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1. Introduction

1.1. Homogeneous sets and measures. Number theoretical problems often re-
late to orbits of subgroups (periods) and so can be attacked by dynamical methods.
To be more specific let us recall the following terminology.

Let X = Γ\G be a homogeneous space defined by a lattice Γ < G in a locally
compact group G. Note that any subgroup H < G acts naturally by right multi-
plication on X, sending h ∈ H to the map x ∈ X "→ xh−1. We will refer to H as
the acting subgroup. A homogeneous (probability) measure on X is, by definition,
a probability measure µ that is supported on a single closed orbit Y = ΓgHY of its
stabilizer HY = Stab(µ). A homogeneous set is the support of some homogeneous
probability measure. In what follows, we shall deal only with probability measures
and shall consequently simply refer to them as homogeneous measures.

Ratner’s celebrated measure classification theorem [54] and the so-called lin-
earization techniques (cf. [18] and [45]) imply in the case where G is a real Lie
group that, given a sequence of homogeneous probability measures {µi} with the
property that Hi = Stab(µi) contain “enough” unipotents, any weak∗ limit of {µi}
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is also homogeneous, where often the stabilizer of the weak∗ limit has bigger dimen-
sion than Hi for every i. This has been extended also to quotients of S-algebraic
groups (see [55], [44], [26, App. A], and [31, Sect. 6]) for any finite set S of places.
We note that the latter allow similar corollaries (see [31]) for adelic quotients if the
acting groups Hi contain unipotents at one and the same place for all i – let us
refer to this as a splitting condition. These theorems have found many applications
in number theory (see, e.g., [28], [26], and [31] to name a few examples), but are
(in most cases) ineffective.

Our aim in this paper is to present one instance of an adelic result which is
entirely quantitative in terms of the “volume” of the orbits, and is in many cases not
accessible, even in a non-quantitative form, by the measure classification theorem
and linearization techniques (as we will dispense with the splitting condition). A
special case of this result will recover “property (τ )” (but with weaker exponents)
from the theory of automorphic forms.

1.2. Construction of homogeneous measures. In the following F will always
denote a number field, A will denote the ring of adeles over F , and G will be a
connected semisimple algebraic F -group. We will consider the homogeneous space
X = G(F )\G(A) defined by the group G = G(A) of A-points of G.

We normalize the Haar measure volG on G so that the induced measure on X
(again denoted by volG) is a probability measure. Let us fix the following data
D = (H, ι, g) consisting of

(1) an F -algebraic group H such that H(F )\H(A) has finite volume,
(2) an algebraic homomorphism ι : H → G defined over F with finite kernel,

and
(3) an element g ∈ G.

To this data, we may associate a homogeneous set

YD := ι(H(F )\H(A))g ⊂ X

and the algebraic homogeneous measure µD given by the push-forward, under the
map x "→ ι(x)g, of the normalized Haar measure on H(F )\H(A). We refer to such
a set Y as an algebraic homogeneous set; we say it is simple, semisimple, simply
connected, etc., according to whether the algebraic group H is so, and we say it is
maximal if ι(H) ⊂ G is a maximal1 proper subgroup.

Our main theorem will discuss the equidistribution of maximal semisimple simply
connected homogeneous sets. The assumption that H is simply connected can be
readily removed, as we explain in §7.11.

1.3. The intrinsic volume of a homogeneous set. What does it mean for a
homogeneous set to be “large”?

If H = Stab(µ) is fixed, then one may define the volume of an H-orbit xH using
a fixed Haar measure on H. However, as we will allow the acting group H to vary
we give another reasonably intrinsic way of measuring this, as we now explain.

Let Y = YD be an algebraic homogeneous set with corresponding probability
measure µD and associated group HD = g−1ι(H(A))g. We shall always consider
HD as equipped with that measure, denoted by mD , which projects to µD under
the orbit map.

1Here by maximality we mean maximal as an algebraic group over the algebraic closure of F .
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Fix an open subset Ω0 ⊂ G(A) that contains the identity and has compact
closure. Set

(1.1) vol(Y ) := mD(HD ∩ Ω0)
−1;

this should be regarded as a measure of the “volume” of Y . It depends on Ω0, but
the notions arising from two different choices of Ω0 are comparable to each other,
in the sense that their ratio is bounded above and below; see §2.3. Consequently,
we do not explicate the choice of Ω0 in the notation.

The above notion of the volume of an adelic orbit is strongly related to the
discriminant of the orbit; see Appendix B. The theorem below could also be phrased
using this notion of arithmetic height or complexity instead of the volume.

1.4. Notation for equidistribution in X. If in addition G is simply connected
and ι(H) is a maximal subgroup of G we will show in this paper that a homoge-
neous measure µD as above is almost equidistributed if it already has large volume.
Dropping the assumption that G is simply connected we need the following nota-
tion: Let G(A)+ denote the image of the simply connected cover (see also §2.1).
Using this we define the decomposition

(1.2) L2(X, volG) = L2
0(X, volG) ⊕ L2(X, volG)

G(A)+ ,

where L2(X, volG)G(A)+ denotes the space of G(A)+-invariant functions and

L2
0(X, volG) is the orthogonal complement of L2(X, volG)G(A)+ . Note that if G

is simply connected, then G(A) = G(A)+ and L2(X, volG)G(A)+ is the space of
constant functions.

