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1. Introduction

Rigidity results for dynamics of group actions on homogeneous spaces, i.e.,

quotients of Lie groups by discrete subgroups of finite covolume, have been a

subject of great interest with several striking results and applications. Indeed

the solution of Oppenheim’s conjecture by Margulis in [14] opened up a new

chapter in the dialogue between homogeneous dynamics and number theory.

The landmark results in [16, 17, 18, 20, 19] of Ratner on unipotent dynamics

became quite quickly the engines to many interesting applications of homoge-

neous dynamics. The proofs of these rigidity results use techniques from ergodic

theory and are often not quantitative. It is a challenging problem, with sev-

eral applications, to provide effective and quantitative accounts of these rigidity

results.

In [6] a polynomially effective equidistribution theorem for closed orbits of

semisimple group H is proven under the assumption that the Lie algebra h

of H has trivial centralizer in the Lie algebra g of the ambient group G. As

explained in [6] this centralizer assumption does not seem to be truly essential

to the method. We consider a first case where similar results can be obtained

in the presence of a one-dimensional centralizer.

Let k, l ∈ N and assume G is a Q-form of SLk+l that splits over R. Consider

a Q-embedding

(1.1) ρ : G → SLN

for some N ∈ N. Set G = G(R) ∼= SLk+l(R). By a theorem of Borel and

Harish-Chandra Γ := ρ−1(SLN (Z)) ∩ G is a lattice in G. We define X = G/Γ.

Throughout the paper we divide matrices in Matk+l into blocks consisting of

the first k or last l rows and columns. Moreover, we consider the algebraic

group

H = SLk × SLl =

[
SLk 0

0 SLl

]

over R; let H = H(R).

As the centralizer of H is not trivial, H-orbits may lie far from any given

compact set, e.g., this happens for the Q-split group G = SLk+l and orbits

Ha SLk+l(Z) ⊂ SLk+l(R)/ SLk+l(Z) for a large a ∈ CG(H). This is obviously

an obstruction to equidistribution, and we take this possibility into account via
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a height function ht(·) on X whose definition is given in (2.4) and the function

mht(Q) = inf{ht(x) : x ∈ Q} for subsets Q ⊂ X.

A closed subgroup S ⊂ G containing H we will call an intermediate sub-

group; we will show in §3 that there are only finitely many such subgroups.

Similar to [6], we define the notion of volume of a closed S-orbit using a Haar

measure on S. More precisely, we fix a Haar measure mS on S and define the

volume vol(Sx) of a closed S-orbit Sx to be mS(F ) where F ⊂ S is a Borel

fundamental domain for the quotient map S → Sx. In contrast, μSx denotes

the normalized Haar probability measure on the orbit Sx.

Theorem 1.1: Assume that (k, l) �= (2, 2) and fix G,H,Γ as above. There

exist d ∈ N and κ1, κ2 > 0 depending only on G and H , and a constant

V0 = V0(G,H,Γ) > 0 such that for all V > V0 there exists an intermediate

subgroup H ⊂ S ⊂ G such that for any f ∈ C∞
c (X) we have

|μHx0(f)− μSx0(f)| � Sd(f)mht(Hx0)
κ2V −κ1 and vol(Sx0) ≤ V,

for any closed orbit Hx0, where the implicit constant depends only on G,H,Γ

and Sd is a Sobolev norm (defined in §2.5).
The general strategy of the proof is similar to that of [6]. We use spectral

gap to show in an effective way that most points are generic in an effective

manner for the dynamics of a unipotent subgroup. In fact, we are relying on

uniform spectral as provided by the so-called property (τ), which in general is

the combination of results of Selberg [21] for congruence quotients of the split

form of SL2, Jaquet–Langlands [9] for other forms of SL2, extensions of this by

Burger and Sarnak [3], Kazhdan’s property (T) from [10], and Clozel’s work [4].

We refer also to [7, §4] for more details and a more dynamical proof of that

fact. In the context of this paper Kazhdan’s property (T) is sufficient once

min(k, �) ≥ 3.

Using the effectively generic points and an effective version of the polynomial

divergence property, that also played a big role in the work of Margulis and

Ratner mentioned before, we effectively produce almost invariance under new

elements transversal to H. This is then upgraded to establish almost invariance

under a subgroup S � H. The special choice of H, in particular, the fact that

the centralizer of H is one dimensional, simplifies the proof in several places.

This makes the possibilities of S quite restricted, see §3, which allows us to use

well-known facts regarding effective equidistribution of horospherical orbits in
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our proof. The special case at hand also allows us to utilize known results from

nondivergence of unipotent flows and get a much simplified version of a closing

lemma—an effective closing lemma is one of the main technical ingredients in [6],

which is used to handle the intermediate orbits. Indeed, we show that Sx0 is

closed unless the orbit Hx0 is far in the cusp; see §4.
The case of (k, l) = (2, 2) is slightly more complicated due to the presence of

further intermediate subgroups S (see §3) and we avoid it in the current paper.

Acknowledgment. We thank the anonymous referee for her or his remarks

which helped to improve the presentation of the paper.

2. Notation and Preliminaries

As this work builds heavily on [6] we borrow much notation and conventions

from loc. cit.

2.1. Constants and their dependency and Landau’s notation. The

notation A � B, meaning “there exists a constant c1 > 0 so that A ≤ c1B”,

will be used; the implicit constant c1 is permitted to depend on G and ρ, but

(unless otherwise noted) not on anything else. We write A � B if A � B � A.

We will use c1, c2, . . . to denote positive constants depending on G and ρ (and

their numbering is reset at the end of a section). If a constant (implicit or

explicit) depends on another parameter or only on a certain part of (G, ρ), we

will make this clear by writing, e.g., �ε, c3(N), etc.

We will use κ1, κ2, κ3, . . . to denote positive constants depending only on

dimG.We also adopt the �-notation from [6]: we write B = A±� if B = c4A
±κ4 .

Similarly one defines B � A�, B � A�. Finally we also write A � B�

if A� � B � A� (possibly with different exponents).

2.2. Setup. Much of the notation below will depend on the choice of k, l and N

in (1.1) which are fixed throughout the paper.

We recall the definition of congruence lattices in our setting. A congruence

subgroup of SLN (R) is a subgroup commensurable to SLN (Z) containing a

principal congruence subgroup, i.e., a kernel of the reduction map

SLN (Z) → SLN (Z/DZ) for some D ∈ N. We assume that Γ ⊃ ρ−1(Γ′) where Γ′
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is a congruence subgroup of SLN and ρ was defined in (1.1). By the same ar-

gument as in [6, §1.6.1] Theorem 1.1 also holds for arithmetic subgroup at the

cost of allowing the exponent to depend on Γ.

