the higher energy photon and the transmission of the lower energy photons since they
 340 arrive at the sample within the duration of the <60 fs pulse. The peak wavelength of the incident pulse
 341 located at 2000 nm is far away from the 2200-2300 nm wavelength range for transmittance spectra
 342 measurement, thereby avoiding any artifact in the gain spectrum due to its overlap with the peak of the
 343 pump pulse.

344 To make sure that the incident pulse does not introduce any complicated nonlinear effect in the
 345 double-side polished (DSP) Si substrate itself in the wavelength range of interest ($\lambda=2200\text{-}2300$ nm),
 346 we first measured the fs pump transmittance spectrum of the Si DSP wafer as a reference, as shown in
 347 Figure 7b. Corresponding to the peak of the pumping wavelength, we see a dip at 1950-2050 nm due
 348 to strong TPA in DSP Si. On the other hand, the TPA coefficient β tends to be zero for wavelengths
 349 larger than 2200 nm, corresponding to photon energies less than half of the Si band gap [44]. Indeed,
 350 the nearly flat transmittance spectrum in the wavelength range of 2100-2340 nm shows no nonlinear
 351 effect from the DSP Si substrate, consistent with the linear transmittance spectrum measured by UV-
 352 VIS-IR spectroscopy. Therefore, this measurement confirms that the ultrafast transmittance data
 353 between 2090 and 2340 nm will be free of nonlinear effects from the substrate, and that any optical
 354 gain in this wavelength range is attributed to the GeSn layer on top of Si.

355 **3.2 Ultrafast Optical Gain and Carrier Dynamics Measurement of $\text{Ge}_{0.913}\text{Sn}_{0.087}\text{OI}$**

356 Before analyzing the absorption spectra under ultrafast pulse pumping, we first derived the
 357 absorption coefficient spectrum of the $\text{Ge}_{0.913}\text{Sn}_{0.087}\text{OI}$ sample from the transmittance spectrum
 358 measured by UV-VIS-IR spectrometer utilizing iterative self-consistent solution method based on
 359 transfer matrix method and Kramer-Kronig relation [42]. This analysis gives the baseline absorption
 360 of $\text{Ge}_{0.913}\text{Sn}_{0.087}$ without optical pumping, i.e. at an injected carrier density of $\Delta n\sim 0$. The result is shown
 361 in Figure 8a. For direct gap optical absorption, it is well known that

362 $(\alpha h\nu)^2 \propto (h\nu - E_g),$ (2)

363 Here α is the absorption coefficient, $h\nu$ is the photon energy, and E_g is the direct bandgap. Since
 364 the 0.2% biaxial tensile strain splits the light hole (lh) and heavy hole (hh) bands at the center of the
 365 Brillouin zone ($k=0$), the crystallized $\text{Ge}_{0.913}\text{Sn}_{0.087}$ shows a direct band gap of $E_{g^I}(lh)=0.502$ eV and
 366 $E_{g^I}(hh)=0.531$ eV. The obtained direct gaps are close to the expected value of 0.52 eV for 8.7% Sn
 367 based on the report of [38]. Figure 8c further shows that the derived absorption spectrum of $\text{Ge}_{0.913}\text{Sn}_{0.087}$
 368 at $\lambda=2000-2500$ nm is also similar to the data for epitaxial $\text{Ge}_{0.92}\text{Sn}_{0.08}$ samples reported by [38]. Below
 369 its direct band gap of 0.54 eV, the absorption coefficient from the epitaxial $\text{Ge}_{0.92}\text{Sn}_{0.08}$ layer is still
 370 high, e.g. 2500 cm^{-1} at 0.50 eV [38], which is believed to be Urbach tail absorption. Our crystallized
 371 $\text{Ge}_{0.913}\text{Sn}_{0.087}$ film has an additional 1000 cm^{-1} absorption at $h\nu=0.50$ eV compared to its epitaxial
 372 counterpart in [38], partially due to higher Sn composition (~9 at.% vs. 8 at.%) and partially due to
 373 Urbach tail below the direct gap that is clearly shown in Figure 8a. The Urbach tail absorption loss,
 374 probably originated from the nanoscale disorder of Sn distribution in the material, could be a limiting
 375 factor for the demonstration of low-threshold GeSn lasers.

376 Next, we measured the ultrafast pulse transmittance spectra of the GeSnOI sample at different
 377 incident power/injection levels to reveal the *intrinsic* gain from the direct gap transition of GeSn using
 378 the pulse spectrum shown in Figure 7a. This captures the maximal optical gain within the 60 fs pulse
 379 width of the injection, practically before any carrier recombination could occur [42, 43], thereby
 380 revealing the nature of the intrinsic band structure. Figure 8b shows that, in the wavelength regime of
 381 2100-2340 nm free of nonlinear effects of the substrate (see Figure 7b), we clearly observe strongly
 382 enhanced transmittance peak (red curve) at an injected carrier density of $\Delta n \sim 2.8 \times 10^{19} \text{ cm}^{-3}$ from
 383 ultrafast pulse pumping compared to the regular transmittance (i.e. negligible injection level $\Delta n \sim 0$)
 384 measured by UV-VIS-IR spectroscopy. The injected carrier density is estimated based on the input
 385 optical pulse power, the measured beam profile, and the measured thickness and optical absorption of
 386 GeSn at this wavelength. The transmittance is enhanced by ~37 % at the peak wavelength of 2270 nm
 387 at an injection level of $\Delta n \sim 2.8 \times 10^{19} \text{ cm}^{-3}$. The peak transmittance reaches 0.593 at 2270 nm, even
 388 higher than that of the DSP Si substrate (0.572). As will be shown later in our quantitative analyses,
 389 this is due to the large optical gain in the GeSn thin film under high injection level. With a similar
 390 method, we also studied the case of lower injected carrier density. Under $\Delta n = 1.9 \times 10^{19} \text{ cm}^{-3}$, the
 391 transmittance becomes lower compared to the case of $\Delta n = 2.8 \times 10^{19} \text{ cm}^{-3}$, as expected. The peak
 392 transmittance occurs at a longer wavelength of $\lambda = 2290$ nm compared to $\lambda = 2270$ nm for Δn
 393 $= 2.8 \times 10^{19} \text{ cm}^{-3}$. Clearly, the transmittance peak blueshifts and the magnitude increases with the pump
 394 power. This is consistent with the band filling upon population inversion, again proving that the
 395 enhanced transmittance is due to the optical bleaching or gain in crystallized $\text{Ge}_{0.913}\text{Sn}_{0.087}$ films.

396 Further utilizing iterative self-consistent solution of the absorption spectra considering Kramer-
 397 Kronig relation and transfer matrix method [42], we are able to obtain the absorption/gain spectra at
 398 different injection levels, as shown in Figure 8c. Under $\Delta n = 2.8 \times 10^{19} \text{ cm}^{-3}$ injection, a net gain (i.e.
 399 *negative* absorption) is observed in the wavelength range of 2220-2330 nm at room temperature from
 400 the crystallized $\text{Ge}_{0.913}\text{Sn}_{0.087}$ OI. The peak gain coefficient is $\sim 2900 \text{ cm}^{-1}$ at 2270 nm, comparable to
 401 III-V semiconductors and promising for room-temperature lasing. On the other hand, under a lower
 402 injection level of $\Delta n = 1.9 \times 10^{19} \text{ cm}^{-3}$, only optical bleaching is observed with the absorption coefficient
 403 decreasing from 4800 cm^{-1} to 3680 cm^{-1} at 2300 nm. This comparison indicates that $\text{Ge}_{0.913}\text{Sn}_{0.087}$
 404 needs ~10x larger injected carrier density for optical transparency than III-V semiconductors, i.e.
 405 $\Delta n_0 \sim 2 \times 10^{19} \text{ cm}^{-3}$ in GeSn vs. $\Delta n_0 \sim 2 \times 10^{18} \text{ cm}^{-3}$ in GaAs, possibly due to a larger optical loss (e.g. from
 406 free carriers and inter-valence band transitions). The high injection level needed for transparency could
 407 be one of the limiting factors of the lasing threshold.

408 To further study the carrier dynamics in GeSnOI, the ultrafast pulse with the peak positioned at
 409 2000 nm is used as the pump, and the probe wavelength is set at 2300 nm. The experimental setup is
 410 similar to [30], except that the probe is shifted to longer wavelengths closer to the direct gap of
 411 Ge_{0.913}Sn_{0.087} shown in Figure 8a, while the pump is shifted to shorter wavelengths to better distinguish
 412 from the probe. The probe pulse is incident vertically on the sample, while the pump pulse is incident
 413 at 60 degree angle. The beam profiles of the pump and probe spots on the surface of the sample are
 414 measured by razor-blade method and carefully overlapped, with the spot size of the pump pulse (200
 415 μm) being ~ 2 x that of the probe spot (90 μm). An aperture is placed immediately at the backside of the
 416 sample to block any astray light from the pump, thereby gathering the probe signal only. A neutral
 417 density (ND) filter is put in the probe path to achieve a pump-to-probe intensity ratio $>8:1$ and also to
 418 ensure no nonlinear effect caused by the probe itself. The pump-induced change in the transmittance
 419 of the probe, ΔT , is normalized to the transmittance without pumping (T). $\Delta T/T$ is measured as a
 420 function of delay time Δt between the probe pulse and the pump pulse to evaluate the carrier dynamics
 421 and optical gain lifetime in the sample by varying the optical path length of the probe with a translation
 422 stage in the probe path.