The group G(A)+ is a closed, normal subgroup of G(A); see, e.g., [49, p. 451].
Therefore, the subspaces introduced in (1.2) are G(A)-invariant. Let

π+ : L2(X, volG) → L2(X, volG)
G(A)+

denote the orthogonal projection. Let C∞
c (X) denote the space of smooth com-

pactly supported functions on X; see §7.5 for a discussion. Finally let us note that
given f ∈ C∞

c (X)

π+f(x) =

∫

X
f dµxG(A)+ .

It is worth noting that π+f is a finite-valued function for all f ∈ C∞
c (X).

1.5. Theorem (Equidistribution of adelic periods). Let YD be a maximal algebraic
semisimple homogeneous set arising from D = (H, ι, g). Furthermore, assume that
H is simply connected. Then

∣∣∣∣

∫

YD

f dµD − π+f(y)

∣∣∣∣ ≪ vol(YD)
−κ0S(f) for all f ∈ C∞

c (X),

where y ∈ YD is arbitrary, S(f) denotes a certain adelic Sobolev norm (see §7.5
and Appendix A), and κ0 is a positive constant which depends only on [F : Q] and
dimG.

Below we will abbreviate the assumption that YD is a maximal algebraic semi-
simple homogeneous set in the theorem by saying that YD is a MASH set (resp., µD

is a MASH measure). We stated the above theorem under the natural assumption
that H is simply connected (but note that ι(H) may not be simply connected). In
§7.11 we discuss a formulation of the theorem without that assumption.
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Let us highlight two features of this theorem. Our method relies on a uniform
version of Clozel’s property (τ ) (see [12], [30, Thm. 1.11], and §4.2 for a summary of
the history). However, it also allows us to give an independent proof of Clozel’s part
of the proof of property (τ ) except for groups of type A1 – i.e., if we only suppose
property (τ ) for groups of type A1, we can deduce property (τ ) in all other cases
as well as our theorem. We will discuss this in greater detail in §4. The theorem
also allows H to vary without any splitting condition (as, e.g., in [31, Thm. 1.7]);
an application of this to quadratic forms is given in §3.

1.6. An overview of the argument. To overcome the absence of a splitting
condition we make crucial use of Prasad’s volume formula in [50] to find a small
place where the acting group has good properties (see §§5 and 6.1 for a summary).
This is needed to make the dynamics at this place useful.

The dynamical argument uses unipotent flows (but we note that one could also
give an argument using the mixing property). Assuming that the volume is large,
we find by a pigeon-hole principle nearby points that have equidistributing orbits.
Using polynomial divergence of the unipotent flow we obtain almost invariance
under a transverse direction. By maximality and spectral gap on the ambient
space we conclude the equidistribution; see §7.

The first difficulty is to ensure that one really can choose a place which is “suffi-
ciently small”, relative to the size of the orbit. Using [50] we establish a logarithmic
bound for the first useful (“good”) prime in terms of the volume – see §5. We also
need to use [6] if ι(H) is not simply connected (as in that case the stabilizer of µD

is larger than HD = g−1ι(H(A))g which affects the notion of volume).
The second difficulty is that we also need to know that there are many points for

which the unipotent orbit effectively equidistributes with respect to the measure in
question. This effectivity also relies on spectral gap, but as the measure µD (and
so its L2-space) varies we need uniformity for this spectral gap. This is a uniform
version of Clozel’s property (τ ) (see §4.2).

After completion of this project the first author, R. Rühr, and P. Wirth worked
out a special case [25] that goes slightly beyond the setting of this paper. However,
due to the concrete setting many of the difficult ingredients of this paper were not
needed in [25], which may make it more accessible for some readers.

1.7. Uniform non-escape of mass. We also note the following corollary of the
above which does not seem to follow from the standard non-divergence results
alone.2

Corollary. Let X = G(F )\G(A). Then for every ϵ > 0 there exists some com-
pact Xϵ ⊂ X such that µ(Xϵ) > 1− ϵ for every MASH measure µ on X.

We will prove the corollary in §7.12.

2. Notation and preliminary statements

2.1. Notation. Let us recall that F denotes a number field. Throughout the paper
Σ denotes the set of places on F ; similarly let Σf and Σ∞ denote the set of finite
and infinite (archimedean) places, respectively.

2The non-divergence estimates for unipotent flows enter our proof (see Lemma 7.3) but remov-
ing all effects from the above-mentioned “splitting condition”, resp., its absence, seems to require
the equidistribution theorem (Theorem 1.5).
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For each v ∈ Σ, we denote by Fv the completion of F at v. For v ∈ Σf , we
denote by ov the maximal compact subring of the completion Fv and let ϖv be
a uniformizer of ov. We let A =

∏′
v∈Σ Fv be the ring of adeles over F and define

Af =
∏′

v∈Σf
Fv, where

∏′ denotes the restricted direct product with respect to the
compact open subgroups ov < Fv for v ∈ Σf .