Given an element g ∈ G we let

|g| = max{‖g‖∞, ‖g−1‖∞}.
We fix a Euclidean norm ‖ · ‖ on g := Lie(G) such that ‖[v1, v2]‖ ≤ ‖v1‖‖v2‖.
The embedding ρ : G → SLN induces a Q-structure on g and we may choose a

Γ-stable lattice gZ such that [gZ, gZ] ⊂ gZ. We also let dist(·, ·) denote a right

invariant Riemannian metric on G.

The choice of the inner product on g induces a normalization of the Haar

measure on any closed subgroup of G and therefore a notion of volume for orbits

of these subgroups in X . Given a subgroup P and a point x ∈ X we denote

this volume measure as dvol and the volume of the orbit Px as vol(Px). In

contrast, μPx denotes the normalized Haar probability measure on the orbit Px.

Let us write

g.f(x) := f(g−1x)

for g ∈ G and f ∈ C(X) and x ∈ X . Similarly, for any measure ν on X we let

g∗ν be the measure defined by g∗ν(A) = ν(g−1A) for any Borel set A ⊂ X .

We choose r, a particular Ad(H)-invariant complement of h = Lie(H) ⊂ g,

by letting r = r0 ⊕ r1 where, using block notation, r1 = r+1 ⊕ r−1 and

r0 = span

[
l · Ik 0

0 −k · Il

]
, r+1 =

[
0 ∗
0 0

]
, r−1 =

[
0 0

∗ 0

]
.

Let uk(t) ∈ SLk(R) denote the unipotent element⎡
⎢⎢⎢⎢⎣
1 t1

1! · · · tk−1

(k−1)!

0 1 · · · tk−2

(k−2)!

...
. . .

...

0 0 0 1

⎤
⎥⎥⎥⎥⎦ = exp

⎡
⎢⎢⎢⎢⎣
0 t · · · 0
...

. . .
. . .

...

0 · · · 0 t

0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

and let

U = {u(t) : t ∈ R}, u(t) =

[
uk(t) 0

0 ul(t)

]
.

For s ∈ {r1, r+1 , r−1 } we put

FixU (s) := {w ∈ s : Ad(u)w = w for all u ∈ U}.
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We also define the one-parameter subgroup

at =

[
eltIk 0

0 e−ktIl

]
, A = {at : t ∈ R}

whose Lie algebra is r0.

For a diagonalizable element a we define the expanding horospherical

subgroup

W+
G (a) = {g ∈ G : anga−n → e, as n → −∞},

and the contracting horospherical subgroup

W−
G (a) = W+

G (a−1).

Put W := W+
G (a1) for a1 ∈ A as above, and note that

(2.1) W =

[
Ik ∗
0 Il

]
.

Finally we let P± denote the connected subgroups of G with

Lie(P+) = Lie(H)⊕ r+1 , Lie(P−) = Lie(H)⊕ r−1 .

2.3. Height, discriminant and volume. Given a lattice sZ in a vector space

s and a subspace l that intersects sZ in a lattice we define the covolume (or

discriminant) of l by setting

(2.2) covol(l) := disc(l) := ‖pl‖
where pl is a primitive vector in

(2.3)
∧dim l

l ∩∧dim l
sZ.

For an element g∈G we say that a subspace l⊂g is g-rational if l ∩Ad(g)(gZ)

is a lattice in l. It will be called simply rational if it is g-rational for g = e.

Given a g-rational subspace l we define the covolume of l using (2.2) with s = g

and sZ = Ad(g)gZ.

For a Q-subgroup L of G we put disc(L) := disc(Lie(L)).

Recall that the lattice gZ is Γ-stable. Hence we may define the height of a

point x ∈ X by

(2.4) ht(x) = sup{‖Ad(g).v‖−1 : x = gΓ, v ∈ gZ \ {0}}.
The height of x in SLN (R)/ SLN (Z) is defined similarly. This defines the term

mht(Hx0) appearing in the statement of Theorem 1.1.
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Let

S(R) = {x ∈ X : ht(x) ≤ R}.
By Mahler’s compactness criterion, the sets {S(R) : R > 0} are all compact

and ⋃
R>0

S(R) = X.

2.4. Spectral input. Let us denote by L the group generated by U and its

transpose; it is isomorphic to SL2(R) and we call it the principal SL2(R). Also

let P± be defined as in §2.2.
We will use the following as a blackbox: The representations of L, the prin-

cipal SL2(R), on

L2
0(ν) =

{
f ∈ L2(X, ν) :

∫
f dν = 0

}
,

are 1/M0-tempered (i.e., the matrix coefficients of the M0-fold tensor product

are in L2+ε(SL2(R)) for all ε > 0), where ν is the S-invariant probability measure

on a closed S-orbit with S = H,P± or S = G.

Since H ⊂ S for all choices of S above, 1/M0-temperedness follows directly

in the case when H has property (T), see [15, Thm. 1.1–1.2], and in the general

case we may apply property (τ) in the strong form, see [4], [8] and [6, §6].

2.5. Sobolev norms. We now recall the definition of a certain family of

Sobolev norms and their main properties (see [6, §3.7]). For any integer d ≥ 0

we let Sd be the Sobolev norm on X defined by

(2.5) Sd(f)
2 =

∑
D

‖ht(·)dDf‖22,

where f ∈ C∞
c (X) and the sum is taken over all D ∈ U(g), the universal

enveloping algebra of g, which are monomials in a chosen basis of g of degree at

most d. We will need the following properties of Sd. There exists a constant κ5

such that for any d ≥ κ5 and any g ∈ G and f ∈ C∞
c (X), we have:

(S-1) For any g ∈ G and f ∈ C∞
c (X) we have

Sd(g.f) �d |g|3dSd(f).

(S-2) For any f ∈ C∞
c (X) we have

‖f‖∞ �d Sd(f).
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(S-3) For any g ∈ G and f ∈ C∞
c (X) we have

‖g.f − f‖∞ �d dist(e, g)Sd(f).

(S-4) For any f1, f2 ∈ C∞
c (X) we have

Sd(f1f2) �d Sd+κ5(f1)Sd+κ5(f2).

(S-5) Let ν and M0 be as in §2.4. We have

(2.6) |〈u(t).f1, f2〉L2(ν) − ν(f1)ν(f̄2)| �d (1 + |t|)− 1
2M0 Sd(f1)Sd(f2).