423 At an injection level of $\Delta n = 4.8 \times 10^{19} \text{ cm}^{-3}$ and a wavelength of $\lambda = 2300 \text{ nm}$, we observe $\Delta T/T$ as a
 424 function of the delay time Δt between the probe and pump, as shown in Figure 8d. $\Delta T/T$ is about 0.35
 425 at $\Delta t \sim 0$, corresponding to a net gain of 3500 cm^{-1} at 2300 nm, and it decays exponentially with delay
 426 time Δt . Therefore, Figure 8d is a direct measurement of the gain lifetime. In the case of indirect gap
 427 intrinsic Ge, the phonon-assisted carrier scattering from the direct Γ valley to the indirect L valleys
 428 limits the gain lifetime to as short as $\sim 200 \text{ fs}$ [45-47]. In our case of Ge_{0.913}Sn_{0.087}OI, on the other hand,
 429 Figure 8d clearly shows a much longer gain lifetime of $86 \pm 7 \text{ ps}$, nearly 3 orders of magnitude longer
 430 than indirect gap Ge. This result clearly confirms that 0.2% tensile strained Ge_{0.913}Sn_{0.087} is indeed a
 431 direct gap semiconductor at room temperature. Measurements at other pumping wavelengths between
 432 2200 and 2350 nm also indicate a gain lifetime on the order of 70-100 ps. Note that this gain lifetime
 433 is on the same order as the carrier lifetime of epitaxial GeSn lasers, i.e. 350 ps from [18]. This result
 434 demonstrates that the optoelectronic quality of crystallized GeSn is approaching their epitaxial
 435 counterparts. For laser applications, ideally the gain lifetime should reach several ns to achieve a
 436 reasonable threshold. Therefore, the short gain lifetime on the order of 0.1 ns in GeSn is another key
 437 limiting factor for lasing at room temperature. There are two possible reasons for the short gain lifetime
 438 in GeSn: (1) Auger recombination at high injection levels ($\Delta n > 10^{19} \text{ cm}^{-3}$) in small band gap GeSn
 439 ($E_g \sim 0.5 \text{ eV}$; see Figure 8a); (2) nonradiative recombination due to extrinsic defects in GeSn. Note that
 440 there could be some convolution between these two factors since defects could also assist Auger
 441 process.

442 Differential gain is another main parameter responsible for the quantum efficiency. It is the
 443 derivative of material gain vs. the injected carrier density evaluated near the lasing threshold. From
 444 Figs. 8c and d, the maximal gain at $\Delta t = 0$ is enhanced from 2500 cm^{-1} to 3600 cm^{-1} at 2300 nm when
 445 the injected carrier density is increases from $2.8 \times 10^{19} \text{ cm}^{-3}$ to $4.8 \times 10^{19} \text{ cm}^{-3}$. This gives a differential
 446 gain of $\sim 5.5 \times 10^{-17} \text{ cm}^2$, one order of magnitude lower than bulk GaAs lasers.

447 In summary, our ultrafast pulse transmittance and pump-probe spectroscopy studies confirm that
 448 0.2% tensile strained GeSn with 9 at.% Sn is already a direct gap semiconductor at room temperature.
 449 The direct band gap transition in GeSn leads to a large intrinsic gain of $\sim 3000 \text{ cm}^{-1}$, comparable to III-
 450 V semiconductors and promising for room-temperature lasing. However, a high transparency threshold
 451 of $\Delta n_0 > 2 \times 10^{19} \text{ cm}^{-3}$, a short gain lifetime on the order of 100 ps, and a relatively small differential
 452 gain of Ge_{0.91}Sn_{0.09} material pose challenges for the development of low-threshold room temperature
 453 GeSn lasers. The impact of these three major factors can be manifested by estimating the threshold
 454 current density for an ideal laser device assuming 100% optical confinement in the GeSn gain medium
 455 [48]:

456

$$J_{th} = \frac{\Delta n_0 q d}{\tau_r} + \frac{\alpha_i}{\Gamma} + \frac{1}{2\Gamma A L} \ln\left(\frac{1}{R_1 R_2}\right) \quad (3)$$

458

459 Here τ_r is the carrier lifetime, d is the GeSn layer thickness, Δn_0 is the injected carrier density for
 460 transparency, q is the electron charge, α_i is the internal loss, Γ is the confinement factor, L is the cavity
 461 length, g is the differential gain at the transparency, $A = g\tau_r/qt$, and R_1 and R_2 are the front and back
 462 mirror reflectivities. Based on the parameters obtained in our pump-probe studies and assuming ideal
 463 optical confinement in GeSn, we use the following values at $\lambda=2300$ nm: $\Delta n_0 = 2 \times 10^{19} \text{ cm}^{-3}$, $\tau_r =$
 464 100 ps , $g = 5.5 \times 10^{-17} \text{ cm}^2$, $q = 1.6 \times 10^{-19} \text{ C}$, $d = 300 \text{ nm}$, $\Gamma = 1$, $\alpha_i = 1000 \text{ cm}^{-1}$
 465 considering the Urbach tail absorption and the free carrier absorption, $L = 200 \mu\text{m}$, $R_1 = 90\%$, and
 466 $R_2 = 100\%$. The estimated threshold current density of GeSn lasers operating at room temperature
 467 would be $\sim 2000 \text{ kA/cm}^2$, equivalent to a threshold on the order of MW/cm^2 under optical pumping.
 468 This estimate of lasing threshold is consistent with the experimental result demonstrated recently at
 469 270 K from a higher Sn composition [25]. Therefore, our ultrafast pump-probe analysis does reveal the
 470 major factors limiting the achievement of low threshold GeSn lasers at room temperature. Based on
 471 this analysis, we suggest that further reducing the defects in GeSn could get rid of the extrinsic
 472 absorption loss from the Urbach tail (which could still exist in epitaxial GeSn [38]) and increase the
 473 gain lifetime, thereby reducing the lasing threshold and truly employing the large intrinsic optical gain
 474 of direct gap GeSn. The relation between Auger recombination and extrinsic defect and intrinsic band
 475 structures (e.g. the transition between the first and second conduction valleys mentioned in Section
 476 2.1) needs further evaluation. Up-conversion spectroscopy could be applied to investigate the latter.

477 4 Prototype MIR Photodetectors Based on Crystallized GeSn

478 Based on the high crystallinity GeSnOI materials discussed in Section 2 and tested optically in Section
 479 3, we demonstrate a p-Ge_{0.89}Sn_{0.11}/n-Si p-n photodiode working at $\lambda=2050$ nm in Figure 9. The sample
 480 is prepared by RTA crystallization of 100 nm-thick a-GeSn on n-Si substrate at 450 °C, leading to a
 481 Sn incorporation of 11 at.%. To maintain the beneficial features of GeSn crystallized on SiO₂ (e.g.
 482 (111) preferred orientation to enhance the beneficial effect of tensile strain [22]), we did not
 483 deliberately remove the native oxide on fresh Si wafers before the a-GeSn deposition. The active area
 484 of the device is 200x200 μm^2 . The I-V characteristics of the device is shown in Figure 9a, with a clear
 485 rectifying behavior and a dark current as low as 200 nA at -1V reverse bias. This corresponds to a dark
 486 current density of $< 1 \text{ mA/cm}^2$ at 1-2V reverse bias, approaching the level of epi Ge/Si photodiodes and
 487 better than most of the existing epitaxial GeSn photodetectors on Si (See Table 1). Figure 9b shows
 488 the responsivity of the device vs. applied voltage under the optical excitation of an LED emitting at
 489 $\lambda=2050$ nm. Clear photovoltaic behavior is observed, and full responsivity is observed at a low reverse
 490 bias of -1V. Due to the limited thickness of the GeSn MIR absorber layer (~ 100 nm thick), the
 491 absorption at $\lambda=2050$ nm was measured to be $\sim 9\%$ by UV-VIS-IR spectrometer. Therefore, in the ideal
 492 case the responsivity would be 150 mA/W, compared to the experimental result of 100 mA/W (Figure
 493 9b). This result indicates a carrier collection efficiency of $\sim 67\%$. Note that the responsivity at 2050 nm
 494 is already on the same order as some commercial PbS photodetectors. According to [59], the peak
 495 photoresponse of a PbS photoconductor at 2200 nm wavelength under 15 V bias is $5 \times 10^4 \text{ V/W}$, with a
 496 load resistance=dark resistance=0.25-2.5 MΩ. This translates to a responsivity of 20-200 mA/W (i.e.
 497 $5 \times 10^4 \text{ V/W}$ divided by 0.25-2.5 MΩ). The fact that we already achieved 100 mA/W responsivity at a
 498 much lower bias of 1V is clearly very competitive to the existing technology and high promising for
 499 future improvement. We will further investigate GeSn crystallization on n-type conductive oxides on
 500 flexible substrates in our future work to check if similar device performance can be maintained for
 501 flexible MIR photonics.