For any finite place v ∈ Σf we let kv = ov/ϖvov be the residue field, and
we set qv = #kv. Let |x|v denote the absolute value on Fv normalized so that

|ϖv|v = 1/qv. Finally let F̂v denote the maximal unramified extension of Fv. We

let ôv denote the ring of integers in F̂v and we let k̂v denote the residue field of ôv.
We note that k̂v is the algebraic closure of kv.

Fix G and H as in the introduction, and let g (resp., h) denote the Lie algebra
of G (resp., H); they are equipped with compatible F -structures. We define G =
G(A) and X = G(F )\G(A).

In this paper rank of an algebraic group refers to its absolute rank. If we want
to refer to the rank of an algebraic group over a not necessarily algebraically closed
field E, we will use relative rank or E-rank.

For any v ∈ Σ let G(Fv)+ be the image of G̃(Fv), and let G(A)+ be the image
of G̃(A), where G̃ is the simply connected cover of G. If each Fv-almost simple
factor of G is Fv-isotropic, then G(Fv)+ is the subgroup generated by all unipo-
tent elements; it is worth mentioning that our notation is different from the usual
notation in the anisotropic case.

Let ρ : G → SLN be an embedding defined over F. For any v ∈ Σf , we let
Kv := ρ−1(SLN (ov)) and Kf =

∏
v∈Σf

Kv. Set also

(2.1) Kv[m] := ker(Kv → SLN (ov/ϖ
m
v ov))

for m ≥ 1. It is convenient to write Kv[0] := Kv.
We also set up the corresponding notions at the level of the Lie algebra g of G.

For any v ∈ Σ we let gv be the Lie algebra of G over Fv. For v ∈ Σf we write
gv[0] for the preimage of the ov-integral N × N matrices under the differential
Dρ : g → slN . More generally, we write gv[m] for the preimage of the matrices all
of whose entries have valuation at least m.

Throughout, redv : SLN (ov) → SLN (kv) denotes the reduction mod ϖv map;
similarly we consider reduction mod ϖv for the Lie algebras; see [49, Ch. 3] for a
discussion of reduction maps.

For g ∈ G(Fv), we write ∥g∥ for the largest absolute value of the matrix entries
of ρ(g) and ρ(g)−1.

We let volG denote the volume measure on G which is normalized so that it
assigns mass 1 to the quotientX = G(F )\G(A). We will also use the same notation
for the induced Haar measure on X.

The notation A ≪ B, meaning “there exists a constant c1 > 0 so that A ≤ c1B”,
will be used; the implicit constant c1 is permitted to depend on F , G, and ρ, but
(unless otherwise noted) not on anything else. We write A ≍ B if A ≪ B ≪ A.
We will use c1, c2, . . . to denote constants depending on F , G, and ρ (and their
numbering is reset at the end of a section). If a constant (implicit or explicit)
depends on another parameter or only on a certain part of (F,G, ρ), we will make
this clear by writing, e.g., ≪ϵ, c3(N), etc.

We also adopt the ⋆-notation from [24]: We write B = A±⋆ if B = c4A±κ1 ,
where κ1 > 0 depends only on dimF G and [F : Q]. Similarly one defines B ≪ A⋆,
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B ≫ A⋆. Finally we also write A ≍ B⋆ if A⋆ ≪ B ≪ A⋆ (possibly with different
exponents).

We fix a MASH set YD , arising from the data D = (H, ι, g) and with correspond-
ing measure µD as in §1.2. By [49, p. 451] we have ι(H(A)) ⊂ G(A) is a closed
subgroup and by [52, Thm. 1.13] we also have that G(F )ι(H(A))g = supp(µD) is
closed. We will also write gD = g for the element g = (gv)v∈Σ ∈ G(A) determining
the MASH set YD . Let Hv = g−1

v ι(H(Fv))gv; it is contained in G(Fv) and sta-
bilizes µD . The subgroup Hv is a Zariski-dense subset of the Fv-algebraic group
g−1
v ι(H)gv. Of course, Hv need not be the set of all Fv-points of g−1

v ι(H)gv.
We recall that H is assumed to be simply connected in Theorem 1.5. Therefore,

except for §7.11, the standing assumption is that H is simply connected.

2.2. Lemma (Stabilizer lemma). Let N be the normalizer of ι(H) in G. Then the
stabilizer stab(µD) = {h ∈ G : h preserves µD} of µD consists of g−1ι(H(A))N(F )g
and contains g−1ι(H(A))g as an open subgroup.