For a discussion of the Sobolev norm, the reason for introducing the factor

ht(·)d, and the proofs of the above properties we refer to [6, §5].
Let Sd be as above and let ε > 0. We say that a measure σ is ε-almost

invariant under g ∈ G (w.r.t. Sd) if

|σ(g.f)− σ(f)| ≤ ε Sd(f) for all f ∈ C∞
c (X).

We say that σ is ε-almost invariant under a subgroup L ⊂ G if it is ε-almost

invariant under all g ∈ L with |g| ≤ 2. Similarly, given w ∈ g we say σ is ε-almost

invariant under w if σ is ε-almost invariant under exp(tw) for all |t| ≤ 2.

3. Structure of intermediate subgroups

Any finite-dimensional representation of H decomposes into irreducible sub-

representations as H is semisimple. In order to study the connected intermedi-

ate subgroups we may work with the Lie algebra of G; see [1, §7]. Consider the
adjoint representation of H on Lie(G). It decomposes as

Lie(H)⊕ r+1 ⊕ r−1 ⊕ r0.

Indeed, it is easily verified that each of these factors are sub-representations and

a dimension count shows that it is a complete decomposition. The analysis of

the possible intermediate subgroups follows simply from noting that for any in-

termediate closed subgroup with H ⊂ S ⊂ G, LieS will be a sub-representation,

which is also a Lie subalgebra, of Lie(G).
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Proposition 3.1: Fix (k, l) with max{k, l} ≥ 3 and let S be a closed connected

subgroup with H ⊂ S ⊂ G. Then

S ∈ {H,P+, P−, AH,AP+, AP−, G},
AP+ = exp(Lie(H)⊕ r+1 ⊕ r0), AP− = exp(Lie(H)⊕ r−1 ⊕ r0)

AH = exp(Lie(H)⊕ r0).

Proof. Note that r+1 and r−1 are both irreducible and are dual to each other.

If max{k, l} ≥ 3, then we claim that the representations r+1 and r−1 are non-

isomorphic. Indeed, if they were isomorphic, then they will be isomorphic also

as a representation of the larger block, say of SLk < H . Note that as an SLk

representation r+1 is a direct sum of the standard representation of SLk on Rk

and r−1 is a direct sum of its dual. If they were isomorphic then the standard

representation on SLk on Rk is isomorphic to its dual, which is a contradiction

when k ≥ 3 (e.g., because diag(t, . . . , t, t−(k−1)) ∈ SLk and its inverse cannot

be conjugated to each other when k ≥ 3).

The proposition now follows as the possible subrepresentations of Lie(G)

which contain Lie(H) correspond exactly to the Lie algebras of the groups listed

above.

For the cases (k, l) ∈ {(2, 2), (2, 1), (1, 2)} we have that r+1 and r−1 are isomor-

phic as representations of H . When k = l = 2 this isomorphism gives rise to

a family of subgroups, which are isomorphic to Sp(4). This case will probably

also yield to the methods of this paper, but requires a special treatment in each

step, and therefore we avoid it in the current paper. In contrast, we have:

Proposition 3.2: Proposition 3.1 holds also when k=2, l = 1 (or k = 1, l = 2).

Proof. Fix an isomorphism φ : r+1 → r−1 and let

sp := {(v, pφ(v)) : v ∈ r+1 }

for p ∈ R. The proposition will follow once we will show that the H-sub-

representation Lie(H) ⊕ sp or Lie(H) ⊕ sp ⊕ r0 for p ∈ R \ {0} are never Lie

subalgebras. This follows just by calculations of Lie brackets. Indeed, for

concreteness, let e1, e2 (resp. f1, f2) denote the standard basis of r+1 (resp. r−1 )
and fix φ to be the isomorphism sending

αe1 + βe2 �→ −βf1 + αf2.
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Now, a direct calculation shows that the commutator of (e1, pφ(e1)) ∈ sp and

(e2, pφ(e2)) ∈ sp is a nontrivial element of r0 (whenever p �= 0). Another calcu-

lation shows that the Lie algebra generated by r0 and sp contains r+1 ⊕ r−1 ⊕ r0,

so the Lie subalgebra generated by Lie(H)⊕ sp is always Lie(G).

4. Applying nondivergence of unipotent flows

When rankQG = 0 the quotient X is compact. In this case the addition of the

height function in the definition of the Sobolev norm in not needed and several

other analytic arguments become simpler. In particular, this section is only

important in the case that rankQG > 0.

Let us recall the definition of certain functions dα : G → R. These functions

were considered by Dani and Margulis in [5] in order to study the recurrence

properties of unipotent flows on homogeneous spaces. Let S be a maximal Q-

split Q-torus of G. Let P ⊃ S be a minimal Q-parabolic subgroup and let Δ

be the associated simple roots relative to S; see [2, Sec. 12]. For α ∈ Δ, let Pα

be the corresponding maximal Q-parabolic subgroup. Let Uα = Ru(Pα) be the

unipotent radical and let uα denote the Lie algebra of Uα. Put �α := dim uα and

let ϑα = ∧�αAd denote the �α-th exterior power of the adjoint representation.

Note that ∧�αuα defines a Q-rational one-dimensional subspace of ∧�αg. Fix a

unit vector vα ∈ ∧�αuα. Note that if g ∈ Pα(R), then

ϑα(g)vα = det(Ad(g)|uα)vα.

Define dα : G → R by

dα(g) = ‖ϑα(g)vα‖ for all g ∈ G.

For each α ∈ Δ put P
(1)
α = {g ∈ Pα : ϑα(g)vα = vα}. Put Pα = Pα(R) and

P
(1)
α = P

(1)
α (R). Since P

(1)
α is a Q-group without any Q-characters, it follows

from a theorem of Borel and Harish-Chandra that P
(1)
α Γ/Γ is a closed orbit

with a finite P
(1)
α -invariant measure.

Theorem 4.1 (Cf. [5], Theorem 2): There exist a finite subset Ξ ⊂ G(Q), and

some R0 > 0 with the following property. For every x = gΓ ∈ X there exists Tx

so that one of the following holds:

(1) |{|t| ≤ T : u(t)gΓ ∈ S(R0)}| ≥ (1− 2−20)T for all T > Tx.

(2) There exist λ ∈ ΓΞ and α ∈ Δ such that g−1Ug ⊂ λP
(1)
α λ−1 and

moreover dα(gλ) < 1.
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We note that if G has Q-rank zero, then X is compact and the height function

is bounded. In particular, the first case in the theorem and its corollary below

hold trivially.