502 **5 Conclusions**

503 In conclusion, we have demonstrated low-temperature crystallization of direct bandgap, high
 504 crystallinity $\text{Ge}_{1-x}\text{Sn}_x$ ($0.08 < x < 0.26$) on amorphous dielectrics insulators (GeSnOI) towards 3D MIR
 505 photonic integration as well as flexible MIR photonics. Utilizing eutectically-enhanced crystallization,
 506 an extraordinarily large average grain size of $\sim 100 \mu\text{m}$ has been achieved in blanket GeSn films
 507 crystallized on SiO_2 layers, flexible glass, fused silica, and polyimide substrates alike. Furthermore,
 508 using Sn nanodot enhanced composition enhancement, we have achieved an average GeSn
 509 composition as high as 26 at. % to further extend the optical response of GeSn towards $\lambda=3-5 \mu\text{m}$. The
 510 achieved Sn composition of 8-26 at.% far exceeds that of the equilibrium solubility limit of < 1 at.%,
 511 even though the crystallization temperature of 350-450 °C far exceeds the typical epitaxial growth
 512 temperature of GeSn to prevent Sn segregation. This result indicates that crystallization from a-GeSn
 513 may offer better metastability compared to direct epitaxial growth of GeSn. Attesting to the high
 514 crystallinity, a peak optical gain of 2900 cm^{-1} with a lifetime on the order of 0.1 ns is achieved at
 515 $\lambda=2200-2350 \text{ nm}$ at 300 K. The intrinsic gain coefficient is comparable to III-V semiconductors. The
 516 gain lifetime is on the same order as epitaxial GeSn, and it is $>100x$ longer than the direct gap transition
 517 in Ge, confirming the indirect-to-direct band gap transition in GeSn at ~ 9 at. Sn composition. The study
 518 also suggests that further reducing the defects in GeSn could greatly reduce the Urbach tail absorption
 519 losses and increase the gain lifetime towards practical laser devices. Moreover, a prototype p-GeSn/n-
 520 Si photodiode from a-GeSn crystallization achieves 100 mA/W responsivity at $\lambda=2050 \text{ nm}$ and $T=300$
 521 K, approaching the level of some commercial PbS detectors. The device also demonstrates photovoltaic
 522 behavior and a low dark current density of 1 mA/cm^2 at -1V reverse bias, comparable to epitaxial Ge/Si
 523 photodiodes. These results indicate that crystallization of GeSnOI offers a promising solution for active
 524 devices towards 3D MIR photonic integration and flexible MIR photonics.

525 **6 Conflict of Interest**

526 *The authors declare that the research was conducted in the absence of any commercial or financial
 527 relationships that could be construed as a potential conflict of interest.*

528 **7 Author Contributions**

529 Wang performed optical and ultrafast pump-probe characterization of the GeSn samples. She also
 530 contributed significantly to the write-up of this paper. Cuervo-Covian and Li fabricated the GeSn
 531 materials and characterized their crystallinity and microstructures. Cuervo-Covian and Je fabricated
 532 and tested the photodetector devices with the help from Fu. **Piao provided high purity Sn deposition
 533 source material.** Liu directed this research, analysed the data with other co-authors, and coordinated
 534 the writing of this paper.

535 **8 Funding**

536 This work has been supported by the National Science Foundation under the grant number DMR-
 537 1255066. **Additional support has been provided by Air Force Small Business Technology Transfer
 538 (STTR) program through prime contract # FA8650-18-C-1638.**

539 **9 Acknowledgments**

540 This work has been supported by the National Science Foundation under the grant number DMR-
 541 1255066. **Additional support has been provided by Air Force Small Business Technology Transfer
 542 (STTR) program through prime contract # FA8650-18-C-1638.** The authors would to thank Prof.

543 Christopher Levey at Thayer School of Engineering for supporting the rapid thermal annealing
 544 equipment and Drs. Charles Daglian and Maxime Guinel at the Dartmouth Electron Microscopy
 545 Facility Center for supporting the electron microscopy training.

546 **10 References**

- 547 1. Soref RA. The past, present, and future of silicon photonics. *IEEE J. Sel. Topics Quantum*
 548 *Electron.* (2006) **12**: 1678-87. [doi:10.1109/JSTQE.2006.883151](https://doi.org/10.1109/JSTQE.2006.883151)
- 549 2. Subbaraman H, Xu X, Hosseini A, Zhang X, Zhang Y, Kwong D, Chen RT. Recent advances in
 550 silicon-based passive and active optical interconnects. *Opt. Express* (2015) **23**: 2487-2511.
 551 doi.org/10.1364/OE.23.002487
- 552 3. <http://www.aimphotonics.com/pdk>
- 553 4. Liu J. Monolithically integrated Ge-on-Si Active Photonics. *Photonics* (2014) **1**: 162-97.
 554 [doi:10.3390/photonics1030162](https://doi.org/10.3390/photonics1030162)
- 555 5. Wada K, Kimerling LC. *Photonics and Electronics with Germanium*. Wiley-VCH (2015).
- 556 6. Wang X, Liu J. Emerging technologies in Si active photonics. *J. Semicond.* (2018) **39**: 051001.
- 557 7. Madelung O. Ed. *Physics of Group IV Elements and III-V Compounds, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology*, Volume 17a. Berlin: Springer (1982).
- 560 8. Bauer M, Taraci J, Tolle J, Chizmeshya AVG, Zollner S, Smith D J, Menendez J, Hu CW,
 561 Kouvettakis J. Ge-Sn semiconductors for band-gap and lattice engineering. *Appl. Phys. Lett.*
 562 (2002) **81**: 2992–94. [doi:10.1063/1.1515133](https://doi.org/10.1063/1.1515133)
- 563 9. Mathews J, Beeler R T, Tolle J, Xu C, Roucka R, Kouvettakis J, Menendez J. Direct-gap
 564 photoluminescence with tunable emission wavelength in $\text{Ge}_{1-y}\text{Sn}_y$ alloys on silicon. *Appl. Phys. Lett.*
 565 (2010) **97**: 221912. [doi:10.1063/1.3521391](https://doi.org/10.1063/1.3521391)
- 566 10. Chen R, Lin H, Huo Y, Hitzman C, Kamins TI, Harris JS. Increased photoluminescence of strain-
 567 reduced, high-Sn composition $\text{Ge}_{1-x}\text{Sn}_x$ alloys grown by molecular beam epitaxy. *Appl. Phys. Lett.*
 568 (2011) **99**: 181125. [doi:10.1063/1.3658632](https://doi.org/10.1063/1.3658632)
- 569 11. Li H, Brouillet J, Salas A, Wang X, Liu J. Low Temperature Growth of High Crystallinity GeSn
 570 on Amorphous Layers for Advanced Optoelectronics. *Opt. Mater. Express* (2013) **3**: 1385–96.
 571 [doi:10.1364/OME.3.001385](https://doi.org/10.1364/OME.3.001385)
- 572 12. Bhargava N, Coppinger M, Prakash Gupta J, Wielunski L, Kolodzey J. Lattice constant and
 573 substitutional composition of GeSn alloys grown by molecular beam epitaxy. *Appl. Phys. Lett.*
 574 (2013) **103**: 041908. [doi:10.1063/1.4816660](https://doi.org/10.1063/1.4816660)

575 13. Oehme M, Kostecki K, Schmid M, Oliveira F, Kasper E, Schulze J. Epitaxial growth of strained
 576 and unstrained GeSn alloys up to 25% Sn. *Thin Solid Films* (2014) **557**: 169–72.
 577 [doi:10.1016/j.tsf.2013.10.064](https://doi.org/10.1016/j.tsf.2013.10.064)

578 14. Ghetmiri SA, Du W, Margetis J, Mosleh A, Cousar L, Conley BR et al. Direct-bandgap GeSn
 579 grown on silicon with 2230 nm photoluminescence. *Appl. Phys. Lett.* (2014) **105**:151109.
 580 [doi:10.1063/1.4898597](https://doi.org/10.1063/1.4898597)

581 15. Mathews J, Roucka R, Xie JQ, Yu SQ, Menéndez J and Kouvettakis J. Extended performance
 582 GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications. *Appl.*
 583 *Phys. Lett.* (2009) **95**: 133506. [doi:10.1063/1.3238327](https://doi.org/10.1063/1.3238327)

584 16. Gupta JP, Bhargava N, Kim S, Adam T, Kolodzey J. Infrared electroluminescence from GeSn
 585 heterojunction diodes grown by molecular beam epitaxy. *Appl. Phys. Lett.* (2013) **102**: 251117.
 586 [doi:10.1063/1.3238327](https://doi.org/10.1063/1.3238327)

587 17. Du W, Zhou Y, Ghetmiri SA, Mosleh A, Conley R, Nazzal A et al. Room-temperature
 588 electroluminescence from Ge/Ge_{1-x}Sn_x/Ge diodes on Si substrates. *Appl. Phys. Lett.* (2014) **104**:
 589 241110. [doi:10.1063/1.4884380](https://doi.org/10.1063/1.4884380)

590 18. Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S et al. Lasing in direct-
 591 bandgap GeSn alloy grown on Si. *Nature Photonics* (2015) **9**: 88–92.
 592 [doi:10.1038/nphoton.2014.321](https://doi.org/10.1038/nphoton.2014.321)

593 19. Cong H, Xue C, Zheng J, Yang F, Yu K, Liu Z et al. Silicon Based GeSn p-i-n Photodetector for
 594 SWIR Detection. *IEEE Photonics J.* (2016) **8**: 6804706. [doi:10.1109/JPHOT.2016.2607687](https://doi.org/10.1109/JPHOT.2016.2607687)

595 20. Stange D, Wirths S, Geiger R, Schulte-Braucks C, Marzban B, von den Driesch N et al. Optically
 596 pumped GeSn microdisk lasers on Si. *ACS Photonics* (2016) **3**: 1279–85.
 597 [doi:10.1021/acspophotonics.6b00258](https://doi.org/10.1021/acspophotonics.6b00258)

