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Abstract Graphs are arguably the first objects studied in the field of well-quasi-

ordering. Giant successes in research on well-quasi-ordering graphs and fruitful ex-

tensions of them have been obtained since Vázsonyi proposed the conjecture about

well-quasi-ordering trees by the topological minor relation in the 1940’s. In this ar-

ticle, we survey recent development of well-quasi-ordering on graphs and directed

graphs by various graph containment relations, including the relations of topological

minor, minor, immersion, subgraph, and their variants.

1 Introduction

A quasi-ordering on a set X is a reflexive and transitive binary relation on X .

A quasi-ordering ⪯ on X is a well-quasi-ordering if for every infinite sequence

x1,x2, ..., there exist i < i′ such that xi ⪯ xi′ . The concept of well-quasi-ordering was

discovered from different aspects. One problem that stimulates the development of

this concept was raised by Vázsonyi in the 1940’s about well-quasi-ordering graphs.

Precisely, he conjectured that any infinite collection of trees contains some pair of

trees such that one is homeomorphically embeddable in the other (see [31]). This

conjecture together with another conjecture of Vázsonyi, which states that subcubic

graphs are well-quasi-ordered by the topological minor relation, motivate the study

of well-quasi-ordering on graphs. During past decades, giant successes and fruitful

extensions were obtained in this direction.
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One benefit of well-quasi-ordering is the existence of finite characterization of

properties closed under well-quasi-orderings. Given a quasi-ordering Q=(V (Q),⪯Q

), a Q-ideal I is a set of graphs such that if G ∈ I and H ⪯Q G, then H ∈ I . For

any graph property that is closed under Q, the set of graphs satisfying this property

is a Q-ideal. Let F be the family of graphs consisting of the minimal graphs that

do not belong to I with respect to Q. Then a graph G belongs to I if and only if

H ̸⪯Q G for every H ∈F . Hence, to describe I , it is sufficient to describe F . Since

F is an antichain with respect to Q, F must be finite if Q is a well-quasi-ordering.

If for any fixed graph H ∈ F , one can test whether any input graph G satisfies

H ⪯Q G or not in time polynomial in |V (G)|, then I and hence the corresponding

graph property can be tested in polynomial time.

The purpose of this article is to survey recent development on well-quasi-

ordering on graphs. Though some notions and results mentioned in this article were

extended to other combinatorial objects, such as matroids, permutations or words,

we focus on results about graphs only for the simplicity.

This paper is organized as follows. We will discuss the topological minor re-

lation, which is the relation stated in Vázsonyi’s conjectures, in Section 2. Then

we will discuss minor and immersion relations, which are two graph containments

closely related to the topological minor relation and attract wide attention, in Sec-

tions 3 and 4, respectively. Finally, we will discuss the subgraph relation, which is

the most natural containment on graphs, in Section 5.

We start with some formal definitions about graphs. Graphs are finite and pos-

sibly have parallel edges and loops in this article. That is, an (undirected) graph

G consists of a finite set V (G) of vertices and a finite multiset E(G) of 2-element

multisubsets of V (G). Each member e of E(G) is called an edge of G, and its two

elements are called the ends of e. Any edge with no two distinct ends is called a

loop. Two distinct edges are parallel if they have the same ends. Loops and parallel

edges are considered as cycles of length 1 and 2, respectively. Two vertices are ad-

jacent if they are the ends of the same edge. A vertex is incident with an edge if it is

an end of this edge. The degree of a vertex is the number of edges incident with it,

where any loop is counted twice. A graph is subcubic if every vertex has degree at

most three.

A graph is simple if it does not contain any loop or parallel edges. A directed

graph is a graph equipped with an orientation of its edges. Formally, a directed graph

consists of a finite set V (G) of vertices and a finite multiset E(G) of ordered pairs

of vertices. If (x,y) ∈ E(G), then we say that x is the tail of (x,y) and y is the head

of (x,y). The in-degree (or out-degree, respectively) of a vertex v is the number of

edges with head (or tail, respectively) v. The underlying graph of a directed graph D

is a graph obtained from D by removing the direction of the edges. That is, replacing

each ordered pair in the edge-set by a 2-element mulitset.

For any positive integer n, [n] denotes the set {1,2, ...,n}. The complete graph on

n vertices, denoted by Kn, is the simple graph on n vertices with vertices pairwise

adjacent. We also call K3 a triangle. And K−
n denotes the simple graph obtained from

Kn by deleting an edge. A stable set of a graph is a subset of pairwise non-adjacent

vertices. A graph is bipartite if it is simple and its vertex-set can be partitioned into



Recent progress on well-quasi-ordering graphs 3

two stable sets, and we call this partition a bipartition. The complete bipartite graph,

denoted by Km,n for some positive integers m,n, is the simple bipartite graph with a

bipartition whose one part has m vertices and the other part has n vertices such that

any pair of vertices belonging to different parts of this bipartition is adjacent. The

4-wheel W4 is the simple graph obtained from the cycle of length four by adding a

new vertex adjacent to all other vertices. The graph W−
4 is the simple graph obtained

from W4 by deleting an edge not incident with the vertex of degree four. The path

and cycle on k vertices are denoted by Pk and Ck, respectively. Given a simple graph

G, the complement of G is the simple graph with vertex-set V (G) such that any pair

of distinct vertices are adjacent if and only if they are non-adjacent in G. A clique is

a set of pairwise adjacent vertices. A split graph is a simple graph whose vertex-set

can be partitioned into a clique and a stable set. Given a collection X of sets, the

intersection graph of X is the simple graph with vertex-set X , and two distinct

vertices S,T ∈ X are adjacent if and only if S∩ T ̸= /0. Given two graphs G,H,

G∪H denotes the graph that is a disjoint union of a copy of G and a copy of H.

We refer readers to [13] for other undefined standard terminologies about graphs.

2 Topological minors

We focus on the topological minor relation in this section. It is the graph contain-

ment that is involved in Vázsonyi’s conjectures, so it is arguably the oldest graph

containment that is considered for well-quasi-ordering.

Let G be a graph and v a vertex of degree two in G. By suppressing v we mean

deleting v and all its incident edges from G, and then adding an edge with ends x,y,

where the two edges of G incident with v are {x,v} and {y,v}, if v is not incident with

a loop; and we simply delete v, if v is incident with a loop. Note that suppressing a

vertex of degree two is equivalent with contracting an edge incident with it. (Edge-

contraction is an operation that will be defined in Section 3.)

A graph G contains another graph H as a topological minor if H can be obtained

from G by repeatedly deleting vertices and edges and suppressing vertices of degree

two.

A equivalent way to define the topological minor relation is through the notion

of homeomorphic embeddings. For graphs G and H, we say that a function π with

domain V (H)∪E(H) is a homeomorphic embedding from H into G if the following

hold.

• π maps vertices of H injectively to vertices of G.

• For each non-loop e of H with ends x,y, π(e) is a path in G with ends π(x) and

π(y).
• For each loop e of H with end v, π(e) is a cycle in G containing π(v).
• If e1,e2 are distinct edges of H, then π(e1)∩π(e2)⊆ {π(t) : t ∈ e1 ∩ e2}.

It is easy to see that G contains H as a topological minor if and only if there exists

a homeomorphic embedding from H into G.
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Vázsonyi in the 1940’s conjectured that trees are well-quasi-ordered by the topo-

logical minor relation. This conjecture was proved by Kruskal [30] and indepen-

dently by Tarkowski [54]. Nash-Williams [42] later introduced the “minimal bad

sequence” argument to provide an elegant proof of this conjecture. The minimal

bad sequence argument has had a profound impact on proving well-quasi-ordering

results since then. Indeed, they proved Vázsonyi’s conjecture is true even when ver-

tices are labelled by a well-quasi-ordering.

Theorem 1 ([30, 54, 42]). Let Q = (V (Q),⪯Q) be a well-quasi-ordering. For each

positive integer i, let Ti be a tree and let φi : V (T ) → V (Q) be a function. Then

there exist 1 ≤ j < j′ and a homeomorphic embedding π from Tj into Tj′ such that

φ j(v)⪯Q φ j′(π(v)) for every v ∈V (Tj).

One might expect that Theorem 1 can be generalized in a way that the homeo-

morphic embedding mentioned in Theorem 1 also preserves the ancestor-descendant

relation if we make those trees be rooted trees. But in fact, this stronger version for

rooted trees is equivalent with Theorem 1 as one can add a new incomparable ele-

ment into Q to obtained a new well-quasi-ordering and add this new element into

the labels of the roots of those trees.

Theorem 1 is a generalization of a very useful result of Higman [20], which is

now known as the Higman’s Lemma. Higman’s Lemma states that every well-quasi-

ordering Q on a set V (Q) can be extended to a well-quasi-ordering on the set of finite

sequences over V (Q) by the natural “sequence embedding” relation.