Corollary 4.2: Let y = gΓ be so that Hy is a closed orbit. Then one of the

following holds:

(1) μHy(Hy \S(R0)) ≤ 2−10.

(2) There exist λ ∈ ΓΞ, α ∈ Δ and h ∈ H with |h| ≤ 2 such that

g−1Hg ⊂ λP
(1)
α λ−1, and dα(hgλ) < 1.

Proof. Let h ∈ H with |h| ≤ 2 be so that hgΓ ∈ Hy is a generic point for the

action of U = {u(t) : t ∈ R} in the sense of the Birkhoff ergodic theorem; that

is

(4.1) lim
T

1

T

∫ T

0

f(u(t)hgΓ) dt =

∫
f dμHy

for all f ∈ Cc(X).

We consider two possibilities. First let us assume that Theorem 4.1(1) holds

true for x = hgΓ. Then the conclusion (1) of Corollary 4.2 holds by (4.1).

Therefore, let us assume that Theorem 4.1(2) holds true for x = hgΓ and we

show that the conclusion (2) of Corollary 4.2 must hold true. Then there exist

some λ ∈ ΓΞ and some α ∈ Δ so that dα(hgλ) < 1 and

g−1h−1Uhg ⊂ λP (1)
α λ−1.

We claim that g−1Hg ⊂ λP
(1)
α λ−1. Since λ ∈ ΓΞ and Ξ ⊂ G(Q) we have that

the orbit λP
(1)
α λ−1Γ/Γ is a closed orbit. Hence,

(4.2) g−1h−1UhgΓ/Γ ⊂ λP (1)
α λ−1Γ/Γ.

However, by (4.1) we have

g−1h−1UhgΓ/Γ = g−1HgΓ/Γ.

This together with (4.2) implies that g−1Hg ⊂ λP
(1)
α λ−1 as we claimed.

Lemma 4.3 (Mass in the cusp): There exist constants κ6, κ7 depending only

on G and c1 such that for any periodic H-orbit Hx, we have

μHx(Hx \S(R)) ≤ c1mht(Hx)κ7R−κ6 .
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Proof. Let z ∈ Hx be the point of the smallest height, namely ht(z) = mht(Hx).

By the Birkhoff ergodic theorem, there exists some h ∈ H with |h| ≤ 1 such that

(4.3) lim
T→∞

1

T
|{0 < t < T : ht(u(t)hz) > L}| = μHx(Hx \S(L))

for all L ∈ N.

Let hz = gΓ for some element g ∈ G. Let s be a g-rational subspace of g. As

was done in [6, App. B], define the function

ψs(t) = covol(Ad(ut)s)
2.

Note that ψs is a polynomial whose degree is bounded in terms of dimG only.

On the other hand, since |h| ≤ 1 we have

ψs(0) = covol(s)2 � ht(z)−m

for some absolute constant m depending on N. We have, by [12, Thm. 5.2], for

any T > 0

1

T
|{0 < t < T : ht(uthz) > R}| �

(ht(z)m
R

)κ6

=
mht(Hx)κ7

Rκ6
,

where κ6 depends on the degree of ψs and κ7 := mκ6. This together with (4.3)

implies the claim.

Given a closed orbit Hx, define

(4.4) RHx :=
220/κ6mht(Hx)κ7/κ6

c11/κ6
.

This choice in view of Lemma 4.3 implies the following:

(4.5) μHx(Hx \S(RHx)) ≤ 2−20.

5. From generic points to new almost invariants

Let ν andM0 be as in §2.4; we continue to denote by μ theH-invariant probabil-

ity measure onHx0. LetM = 20M0 and let T ≥ 1 be a parameter. Following [6]

we define for a function f

(5.1) DT,ν(f)(x) =
1

(T + 1)M − TM

∫ (T+1)M

TM

f(u(t)x) dt−
∫
X

f dν.

We write DT for DT,μ. A point x ∈ X is called T0-generic for the measure ν
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w.r.t. a Sobolev norm S if for all integers n > T0 and all f ∈ C∞
c (X) we have

(5.2) |Dn,ν(f)(x)| ≤ n−1S(f).
Furthermore, a point x ∈ X is called [T0, T1]-generic if (5.2) is satisfied for

all n ∈ [T0, T1].

Let dw be the Lebesgue measure onW ∼= Rkl, see (2.1), and for any τ > 0 put

W [τ ] := {w ∈ W : ‖w‖∞ ≤ τ}.
Lemma 5.1 (Cf. [6], §9.1): (1) For d � 1, depending only on G, the

ν-measure of the points that are not T0-generic for ν with respect to Sd

is � T−1
0 .

(2) There exists d′ > d depending on d and G with the following property.

Suppose

|w∗μ(f)− μ(f)| � εSd(f) for all w ∈ W [τ ].

Then there exists some κ8 so that the proportion of points

(w, x) ∈ W [τ ] × X such that wx is not [T0, ε
−κ8 ]-generic w.r.t. Sd′

is � T−1
0 .

Proof. First note that using (2.6) we have the following estimate on the L2-norm

of DT,ν(f):

(5.3)

∫
X

|DT,ν(f)|2 dν � T−4Sd(f)
2.

The deduction of part (1) from (5.3) is identical to that of [6, Prop. 9.1].

For (2), consider the integral

(5.4)
1

|W [τ ]|
∫
W [τ ]

∫
X

|DT (f)(wx)|2 dμ(x) dw.

The inner integral of (5.4) satisfies∫
X

|DT f(wx)|2 dμ(x) = w∗μ(|DT (f)|2) � εSd(|DT (f)|2) + μ(|DT (f)|2).

By properties of Sobolev norm in §2.5
Sd(|DT (f)|2) � T �dSd+κ5(f)

2.

Combining this with (5.3) we have∫
X

|DT f(wx)|2 dμ(x) � εT �dSd+κ5(f)
2 + T−4Sd(f)

2.
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Therefore, if we choose T so that εT �d = T−4, then

(5.5)
1

|W [τ ]|
∫
W [τ ]

∫
X

|DT (f)(wx)|2 dμ(x) dw � T−4Sd+κ5(f)
2.

The deduction of part (2) from (5.5) is identical to that of part (1); see also [6,

Prop. 9.1–9.2].

The following lemma provides us with generic points which differ in directions

transversal to H. The proof is based on a pigeonhole principle argument. We

note that in this lemma the existence of the centralizer r0 starts to play a more

significant role.