598 21. Al-Kabi S, Ghetmiri SA, Margetis J, Pham T, Zhou Y, Dou W, et al. An optically pumped 2.5
 599 μm GeSn laser on Si operating at 110 K. *Appl. Phys. Lett.* (2016) **109**:171105.
 600 [doi:10.1063/1.4966141](https://doi.org/10.1063/1.4966141)

601 22. Li H, Wang X, Liu J. Highly effective strain-induced band-engineering of (111) oriented, direct-
 602 gap GeSn crystallized on amorphous SiO₂ layers. *Appl. Phys. Lett.* (2016) **108**:102101.
 603 [doi:10.1063/1.4943192](https://doi.org/10.1063/1.4943192)

604 23. Margetis J, Al-Kabi S, Du W, Dou W, Zhou Y, Pham T, et al. Si-Based GeSn Lasers with
 605 Wavelength Coverage of 2–3 μm and Operating Temperatures up to 180 K, *ACS Photonics* (2017)
 606 **5**: 827–33. [doi:10.1021/acspophotonics.7b00938](https://doi.org/10.1021/acspophotonics.7b00938)

607 24. Reboud V, Gassend A, Pauc N, Aubin J, Milord L, Thai QM, et al. Optically pumped GeSn micro-
 608 disks with 16% Sn lasing at 3.1 μm up to 180 K. *Appl. Phys. Lett.* (2017) **111**: 092101.
 609 [doi:10.1063/1.5000353](https://doi.org/10.1063/1.5000353)

610 25. Zhou Y, Dou W, Du W, Ojo S, Tran H, Ghetmiri SA, et al. Optically Pumped GeSn Lasers
 611 Operating at 270 K with Broad Waveguide Structures on Si. *ACS Photonics* (2019) **6**: 1434-41.
 612 [doi:10.1021/acsphotonics.9b00030](https://doi.org/10.1021/acsphotonics.9b00030)

613 26. Beals M, Michel J, Liu J, Ahn D, Sparacin D, Sun R et al. Process flow innovations for photonic
 614 device integration in CMOS. *Proc. SPIE* (2008) **6898**: 689804. [doi:10.1117/12.774576](https://doi.org/10.1117/12.774576)

615 27. Li H, Brouillet J, Salas A, Chaffin I, Wang X, Liu J. Low Temperature Geometrically Confined
 616 Growth of Pseudo Single Crystalline GeSn on Amorphous Layers for Advanced
 617 Optoelectronics. *ECS Transactions* (2014) **64**: 819-27. [doi:10.1149/06406.0819ecst](https://doi.org/10.1149/06406.0819ecst)

618 28. Li H, Brouillet J, Salas A, Chaffin I, Wang X, Liu J. Pseudo single crystal, direct-band-gap
 619 Ge_{0.89}Sn_{0.11} on amorphous dielectric layers towards monolithic 3D photonic integration. *Appl.*
 620 *Phys. Lett.* (2014) **105**: 201107. [doi:10.1063/1.4902349](https://doi.org/10.1063/1.4902349)

621 29. Li H, Cuervo Covian AV, Wang X, Liu J. High Thermal Stability of Tensile Strained Direct Gap
 622 GeSn Crystallized on Amorphous Layers. *ECS Transactions* (2016) **75**: 623-32.
 623 [doi: 10.1149/07508.0623ecst](https://doi.org/10.1149/07508.0623ecst)

624 30. Wang X, Li H, Liu J. Power-dependent Transient Gain Study on Direct Gap GeSn Crystallized on
 625 Amorphous Layers, *ECS Transactions* (2016) **75**:223-8. [doi: 10.1149/07508.0223ecst](https://doi.org/10.1149/07508.0223ecst)

626 31. Corning's flexible Willow glass laminate, website accessed in Jun. 2019:
 627 <https://www.corning.com/worldwide/en/innovation/corning-emerging-innovations/corning->
 628 [willow-glass.html](https://www.corning.com/worldwide/en/innovation/corning-emerging-innovations/corning-willow-glass.html).

629 32. Thompson CV. Grain growth in thin films. *Annu. Rev. Mater. Sci.* (1990) **20**:245-68.
 630 [doi:10.1146/annurev.ms.20.080190.001333](https://doi.org/10.1146/annurev.ms.20.080190.001333)

631 33. Li H. (2016) *Group IV Semiconductors for Si Photonics and Solar Energy Applications*. Ph.D.
 632 thesis. Hanover (NH): Dartmouth College

633 34. Sun R, Beals M, Pomerene A, Cheng J, Hong CY, Kimerling LC, and Michel J. Impedance
 634 matching vertical optical waveguide couplers for dense high index contrast circuits. *Optics Express*
 635 (2008) **16**:11682-90. [doi:10.1364/OE.16.011682](https://doi.org/10.1364/OE.16.011682)

636 35. Liu J and Wang X. Epitaxy-Free Direct Bandgap GeSn Materials and Devices for Facile 3D
 637 Photonic Integration. In *Conference on Lasers and Electro-Optics* 2018: OSA Technical Digest
 638 (online) (Optical Society of America, 2018), paper STh4I.1.
 639 doi.org/10.1364/CLEO_SI.2018.STh4I.1

640 36. Cuervo Covian A, Zhou Y, Wang X, Yu SQ, Liu J. Sn Nanodots-Induced Composition
 641 Enhancement (NICE) to Achieve 26 at. % Sn in GeSn for Mid-Infrared Integrated Photonics. *2nd*
 642 *Joint ISTDM/ICSI 2019 Conference*, 6/2-6/6 (2019), University of Wisconsin-Madison

643 37. Burns G, Dill FH Jr, Nathan MI. The effect of temperature on the properties of GaAs laser. *Proc.*
 644 *IEEE* (1963) **51**: 947-8. [doi:10.1109/PROC.1963.2345](https://doi.org/10.1109/PROC.1963.2345)

645 38. D'Costa VR, Cook CS, Birdwell AG, Littler CL, Canonico M, Zollner S, et al. Optical critical
 646 points of thin-film $Ge_{1-y}Sn_y$ alloys: A comparative $Ge_{1-y}Sn_y/Ge_{1-x}Si_x$ study. *Phys. Rev. B* (2006) **73**:
 647 125207. [doi:10.1103/PhysRevB.73.125207](https://doi.org/10.1103/PhysRevB.73.125207)

648 39. Jiang L, Gallagher JD, Senaratne CL, Aoki T, Mathews J, Kouvetsakis J, Menéndez J.
 649 Compositional dependence of the direct and indirect band gaps in $Ge_{1-y}Sn_y$ alloys from room
 650 temperature photoluminescence: Implications for the indirect to direct gap crossover in intrinsic
 651 and n-type materials. *Semicond. Sci. Technol.* (2014) **29**: 115028.

652 40. Polak MP, Scharoch P, Kudrawiec R. The electronic band structure of $Ge_{1-x}Sn_x$ in the full
 653 composition range: indirect, direct, and inverted gaps regimes, band offsets, and the Burstein-
 654 Moss effect. *J. Phys. D: Appl. Phys.* (2017) **50**: 195103.

655 41. Pezzoli F, Giorgioni A, Patchett D, Myronov M. Temperature-Dependent Photoluminescence
 656 Characteristics Of GeSn Epitaxial Layers. *ACS Photonics* (2016) **3**: 2004–9.
 657 [doi:10.1021/acspophotonics.6b00438](https://doi.org/10.1021/acspophotonics.6b00438)

658 42. Wang X, Kimerling LC, Michel J, and Liu J. Large inherent optical gain from the direct gap
 659 transition of Ge thin films. *Appl. Phys. Lett.* (2013) **102**: 131116. [doi:10.1063/1.4800015](https://doi.org/10.1063/1.4800015)

660 43. Xu X, Wang X, Nishida K, Takabayashi K, Sawano K, Shiraki Y. et al. Ultralarge transient optical
 661 gain from tensile-strained, n-doped germanium on silicon by spin-on dopant diffusion. *Appl. Phys. Express* (2015) **8**: 092101.

663 44. Bristow AD, Rotenberg N, van Driel HM. Two-photon absorption and Kerr coefficients of silicon
 664 for 850-2200 nm. *App. Phys. Lett.* (2007) **90**:191104. doi.org/10.1063/1.2737359

665 45. Mak G and van Driel HM. Femtosecond transmission spectroscopy at the direct band edge of
 666 germanium. *Phys. Rev. B.* (1994) **49**: 16817-20. [doi:10.1103/PhysRevB.49.16817](https://doi.org/10.1103/PhysRevB.49.16817)

667 46. Lange C, Köster NS, Chatterjee S, Sigg H, Chrastina D, Isella G, et al. Ultrafast nonlinear optical
 668 response of photoexcited Ge/SiGe quantum wells: Evidence for a femtosecond transient
 669 population inversion. *Phys. Rev. B.* (2009) **79**: 201306 (R).

670 47. Claussen SA, Tasyurek E, Roth JE, Miller DAB. Measurement and modeling of ultrafast carrier
 671 dynamics and transport in germanium/silicon-germanium quantum wells. *Opt. Express.* (2010)
 672 **18**: 25596-607. doi.org/10.1364/OE.18.025596

673 48. Chuang SL. *Physics of Optoelectronic Devices*. Wiley, Volume 22 of Wiley Series in Pure and
 674 Applied Optics (1995).