Theorem 2 ([20]). If Q = (V (Q),⪯Q) is a well-quasi-ordering, then the set of finite

sequences over V (Q) is well-quasi-ordered by ⪯, where two finite sequences a =
(a1,a2, ...,am) and b = (b1,b2, ...,bn) over V (Q) satisfy a ⪯ b if and only if there

exist 1 ≤ i1 < i2 < ... < im ≤ n such that a j ⪯Q bi j
for every j ∈ [m].

Higman’s Lemma is equivalent with the case when every tree Ti is a path in

Theorem 1. In addition, by using Higman’s Lemma, Theorem 1 can be extended to

the case that each Ti is a forest.

Theorem 1 was later generalized by Mader [39] and Fellows, Hermelin and Rosa-

mond [18] as follows.

Theorem 3. Let t be a positive integer.

1. [39] Graphs that do not contain t disjoint cycles are well-quasi-ordered by the

topological minor relation.

2. [18] Graphs that have feedback vertex sets with size at most t are well-quasi-

ordered by the topological minor relation.

A feedback vertex set in a graph G is a subset of V (G) intersecting all cycles in

G. In fact, Statement 2 of Theorem 3 can be easily derived from the forest-version

of Theorem 1 by appropriately labelling the vertices; Statement 1 of Theorem 3 is

equivalent with Statement 2 due to a classical result of Erdős and Pósa [17] stating

that a graph has only a bounded number of disjoint cycles if and only if it has a
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feedback vertex set with bounded size. We remark that Statement 1 was proved

much earlier than Statement 2.

Another class of graphs that is known to be well-quasi-ordered by the topolog-

ical minor relation is the set of subcubic graphs. It was originally conjectured by

Vázsonyi and proved by Robertson and Seymour [51] via the Graph Minor Theo-

rem. (The Graph Minor Theorem will be described in Section 3.) We remark that the

proof of the Graph Minor Theorem is very difficult, and it remains unknown how

to prove Vázsonyi’s conjecture on subcubic graphs without using the Graph Minor

Theorem.

However, the topological minor relation does not well-quasi-order graphs in gen-

eral. For every positive integer k, let Rk be the graph obtained from a path of length

k by doubling each edge. The ends of Rk are the ends of the original path. We call Rk

the Robertson chain of length k. Let R′
k be the graph obtained from Rk by attaching

two leaves to each end of Rk. It is easy to see that {R′
k : k ≥ 1} is an antichain with

respect to the topological minor relation.

There is another infinite antichain. Let R′′
k be the graph obtained from a cycle

of length k by duplicating each edge. Then for any subdivision R∗
k of R′′

k , {R∗
k :

k ≥ 1} is also an antichain with respect to the topological minor relation. More

antichains were known, and all of them contain arbitrarily long Robertson chain as

a topological minor.

Robertson in the 1980’s conjectured that the Robertson chain is the only obstruc-

tion. That is, he conjectured that for every positive integer k, the set of graphs that do

not contain Rk as a topological minor is well-quasi-ordered by the topological mi-

nor relation. We remark that Robertson’s conjecture is strong. Though Rk has quite

simple structures, the class of graphs with no Rk topological minor is still broad.

In particular, every subcubic graph does not contain R2 as a topological minor. So

Robertson’s conjecture for the case k = 2 contains Vázsonyi’s subcubic graph con-

jecture.

Ding [15] proved that a weakening of Robertson’s conjecture is true: the set of

graphs that do not contain Rk as a minor is well-quasi-ordered by the topological

minor relation.

Robertson’s conjecture was recently completely solved by Liu and Thomas [34,

36], even when vertices are labeled.

Theorem 4 ([34, 36]). For every well-quasi-ordering Q= (V (Q),⪯Q) and for every

positive integer k, if for each i ≥ 1, Gi is a graph with no Rk topological minor and

fi : V (G) → V (Q) is a function, then there exist 1 ≤ j < j′ and a homeomorphic

embedding π : G j → G j′ such that f j(v)⪯Q f j′(π(v)) for every v ∈V (G j).

Theorem 4 implies all known results about well-quasi-ordering graphs by the

topological minor relation. The case k = 1 of Theorem 4 implies Kruskal’s Tree

Theorem (Theorem 1); the case k = 2t −1 implies Mader’s theorem for graphs with

no t disjoint cycles (Theorem 3) and hence for graphs having feedback vertex sets

of bounded size; the case k = 2 implies Vázsonyi’s conjecture on subcubic graphs.

Theorem 4 also implies a well-known result about well-quasi-ordering bounded di-

amenter graphs by the subgraph relation (see Theorem 24 in Section 5).
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The proof of Theorem 4 is long and difficult. The first step is to prove the case for

graphs with bounded treewidth. It turns out to be harder than expected for graphs

with bounded treewidth, which is a case that is not very hard to deal with in the

proofs of the Graph Minor Theorem and several algorithmic results in the literature.

We remark that the bounded treewidth case of Theorem 4 implies Ding’s result,

since graphs that do not contain Rk as a minor do not contain a 3× (k + 1) grid

as a minor and hence have bounded treewidth. Though the proof of the bounded

treewidth case is not simple, the proof is self-contained and does not require the

Graph Minor Theorem. One key ingredient is a technique to convert vertex-cuts

realized by bags in the tree-decomposition into edge-cuts.

The second step of the proof of Theorem 4 is to study the structure of graphs

with large treewidth but with no Rk topological minor. Liu and Thomas [34, 36]

prove that such graphs are “nearly subcubic” by extensively applying techniques

developed in Robertson and Seymour’s Graph Minors series and earlier work of Liu

and Thomas [35]. (The formal description of nearly subcubic graphs is complicated,

so we skip the details in this paper.)

The third step for proving Theorem 4 is to prove that nearly subcubic graphs are

well-quasi-ordered by the topological minor relation. This step requires non-trivial

applications of the Graph Minor Theorem, and it is the only step that uses the Graph

Minor Theorem in the entire proof.

We remark that Theorem 4 is best possible as long as the vertices are labelled

by a well-quasi-ordered set Q with |V (Q)| ≥ 2. Let a be a maximal element of Q,

and let b ∈ V (Q)−{a}. If we label the ends of Rk by a and label other vertices by

b, then {Rk : k ≥ 1} is an antichain with respect to the topological minor relation

that preserves ordering on the labels of the vertices. This shows that the converse of

Theorem 4 is also true.

However, Robertson’s conjecture can be strengthened if the vertices are unla-

belled (or equivalently, labelled by Q with |V (Q)|= 1), since {Rk : k ≥ 1} is not an

antichain if the vertices are unlabelled. Liu and Thomas [36] also provide a complete

characterization for the family of unlabelled graphs that are well-quasi-ordered by

the topological minor relation. Such a characterization involves a notion of Robert-

son family that is defined as follows.

For a positive integer k and an end v of Rk, by planting on v we mean the operation

that either adds a new vertex adjacent to v, or adds a new loop incident with v; a

thickening on v is the operation that adds a new edge incident with v and its neighbor;

a strong planting on v is the operation that either applies planting on v twice, or

applies thickening on v once. Let k be a positive integer, the Robertson cycle of

length k is the graph that can be obtained from the cycle of length k by duplicating

each edge.

For each positive integer k ≥ 3, the Robertson family of length k is the set of

graphs consisting of the Robertson cycle of length k and the graphs that can be

obtained from Rk by either

• strong planting on each end of Rk once, or

• planting on each end of Rk once and adding an edge incident with both ends of

Rk, or
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• planting on one end of Rk once, thickening on the other end once, and adding an

edge incident with both ends of Rk.

So for each k ≥ 3, the Robertson family of length k consists of 16 non-isomorphic

graphs. Note that the graph R′
k mentioned earlier in the infinite antichain {R′

k : k ≥ 1}
can be obtained from Rk by strong planting on each end of Rk. Clearly, the union

of the Robertson families of length k over all integers k can be partitioned into 16

infinite antichains with respect to the topological minor relation.

Liu and Thomas [36] prove that Robertson’s conjecture can be strengthened to

graphs with no topological minor isomorphic to members of Robertson families.

Theorem 5 ([36]). For every positive integer k ≥ 3, if G1,G2, ... are graphs that do

not contain any member of the Robertson family of length at least k as a topological

minor, then there exist 1 ≤ j < j′ such that G j′ contains G j as a topological minor.

Theorem 5 is best possible since to obtain a well-quasi-ordered set, we can only

allow finitely many members in each of the 16 infinite disjoint antichains whose

union is the union of Robertson families of all lengths. This theorem also provides

a characterization of well-quasi-ordered topological minor ideals.

A family I of graphs is a topological minor ideal if every topological minor of

any member of I belongs to I .

Theorem 6 ([36]). Let I be a topological minor ideal. Let R be the union of the

Robertson family of length k over all positive integers k ≥ 3. Then I is well-quasi-

ordered by the topological minor relation if and only if I contains only finitely

many members of R.