Lemma 5.2 (Cf. [6], Prop. 14.1): There exist κ9 and κ10 with the following

property. Let Hx0 be a closed orbit so that

(5.6) vol(Hx0) ≥ mht(Hx0)
κ9 .

Then there exist w ∈ r \ {0} and x, y ∈ S(RHx0) ∩Hx0 so that the following

hold:

(1) ‖w‖ ≤ (vol(Hx0))
−κ10 . Moreover, if we decompose w = w0 + w1 into a

sum of w0 ∈ r0 and w1 ∈ r1, then ‖w′
1‖ � ‖w1‖ where

w1 = w′
1 + w′′

1 ∈ FixU (r1)
⊥ ⊕ FixU (r1)

and the decomposition is with respect to the Euclidean structure on r1

which is induced by ‖ · ‖.
(2) exp(w)x = y.

Further, given T0 large enough, x and y can be chosen to be T0-generic.

Proof. Let T0 > 1, and let E′ be the set of T0-generic points. Put

E := E′ ∩S(RHx0).

In view of Lemma 5.1(1) and the choice of R0, see (4.4), we have μ(X\E) ≤ 2−10

assuming T0 is sufficiently large depending on G,H and Γ.

For any δ > 0 let rδ (resp. hδ) denote the ball of radius δ in r (resp. h) around

the origin with respect to the norm ‖ ·‖ on g. Throughout the proof we will put

more and more restrictions on δ. To begin with, let δ > 0 be smaller than 1/20

of the minimum of the injectivity radii at all z ∈ S(RHx0). This constraint

amounts to an inequality of the form

(5.7) δ � R−�
Hx0

.
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Moreover, assume δ is small enough so that the map

(r, v) ∈ rδ × hδ �→ exp(r) exp(v)

is a diffeomorphism onto its image in G. Therefore, for any z ∈ S(RHx0) the

natural map from πz : rδ × hδ → X defined by πz(r, v) := exp(r) exp(v)z is a

diffeomorphism. Let Ω = exp(h2δ). Define the following function on X :

(5.8) φ(z) =
1

vol(Ω)

∫
Ω

χE(hz) dvol(h).

We have
∫
X
φ(z)dμ = μ(E) ≥ 1− 2−10. Put

(5.9) F := {z ∈ E : φ(z) > 0.99}.
Then μ(F ) ≥ 0.9.

For δ chosen as above define

B(z, δ) := πz(rδ × hδ).

We may cover F by � δ− dimG-many sets of the form B(z, δ) with z ∈ F and

with finite multiplicity depending only on G. Using the pigeonhole principle we

have the following: So long as

(5.10) vol(Hx0) � δdimH−dimG,

there exist x′, y′ ∈ F ∩ B(z, δ) for some z ∈ F so that x′ �= hy′ for any h ∈ Ω.

We now want to perturb x′, y′ to obtain elements of E that satisfy the above

claimed properties. First, note that since r+1 and r−1 are irreducible representa-

tions of H, there is a constant ι > 0 such that

(5.11) vol{h ∈ Ω : ‖Ad(h)(r)′‖ ≤ ι‖r‖} < vol(Ω)/2

for all r ∈ r1 where r′ is the component of r in FixU (r1)
⊥. Now, if we apply the

Implicit Function Theorem and use the fact that φ(x′) > 0.99 and φ(y′) > 0.99,

we can find h1, h2 ∈ Ω such that

• h1x
′, h2y

′ ∈ E and

• h2y
′ = exp(w)h1x

′ where w ∈ r and ‖w‖ � δ,

• ‖w′
1‖ � ‖w1‖.

Therefore, w, x=h1x
′, and y=h2y

′ satisfy the conclusion of the proposition so

long as we choose δ = vol(Hx0)
−� so that (5.10) holds. In light of our assump-

tion (5.6) it is possible to satisfy this and our earlier requirement in (5.7).
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Lemma 5.3: Let w ∈ r be the “difference” found in Lemma 5.2. Then

exp(w) /∈ CG(H).

Proof. Let us write exp(w)x = hx for some h ∈ H and x = gΓ. We also let H

be the connected, simply connected, algebraic group such that H(R) = g−1Hg.

Note that H is defined over Q as Hx is a closed orbit. With this notation we

have

exp(−w)hgΓ = gΓ,

and the claim is equivalent to showing g−1 exp(−w)g /∈ CG(H)(R).

Assume this is not the case. Then

γ = g−1 exp(−w)gg−1hg ∈ L := CG(H) ·H.

Note that CG(H) is one-dimensional. We define a set of characters on L,

Δ = {χ1, χ2}, as follows. First note that for � ∈ L(R), g�g−1 has a block

structure, that is, it has the form[
A 0

0 B

]
.

We define {χ1(�), χ2(�)} to be the determinants of the diagonal blocks of g�g−1.

This determines Δ. Further note that since H is semisimple, any character on H

is trivial. Moreover, for a ∈ L(R) we have that a ∈ H(R) if and only if a is in

the kernels of χi, i = 1, 2.

Furthermore, we have that χ2 = χ−1
1 and that Δ is stable under the Galois

group Gal(Q/Q) so either χ1 and χ2 are both defined over Q or over a real qua-

dratic extension (as the centralizer splits over R). In both cases, the integrality

of γ implies that χi(γ) is either 1 or uniformly bounded away from 1. Indeed

in the second case χi(γ) ∈ O× ⊂ R where O is an order in a real quadratic

extension. And if a unit u in a quadratic field is close to 1, then u + u−1 is

close to 2 and an integer which implies that u = 1. In particular this argument

is independent of the quadratic extension.

On the other hand, as χi are trivial on H, we have for i = 1, 2

χi(γ) = χi(g
−1 exp(−w)g).

By definition the characters χi are defined by conjugating elements of

L = CG(H) · H to CG(H)H and taking the determinants of one of the blocks.

In other words, we are taking the determinants of the blocks of the matrix
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exp(−w), which is at distance � (vol(Hx0))
−κ10 from the identity. However,

with the above it follows that

χi(g
−1 exp(−w)g) = 1 for i = 1, 2.

Since the kernel of these characters is H(R), this contradict the fact that

g−1 exp(−w)g /∈ H(R).

We now use the effective ergodic theorem, Lemma 5.1(1), and the above

results to prove the following.

Lemma 5.4 (Cf. [6], Prop. 10.1): Assume that (5.6) holds. There exists some

v ∈ FixU (r1) with ‖v‖ = 1 so that

|exp(tv)∗μ(f)− μ(f)| ≤ vol(Hx0)
−�S(f), for all |t| � 1.