675 49. Werner J, Oehme M, Schmid M, Schirmer A, Kasper E, Schulze J. Germanium-tin p-i-n
 676 photodetectors integrated on silicon grown by molecular beam epitaxy. *Appl. Phys. Lett.* (2011)
 677 **98**: 061108. doi.org/10.1063/1.3555439

678 50. Roucka R, Mathews J, Weng C, Beeler R, Tolle J, Menéndez J, Kouvetsakis J. High-Performance
 679 Near-IR Photodiodes: A Novel Chemistry-Based Approach to Ge and Ge–Sn Devices Integrated
 680 on Silicon. *IEEE J. Quantum Electron.* (2011) **47**: 213-22. [doi:10.1109/JQE.2010.2077273](https://doi.org/10.1109/JQE.2010.2077273)

681 51. Su S, Cheng B, Xue C, Wang W, Cao Q, Xue H et al. GeSn p-i-n photodetector for all
682 telecommunication bands detection. *Opt. Express.* (2011) **19**: 6400-5.
683 [doi:10.1364/OE.19.006400](https://doi.org/10.1364/OE.19.006400).

684 52. Oehme M, Schmid M, Kaschel M, Gollhofer M, Widmann D, Kasper E, et al. GeSn p-i-n
685 detectors integrated on Si with up to 4% Sn. *Appl. Phys. Lett.* (2012) **101**: 141110.
686 doi.org/10.1063/1.4757124

687 53. Oehme M, Kostecki K, Ye K, Bechler S, Ulbricht K, Schmid M et al. GeSn-on-Si normal
688 incidence photodetectors with bandwidths more than 40 GHz. *Opt. Express* (2014) **22**: 839-46.
689 [doi:10.1364/OE.22.000839](https://doi.org/10.1364/OE.22.000839)

690 54. Pham T, Du W, Tran H, Margetis J, Tolle J, Sun G et al. Systematic study of Si-based GeSn
691 photodiodes with 2.6 μ m detector cutoff for short-wave infrared detection. *Opt. Express* (2016)
692 **24**: 4519-31. [doi:10.1364/OE.24.004519](https://doi.org/10.1364/OE.24.004519)

693 55. Gassenq A, Gencarelli F, Van Campenhout J, Shimura Y, Loo R, Narcy G et al. GeSn/Ge
694 heteostructure short-wave infrared photodetectors on Silicon. *Opt. Express* (2012) **20**: 27297-
695 303. [doi:10.1364/OE.20.027297](https://doi.org/10.1364/OE.20.027297)

696 56. Dong Y, Wang W, Xu S, Lei D, Gong X, Guo X, et al. Two-micro-wavelength germanium-tin
697 photodiodes with low dark current and gigahertz bandwidth. *Opt. Express* (2017) **25**: 15818-27.
698 doi.org/10.1364/OE.25.015818

699 57. Peng YH, Cheng HH, Mashanov VI, Chang GE. GeSn p-i-n waveguide photodetectors on silicon
700 substrates. *Appl. Phys. Lett.* (2014) **105**: 231109. doi.org/10.1063/1.4903881

701 58. Liu J, Cannon DD, Wada K, Ishikawa Y, Jongthammanurak S, Danielson DT, et al. Tensile strained
702 Ge p-i-n photodetectors on Si platform for C and L band telecommunications. *Appl. Phys. Letters*
703 (2005) **87**: 011110. doi.org/10.1063/1.1993749

704 59. Thorlabs 2019, <https://www.thorlabs.com/drawings/674eb64b187d9912-43AED979-5056-0103-7954CD792A847D84/FDPS3X3-Manual.pdf>.

706

707

11. Tables

708

Table 1. Summary of the recent demonstration of GeSn detectors compared to free-space Ge p-i-n photodiodes

Reference	Structure	$x_{\text{Sn}} (\%)$	Dark current A/cm ² at -1V	Responsivity A/W	Speed
[49]	p-i-n	0.5(MBE)	10	0.102 @0V, 1550nm 0.018 @0V, 1640nm	-
[50]	p-i-n	2.0(UHCVD)	~10	0.113 @0V, 1550nm 0.086 @0V, 1640nm	-
[51]	p-i-n	3(MBE)	2.36	0.23 @-1V, 1540nm 0.12 @-1V, 1640nm	-
[52]	p-i-n	4(MBE)	100	0.181 @-0.1V, 1550nm 0.171 @-0.1V, 1600nm	-
[53]	p-i-n	4.2(MBE)	0.9	0.218 @-1V, 1550nm	40 GHz @-5V, 1550nm
[54]	p-i-n	6.4 (CVD) 9.2(CVD)	5.74 18	0.3 @0V, 1550nm 0.19 @0V, 1550nm Cutoff 2.6 μm	
[55]	MSM	Ge _{0.91} Sn _{0.09} /Ge Quantum Well, (CVD)	-	0.1 @-5V, 2.2 μm	2 MHz
[56]	p-i-n	Ge _{0.9} Sn _{0.1} /Ge MQW (CVD)	0.031	0.216 @-1V, 1530nm 0.023 @-1V, 2 μm	1.2 GHz
[57]	waveguide coupled p-i-n	1.28 (CVD)	6.75	0.27 @0V, 1550nm 0.124 @0V, 1600nm	-
This work	p-Ge _{0.89} Sn _{0.11} /n-Si	11	0.001	0.1 @-1V, 2050 nm	-
[58]	p-i-n Ge/Si	0 (UHCVD) 0.2% tensile strained Ge	0.01	0.56 @0V, 1550nm 0.11 @0V, 1605 nm	8.5 GHz @-1V

709

710 **12. Figure Legends:**

711 **Figure 1** Schematics of monolithic electronic-photonic integration: **(a)** Planar integration of photonics
 712 with CMOS electronics on the same Si layer, and **(b)** 3D photonic integration with the photonic
 713 interconnect layer positioned well above the CMOS layer.

714 **Figure 2 (a)** Low-magnification, top-view SEM image of a crystallized $Ge_{0.913}Sn_{0.087}$ thin film, showing
 715 a large average grain size on the order of mm scale. **(b)** Cross-sectional SEM image of the $Ge_{0.913}Sn_{0.087}$
 716 film crystallized on thermally-grown 5 nm-thick SiO_2 on Si. The film thickness of GeSn is 316 nm. **(c)**
 717 The distribution of Ge and Sn atoms in the GeSn film in (b), as revealed by EDS mapping. Sn is evenly
 718 distributed in the film and no Sn clusters observed in the GeSn film.

719 **Figure 3** SEM images of $Ge_{0.91}Sn_{0.09}$ (~ 300 nm thick) crystallized on **(a)** flexible Willow glass
 720 substrates; **(b)** polyimide foils; and **(c)** fused silica substrate. The inset of (b) shows a photo of the
 721 corresponding sample. Panel **(d)** shows the transmittance spectrum of (c), where the 1st direct gap at
 722 $\lambda \sim 2400$ nm and the 2nd direct gap at $\lambda \sim 1150$ nm are clearly observed.

723 **Figure 4** SEM images of $Ge_{0.91}Sn_{0.09}$ crystallization induced by Sn micropatterns: **(a)** nucleation site
 724 defined by a Sn microdot **(b)** nucleation and lateral growth induced by Sn microstrips.

725 **Figure 5 (a)** SEM image of a $2 \mu m \times 38 \mu m$ $Ge_{0.89}Sn_{0.11}$ microstrip laser annealed at one end (right
 726 hand side). The laser scanned along the direction of the width to form a seed for lateral crystal growth.
 727 **(b)** EBSD mapping of the strip after laser seeding and furnace annealing at $440^\circ C$ for crystallization.
 728 A dominant grain (in pink) $>35 \mu m$ long is clearly demonstrated. The twin boundaries are labelled in
 729 green. Grain boundaries with misorientation angles $>15^\circ$ are labeled in red. The color scale of the
 730 Euler angles for the EBSD mapping is also shown in the lower right corner. **(c)** SEM image of a
 731 triangular $Ge_{0.885}Sn_{0.115}$ nanotaper pattern with tip radii on 10-150 nm nanometer scale. The radius of
 732 each tip/corner is labeled on the image. Panel **(d)** shows the corresponding EBSD mapping of (c) after
 733 crystallization. The nanotip on the left has a significantly smaller radius than the other two corners,
 734 leading to the growth of a large single crystal grain from this sharpest nanotip.

735 **Figure 6 (a)** Schematics showing the Gibb free energy of the Ge-Sn system vs. the radius of β -Sn
 736 (semimetal) nanodots. Below the critical size of nucleation r^* , the β -Sn nanodots should dissolve into
 737 Ge to minimize the interfacial energy. **(b)** Schematics showing the NICE fabrication process of
 738 crystalline diamond cubic α -GeSn with 26 at.% average Sn. **(c)** XRD data of a pure Ge reference
 739 sample and the Sn or GeSn samples corresponding to steps (1)-(3) in panel (b). **(d)** Cross-sectional
 740 SEM image (top) and the elemental EDS mapping of Sn, Ge, and Sn-Ge mapping overlay.

741 **Figure 7 (a)** The spectrum of the fs pump pulse with a peak at $\lambda = 2000$ nm. The average power is 3.2
 742 mW and the repetition rate is 1 kHz; **(b)** Transmittance spectrum of a double side polished (DSP) Si
 743 wafer under the ultrafast pumping condition in (a) (blue line) compared to that measured by UV-VIS-
 744 IR spectroscopy (black line). While a dip due to two-photon absorption is observed at $\lambda \sim 1950$ - 2050
 745 nm, a relatively flat transmission window with negligible nonlinear effect is identified in the range of
 746 2100-2340 nm. We will use this range for GeSn optical gain and carrier dynamics studies.