We remark that Theorems 4 and 6 show a significant difference between well-

quasi-ordered topological minor ideals for labelled graphs and for unlabelled graphs.

Furthermore, if a topological minor ideal is well-quasi-ordered with a set of two la-

bels, then it cannot contain arbitrarily long Robertson chain, so Theorem 4 shows

that it is also well-quasi-ordered with a set of labels of any cardinality. Hence, the

cardinality of the set of labels does not affect whether a topological minor ideal

is well-quasi-ordered or not, as long as at least two labels are allowed. This fact

could be viewed as a possible support for a conjecture of Pazout (Conjecture 7)

about a similar situation for the induced subgraph relation, though it could also be

viewed as a support for a similar but false conjecture of Křı́ž and Thomas [29] on

QO-categories disproved by Křı́ž and Sgall [28].

2.1 Directed graphs

Now we consider topological minors for directed graphs. The notion of home-

omorphic embedding of undirected graphs naturally extends to directed graphs. A

function π is a homeomorphic embedding from a directed graph H into a directed

graph G if the following hold.



8 Chun-Hung Liu

• π maps vertices of H injectively to vertices of G.

• For each non-loop e of H with tail x and head y, π(e) is a directed path in G from

π(x) to π(y).
• For each loop e of H with end v, π(e) is a directed cycle in G containing π(v).
• If e1,e2 are distinct edges of H, then π(e1)∩π(e2)⊆ {π(t) : t ∈ e1 ∩ e2}.

We say that a directed graph G contains another directed graph H as a topological

minor if there exists a homeomorphic embedding from H into G.

It is easy to see that the topological minor relation does not well-quasi-order

directed graphs, as any orientation of the graphs in {R′
k : k ≥ 1} form an infinite

antichain. Indeed, it is still not a well-quasi-ordering even if we restrict the problem

to a specific kind of directed graphs.

A directed graph G is a tournament if its underlying graph is a simple graph, and

for every pair u,v of distinct vertices of G, exactly one of (u,v) and (v,u) belongs

to E(G). It seems well-known that tournaments are not well-quasi-ordered by the

topological minor relation, but we were not able to find any example of an infinite

antichain in the literature. So we provide an example of an infinite antichain here.

For any positive integer n, we say a tournament is a transitive tournament on [n]
if its vertex-set is [n] and every edge is of the form (i, j) with 1 ≤ i < j ≤ n. For any

positive integer k, let Gk be the tournament obtained from the transitive tournament

on [2k + 13] by reversing the direction of the edges in {(1,2),(3,4),(5,6),(2,7),
(4,7),(6,7),(2k+ 7,2k+ 8),(2k+ 8,2k+ 9),(2k+ 7,2k+ 10),(2k+ 10,2k+ 11),
(2k+7,2k+12),(2k+12,2k+13)}∪{(2i+5,2i+6),(2i+6,2i+7),(2i+5,2i+
7) : i ∈ [k]}. Note that the undirected graph formed by the reversed edges is the

simple graph obtained from Rk by attaching three leaves to each end of Rk and then

subdividing all except one edge in each pair of parallel edges once.

Theorem 7. {Gk : k ≥ 1} is an antichain of tournaments with respect to the topo-

logical minor relation.

Proof. Suppose to the contrary that there exist 1 < i < j and a homeomorphic em-

bedding π from Gi to G j. Let u1,u2, ...,u2i+13 be the vertices 1,2, ...,2i+13 of Gi,

respectively; let v1,v2, ...,v2 j+13 be the vertices 1,2, ...,2 j+13 of G j, respectively.

We first show that π(u7) = v7. For t ∈ [3], let Ht be the directed cycles π((u7,
u8−2t))∪ π((u8−2t ,u7−2t))∪ π((u7−2t ,u7)) in G j. Suppose that π(u7) = v2r+7 for

some r ∈ [ j]. Since there exists no edge from {vℓ : ℓ > 2r+ 7} to {vℓ : ℓ < 2r+ 7}
in G j, at most one of H1,H2,H3, say H1, contains an edge of the form (v2r+7,vx)
with x > 2r + 7. Since (v2r+7,v2r+5) and (v2r+7,v2r+6) are the only two edges of

the form (v2r+7,vy) with y < 2r+ 7, one of H2,H3 contains (v2r+7,v2r+5) and the

other contains (v2r+7,v2r+6). But then H2,H3 must share v2r+5, a contradiction. A

similar argument shows that π(u7) ̸∈ {vℓ : ℓ ∈ [6]}∪{v2ℓ+6 : ℓ ∈ [ j]}. Since the out-

degree of u7 equals 2i+ 7, which is greater than the out-degree of any vertex in

{vℓ : 2 j+8 ≤ ℓ≤ 2 j+13}. Hence π(u7) = v7. Similarly, π(u2i+7) = v2 j+7.

Since u7 has in-degree five in Gi, in order to accommodate H1,H2,H3, π((u8,u7))
and π((u9,u7)), we have that {π(uℓ) : ℓ ∈ [7]}= {vℓ : ℓ ∈ [7]}. Since u2i+5 has out-

degree six in Gi, π(u2i+5) ̸∈ {vℓ : 2 j + 8 ≤ ℓ ≤ 2 j + 13}. Then we have {π(uℓ) :
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2i+ 8 ≤ ℓ ≤ 2i+ 13} = {vℓ : 2 j + 8 ≤ ℓ ≤ 2 j + 13}. Then it is easy to show that

π(u2ℓ+7) = v2ℓ+7 for each ℓ ∈ [i]∪{0} by induction on ℓ. In particular, π(u2i+7) =
v2i+7. So j = i, a contradiction. This proves the theorem.

3 Minors

Let G be a graph, and e be an edge with ends x,y. By contracting e we mean

deleting x,y from V (G) and adding a new element w into V (G), and deleting e from

E(G) and replacing any appearance of x or y in edges by w. Note that contracting an

edge contained in a triangle will create parallel edges; contracting an edge in a pair

of parallel edges will create loops. We say that G contains a graph H as a minor if

H can be obtained from G by repeatedly deleting vertices and edges and contracting

edges.

Wagner [56] conjectured that the minor relation is a well-quasi-ordering. Note

that Wagner’s conjecture contains Vázsonyi’s conjecture on subcubic graphs since

the minor relation and the topological minor relation are equivalent for subcu-

bic graphs. Robertson and Seymour [51] proved Wagner’s conjecture and hence

Vázsonyi’s conjecture on subcubic graphs. Note that deriving from Wagner’s con-

jecture is the only currently known proof of Vázsonyi’s conjecture on subcubic

graphs.

Theorem 8 ([51]). Graphs are well-quasi-ordered by the minor relation.

Theorem 8 is now known as the Graph Minor Theorem. The Graph Minor Theo-

rem is one of the most difficult theorems in graph theory. It is proved in the 20th

paper of the famous Graph Minors series by extensively applying the structural

theorems developed in other papers of the same series. Robertson and Seymour’s

groundbreaking work in this series of paper not only solves well-quasi-ordering

problems but also opens a new research field in structural graph theory.

Indeed, Robertson and Seymour proved that Theorem 8 is true even when the

edges of the graphs are labelled. Formal descriptions for the version of labelled

graphs are involved, so we omit the details. We refer interested readers to [51, 52].

A sketch of a proof of Theorem 8 can be found in [13].

A minor ideal I is a set of graphs such that every minor of a member of I

belongs to I . Theorem 8 implies that for every minor ideal I , there exists a finite

set of graphs F such that any graph belongs to I if and only if it does not contain

any member of F as a minor. In other words, any minor ideal (or any minor closed

property) can be characterized by finitely many graphs. Since minor testing is fixed-

parameter tractable [50], any minor closed property can be tested in polynomial

time.
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3.1 Directed minors

There are different notions of minors for directed graphs, and it is unclear which

one is the better than others.

One possible way to define minors for directed graphs is the same as for undi-

rected graphs: just deleting vertices, edges or contracting edges. Robertson and Sey-

mour [51] also showed that the Graph Minor Theorem is true for this notion of

minors for directed graphs.

Theorem 9 ([51]). Given infinitely many directed graphs G1,G2, ..., there exist 1 ≤
i < j such that Gi can be obtained from G j by deleting vertices and edges and

contracting edges.

One drawback for allowing contracting any edges in directed graphs is about an

issue of connectivity. Observe that contracting edges in undirected graphs does not

create new connected components. A natural analog of the connectivity for directed

graphs is strong connectivity. A directed graph is strongly connected if for any pair

of vertices u,v, there exist a directed path from u to v and a directed path from v to u.

A strong connected component in a directed graph is a maximal strongly connected

subdigraph. Note that contracting edges in directed graph might create new strongly

connected components. Hence, people seek notions of minors for directed graphs

that preserve strong connectivity. In this subsection we discuss two such notions.