Proof. We will show that there exists some v ∈ FixU (r1) with ‖v‖ = 1 so that

(5.12) |exp(v)∗μ(f)− μ(f)| ≤ vol(Hx0)
−�S(f).

The claim for all |t| � 1 will follow from this using conjugation by elements

in H as in Lemma 6.2, or alternatively, by an argument as in the proof of [6,

Prop. 10.1].

Let T0 and x, y ∈ Hx0 be as in Lemma 5.2. In particular, x and y are

T0-generic, y = exp(w)x with w ∈ r, ‖w‖ � vol(Hx0)
−�, and ‖w′

1‖ � ‖w1‖.
Recall also that by Lemma 5.3 we have w1 �= 0.

Let us write w = w0 + w′′
1 + w′

1 as in Lemma 5.2. Then

Ad(u(t))w = w0 + w′′
1 +Ad(u(t))w′

1.

Therefore, there exists T1 � ‖w′
1‖−� and a polynomial p : R → FixU (r1) with

degree � N and sup{‖p(t)‖ : 0 ≤ t ≤ 1} = ‖p(1)‖ = 1 so that

(5.13) Ad(u(t))w = p(t/T1) +O(‖w‖�)

for all t ∈ [0, 2T1]. This is the polynomial divergence property of unipotent

flows relying on the fact that Ad(u(t))w is a g-valued polynomial whose terms

of highest degree belong to FixU (r).

Let now n > T0 be so that T1 ∈ [nM , (n+1)M ] where M is as in (5.1). Then

by (5.2) we have

|Dn(f)(z)| ≤ n−1S(f) for z = x, y.
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In view of (5.13), property (S-3), and the fact that f ∈ C∞
c (X) we have

f(u(t)y) = f(exp(p(t/T1))u(t)x) +O(‖w‖�)S(f)
for all t ∈ [0, 2T1]. Moreover, for any t ∈ [nM , (n+ 1)M ] we have

|t− T1| � T
1−1/M
1 .

Hence all together we get

f(u(t)y) = f(exp(p(1))u(t)x) +O(T
−1/M
1 S(f)) +O(‖w‖�)S(f).

Therefore, μ(f) = μ(exp(p(1)).f) +O(T
−1/M
1 + ‖w‖�)S(f).

Since ‖p(1)‖ = 1, T1 � ‖w′
1‖−�, and ‖w‖ � vol(Hx0)

−� we get (5.12).

6. Effective generation of a bigger group

We continue to use the previous notation. Let us first recall the following.

Proposition 6.1 (Cf. [6], Proposition 8.1): Let Sd be a fixed Sobolev norm.

Suppose that μ is ε-almost invariant w.r.t. Sd under w ∈ exp(r1) with ‖w‖ = 1.

Then there exists κ11 > 0 so that μ is c(d)εκ11 -almost invariant w.r.t. Sd under

at least one of the groups P+, P−, or G.

Proof. We note that [6, Prop. 8.1] is proved in the general setting that applies

to our situation, i.e., the assumption on triviality of the centralizer is not used

in the proof of [6, Prop. 8.1]. The claim thus follows from the results in §3.
We also record the following.

Lemma 6.2 (Cf. [6], Lemma 8.2): There exists κ12 > 0 with the following

property. Let S = P+, P−, or G and suppose that μ is ε-almost invariant

under S w.r.t. Sd. Then

|μ(q.f)− μ(f)| � ε|q|κ12Sd(f), q ∈ S.

Proof. For S = G, this is proved in [6, Lemma 8.2]. Let us assume S = P+. In

view of our assumption we have

(6.1) |μ(q.f)− μ(f)| � εSd(f), for all |q| ≤ 2.

In particular, (6.1) holds true for qij = 1+Eij with j > i. Let now a ∈ H be a

diagonal element with |a| � t� so that

aqija
−1 = 1 + tEij =: qij(t).
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Since μ is invariant under aij(t), the above, (6.1) and properties of the Sobolev

norm, see §2.5, imply that

|μ(qij(t).f)− μ(f)| � t�εSd(f) � |qij(t)|�εSd(f).

Since W is abelian we obtained the lemma for elements in W. Since μ is H-

invariant this gives the claim for S = P+. The proof for S = P− is similar.

7. Proof of Theorem 1.1

Recall that dw is the Lebesgue measure on W ∼= Rkl, and for any τ > 0 we put

W [τ ] := {w ∈ w : ‖w‖∞ ≤ τ}. We let m denote the G-invariant probability

measure on X .

Lemma 7.1: There exists a constant κ13 satisfying the following property. Let

s ≥ 1, put τ = es(k+l). Suppose that

a−sz ∈ S(R),

for z ∈ X . Then for any f ∈ C∞
c (X) we have

(7.1)

∣∣∣∣ 1

|W [τ ]|
∫
W [τ ]

f(wz) dw −
∫
X

f dm

∣∣∣∣ � R�e−κ13sSd(f).

Proof. By the definition of τ , note that W [τ ] = asW [1]a−s. Denote

y := a−sz ∈ S(R).

We have
1

|W [τ ]|
∫
W [τ ]

f(wz) dw =
1

|W [1]|
∫
W [1]

f(aswy) dw.

Now using [11, Prop. 2.4.8] (see also [13, Thm. 2.3] for the dependence on the

height R) there exists a κ > 0 so that the following holds:

(7.2)

∣∣∣∣ 1

|W [1]|
∫
W [1]

f(aswy) dw −
∫
X

f dm

∣∣∣∣ � R�e−κsSd(f).

We will also need the following for the proof.

Lemma 7.2: Suppose there exists some κ > 0 so that

mht(Hx0) � vol(Hx0)
κ.

Then Theorem 1.1 holds (trivially).
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Proof. If vol(Hx0) < V , the theorem holds trivially with S = H .

On the other hand, our assumption implies the theorem with S = G if

V ≤ vol(Hx0). Indeed, we may assume κ2 ≥ κ1/κ so that

mht(Hx0)
κ2V −κ1 � vol(Hx0)

κκ2−κ1 � 1.

This implies the conclusion of the theorem because of (S-2) in §2.5.