747 **Figure 8 (a)** Linear fit to $(\alpha h\nu)^2$ vs. $h\nu$ indicates that crystallized $Ge_{0.913}Sn_{0.087}$ has a direct band gap
 748 of $E_g^F(lh) = 0.502 \pm 0.002$ eV and $E_g^F(lh) = 0.531 \pm 0.003$ eV. Here α is absorption coefficient, and $h\nu$ is
 749 photon energy. **(b)** Transmittance spectrum of the GeSnOI sample measured by UV-VIS-IR
 750 spectroscopy (black line) compared to the ultrafast pulse transmittance spectra of the same sample

754 under injected carrier density of $\Delta n=1.9\times10^{19}/\text{cm}^3$ (cyan line) and $\Delta n=2.8\times10^{19}/\text{cm}^3$ (red line). **(c)**
 755 Comparison of derived absorption coefficients of crystallized $\text{Ge}_{0.913}\text{Sn}_{0.087}\text{OI}$ with UV-VIS-IR
 756 spectroscopy (no pumping, black line), and under injected carrier densities $\Delta n=1.9\times10^{19}/\text{cm}^3$ (cyan
 757 line) and $\Delta n=2.8\times10^{19}/\text{cm}^3$ (red line). Negative absorption coefficient (below the dotted grey line)
 758 indicates a net optical gain. As a comparison, the linear absorption coefficient of epitaxial GeSn with
 759 8 at.% Sn on Si reported by 38 is also shown (short dashed orange line). **(d)** Results of gain lifetime
 760 measurement plotting pump-induced change in transmittance ($\Delta T/T$) vs. the delay time (Δt). The pump
 761 pulse is peaked at 2000 nm, and the probe wavelength is 2300 nm. The injected carrier density is
 762 estimated to be $\Delta n=4.8\times10^{19} \text{ cm}^{-3}$.

763 **Figure9** **(a)** I-V characteristics of the crystallized $p\text{-Ge}_{0.89}\text{Sn}_{0.11}/n\text{-Si}$ photodiode **(b)** Responsivity vs.
 764 applied voltage at an excitation wavelength of $\lambda=2050$ nm.