The first one is called the butterfly minor. A directed graph G contains another

directed graph H as a butterfly minor if H can be obtained from a subdigraph of G

by repeatedly contracting edges e satisfying the property that either the tail of e has

out-degree one, or the head of e has in-degree one. Note that contracting such edges

will not create new strongly connected components.

However, the butterfly minor relation is not a well-quasi-ordering on directed

graphs. For any positive integer k, let Gk be the directed graph obtained from a

cycle of length 2k by orienting the edges clockwise or counterclockwise alternately.

Hence every vertex of Gk has either in-degree 0 and out-degree 2, or in-degree 2 and

out degree 0. So no edge of Gk can be contracted according to the requirement for

butterfly minors. Therefore, {Gk : k ≥ 1} is an antichain with respect to the butterfly

minor relation.

Another antichain with respect to the butterfly minor relation is as follows. For

any positive integer k, let Gk be the directed graph obtained by a path of length 2k

by orienting edges alternately such that the ends of the path have in-degree 0, and

attaching two leaves to each end of the original path and direct the edges such that

the ends of the original paths have out-degree 3. Similarly as the previous example,

no edge in Gk can be contracted. Therefore, {Gk : k ≥ 1} is an antichain with respect

to the butterfly minor relation.

Each of these two antichains contains arbitrarily long paths with edges oriented

alternately. Chudnovsky, Muzi, Oum, Seymour and Wollan (see [41]) proved that

such long alternating paths are the only obstructions for butterfly minor ideals being

well-quasi-ordered by the butterfly minor relation.
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A set of directed graphs I is called a butterfly minor ideal if any butterfly minor

of any member of I belongs to I . An alternating path of length k is a directed

graph that is obtained from a path of length k by orienting edges such that no directed

subpath has length two.

Theorem 10 ([41]). Let I be a butterfly minor ideal. If there exists a positive in-

teger k such that I does not contain any alternating path of length k, then I is

well-quasi-ordered by the butterfly minor relation.

Now we discuss another notion of minors for directed graphs. An equivalent way

to define minors for undirected graphs is by contracting connected subgraphs in-

stead of contracting edges. Here we consider such an analog for directed graphs.

More precisely, this containment allows vertex-deletions, edge-deletions and con-

tracting directed cycles. Note that as contracting special edges for butterfly minors,

contracting directed cycles does not create new strongly connected components, ei-

ther. We are not aware of any formal term in the literature describing this type of

minor containment besides of simply calling it “minors”. But to avoid confusion,

we do not call it minors in this paper.

Note that this new containment is incomparable with the butterfly minor relation.

There exist directed graphs G1,G2,H such that G1 contains H as a butterfly minor,

but H cannot be obtained from a subdigraph of G1 by contracting directed cycles,

and G2 does not contain H as a butterfly minor, but H can be obtained from a

subdigraph of G2 by contracting directed cycles.

Clearly, directed graphs are not well-quasi-ordered by this containment relation

since the set of directed cycles is an antichain with respect to this containment.

But Kim and Seymour [23] proved that the set of semi-complete directed graphs

are well-quasi-ordered by this containment. A directed graph D is semi-complete if

E(D) is a set of ordered pairs of distinct vertices, and for any distinct vertices u,v of

D, at least one of (u,v) and (v,u) belongs to E(D).

Theorem 11 ([23]). If G1,G2, ... are semi-complete directed graphs, then there exist

1 ≤ i < j such that Gi can be obtained from a subdigraph of G j by repeatedly

contracting directed cycles.

3.2 Induced minors

In this subsection we consider minors where edge-deletions are not allowed. This

notion is a combination of the minor relation and the induced subgraph relation. We

remark that most of the statements in this subsection address simple graphs. One

reason is that for any graph H, the set {Hi : i ≥ 1} is an infinite antichain with

respect to the induced minor relation or the induced subgraph relation, where Hi is

the graph obtained from H by duplicating each edge i times. Hence, to keep graphs

simple, we have to delete all resulting loops and parallel edges when we contract an

edge.
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Formally, we say a simple graph G contains another simple graph H as an in-

duced minor if H can be obtained from G by repeatedly deleting vertices, contract-

ing edges, and deleting resulting loops and parallel edges.

Several infinite antichains with respect to the induced minor relation are known

in the literature.

Theorem 12. The following sets are antichains with respect to the induced minor

relation.

1. [55] The set of “alternating double wheels”.

2. [40] A specific set of simple graphs of maximum degree at most eight with no K−
5

minor.

3. [16] A specific set of interval graphs.

4. [5] The set of anti-holes with length at least six.

5. [33] A specific set of simple graphs that do not contain W4 or K−
5 as an induced

minor.

An alternating double wheel is the simple graph obtained from a cycle v1v2...v2kv1

of even length with k ≥ 6 by adding two non-adjacent vertices x,y and adding the

edges {x,v2i},{y,v2i−1} for i ∈ [k]. Recall that K−
n denotes the graph obtained from

Kn by deleting an edge, and W4 is the simple graph obtained from the cycle of

length four by adding a new vertex adjacent to all other vertices. A graph is an in-

terval graph if it is the intersection graph of intervals of R. A graph is an anti-hole

of length k if it is the complement of a cycle of length k.

Since simple graphs are not well-quasi-ordered by the induced minor relation,

questions about graphs in more restricted sets were proposed. Thomas [55] first

proved the following.

Theorem 13 ([55]). The set of simple series-parallel graphs are well-quasi-ordered

by the induced minor relation.

A graph is series-parallel if it does not contain K4 as a minor. Note that a sim-

ple graph contains K4 as a minor if and only if it contains K4 as an induced minor.

Thomas [55] also asked whether Theorem 13 can be generalized to the set of simple

graphs with no K−
5 minor. Matoušek, Nešetřtil and Thomas [40] and Lewchaler-

mvongs [33] provided negative answers of this question as indicated in Statements

2 and 5 of Theorem 12.

Even though Theorem 13 cannot be generalized to graphs with no K−
5 minor,

people keep looking for specific classes of simple graphs that are well-quasi-ordered

by the induced minor relation.

For any set F of graphs, define Forbs
im(F ) to be the set of simple graphs that

do not contain any member of F as an induced minor. When the set F consists

of only one graph, say H, we write Forbs
im(F ) as Forbs

im(H). Well-quasi-ordered

Forbs
im(F ) are characterized by Błasiok, Kamiński, Raymond and Trunck, when

|F |= 1.

Theorem 14 ([5]). Let H be a simple graph. Then Forbs
im(H) is well-quasi-ordered

by the induced minor relation if and only if H is K̂4 or W−
4 .
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Here K̂4 is the simple graph obtained from K4 by adding a new vertex v adjacent

to exactly two vertices of K4; W−
4 is the graph obtained from W4 by deleting an edge

not incident with the vertex of degree four.

Furthermore, Lewchalermvongs [33] characterizes all induced minor ideals I

that are contained in Forbs
im({W4,K

−
5 }) and well-quasi-ordered by the induced mi-

nor relation. Formal descriptions of this result are involved, so we omit the details.

Another result about induced minors was proved by Ding [16] as follows. (A

graph is chordal if it does not contain any cycle of length at least four as an induced

subgraph.)

Theorem 15 ([16]). If t is a positive integer, then simple chordal graphs with no

clique of size t +1 are well-quasi-ordered by the induced minor relation.

Other classes of simple graphs are also concerned. Lozin and Mayhill [37] pro-

posed the following conjecture. (A unit interval graph is an intersection graph

of a collection of intervals of R of length one; a permutation graph is a simple

graph such that its vertex-set is {v1,v2, ...,vn} for some positive integer n, and

there exists a permutation σ on [n] such that vi is adjacent to v j if and only if

(i− j)(σ(i)−σ( j))< 0.)

Conjecture 1 ([37]). Unit interval graphs and bipartite permutation graphs are well-

quasi-ordered by the induced minor relation.

Note that the set of interval graphs is not well-quasi-ordered by the induced minor

relation by Statement 3 in Theorem 12.

Another positive result about induced minors is proved by Fellows, Hermelin and

Rosamond [18].

Theorem 16 ([18]). If k is a positive integer, then the set of simple graphs with no

cycle of length greater than k is well-quasi-ordered by the induced minor relation.

In the rest of the subsection, we consider containment relations that only allow

edge-contractions. Clearly, graphs with different number of components form an

antichain if only edge-contractions are allowed. Hence one should limit the number

of components when considering this containment.

We say that a simple graph (or loopless graph, respectively) G contains an-

other simple graph (or loopless graph, respectively) H as a simple-contraction (or

loopless-contraction, respectively) if H can be obtained from G by contracting

edges and deleting resulting loops and parallel edges (or deleting resulting loops,

respectively). For every positive integer k, define Θk to be the 2-vertex loopless

graph with k parallel edges. It is easy to see that {Θk : k ≥ 1} is an antichain with

respect to loopless-contraction.