Proof of Theorem1.1. Let μ denote theH-invariant probability measure onHx0

and x0 = g0Γ. By Lemma 7.2 we may assume (5.6). Using Lemma 5.4 we

get almost invariance under an element in r1. Then by Proposition 6.1 and

Lemma 6.2 we get almost invariance under a subgroup S = G,P+, or P−.
Since the case S = P− is similar, we may assume S = G or P+. Therefore, we

assume throughout the argument that for any f ∈ C∞
c (X) the following holds:

(7.3) |w∗μ(f)− μ(f)| � εSd(f) for all w ∈ W [τ ],

with τ = vol(Hx0)
κ14 and ε = vol(Hx0)

−�. Here κ14 needs to be small enough

to get (7.3); we will need to optimize κ14 further in the argument below.

We investigate

(7.4)
1

|W [τ ]|
∫
W [τ ]

∫
X

f(wx) dμ(x) dw.

First note that (7.3) implies

(7.5)

∣∣∣∣ 1

|W [τ ]|
∫
W [τ ]

∫
X

f(wx) dμ(x) dw −
∫
X

f dμ

∣∣∣∣ � εSd(f).

Let s be a parameter so that τ = es(k+l) and put μs = a−sμ. Apply Corol-

lary 4.2 to the measure μs and the closed orbit

a−sHx0 = Ha−sx0.

By the conclusion of that corollary there are two cases to consider.

Case 1. Assume Corollary 4.2(1) holds for μs. That is

(7.6) μs(Ha−sx0 \S(R0)) ≤ 2−10.

For every R put

Bs,R := Hg0Γ \ asS(R).
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Then by Lemma 4.3, for any R > 1 we have

(7.7) μ(Bs,R) = μs(Ha−sx0 \S(R)) � R−κ6 ;

note that in view of (7.6), we have mht(Ha−sx0) � R0 and R0 as chosen in

Theorem 4.1 satisfies R0 � 1.

Let R > R0; using Fubini’s theorem we can now rewrite (7.4) in the form

1

|W [τ ]|
∫
W [τ ]

∫
X

f(wx) dμ(x) dw =
1

|W [τ ]|
∫
X

∫
W [τ ]

f(wx) dw dμ(x)

=
1

|W [τ ]|
∫
asS(R)

∫
W [τ ]

f(wx) dw dμ(x)

+
1

|W [τ ]|
∫
Bs,R

∫
W [τ ]

f(wx) dw dμ(x).

By (7.7) and property (S-2) of the Sobolev norm the second term above

is � Sd(f)R
−�. For the first term, note that by Lemma 7.1 for any

z ∈ Hx0 \Bs,R = Hx0 ∩ asS(R)

we have ∣∣∣∣ 1

|W [τ ]|
∫
W [τ ]

f(wz) dw −
∫
X

f dm

∣∣∣∣ � R�e−κ13sSd(f).

Hence using (7.7) one more time we get∣∣∣∣ 1

|W [τ ]|
∫
asS(R)

∫
W [τ ]

f(wx) dw dμ(x) −
∫
X

f dm

∣∣∣∣
�R�e−κ13sSd(f) +R−�Sd(f).

Putting these together and recalling that τ = e�s we get

(7.8)

∣∣∣∣ 1

|W [τ ]|
∫
W [τ ]

∫
X

f(wx) dμ(x) dw −
∫
X

f dm

∣∣∣∣
�R�τ−�Sd(f) +R−�Sd(f).

Recall that so far our constraint on τ was only τ = vol(Hx0)
κ14 as in (7.3).

If we now choose R = vol(Hx0)
� and a small enough exponent we obtain

R�τ−� � vol(Hx0)
−�; then (7.5) and (7.8) imply

|μ(f)−m(f)| � vol(Hx0)
−�Sd(f),

and hence the theorem in this case.
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We note that if the Q-rank of G is zero, then we are always in case 1 of

Corollary 4.2.

Case 2. Recall again that μs is supported on Ha−sx0 = Ha−sg0Γ. We now

assume that Corollary 4.2(2) holds for μs. In view of this assumption, there

exist λ ∈ ΓΞ and α ∈ Δ such that

(7.9) g−1
0 asHa−sg0 = g−1

0 Hg0 ⊂ λP (1)
α λ−1;

moreover, there exists some h0 ∈ H with |h0| ≤ 2 so that

(7.10) dα(h0a−sg0λ) < 1.

Recall from §4 that P
(1)
α = {g ∈ G : ϑα(g)vα = vα}, where vα corresponds to

a rational subspace of g. In view of (7.9), we have Hg0λ ⊂ g0λP
(1)
α ; hence,

(7.11) ϑα(hg0λ)vα = ϑα(g0λ)vα for all h ∈ H.

Using the definition of ϑα and vα again, we get from the above that

Ad(g0λ)Lie(Ru(Pα))

is an invariant subspace for adjoint action of H. Since Ru(Pα) is a unipotent

group, this and the discussion in §3 imply that

(7.12) g0λRu(Pα)λ
−1g−1

0 = W+ or g0λRu(Pα)λ
−1g−1

0 = W−.

We will consider these two subcases separately.

Subcase 1. Assume first that

g0λRu(Pα)λ
−1g−1

0 = W−.

We claim that under this assumption we have

(7.13) mht(Hx0) � τκ15 = vol(Hx0)
κ14κ15

for some κ15 > 0 depending only on G. Note that (7.13) implies the theorem in

view of Lemma 7.2.

We now turn to the proof of (7.13). First note that since we deal with the

case g0λRu(Pα)λ
−1g−1

0 = W− and both {as} and H normalize W−, we get

that

(7.14) ϑα(a−sh0g0λ)vα ∈ ∧dimW−
Lie(W−)

and ‖ϑα(a−sh0g0λ)vα‖ = dα(a−sh0g0λ).
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We now have

‖ϑα(hg0λ)vα‖ =‖ϑα(h0g0λ)vα‖ by (7.11)

=‖ϑα(asa−sh0g0λ)vα‖
=e−�s‖ϑα(a−sh0g0λ)vα‖ by (7.14)

=e−�sdα(a−sh0g0λ)

�e−�s by (7.10).

Recall from §4 that ϑ(λ)vα corresponds to a rational subspace of g. There-

fore, from the above we get that Ad(hg0)gZ has a nontrivial sublattice with vol-

ume � e−�s for every h ∈ H . The claim in (7.13) thus follows from Minkowski’s

theorem on successive minima in the geometry of numbers and since

es(k+l) = τ = vol(Hx0)
κ14 .

Subcase 2. Assume now that

g0λRu(Pα)λ
−1g−1

0 = W+.

This assumption together with (7.9) and the definitions of P+, implies that

λ−1g−1
0 P+g0λ ⊂ P (1)

α = {g ∈ G : ϑα(g)vα = vα}.
Hence we have

(7.15) λ−1g−1
0 P+g0λ is the connected component of the identity in P (1)

α .