Proof. Without loss of generality we may and will assume g = e is the identity
element. Suppose that h ∈ N(F ). Then since H is simply connected and the simply
connected cover is unique up to isomorphism, the automorphism x "→ h−1xh of ι(H)
may be lifted to an F -automorphism of H, and in particular preserves adelic points;
so

h−1ι(H(A))h = ι(H(A)).
Also note that the Haar measure on ι(H(A)) is not changed by conjugation by h as
H is semisimple. Therefore, G(F )ι(H(A))h = G(F )h−1ι(H(A))h = G(F )ι(H(A))
and h preserves µD .

Suppose now that h ∈ stab(µD); then h ∈ G(F )ι(H(A)) because it must pre-
serve the support of µD . Adjusting h by an element in ι(H(A)), we may as-
sume h = γ ∈ G(F ) and γ−1ι(H(A))γ ⊂ G(F )ι(H(A)). We note that the con-
nected component of H(A) of the identity with respect to the Hausdorff topology
is the subgroup

∏
v∈Σ∞

H(Fv)◦and the connected component of the countable
union G(F )ι(H(A)) of cosets equals

∏
v∈Σ∞

ι(H(Fv). Therefore, γ−1ι(H(Fv))γ ⊂
ι(H(Fv)) for every v ∈ Σ∞. However, by taking Zariski closure this implies that γ
normalizes ι(H), i.e., γ ∈ N(F ).

For the final claim of the lemma, suppose γi ∈ N(F ) and hi ∈ H(A) are such
that γiι(hi) → e as i → ∞. We need to show that γi ∈ ι(H(A)) for all large enough
i. Without loss of generality we may and will assume that γi ̸∈ ι(H(A)) for all i
and derive a contradiction. If H(F )hi → H(F )h for some h ∈ H(A), then there
exists ηi ∈ H(F ) so that ηihi → h. Applying ι we obtain

γiι(η
−1
i )ι(ηihi) → ι(h−1)ι(h)

which forces γiι(η
−1
i ) = ι(h−1) ∈ G(F ) ∩ ι(H(A)) for all large enough i. This

is a contradiction to our assumption even if the assumed convergence holds only
along some subsequence. Using the compactness criterion [52, Thm. 1.12] on the
finite volume homogeneous spaces H(F )\H(A) we now obtain that there exists a
sequence e ̸= ηi ∈ H(F ) with h−1

i ηihi → e. Note that as the center of H is finite
we see that ι(ηi) ̸= e for all large enough i. This contradicts G(F )ι(hi) → G(F )
by the same compactness criterion [52, Thm. 1.12] applied to X. !
2.3. Volume of homogeneous sets. Let us discuss the definition of the volume
of a homogeneous set in a general context. Let G be a locally compact group and
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let Γ < G be a discrete subgroup. Let µ be a homogeneous probability measure
on X = Γ\G so that µ is supported on a single closed orbit Y = xHY of the
stabilizer HY = stab(µ) = {g ∈ G : g preserves µ}. Recall that Y = xHY is called
a homogeneous subset of X.

We normalize the Haar measure mY on the stabilizer group HY = stab(µ) so
that mY projects to µ. I.e., if we choose z ∈ supp(µ) and any subset S ⊂ HY

for which the map h ∈ S "→ zh ∈ Y is injective, then we require that mY (S) =
µ(zS). Equivalently we identify Y with ΓY \HY (where ΓY = stabHY (z)) and
normalize mY so that µ is identified with the quotient measure of mY by the
counting measure on ΓY .

We fix some open neighborhood Ω0 of the identity in G with compact closure
and use it to normalize a general definition of the volume of a homogeneous subset:
If Y ⊂ X is a homogeneous set and mY is the Haar measure on its stabilizer
subgroup HY (normalized as above), then volΩ0(Y ) = mY (Ω0)−1.

We claim that volΩ(Y ) ≪ volΩ0(Y ) ≪ volΩ(Y ) if Ω is another such neighbor-
hood. Consequently we will drop the mention of Ω0 in the notation of the volume.
To prove the claim it suffices to assume that Ω ⊂ Ω0, which immediately im-
plies mY (Ω) ≤ mY (Ω0). To prove the opposite, choose some open neighborhood O
of the identity with O−1O ⊂ Ω and find some g1, . . . , gn ∈ Ω0 with Ω0 ⊂

⋃
i giO.

This gives mY (Ω0) ≤
∑

i mY (giO). If mY (giO) > 0 for i ∈ {1, . . . , n}, then
there exists some hi = giϵ ∈ HY ∩ giO which gives mY (giO) = mY (h

−1
i giO) =

mY (ϵ−1O) ≤ mY (Ω). Consequently mY (Ω0) ≤ nmY (Ω) as required.
In the context of this paper we will work with algebraic homogeneous sets YD

and algebraic homogeneous measures µD as in §§1.2 and 2.1. By Lemma 2.2 we
have that HD = g−1ι(H(A))g is an open subgroup of the stabilizer HYD . Therefore,
the Haar measure on HD is obtained from the Haar measure on HYD by restriction
(and this is compatible with the above normalization of the Haar measures). Also,
the volume defined by using the Haar measure on HD (as done in §1.3) is bigger
than the volume defined using the Haar measure on the full stabilizer subgroup (as
done here). In most of the paper (with the exception of §§5.12 and 7.7) we will
work with the volume defined using the Haar measure on HD (as in §1.3).