For a positive integer p and a family of graphs F , let Forbs,p
sc (F ) (or Forb

ℓ,p
lc (F ),

respectively) be the set of simple (or loopless, respectively) graphs with at most

p components containing no member of F as a simple-contraction (or loopless-

contraction, respectively). The following are proved by Kamiński, Raymond and

Trunck [22, 21].
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Theorem 17. Let k, p be positive integers.

1. [22] Let H be a simple graph. Then Forbs,1
sc ({H}) is well-quasi-ordered by the

simple-contraction relation if and only if K−
4 contains H as a simple-contraction.

2. [21] Forb
ℓ,p
lc ({Θi : i ≥ k}) is well-quasi-ordered by the loopless-contraction rela-

tion.

3.3 Vertex-minors and pivot-minors

Let G be a simple graph. The simple graph obtained from G by applying local

complementation on a vertex v of G is the simple graph G∗ v with vertex-set V (G)
and two distinct vertices x,y are adjacent in G∗v if and only if either v is adjacent in

G to both x,y and {x,y} ̸∈ E(G), or at least one of x,y is not adjacent in G to v and

{x,y} ∈ E(G). A simple graph H is a vertex-minor of G if H can be obtained from

G by repeatedly deleting vertices and applying local complementations.

It is straightforward to verify that for any edge {x,y} of a simple graph G, G ∗
x∗y∗x = G∗y∗x∗y. The simple graph, denoted by G∧{u,v}, obtained from G by

applying pivoting an edge {u,v} of G is the graph G∗u∗ v∗u. A simple graph H is

a pivot-minor of G if H can be obtained from G by repeatedly deleting vertices and

applying pivotings.

Clearly, if H is a pivot-minor of G, then H is a vertex-minor of G. Oum [46] asks

whether the pivot-minor relation is a well-quasi-ordering on simple graphs or not.

Question 1. Are simple graphs well-quasi-ordered by the pivot-minor relation?

Proving a positive answer of Question 1 is expected to be very difficult, since

even a positive answer of this question on bipartite graphs implies the Graph Minor

Theorem.

Now we discuss the relationship between pivot-minors and minors. Note that if G

is a graph and T is a spanning forest in G, then for every edge e∈E(G)−E(T ), there

uniquely exists a cycle in T + e containing e. This cycle is called the fundamental

cycle for e with respect to T . For a graph G and a spanning forest T of G, the

fundamental graph of G with respect to T , denoted by F(G;T ), is a simple bipartite

graph with (ordered) bipartition (E(T ),E(G)−E(T )) such that for any e ∈ E(T )
and f ∈ E(G)−E(T ), e is adjacent to f in F(G;T ) if and only if e belongs to the

fundamental cycle for f with respect to T .

Deleting vertices from F(G;T ) corresponds to deleting or contracting edges of

G. Let e ∈ V (F(G;T )). It is straightforward to see that if e ∈ E(T ), then deleting

e from F(G;T ) results in the graph F(G/e;T/e), where G/e and T/e denote the

graphs obtained from G and T by contracting e, respectively; if e ̸∈ E(T ), then

deleting e from F(G;T ) results in the graph F(G− e;T ).
Pivoting an edge in F(G;T ) corresponds to switching to a new spanning forest.

Let {e, f} ∈ E(F(G;T )), where e ∈ E(T ) and f ∈ E(G)−E(T ). Then F(G;T )∧
{e, f}= F(G;(T − e)+ f ).
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Therefore, if G1,G2 are graphs and T1,T2 are spanning forests in G1,G2, respec-

tively, such that F(G1;T1) is a pivot-minor of F(G2;T2), then G1 is a minor of G2.

This shows that if simple bipartite graphs are well-quasi-ordered by the pivot-minor

relation, then graphs are well-quasi-ordered by the minor relation, which is what the

Graph Minor Theorem states.

Oum [45] proved that Question 1 has a positive answer for simple graphs with

bounded “rank-width”. Rank-width is a graph parameter that does not increase by

taking vertex-minors or pivot-minors, which is an analog of the relationship between

treewidth and the minor containment. Oum’s theorem can be viewed as a step toward

a potential answer of Question 1 as proving the bounded treewidth case serves the

first step of the proofs of the Graph Minor Theorem and Robertson’s conjecture. We

omit the formal definition of rank-width in this article.

Theorem 18 ([45]). For every positive integer k, simple graphs with rank-width at

most k are well-quasi-ordered by the pivot-minor relation.

One can ask whether a weakening of Question 1 for the vertex-minor relation

holds.

Conjecture 2. Simple graphs are well-quasi-ordered by the vertex-minor relation.

The vertex-minor relation is a weakening of the induced topological minor re-

lation. We say that a simple graph H is an induced topological minor of another

simple graph G if H can be obtained from G by repeatedly deleting vertices and

suppressing vertices of degree two not contained in triangles. Note that we only al-

low suppressing vertices not contained in triangles since we focus on simple graphs

here. Furthermore, one can also define induced topological minors that allow sup-

pressing any vertex of degree two and deleting parallel edges. It is equivalent with

the earlier definition since suppressing a vertex of degree two contained in a trian-

gle and deleting resulting parallel edges is equivalent with the operation that simply

deletes this degree two vertex. It is easy to see that the simple graph obtained from

a simple graph G by suppressing a vertex v of degree two not contained in a triangle

can be obtained from G ∗ v by deleting v. Therefore, if a simple graph G contains

another simple graph H as an induced topological minor, then G contains H as a

vertex-minor. It is easy to see that the topological minor relation and the induced

topological minor relation are the same for trees. Hence Theorem 1 indeed shows

that trees are well-quasi-ordered by the induced topological minor relation.

Conjecture 2 is known to be true for circle graphs. A simple graph is a circle

graph if it is the intersection graph of a set of chords of a circle. Bouchet [6] proved

that the following theorem follows from Theorem 20 on 4-regular graphs.

Theorem 19 ([6]). Circle graphs are well-quasi-ordered by the vertex-minor rela-

tion.
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4 Immersions

Immersions are graph containments that are closely related to the topological

minor relation. A weak immersion of a graph H in another graph G is a function π

with domain V (H)∪E(H) such that the following hold.

• π maps vertices of H to vertices of G injectively.

• For each non-loop e of H with ends x,y, π(e) is a path in G with ends π(x) and

π(y).
• For each loop e of H with end v, π(e) is a cycle in G containing π(v).
• If e1,e2 are distinct edges of H, then E(π(e1)∩π(e2)) = /0.

A strong immersion of H in G is a weak immersion π of H in G such that for every

e ∈ E(H) and vertex v of H not incident with e, π(v) ̸∈ V (π(e)). We say that G

contains H as a weak immersion (or strong immersion, respectively) if there exists a

weak (or strong, respectively) immersion of H in G.

Clearly, any homeomorphic embedding from H into G is a strong immersion of

H in G, and every strong immersion of H in G is a weak immersion of H in G. Hence

if G contains H as a topological minor, then G contains H as a strong immersion

and a weak immersion. However, the immersion relations and minor relation are

incomparable. There exist graphs G,H such that G contains H as a minor, but G

does not contain H as a weak immersion; there exist graphs G′,H ′ such that G′

contains H ′ as a strong immersion, but G′ does not contain H ′ as a minor. It is

worthwhile mentioning that the minor relation, topological minor relation and weak

and strong immersion relations are equivalent for subcubic graphs.

Nash-Williams in the 1960’s conjectured that the weak immersion relation [43]

and the strong immersion relation [44] are well-quasi-ordering. The weak immer-

sion conjecture was proved by Robertson and Seymour [52] in the currently last

paper in their Graph Minors Series. Indeed, they proved that it is true even when

graphs are labelled.

Theorem 20 ([52]). Let Q = (V (Q),⪯Q) be a well-quasi-ordering. For each posi-

tive integer i, let Gi be a graph and φi : V (Gi) → V (Q) be a function. Then there

exist 1 ≤ j < j′ and a weak immersion π of G j in G j′ such that φ j(v)⪯Q φ j′(π(v))
for every v ∈V (G j).

The strong immersion conjecture remains open. Robertson and Seymour believe

that they had a proof of the strong immersion conjecture at one time, but even if it

was correct, it was very complicated, and it is unlikely that they will write it down

(see [52]).

Conjecture 3 ([44]). Graphs are well-quasi-ordered by the strong immersion rela-

tion.

It is not hard to prove Conjecture 3 for graphs with bounded maximum degree

by using Theorem 20.



Recent progress on well-quasi-ordering graphs 17

Theorem 21. Let k be a nonnegative integer, and let Q = (V (Q),⪯Q) be a well-

quasi-ordering. For each positive integer i, let Gi be a graph with maximum degree

at most k, and let φi : V (Gi) → V (Q). Then there exist 1 ≤ j < j′ and a strong

immersion π of G j in G j′ such that φ j(v)⪯Q φ j′(π(v)) for every v ∈V (G j).