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

Monolithic Electronic-Photonic Integration

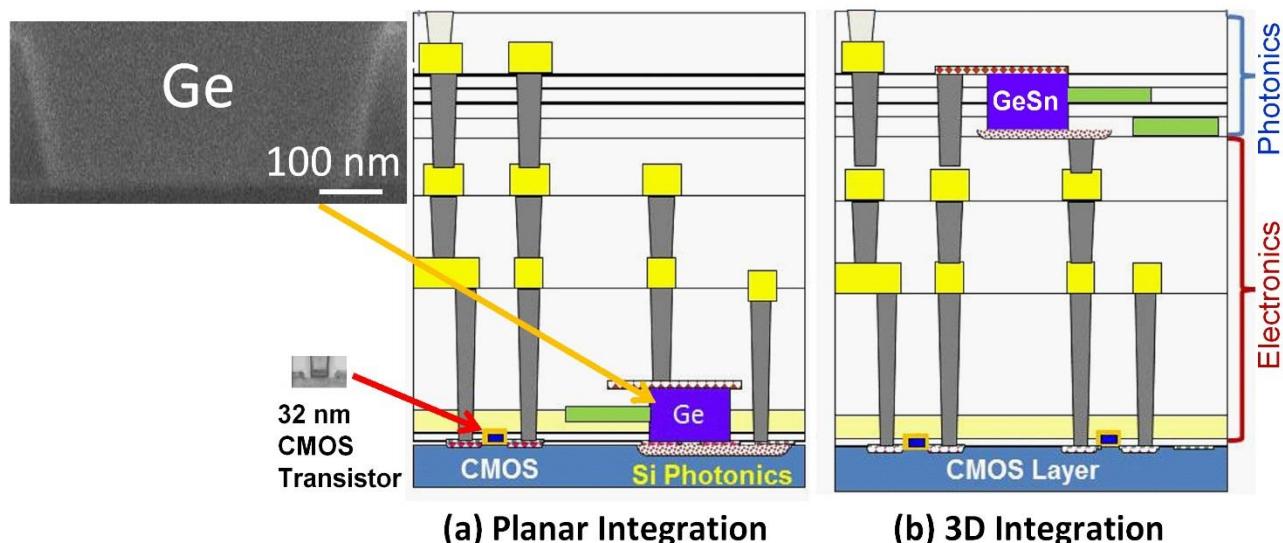


Figure 1

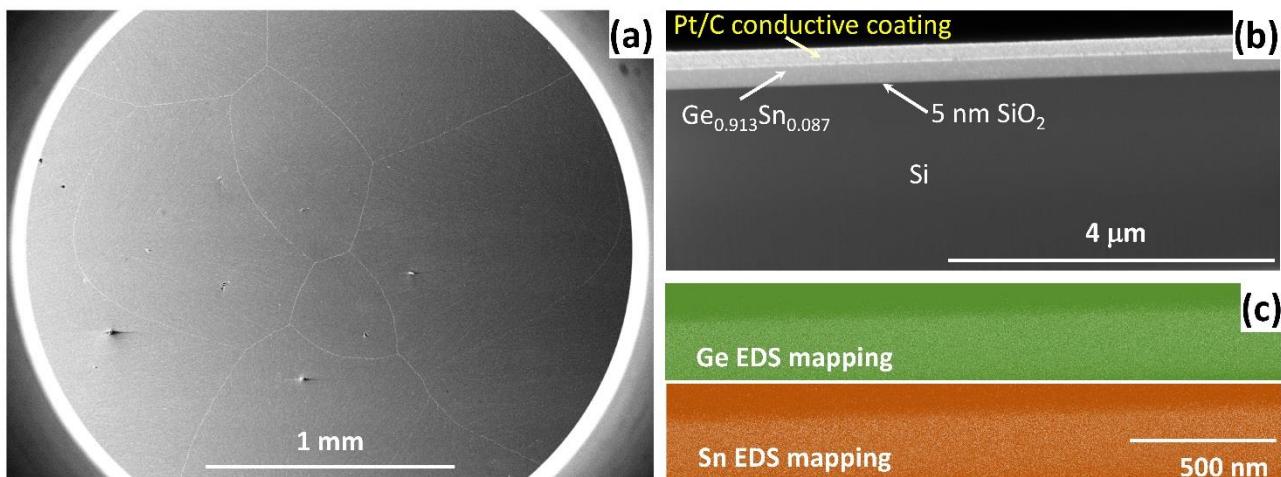


Figure 2

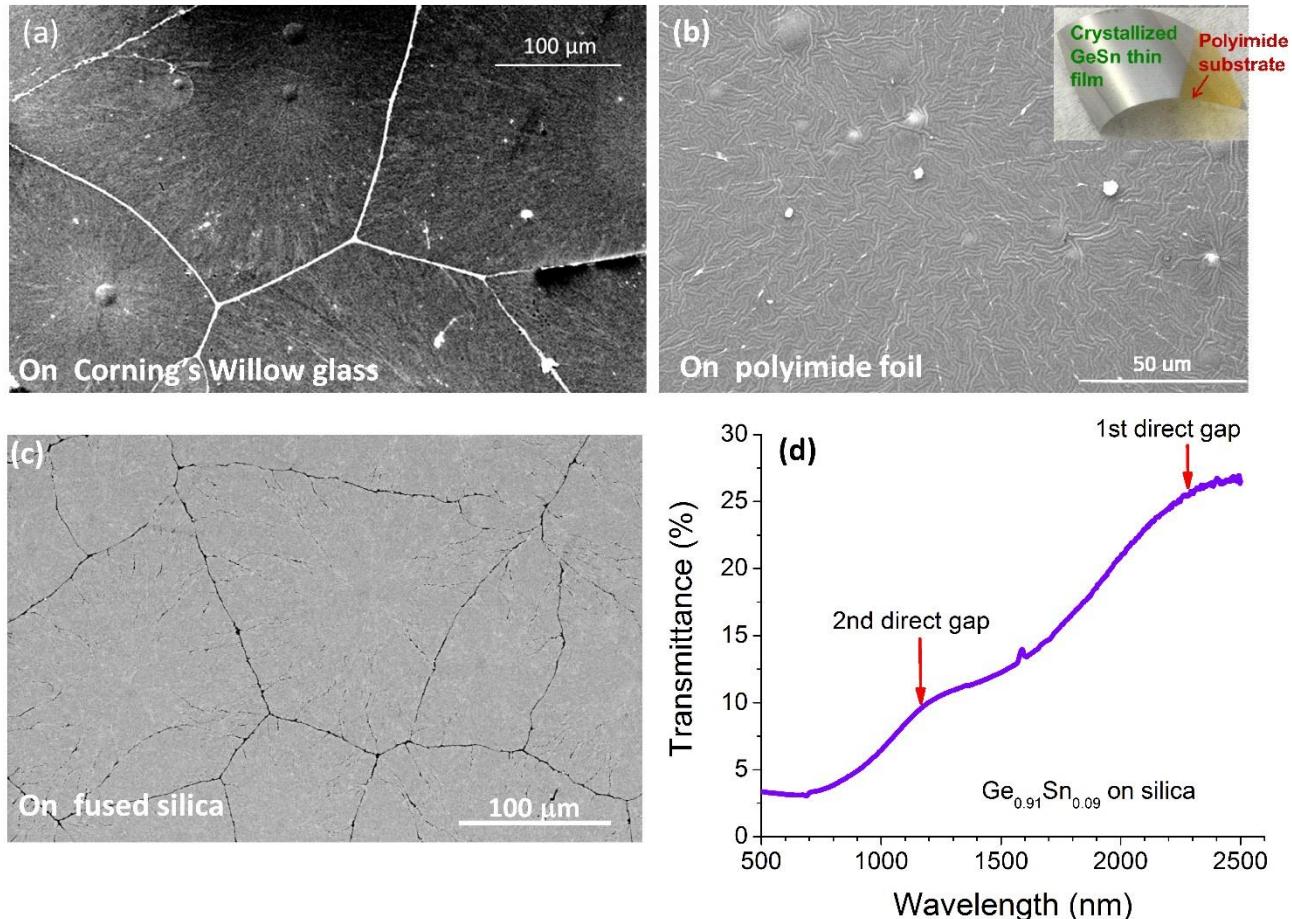
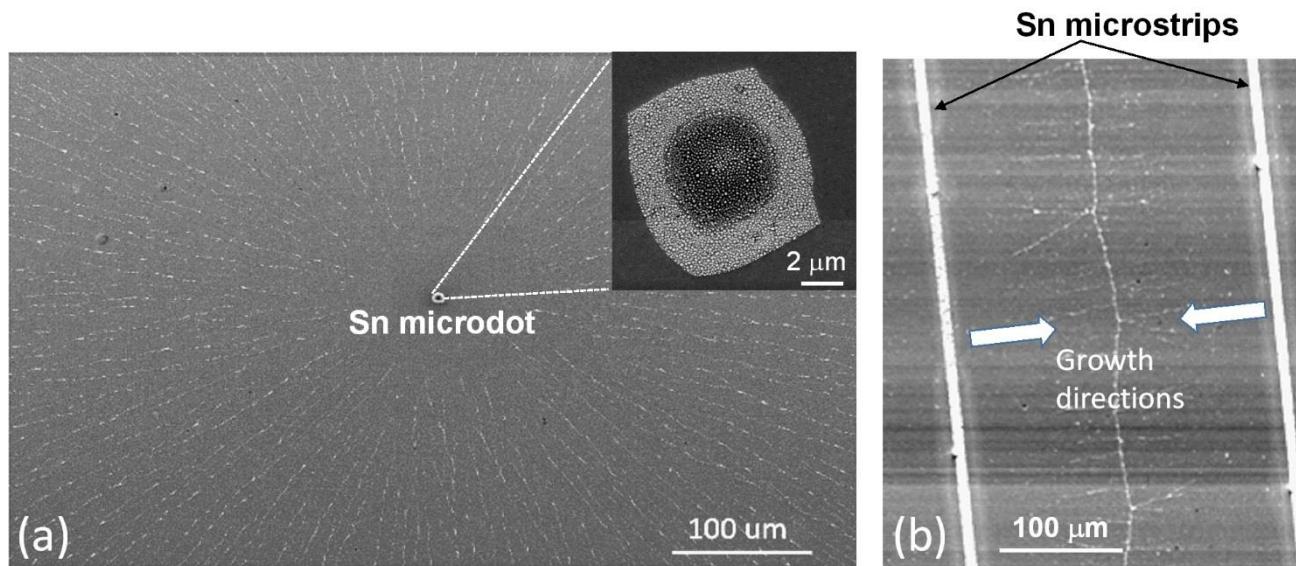
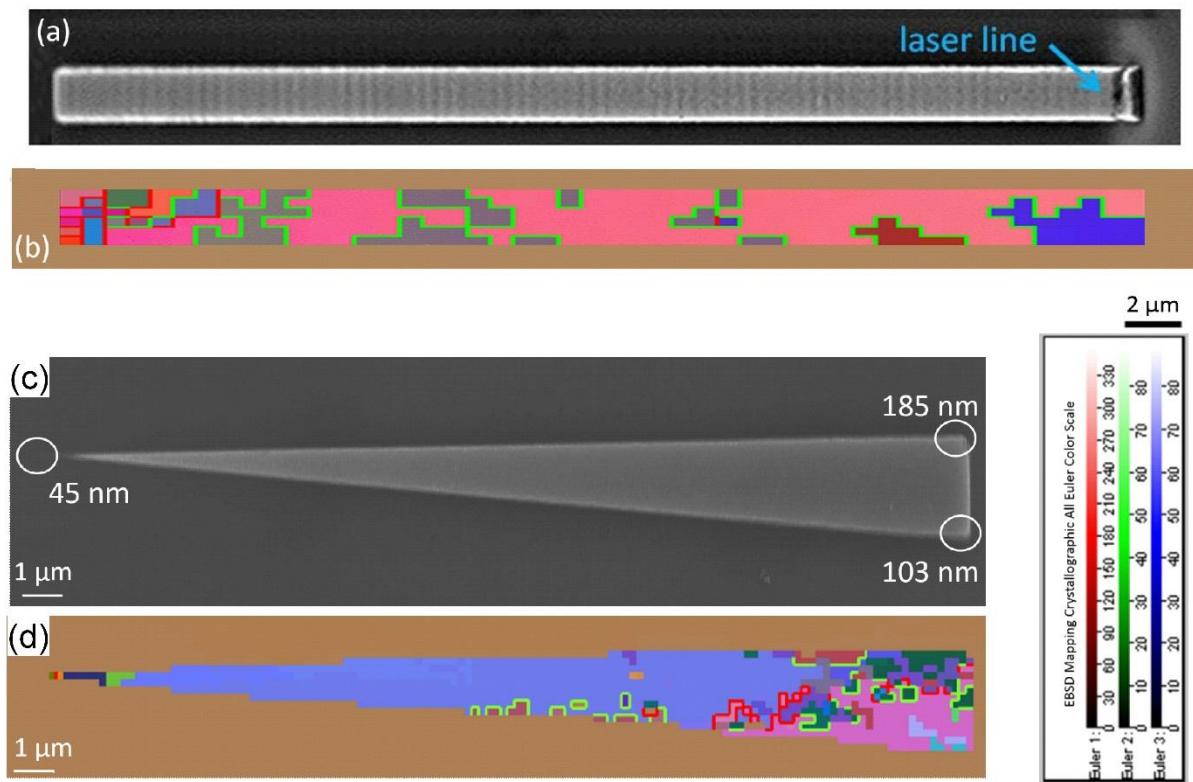
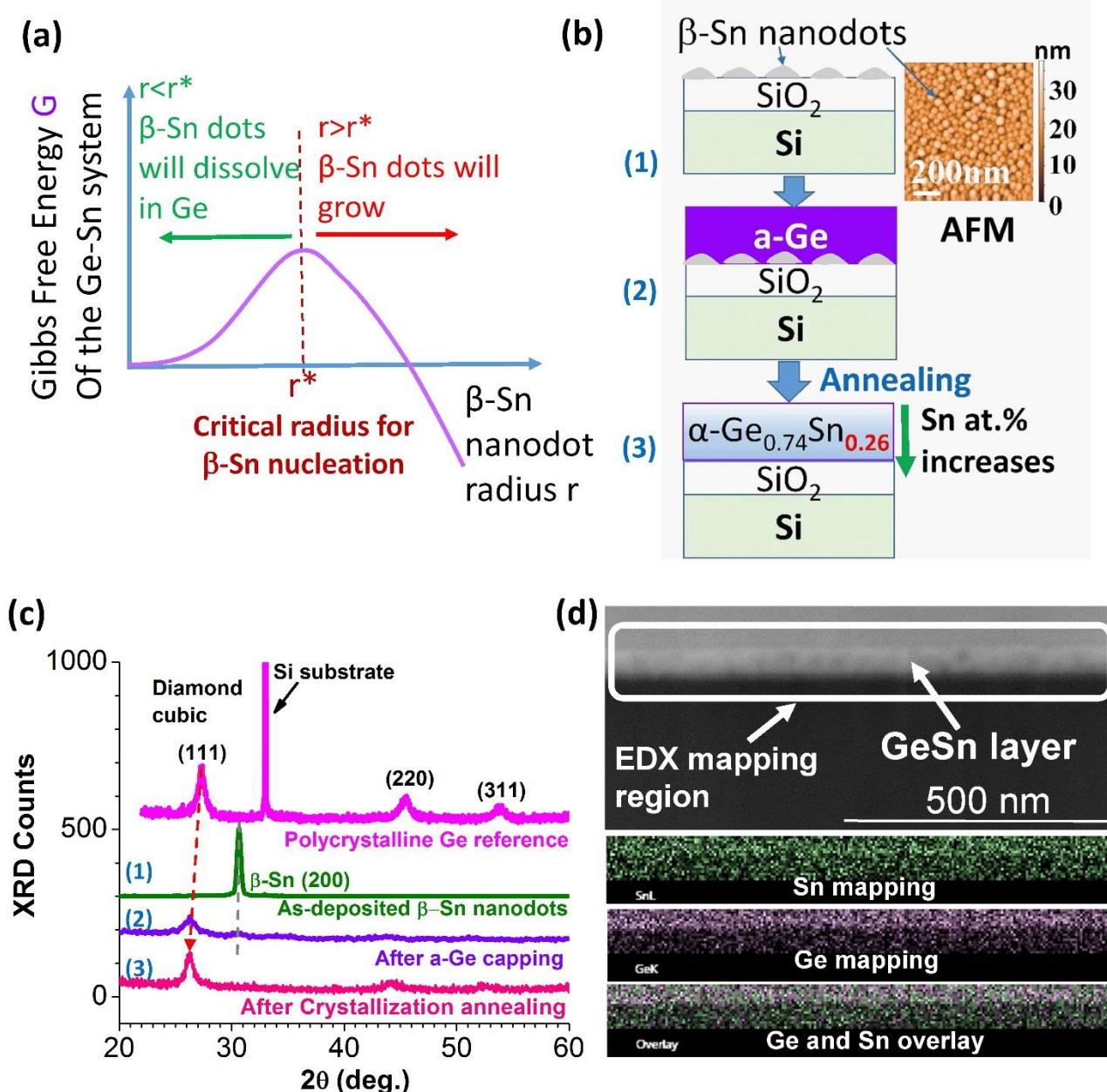