We will assume that Ω0 =
∏

v∈Σ Ωv, where Ωv is an open neighborhood of
the identity in G(Fv) for all infinite places v ∈ Σ∞ and Ωv = Kv for all finite
places v ∈ Σf .

We will make crucial use of the notion of volume in §5.10, where we will construct
a good place, and again in §7.7.

3. An application to quadratic forms

We now give an example of an equidistribution result that follows from our
theorem but – even in non-quantitative form – does not appear to follow directly
from the (ineffective) measure classification theorems for the action of unipotent or
semisimple groups.

Let Q = PGL(n,Z)\PGL(n,R)/PO(n,R) be the space of positive definite qua-
dratic forms on Rn up to the equivalence relation defined by scaling and equiva-
lence over Z. We equip Q with the push-forward of the normalized Haar measure
on PGL(n,Z)\PGL(n,R).

Let Q be a positive definite integral quadratic form on Zn, and let genus(Q)
(resp., spin genus(Q)) be its genus (resp., spin genus).
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For the rest of this section, we assume that n ≥ 3.

3.1. Theorem. Suppose Qi varies through any sequence of pairwise inequivalent,
integral, positive definite quadratic forms. Then the genus (and also the spin genus)
of Qi, considered as a subset of Q, equidistributes as i → ∞ (with speed determined
by a power of | genus(Qi)|).

Similar theorems have been proved elsewhere (see, e.g., [27] where the splitting
condition is made at the archimedean place). What is novel here, besides the speed
of convergence, is the absence of any type of splitting condition on the Qi. This
is where the quantitative result of the present paper becomes useful. We also note
that it seems plausible that one could remove the splitting assumptions of [26] in
the borderline cases where m− n ∈ {3, 4} by means of the methods of this paper.
However, for this the maximality assumption in Theorem 1.5 would need to be
removed.

3.2. Setup for the proof. We set F = Q, G = PGLn, and define the quo-
tient X = PGLn(Q)\PGLn(A). Let us recall some facts about the genus and spin
genus in order to relate the above theorem with Theorem 1.5. For every ratio-
nal prime p put Kp = PGL(n,Zp) and note that Kp is a maximal compact open
subgroup of G(Qp). We also define K =

∏
p Kp. With this notation we have

(3.1) G(A) = G(Q)G(R)K = G(Q)PGL(n,R)K.

It is worth mentioning that (3.1) gives a natural identification between L2(X, volG)K ,
the space of K-invariant functions, and

L2(PGL(n,Z)\PGL(n,R), volPGL(n,R));

this identification maps smooth functions to smooth functions.
Given a positive definite integral quadratic form Q in n variables, the isometry

group H′ = SO(Q) is a Q-group; it actually comes equipped with a model over Z.
This group naturally embeds in G, and this embedding is defined over Z. We define
H = Spin(Q) and let π : H → H′ be the covering map.

Put K ′
p = H′(Qp)∩Kp, K ′ =

∏
p K

′
p, and K ′(∞) = H′(R)K ′, the latter being a

compact open subgroup ofH′(A). Note that genus(Q) is identified with the finite set
H′(Q)\H′(Af )/K ′, which may also be rewritten as H′(Q)\H′(A)/K ′(∞). Similarly
the spin genus of Q is given by H′(Q)\H′(Q)π(H(Af))K ′/K ′, which may also be
written as

H′(Q)\H′(Q)π(H(A))K ′(∞)/K ′(∞).

Let gQ ∈ PGL(n,R) be so that g−1
Q H′(R)gQ = g−1

Q ι(H(R))gQ = SO(n,R), the
standard compact isometry group. We define the associated MASH set Y := YQ =
π(H(Q)\H(A))(gQ, e, . . .).

3.3. Lemma. The volume of the MASH set Y , the spin genus of Q, the genus of Q,
and the discriminant of Y (as defined in Appendix B) are related to each other via3

vol(Y ) ≍ | spin genus(Q)|⋆ ≍ | genus(Q)|⋆ ≍ disc(Y )⋆.

We postpone the proof to Appendix B.1.

3See §2.1 for the ⋆-notation.
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3.4. Proof of Theorem 3.1. Let Q be a positive definite integral quadratic form
in n variables as above. Let f ∈ C∞

c (X)K be a smooth, compactly supported
and K-invariant function. Denote by π+ : L2(X, volG) → L2(X, volG)PSL(n,A)

the projection onto the space of PSL(n,A)-invariant functions; this is a G(A)-
equivariant map. Therefore, π+(f) isK-invariant as f isK-invariant. Thus by (3.1)
we have π+(f) is G(A)-invariant which implies

(3.2) π+(f) =

∫

X
f dvolG

for all K-invariant f ∈ C∞
c (X).