Proof. Define Q′ to be the well-quasi-ordering (V (Q)× ([k]∪{0}),⪯), where for

any (x1,y1),(x2,y2) ∈V (Q)× ([k]∪{0}), (x1,y1)⪯ (x2,y2) if and only if x1 ⪯Q x2

and y1 = y2. For each i≥ 1, define fi : V (Gi)→V (Q)×([k]∪{0}) to be the function

such that fi(v) = (φi(v),d(v)) for each v ∈ V (Gi), where d(v) is the degree of v in

Gi. By Theorem 20, there exist 1 ≤ j < j′ and a weak immersion π of G j in G j′ such

that f j(v) ⪯ f j′(π(v)) for every v ∈ V (G′
j). In particular, for every v ∈ V (G j), the

degree of π(v) in G j′ equals the degree of v in G j. So for each v ∈V (G j), all edges

of G j′ incident with π(v) are contained in
∪

π(e), where the union is over all edges

e of G j incident with v. Hence π is a strong immersion of G j in G j′ . This proves the

theorem.

Andreae [2] made some progress on Conjecture 3.

Theorem 22 ([2]). The following classes of simple graphs are well-quasi-ordered

by the strong immersion relation.

1. Simple graphs that do not contain K2,3 as a strong immersion.

2. Simple graphs whose blocks are either complete graphs, cycles, or balanced

complete bipartite graphs.

4.1 Directed graphs

The notion of weak immersion and strong immersion naturally extend to directed

graphs. A weak immersion of a directed graph H in another directed graph G is a

function π with domain V (H)∪E(H) such that the following hold.

• π maps vertices of H to vertices of G injectively.

• For each non-loop e of H with head x and tail y, π(e) is a directed path in G with

from π(x) to π(y).
• For each loop e of H with end v, π(e) is a directed cycle in G containing π(v).
• If e1,e2 are distinct edges of H, then E(π(e1)∩π(e2)) = /0.

A strong immersion of H in G is a weak immersion π of H in G such that for every

e ∈ E(H) and vertex v of H not incident with e, π(v) ̸∈V (π(e)).
Directed graphs are not well-quasi-ordered by the immersion relations, even for

weak immersion. Consider the cycles of length 2k with edges oriented clockwise

and counterclockwise alternately. It is easy to see that these orientated cycles form

an infinite antichain with respect to weak immersion.

But Chudnovsky and Seymour [7] proved that tournaments are well-quasi-

ordered by the strong immersion relation. Recall that tournaments are not well-

quasi-ordered by the topological minor relation (Theorem 7).
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Theorem 23 ([7]). Tournaments are well-quasi-ordered by the strong immersion re-

lation.

5 Subgraphs

In this section we discuss the subgraph relation. A graph H is a subgraph of

another graph G if H can be obtained from G by deleting vertices and edges.

Asubgraph embedding from H into G is an injective function f : V (H)∪E(H)→
E(H)∪E(G) such that f (V (H))⊆V (G), f (E(H))⊆ E(G), and for any edge {x,y}
of H, f (e) = { f (x), f (y)}. Clearly, H is a subgraph of G if and only if there exists a

subgraph embedding from H into G.

The subgraph relation does not well-quasi-order graphs. The set of all cycles is an

infinite antichain with respect to the subgraph relation. There is another antichain.

For every positive integer k, the fork of length k, denoted by Fk, is the simple graph

obtained from a path of length k by attaching two leaves to each end of the original

path. Clearly, the set of all forks is an infinite antichain with respect to the subgraph

relation. This situation is similar with the topological minor case. Indeed, Ding [14]

proved an analog of Robertson’s conjecture with respect to the subgraph relation.

Theorem 24 ([14]). Let k be a positive integer, and let Q = (V (Q),⪯) be a well-

quasi-ordering. For any positive integer i, let Gi be a graph that does not contain a

path of length k as a subgraph, and let φi :V (Gi)→V (Q). Then there exist 1≤ j < j′

and a subgraph embedding φ from G j into G j′ such that φ j(v)⪯ φ j′(π(v)) for every

v ∈V (G j).

Ding’s proof of Theorem 24 is nice and short based on the simple fact that ev-

ery connected graph that does not contain a path of length k as a subgraph can be

modified into a graph that does not contain a path of length k−1 as a subgraph by

deleting at most k vertices. Theorem 24 can also be derived from Theorem 4. Let G′
i

be the graph obtained from Gi by subdividing every edge once and then duplicating

all edges. Define a new well-quasi-ordering Q′ by adding a new element into Q in-

comparable to all other elements of Q. Further label all vertices of G′
i obtained by

subdividing edges of Gi by this new element. Then G′
j′

contains G′
j as a topological

minor with respect to the labelling if and only if G j′ contains G j as a subgraph with

respect to the labelling. And it is easy to see that if Gi does not contain a path of

length k as a subgraph, then G′
i does not contain R2k+2 as a topological minor. So

Theorem 24 follows from Theorem 4.

A set I of graphs is a subgraph ideal if every subgraph of a member of I

belongs to I . Ding [14] characterized all well-quasi-ordered subgraph ideals of

simple graphs.

Theorem 25 ([14]). Let I be a subgraph ideal of simple graphs. Then the following

are equivalent.

1. I is well-quasi-ordered by the subgraph relation.
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2. I is well-quasi-ordered by the induced subgraph relation.

3. There exists a positive integer k such that I does not contain any cycle or fork

of length at least k.

5.1 Subdigraphs

Now we discuss the subdigraph relation on directed graphs. As shown in Section

3, there exists an infinite antichain of directed graphs with respect to the butterfly

minor relation. This antichain is also an antichain with respect to the subdigraph

relation. Note that directed graphs in this antichain do not contain a directed path of

length at least two. So Theorem 24 does not extend to directed graphs with no long

directed paths. But Ding [14] points out that his proof of Theorem 24 can be easily

modified to prove that directed graphs whose underlying graphs do not contain a

path of length k are well-quasi-ordered by the subdigraph relation.

Recall that Theorem 7 shows that there exists an infinite antichain of tournaments

with respect to the topological minor relation. So tournaments are not well-quasi-

ordered by the subdigraph relation. More examples of infinite antichains of tour-

naments were proved by Latka [32]. For any positive integer n ≥ 9, let An be the

tournament obtained from the transitive tournament on [n] by reversing the edges in

{(i, i+1),(1,3),(n−2,n) : 1 ≤ i ≤ n−1}. For any positive integer n ≥ 4, let Bn be

the tournament with V (Bn) = Z/((2n+1)Z) such that with E(Bn) = {(i, j) : j− i ∈
{1,2, ...,n−1,n+1}}, where the computation is in Z/((2n+1)Z).

Theorem 26 ([32]). {An : n ≥ 9} and {Bn : n ≥ 4} are infinite antichains with re-

spect to the subdigraph relation.

5.2 Induced subgraphs

A graph H is an induced subgraph of G if H can be obtained from G by deleting

vertices. It is required to focus on simple graphs only when considering well-quasi-

ordering by induced subgraph relation, since for any graph G, the set {Gi : i ≥ 1}
is an infinite antichain with respect to the induced subgraph relation, where Gi is

obtained from G by duplicating each edge i times. So we only focus on simple

graphs in this subsection.

Let F be a set of graphs. Define Forbs
s(F ) (and Forbs

is(F ), respectively) to be

the set of simple graphs that do not contain any member of F as a subgraph (and

an induced subgraph, respectively). When F consists of one graph H, we write

Forbs
s({H}) and Forbs

is({H}) as Forbs
s(H) and Forbs

is(H), respectively, for short.

Theorem 24 can be restated as: Forbs
s(Pn) is well-quasi-ordered by the subgraph

relation. However, Damaschke [11] showed that Forbs
is(Pn) is not well-quasi-ordered

by the induced subgraph relation for n ≥ 5, though it is true if n ≤ 4.
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For every positive integer k, the k-sun, denoted by Sk, is the simple graph ob-

tained from a complete graph with vertex-set {xi : 1 ≤ i ≤ k} by adding k vertices

y1,y2, ...,yk such that yi is adjacent to xi−1 and xi for each i with 1 ≤ i ≤ k, where

x0 = xk. Define 2K2 to be the graph that consists of a disjoint union of two copies of

K2. Clearly, for every k ≥ 4, Sk does not contain 2K2 as an induced subgraph, and

hence does not contain P5 as an induced subgraph. Damaschke [11] showed that

{S2k : k ≥ 2} is an antichain with respect to the induced subgraph relation.

Theorem 27 ([11]). The following statements are true.

1. Let H be a simple graph. Then Forbs
is(H) is well-quasi-ordered by the induced

subgraph relation if and only if H is an induced subgraph of P4.