In particular, with λ ∈ ΓΞ ⊂ G(Q) this implies that P+g0Γ/Γ is a closed orbit.

Claim: We have

(7.16) vol(P+g0Γ/Γ) � τ�.

Let us assume the claim and finish the proof. We will show that

|μ(f)− μP+x0
(f)| � vol(Hx0)

−�Sd(f)

for any f ∈ C∞
c (X), which will finish the proof.

The argument is based on finding a point which is generic both for μ and

μP+x0
unless we are in a situation where Lemma 7.2 is applicable. We first fix

some notation.

Recall the definition of RHx0 from (4.4). We apply the first part of the proof

of Lemma 5.2, up to and including the estimate for the set F . For this part of
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the argument we only have to choose T0 sufficiently large and δ has to satisfy

the constraint δ � R−�
Hx0

. So we define

δ = R−�
Hx0

appropriately and obtain the set F ⊂ S(RHx0) as in (5.9) for this T0.

Define

(7.17) T1 := ε−κ8/2 = vol(Hx0)
�

where ε is as in (7.3). Recall that we may assume (5.6) by Lemma 7.2, so that

in particular T1 > T0.

In view of the above claim, we will further assume that κ14 in τ = vol(Hx0)
κ14

is small enough so that

(7.18) T−1
1 vol(P+x0) < T−�

1 .

We now turn to the construction of a generic point for μ and μP+x.

Let

P+
δ := {exp(v) : v ∈ Lie(P+), ‖v‖ ≤ δ}.

Equip P+
δ × X with the product measure mP+ × μ where mP+ is the Haar

measure on P+. Now (7.3) together with an argument as in Lemma 5.1(2) (see

also [6, Prop. 9.1]), implies that the portion of points in P+
δ ×X, so that gx is

not [T1, ε
−κ8 ]-generic for μ w.r.t. Sd′ , is � T−1

1 .

Recall that μ(F ) ≥ 0.9. Therefore, using Fubini’s Theorem, we get the fol-

lowing. There exists a point x1 ∈ F, which is T1-generic for μ so that

(7.19) mP+(|{g∈P+
δ : gx1 is not [T1, ε

−κ8 ]-generic for μ})�T
−1/2
1 mP+(P+

δ ).

We may assume that the upper bound in (7.19) is < 0.1mP+(P+
δ ) (for otherwise

vol(Hx0) is bounded).

Recall that μP+x0
is the normalized probability P+-invariant measure

on P+x0. Applying Lemma 5.1(1) with μP+x0
we get that the μP+x0

mea-

sure of the set of points which are not T1-generic for μP+x0
w.r.t. Sd is � T−1

1 .

Therefore, taking the restriction of μP+x0
to P+

δ x1 ⊂ P+x1 = P+x0 we get the

following. If

μP+x0
(P+

δ x1) � T−1
1

(with a suitably chosen implicit multiplicative constant), then

(7.20) mP+({g∈P+
δ : gx1 is T1-generic for μP+x0

w.r.t. Sd})≥0.9mP+(P+
δ ).
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In consequence, either (7.20) holds or δ is very small in the sense that

μP+x0
(P+

δ x1) � T−1
1 . Let us first assume that the former holds. Then, in

view of (7.19) and (7.20), we may replace x1 by gx1 for some g ∈ P+
δ so that

gx1 is [T1, ε
−κ8 ]-generic for μ, moreover, gx1 is T1-generic for μP+x0

. This, in

particular, implies that

(7.21) |μ(f)− μP+x0
(f)| � T−1Sd(f)

for all T ∈ [T1, ε
−κ8 ].

In view of (7.17), (7.21) completes the proof in this case.

It thus remains to consider that μP+x0
(P+

δ x1) � T−1
1 . First note that this

is to say mP+(P
+
δ ) � T−1

1 vol(P+x0). This and (7.18) imply that there exists

some κ16 so that

T κ16
1 = vol(Hx0)

� � mht(Hx0) = δ−�.

This again implies the theorem by Lemma 7.2.

The proof thus is complete modulo the claim in (7.16).

Proof of Claim. Recall from (7.15) that λ−1g−1
0 P+g0λ = P+

α is the connected

component of the identity in P
(1)
α and that Ξ ⊂ G(Q) is a finite set. For any

ξ ∈ Ξ, define

Pα,ξ := ξPαξ
−1, P

(1)
α,ξ = ξP (1)

α ξ−1, P+
α,ξ = ξP+

α ξ−1, and vα,ξ = ϑα(ξ)vα.

Let Aα,ξ denote the center of the Levi component of Pα,ξ. Then Aα,ξP
+
α,ξ

has finite index in Pα,ξ. Let Bα,ξ ⊂ Pα,ξ denote a set of representatives for

Pα,ξ/Aα,ξP
+
α,ξ.

Write λ = γξ ∈ ΓΞ. Since G = SO(k + �)Pα,ξ the above discussion implies

that we may write

g0γ = cbaγp
+

where c ∈ SO(k + �), b ∈ Bα,ξ, aγ ∈ Aα,ξ, and p+ ∈ P+
α,ξ. In particular, since

P+g0Γ = g0γP
+
α,ξΓ, we have

(7.22) vol(P+g0Γ/Γ) � vol(aγP
+
α,ξΓ/Γ).

Therefore, it suffices to bound vol(aγP
+
α,ξΓ/Γ).

The argument is similar to the one in Subcase 1. Note first that by (7.10) we

have

‖ϑα(a−sh0g0λ)vα‖ = dα(a−sh0g0λ) < 1



26 M. AKA ET AL. Isr. J. Math.

for some |h0| ≤ 2. Also recall that g0λRu(Pα)λ
−1g−1

0 = W+. Therefore arguing

as in Subcase 1, with W+ in place of W−, we have

‖ϑα(h0g0λ)vα‖ = ‖ϑα(asa−sh0g0λ)vα‖ � τ�.

Now, in view of the fact that P+
α,ξ ⊂ P

(1)
α,ξ , the above discussion implies

‖ϑα(aγ)vα,ξ‖ � ‖ϑα(g0γ)vα,ξ‖
= ‖ϑα(g0γξ)vα‖
= ‖ϑα(h0g0λ)vα‖ � τ�,

where (7.12) and λ = γξ were used in the last equality. This implies that

|aγ | � τ�. Now since the distortion of the volume when applying g is bounded

by |g|� we get (7.16) from this bound and (7.22).
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