Figure 3


Figure 4

795

796

Figure 5

797

798

Figure 6

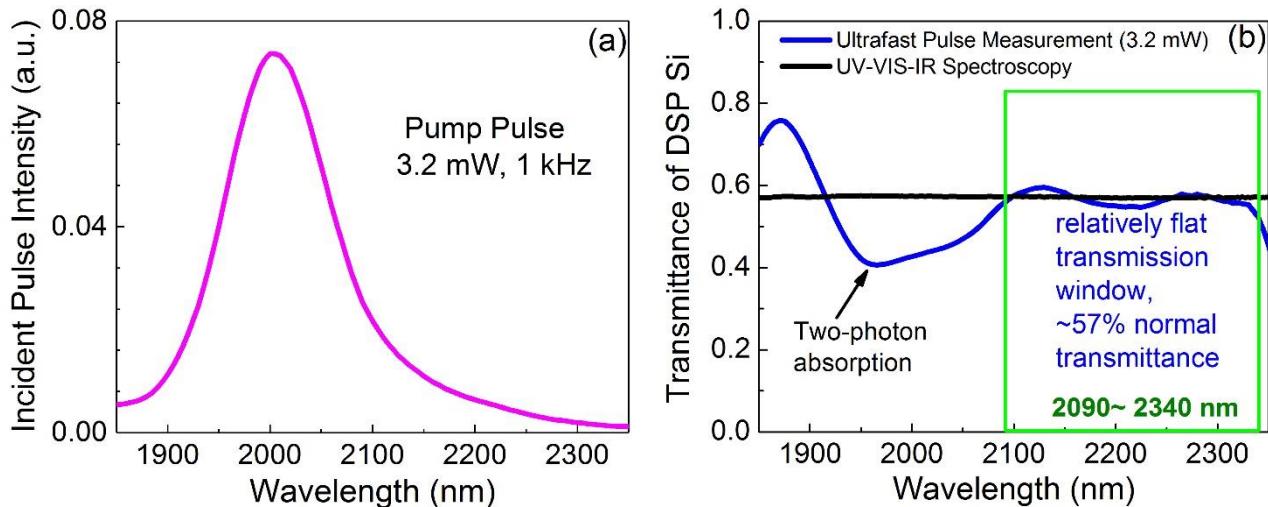


Figure 7

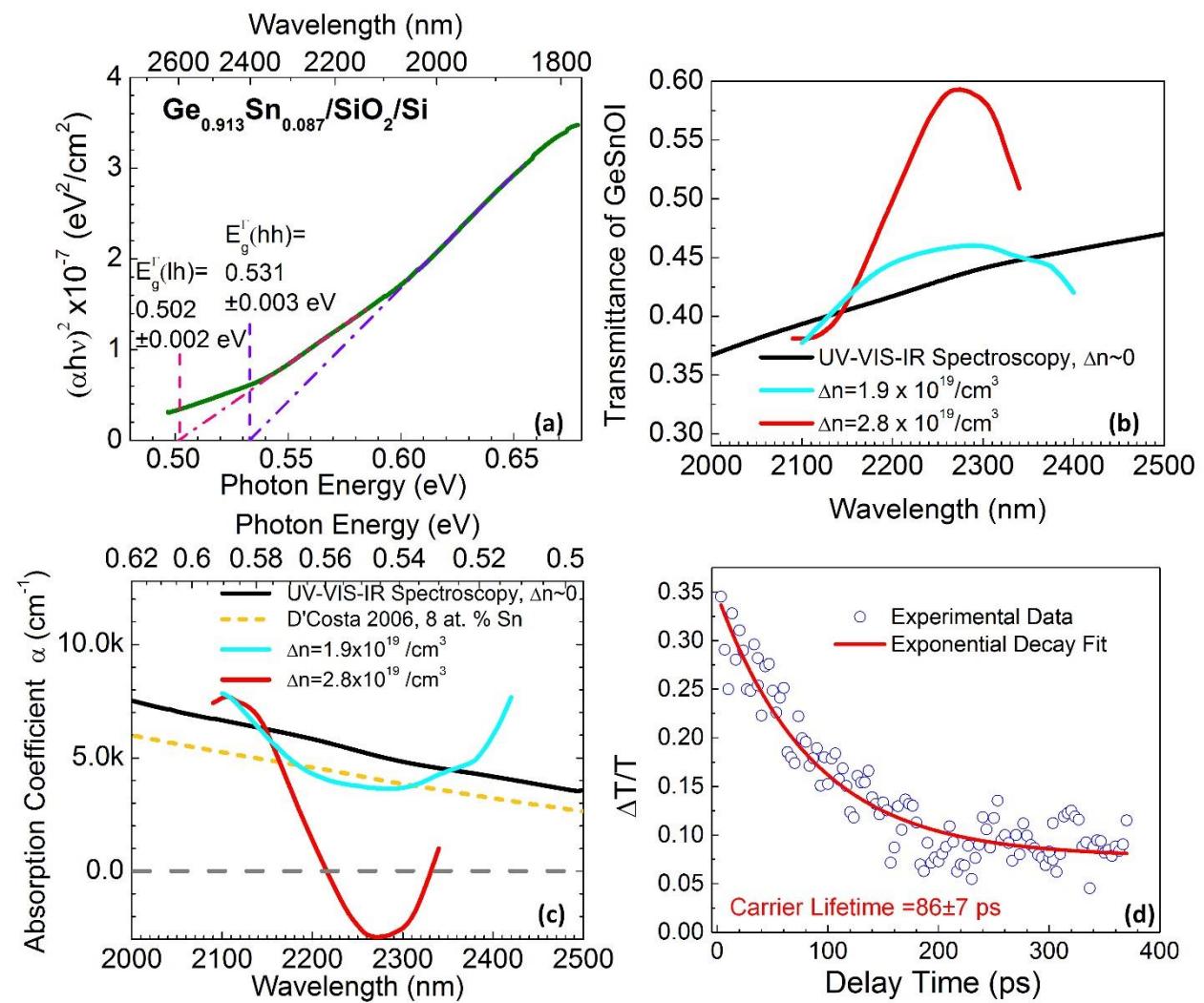
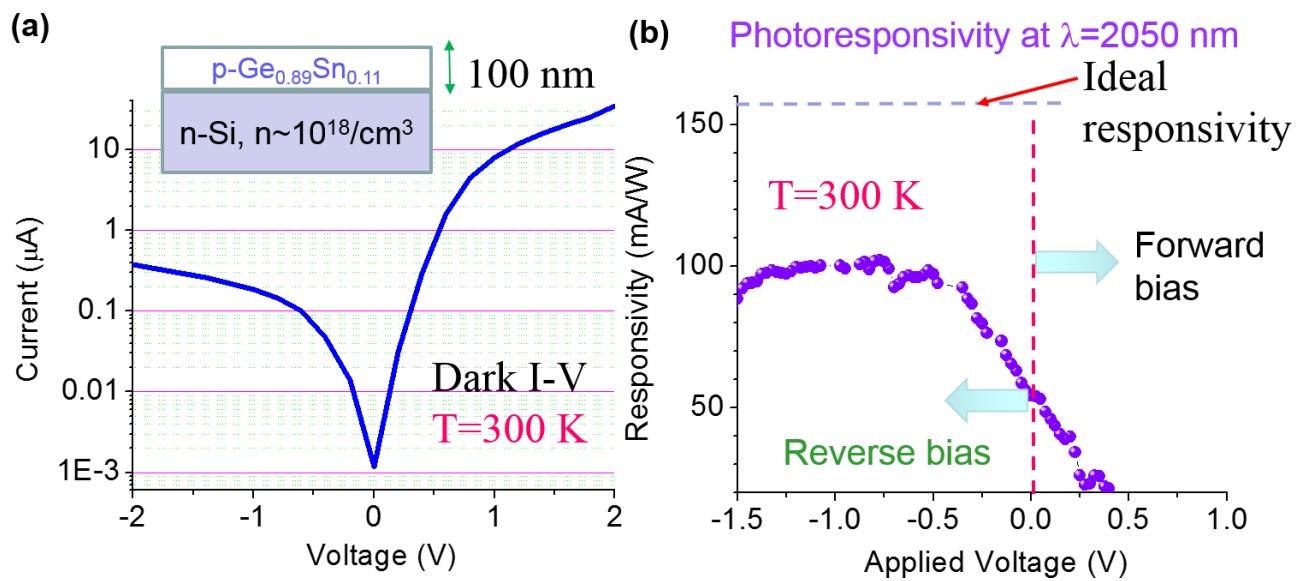



Figure 8

804

805

806

Figure 9