2. {S2k : k ≥ 2} is an infinite antichain with respect to the induced subgraph rela-

tion. In particular, for every k ≥ 5, Forbs
is(Pk) is not well-quasi-ordered by the

induced subgraph relation.

3. Forbs
is({K3,P5}) and Forbs

is({K3,K2 ∪ 2K1}) are well-quasi-ordered by the in-

duced subgraph relation.

Answering a question of Damaschke, Ding [14] showed that Forbs
is({2K2,C4,C5,

S4}) is not well-quasi-ordered by the induced subgraph relation. Ding also proved

that several other families F in which Forbs
is(F ) are well-quasi-ordered by the

induced subgraph relation. We refer interested readers to [14]. In the same paper,

Ding [14] proposed the following conjecture about permutation graphs.

Conjecture 4 ([14]). For every positive integer k ≥ 5, permutation graphs that do not

contain Pk or the complement of Pk as a induced subgraph are well-quasi-ordered by

the induced subgraph relation.

Note that Conjecture 4 concerns special classes of graphs. This special class

is actually an induced subgraph ideal. There are more results concerning special

classes of graphs. For example, Atminas, Brignall, Korpelainen, Lozin and Vatter

[4] determined whether permutation graphs in Forbs
is(F ) for some families F with

small size are well-quasi-ordered or not.

Another special class of graphs is the set of k-letter graphs introduced by

Petkovšek [47]. For a positive integer k, a simple graph G is a k-letter graph if

V (G) can be partitioned into V1,V2, ...,Vp for some p ≤ k, where each Vi is a clique

or a stable set, such that there exists a linear ordering σ of V (G) such that for each

pair of distinct indices i, j ∈ [p], either every vertex in Vi is adjacent to every vertex

in Vj, or every vertex in Vi is non-adjacent to every vertex in Vj, or for every vertex

x in Vi, its neighbors in Vj are the veritces y in Vj with σ(x) < σ(y), or for every

vertex x in Vi, its neighbors in Vj are the vertices y in Vj with σ(x)> σ(y).

Theorem 28 ([47]). For every positive integer k, the set of k-letter graphs is well-

quasi-ordered by the induced subgraph relation.

Using Theorem 28, Lozin and Mayhill [37] proved results related to unit interval

graphs and bipartite permutation graphs. Note that the class of unit interval graphs
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and the class of bipartite permutation graphs are induced subgraph ideals. Recall that

Fk is the fork of length k. Every Fk is a bipartite permutation graph, but {Fk : k ≥ 1} is

an antichain with respect to the induced subgraph relation. The graph F+
k is defined

to be the simple graph obtained from Fk by adding an edge to each pair of leaves

sharing a common neighbor. Every F+
k is a unit interval graph, but {F+

k : k ≥ 1} is

an antichain with respect to the induced subgraph relation.

Theorem 29 ([37]). The following are true.

1. Let I be an induced subgraph ideal of unit interval graphs. Then I is well-

quasi-ordered by the induced subgraph relation if and only if I contains finitely

many members of {F+
k : k ≥ 1}.

2. Let I be an induced subgraph ideal of bipartite permutation graphs. Then I

is well-quasi-ordered by the induced subgraph relation if and only if I contains

finitely many members of {Fk : k ≥ 1}.

Now let us consider Forbs
is(F ) in terms of the size of F . As mentioned in The-

orem 27, the family F with size one in which Forbs
is(F ) is well-quasi-ordered by

the induced subgraph relation is characterized in [11]. For families F with |F | ≥ 2,

the complete characterization for F such that Forbs
is(F ) is well-quasi-ordered by

the induced subgraph relation is not known. But numerous families with size two

were studied. For example, see [3, 4, 25, 24].

Following this direction, people study what the minimal non-well-quasi-ordered

sets S of simple graphs such that S = Forbs
im(F ) for some family F of simple

graphs with |F | ≤ k are. For every positive integer k, we say that a set S of simple

graphs is k-bad if S = Forbs
is(F ) for some |F |= k, S is not well-quasi-ordered by

the induced subgraph relation, and S is minimal among the sets satisfying the pre-

vious two properties. Korpelainen and Lozin [24] conjectured that for every positive

integer k, there are only finitely many k-bad sets. Using Theorem 27, Korpelainen,

Lozin and Razgon [26] showed that it is true when k = 1. Korpelainen and Lozin

[24] proved the case k = 2. However, the case k ≥ 3 was disproved by Korpelainen,

Lozin and Razgon [26].

Theorem 30. The following are true.

1. [26] The 1-bad sets are Forbs
is(C3), Forbs

is(C4), Forbs
is(C5), Forbs

is(3K1) and

Forbs
is(2K2).

2. [24] There are only finitely many 2-bad sets.

3. [26] There are infinitely many k-bad sets for any k ≥ 3. In particular, for any

positive integer t with t > k, Forbs
is({K1,3,Ci,Ct : 3 ≤ i ≤ k}) is a k-bad set.

Whether Forbs
is(F ) is well-quasi-ordered by the induced subgraph relation has

been determined for almost all families F with |F |= 2. A summary can be founded

in [9]. The remaining undetermined classes are the following.

Question 2 ([9]). Let F = {H1,H2} for some simple graphs H1,H2. Determine

whether Forbs
is(F ) is well-quasi-ordered by the induced subgraph relation for the

following cases.
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1. H1 = K3 and H2 ∈ {P1 ∪2P2,P1 ∪P5,P2 ∪P4}.

2. H1 = K−
4 and H2 ∈ {P1 ∪2P2,P1 ∪P4}.

3. H1 =W−
4 and H2 ∈ {P1 ∪P4,2P2,P2 ∪P3,P5}.

“Clique width” is a well-known graph parameter that is used for measuring how

“homogenous” its vertices are. So graphs with smaller clique width are less compli-

cated. Moreover, any induced subgraph H of a graph G has clique width no more

than G. Hence, for any positive integer k, the set of simple graphs of clique width at

most k is an induced subgraph ideal. However, every cycle has clique width at most

four, so the set of simple graphs of bounded clique width is not well-quasi-ordered

by the induced subgraph relation, even when the bound is four. On the other hand,

intuitively, graphs in any induced subgraph ideal that can be well-quasi-ordered by

the induced subgraph relation are expected not to be too “complicated”. Daligault,

Rao and Thomassé [10] asked whether it is true that every induced subgraph ideal

containing graphs with arbitrarily large clique width cannot be well-quasi-ordered

by the induced subgraph relation. However, Lozin, Razgon and Zamaraev [38] pro-

vide a negative answer of this question.

For every positive integer k, define Dk to be the simple graph with V (Dk) = [k]
and where two vertices i, j are adjacent if and only if either |i− j|= 1, or q(i) = q( j),
where for any x ∈ [k], q(x) is the largest number of the form 2n (for some positive

integer n) dividing x.

Theorem 31 ([38]). Let I be the set of simple graphs consisting of {Dk : k ≥ 1}
and all induced subgraphs of Dk for some k. Then I is well-quasi-ordered by the

induced subgraph relation, but for every number n, there exists n′ such that the

clique width of Dn′ is greater than n.

As indicated in [9], the ideal I mentioned in Theorem 31 cannot be written as

Forbs
is(F ) for some finite family F . Dabrowski, Lozin and Paulusma [9] conjecture

that the finiteness of F can ensure a positive answer of the question of Daligault,

Rao and Thomassé mentioned above. In fact, the question of Daligault, Rao and

Thomassé is motivated by another weaker conjecture of theirs (see Conjecture 9

below), and the finiteness is ensured in the setting of that weaker conjecture.

Conjecture 5 ([9]). If F is a finite set of simple graphs, and Forbs
is(F ) is well-

quasi-ordered by the induced subgraph relation, then there exists a number N such

that every graph in Forbs
is(F ) has clique width at most N.

Conjecture 5 is true when |F |= 1. It follows from the fact that {P4} is the only

family F with size one with Forbs
is(F ) well-quasi-ordered, and the fact that every

graph in Forbs
is(P4) has clique width at most three. Almost all cases for F with

|F |= 2 are verified (see [9]), except the following.

Question 3 ([9]). Let F = {H1,H2} for some simple graphs H1,H2. Determine

whether F satisfies Conjecture 5 or not for the following cases.

1. H1 = K3 and H2 = P2 ∪P4.
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2. H1 =W−
4 and H2 = P2 ∪P3.

In addition, some sets that were proved to be well-quasi-ordered by the induced

subgraph relation are also well-quasi-ordered even when the vertices are labelled by

a well-quasi-ordering [3]. A induced subgraph embedding π from a graph H into a

graph G is a subgraph embedding such that the image of π is an induced subgraph

of G. When the vertices of G and H are labelled by a quasi-ordering Q, we say that

G contains H as a Q-labelled induced subgraph if there exists an induced subgraph

embedding π from H into G such that the label of v is less than or equal to the label

of π(v) with respect to Q, for every v ∈V (H). We say that a set of simple graphs is

well-quasi-order by the labelled induced subgraph relation if for every well-quasi-

ordering Q and any infinite sequence G1,G2, ... of Q-labelled graphs in this set, there

exist 1 ≤ i < j such that G j contains Gi as a Q-labelled-induced subgraph. Inspired

by the known examples of ideals that are well-quasi-ordered by the labelled induced

subgraph relation in the literature, Atminas and Lozin conjectured the following.