Let f ∈ C∞
c (X)K . Applying Theorem 1.5, with the homogeneous space Y and

in view of (3.2), we get
∣∣∣∣
∫

Y
f dµD −

∫

X
f dvolG

∣∣∣∣ ≪ vol(Y )−κ0S(f).

Using vol(Y ) ≍ | spin genus(Q)|⋆ ≫ | genus(Q)|⋆ (see Lemma 3.3) this implies
Theorem 3.1.

4. A proof of property (τ )

The following theorem was established in full generality through works of Sel-
berg [56], Kaz̆dan [38], Burger-Sarnak [11], and the work of Clozel [12, Thm. 3.1]
completed the proof.4

4.1. Theorem (Property (τ )). Let v be a place of F and let Gv be an Fv-algebraic
semisimple group which is isotropic over Fv. Let G be an algebraic F -group such
that G is isomorphic to Gv over Fv. Then the representation L2

0(G(F )\G(A)) – the
orthogonal complement of G(A)+-invariant functions – is isolated from the trivial
representation as a representation of Gv(Fv). Moreover, this isolation (spectral
gap) is independent of G.

A corollary of the above (dropping the crucial uniformity in G) is that, if Γ is any
S-arithmetic lattice in the group G, and {ΓN}N≥1 is the family of all congruence
lattices, then the Γ-action on L2(Γ/ΓN ) possesses a uniform spectral gap.

Our main result offers an alternative to Clozel’s part of the proof. (Besides the
groups of type A1, this is the most “non-formal” part, as it relies on a special
instance of the functoriality principle of Langlands.)

4.2. Short history of the problem. Let us describe some of the history of The-
orem 4.1. First, it is not difficult to reduce to the case of an absolutely almost
simple, simply connected group G. This being so, it follows by combining the
following distinct results and principles:

(1) Property (T ): If the Fv-rank of G(Fv) is ≥ 2, it follows from Kazhdan’s
“property (T )”, which furnishes the stronger statement that any represen-
tation not containing the identity is isolated from it; see [38] and the work
of Oh [47] for a more uniform version that is of importance to us.

4Clozel states this theorem for a fixed F -group G, however, his proof also gives Theorem 4.1.
Our proof of Theorem 4.1 will include uniformity in the F -group G.
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(2) Groups of type A1: If the rank of G over the algebraic closure F̄ is equal to
1, i.e., G×F F̄ is isogenous to SL2, then G is necessarily the group of units
in a quaternion algebra over F . In that case, the result can be established
by the methods of Kloosterman or by the work of Jacquet-Langlands and
Selberg; see [36, 56].

(3) Burger-Sarnak principle: Let ρ : G → G′ be a homomorphism with finite
central kernel, let G′ be absolutely almost simple and simply connected,
and suppose that property (τ ) is known for groups that are isomorphic to
G over F̄ . Then property (τ ) is known for G′ at any place where G(Fv) is
isotropic; see [11].

(4) Groups of type An: Property (τ ) is true for groups of the form SL(1, D),
where D is a division algebra over F whose dimension is the square of a
prime; or for groups of the form SU(D, ⋆), whereD is a division algebra over
a quadratic extension E of F , and ⋆ is an “involution of the second kind”
on D, i.e., inducing the Galois automorphism on E; see Clozel’s work [12].

(5) For us the uniformity of the spectral gap across all types of groups and
across all places is crucial. This is obtained by combining the above results
and was done by Gorodnik, Maucourant, and Oh [30, Thm. 1.11].

The hardest of these results is arguably the fourth step. It is established in
[12] and uses a comparison of trace formulae. In addition to these results, Clozel
[12, Thm. 1.1] proves that any absolutely almost simple, simply connected group
defined over F admits a morphism from a group ResF ′/FG, where G is an algebraic
F ′-group isomorphic to one of the types described in (4).

4.3. Effective decay of matrix coefficients. Let us also note that by the work
of Cowling, Haagerup, and Howe [16] and others the conclusion in Theorem 4.1 is
equivalent to the existence of a uniform decay rate for matrix coefficients on the
orthogonal complement of the G(A)+-invariant functions. Once more, for groups
with property (T ) this statement is true for any representation; see [30,47]. Due to
the assumption that G is simply connected, we are reduced to studying functions
in f ∈ L2(G(F )\G(A)) with

∫
f = 0 see [30, Lemma 3.22].

More precisely, Theorem 4.1 is equivalent to the existence of some κ2 > 0 such
that for all Kv-finite functions f1, f2 ∈ L2(G(F )\G(A)) with

∫
f1 =

∫
f2 = 0, the

matrix coefficient can be estimated as follows:

(4.1)
∣∣〈πgvf1, f2

〉∣∣ ≤ dim⟨Kv · f1⟩
1
2dim⟨Kv · f2⟩

1
2 ∥f1∥2 ∥f2∥2 ΞGv(gv)

κ2,

where gv ∈ Gv(Fv), πgv is its associated unitary operator, Kv is a good maximal
compact open subgroup of Gv(Fv), ⟨Kv · f⟩ is the linear span of Kv · f, and ΞGv is
a Harish-Chandra spherical function of Gv(Fv).

As noted in Theorem 4.1 the constant κ2 is independent of the precise F -
structure of G. What we did not mention before (as we did not have the notation)
is that κ2 is also independent of the place v. For groups with property (T ) these
statements are proven in [47].

We are able to give a direct proof of (4.1) (relying on [47]) which avoids the
third and fourth5 points of §4.2 (but leads to weaker exponents). Indeed, using

5By only avoiding the fourth point we may restrict ourselves to compact quotients and obtain
in these cases a constant κ2 that only depends on dimF G, the type of Gv over Fv and the
dimension of Fv over Qp where p|v, but not on F or even the degree [F : Q]. If we wish to avoid
the third and fourth the constant depends on [F : Q] dimF G.
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the second point, we are left with the case where G is an absolutely almost simple,
simply connected group over F of absolute rank ≥ 2. In that case, one applies
Theorem 1.5 to translates of the diagonal copy of X = G(F )\G(A) inside X ×X
by elements from G(Fv) to establish a uniform decay rate for matrix coefficients
and so Theorem 4.1.

We will explain this step first in a special case and then in §4.5 in general.

4.4. A purely real instance of transportation of spectral gap. Let G1, G2 be
almost simple, connected Lie groups, and suppose G2 has (T) but G1 has not. Let
Γ be an irreducible lattice in G = G1×G2, e.g., this is possible for G1 = SU(2, 1)(R)
and G2 = SL3(R).

We wish to bound the matrix coefficients of G1 acting on X = Γ\G. Let G∆ =
{(h, h) : h ∈ G} < G×G and notice that the diagonal orbit (Γ× Γ)G∆ ⊂ X ×X
is responsible for the inner product in the sense that the integral of f1 ⊗ f̄2 over
this orbit equals the inner product ⟨f1, f2⟩. In the same sense is the deformed orbit
(Γ × Γ)G∆(g, e) responsible for the matrix coefficients of g. The volume of this
deformed orbit is roughly speaking a power of ∥g∥, hence effective equidistribution
of this orbit gives effective decay of matrix coefficients.

We note that the main theorem6 of [24] does not apply to this situation as the
acting group giving the closed orbit has been conjugated and does not remain fixed.
However, if g = (g1, e), then the almost simple factor of G∆ corresponding to G2

remains (as a subgroup of G × G) fixed and this is the part with known effective
decay (due to property (T)). In this case the method of [24] (which is also applied
in this paper in the adelic context) can be used to show effective equidistribution
and so decay of matrix coefficients for the G1-action. In all of this, the rate of
(i.e., the exponent for) the decay of matrix coefficients for G1 only depends on the
spectral gap for G2 and the dimension of G (but not on Γ).

4.5. The general case with absolute rank at least two. Let F be a number
field and let G be an absolutely almost simple, simply connected F -group whose
absolute rank is at least two. Let v be a place of the number field F such that
G(Fv) is non-compact. For any g ∈ G(Fv) put Xg = {(xg, x) : x ∈ X}, where we
identify g with an element of G(A). Then Xg is a MASH set, and in view of our
definition of volume of a homogeneous set there exist two positive constants κ3,κ4

(depending only on the root system of G(Fv)) such that

∥g∥κ3 ≪ vol(Xg) ≪ ∥g∥κ4.

As mentioned before we want to apply Theorem 1.5 to Xg ⊂ X ×X. However,
we want the proof of that theorem to be independent of (3) and (4) of §4.2. We
note that in the proof of Theorem 1.5 that spectral gap will be used for a “good
place” w. In §5 (see also §5.11 and the summary in §6.1) the following properties
of a good place will be established:

(i) char(kw) ≫ 1 is large compared to dimG,

(ii) both G and ι(H) are quasisplit over Fw, and split over F̂w,
(iii) both Kw and K ′

w are hyperspecial subgroups of G(Fw) and the subgroup
Hw (the component of the acting group at the place w), respectively.

6In that theorem the implicit constant in the rate of equidistribution is allowed to depend on
the acting group and so implicity in this instance also on g.
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Indeed almost all places satisfy these conditions. We also will show the effective es-
timate qw ≪ log(vol(homogeneous set))2; this needs special care when the F -group
H changes. In our application to Theorem 4.1, however, the algebraic subgroup
H = {(h, h) : h ∈ G} < G×G is fixed and Xg changes with the element g ∈ G(Fv).
In this case we find a place w ̸= v (independent of g) which satisfies (i), (ii), and
(iii) so that in addition G is Fw-split.7 Note that by the Chebotarev density theo-
rem, [49, Thm. 6.7] there are infinitely many such places. Then by our assumption
that the absolute rank of G is at least two we have the required spectral gap for
G(Fw) since this group has property (T). Therefore we get: there exists a constant
κ5 > 0 (which depends only on the type of G) so that for all Kw-finite functions
f1, f2 ∈ L2