Conjecture 6 ([3]). Let I be an induced subgraph ideal that is well-quasi-ordered

by the induced subgraph relation. Then I is well-quasi-ordered by the labelled

induced subgraph relation if and only if I = Forbs
is(F ) for some finite set F .

Conjecture 6 implies a long-standing conjecture of Pouzet [48], which we de-

scribe as follows.

Let n be a positive integer, and let Q be the quasi-ordering ([n],=). Let G,H be

simple graphs and let fG, fH be functions with fG : V (G) → [n] and fH : V (H) →
[n]. We say that (G, fG) contains (H, fH) as an n-induced subgraph if there exists

an induced subgraph embedding π from H into G such that fH(v) = fG(π(v)) for

every v ∈V (H). A set S of simple graphs is n-well-quasi-ordered if for any infinite

sequence of simple graphs G1,G2, ... in S and for all functions fi : V (Gi)→ [n] for

all i ≥ 1, there exist 1 ≤ j < j′ such that (G j′ , f j′) contains (G j, f j) as an n-induced

subgraph.

Clearly, being 1-well-quasi-ordered is equivalent to being well-quasi-ordered by

the induced subgraph relation. But 2-well-quasi-ordering is very different from 1-

well-quasi-ordering. One evidence is that any 2-well-quasi-ordered induced sub-

graph ideal of simple graphs cannot contain arbitrarily long paths, but some 1-well-

quasi-ordered induced subgraph ideals can. Another evidence is shown by Daligault,

Rao and Thomassé [10], that every 2-well-quasi-ordered induced subgraph ideal of

simple graphs can be expressed as Forbs
is(F ) for some finite family F . However,

having more than two labels seems not different from simply having two labels. The

following is conjectured by Pazout [48] and Fraı̈ssé [19].

Conjecture 7 ([19, 48]). Let I be an induced subgraph ideal of simple graphs. Then

I is 2-well-quasi-ordered if and only if I is n-well-quasi-ordered for all positive

integers n.

We remark that Conjecture 6 implies Conjecture 7. Since any 2-well-quasi-

ordered ideal is a 1-well-quasi-ordered induced ideal which is of the form Forbs
is(F )
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for some finite F , Conjecture 6 implies that it is well-quasi-ordered by the labelled

induced subgraph relation, so it is n-well-quasi-ordered for all n.

When Daligault, Rao and Thomassé [10] tried to solve Conjecture 7, they found

a special kind of induced subgraph ideal, denoted by NLCF
k , in which 1-well-

quasi-ordering is equivalent with n-well-quasi-ordering for any n. Roughly speak-

ing, given a positive integer k and a family of functions F from [k] to [k], the class

NLCF
k consists of the simple graphs that can be generated by using k symbols and

relabelling functions in F . When F is the family that consists of all functions from

[k] to [k], any graph in NLCF
k has “NLC-width” at most k. The NLC-width is equiv-

alent with the clique width in terms of boundedness. Namely, a class of graphs has

bounded NLC-width if and only if it has bounded clique width. We refer readers to

[10] for formal definitions of NLCF
k and the NLC-width.

Theorem 32 ([10]). Let k be a positive integer and let F be a family of functions

from [k] to [k]. Then the following are equivalent.

1. For any f ,g ∈ F , either the image of f ◦ g equals the image of f , or the image

of g◦ f equals the image of g.

2. NLCF
k is well-quasi-ordered.

3. NLCF
k is n-well-quasi-ordered for all positive integers n.

4. There exists M such that PM ̸∈ NLCF
k .

Daligault, Rao and Thomassé [10] proposed the following conjecture, which im-

plies Conjecture 7 by using Theorem 32.

Conjecture 8 ([10]). If I is a 2-well-quasi-ordered induced subgraph ideal of sim-

ple graphs, then there exist a positive integer k and a family of functions from [k]
to [k] such that I ⊆ NLCF

k and NLCF
k is n-well-quasi-ordered for every positive

integer n.

As a potential step to prove Conjecture 8, Daligault, Rao and Thomassé proposed

a weaker conjecture in which the restriction for the relabelling functions is not con-

cerned. (Recall that having bounded NLC-width is equivalent with having bounded

clique width.)

Conjecture 9 ([10]). Let I be an induced subgraph ideal of simple graphs. If I

is 2-well-quasi-ordered, then there exists M such that every graph in I has clique

width at most M.

Recall that any 2-well-quasi-ordered induced subgraph ideal can be written as

Forbs
is(F ) for some finite set of simple graphs F . Hence Conjecture 5 implies

Conjecture 9.

5.3 Rao-containments

Recall that the induced subgraph relation does not well-quasi-order simple

graphs. Rao proposed a way to tweak this relation to be possibly a well-quasi-

ordering.
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Let n be a positive integer. We say a finite sequence (a1,a2, ...,an) over nonneg-

ative integers is graphic if there exists a simple graph G with V (G) = [n] such that

for each i ∈ [n], the degree of i in G equals ai. We call such a simple graph G a

realization of (a1,a2, ...,an). Rao [49] proposed the following conjecture.

Conjecture 10 ([49]). Given infinitely many graphic sequences s1,s2, ..., there exist

1 ≤ j < j′ such that some realization of s j′ contains some realization of s j as an

induced subgraph.

Conjecture 10 was completely solved by Chudnovsky and Seymour [8] in a

stronger sense (Theorem 33 below). Their proof is complicated. Altomare [2] and

Sivaraman [53] gave short proofs of Conjecture 10 when there exists a number M

such that every entry of every sequence is at most M.

We say that a simple graph G is degree equivalent with another simple graph

G′ if V (G) = V (G′) and for every vertex, its degree in G equals its degree in G′.

We say that a simple graph G Rao-contains another simple graph H if H is an

induced subgraph of a simple graph G′ that is degree equivalent to G. Chudnovsky

and Seymour [8] proved the following.

Theorem 33 ([8]). If G1,G2, ... are simple graphs, then there exist 1 ≤ j < j′ such

that G j′ Rao-contains G j.

It is clear that Theorem 33 implies that Conjecture 10. The concept of Rao

containment can be extended to directed graphs. In fact, this extension to directed

graphs plays an important role in the proof of Theorem 33. In the proof of Theorem

33, Chudnovsky and Seymour [8] reduced the problem to split graphs, and then fur-

ther reduced the problem to “complete bipartite directed graphs” with respect to the

directed version of Rao-containment.

We say that two directed graphs G and G′ are degree-equivalent if their under-

lying graphs are the same, and every vertex has the same out-degree in G and in

G′. A directed graph G switching-contains another directed graph H if there ex-

ists a directed graph G′ degree-equivalent to G, and H is isomorphic to an induced

subdigraph of G′.

The switching-containment is not a well-quasi-ordering on directed graphs. For

example, the set of directed cycles is an infinite antichain with respect to the

switching-containment relation. However, Chudnovsky and Seymour [7, 8] proved

that switching-containment well-quasi-orders tournaments. It follows from Theo-

rem 23 and the observation that if a tournament G contains another tournament H

as a strong immersion, then G switching-contains H. Chunnovsky and Seymour

[8] also proved this for the directed graphs whose underlying graphs are complete

bipartite graphs, and used this fact to prove Theorem 33.

Theorem 34 ([8]). Tournaments and directed graphs whose underlying graphs are

complete bipartite graphs are well-quasi-ordered by the switching-containment re-

lation.
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22. Karmiński, M., Raymond, J.-F., Trunck, T.: Well-quasi-ordering H-contraction-free graphs,

arXiv:1602.00733.

23. Kim, I., Seymour, P. Tournament minors, J. Combin. Theory Ser. B 112, 138–153 (2015).

24. Korpelainen, N., Lozin, V.: Two forbidden induced subgraphs and well-quasi-ordering, Dis-

crete Math 311, 1813–1822 (2011).

25. Korpelainen, N., Lozin, V. V.: Bipartite induced subgraphs and well-quasi-ordering, J. Graph

Theory 67, 235–249 (2011).

26. Korpelainen, N., Lozin, V. V., Razgon, I.: Boundary properties of well-quasi-ordered sets of

graphs, Order 30, 723–735 (2013).



Recent progress on well-quasi-ordering graphs 27

27. Kotzig, A.: Quelques remarques sur les transformations κ , séminaire Paris (1977).
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