0(X) we have

(4.2) |⟨πhwf1, f2⟩| ≪ dim⟨Kw · f1⟩1/2 dim⟨Kw · f2⟩1/2∥f1∥2∥f2∥2∥hw∥−κ5,

where the implicit constant depends on G(Fw); see [47].
Fix such a place, then using (4.2) as an input in the proof of Theorem 4.1 and

taking g large enough so that qw ≤ log(∥g∥) we get from Theorem 1.5 the conclusion
of the theorem. In particular, if f = f1 ⊗ f̄2 with fi ∈ C∞

c (X) for i = 1, 2, then

∣∣∣
∫

X×X
f dµXg −

∫

X×X
f1 ⊗ f̄2 dvolG×G

∣∣∣

=
∣∣∣⟨πgf1, f2⟩X −

∫

X
f1 dvolG

∫

X
f̄2 dvolG

∣∣∣ ≪ ∥g∥−κ0S(f);

where κ0 > 0 depends on dimG, [F : Q] (if X is non-compact), and κ5 as in (4.2).
The implied multiplicative constant depends on X and so also on the F -structure
of G. We note however, that this constant is irrelevant due to [16], which upgrades
the above to a uniform effective bound on the decay of the matrix coefficients as
in (4.1) with κ2 independent of G. This implies Theorem 4.1.

5. Construction of good places

See §2 for general notation. In particular, D = (H, ι, g) consists of a simply
connected semisimple F -group H, an F -homomorphism ι : H → G, and an element
g = (gv) ∈ G(A) determining a homogeneous set; the stabilizer of this set contains
the acting group HD = g−1ι(H(A))g. We will not assume within this section (or
the related Appendix B) that ι(H) is a maximal subgroup of G.

The purpose of this section is to show that we may always choose a place w
with the property that Hw = g−1

w ι(H(Fw))gw ⊂ G(Fw) is not too “distorted”.
The precise statement is the proposition in §5.11, but if the reader is interested in
the case of Theorem 1.5 where Y varies through a sequence of sets where w and
Hw are fixed (e.g., the argument in §4) the reader may skip directly to §6. This
section relies heavily on the results established in [50] and [6] which in turn relies
on Bruhat-Tits theory.

7In fact we may also ensure that F splits over Qp by applying this argument for ResF/Q G.
In this case Fw = Qp for w|p and so G(Fw) is a simple group over Qp from a finite list that is
independent of F and even of [F : Q]. Using this one can establish the earlier noted independence
of κ2 from [F : Q].
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5.1. Bruhat-Tits theory. We recall a few facts from Bruhat-Tits theory; see [60]
and the references there for the proofs. Let G be a connected semisimple group
defined over F. Let v be a finite place. Then

(1) For any point x in the Bruhat-Tits building of G(Fv), there exists a smooth

affine group scheme G(x)
v over ov, unique up to isomorphism, such that: its

generic fiber is G(Fv), and the compact open subgroup G(x)
v (ov) is the

stabilizer of x in G(Fv); see [60, 3.4.1].

(2) If G is split over Fv and x is a special point, then the group scheme G(x)
v is

a Chevalley group scheme with generic fiber G; see [60, 3.4.2].

(3) redv : G(x)
v (ov) → Gv

(x)(kv), the reduction mod ϖv map, is surjective,
which follows from the smoothness above; see [60, 3.4.4].

(4) Gv
(x) is connected and semisimple if and only if x is a hyperspecial point.

Stabilizers of hyperspecial points in G(Fv) will be called hyperspecial sub-
groups; see [60, 3.8.1] and [50, 2.5].

If G is quasisplit over Fv, and splits over F̂v, then hyperspecial vertices exist,
and they are compact open subgroups of maximal volume. Moreover a theorem of
Steinberg implies that G is quasisplit over F̂v for all v; see [60, 1.10.4].

It is known that for almost all v the groups Kv are hyperspecial; see [60, 3.9.1]
(and §2.1 for the definition of Kv). We also recall that: for almost all v the group
G is quasisplit over Fv; see [49, Thm. 6.7].

5.2. Passage to absolutely almost simple case. We will first find the place w
under the assumption that H is F -almost simple; the result for semisimple groups
will be deduced from this case.

In this section we will need to work with finite extensions of F as well. To
avoid confusion we will denote AE for the ring of adeles of a number field E. This
notation is used only here in §5 and in Appendix B.

Suppose for the rest of this section, until specifically mentioned otherwise, that
H is F -almost simple. Let F ′/F be a finite extension so that H = ResF ′/F (H

′),
where H′ is an absolutely almost simple F ′-group; note that [F ′ : F ] ≤ dimH. We
use the notation v′ ∈ ΣF ′ for the places of F ′. For any v ∈ ΣF , there is a nat-
ural isomorphism between H(Fv) and

∏
v′|v H

′(F ′
v′); this induces an isomorphism

between H(AF ) and H′(AF ′).

5.3. Adelic volumes and the Tamagawa number. Fix an algebraic volume
form ω′ on H′ defined over F ′. The form ω′ determines a Haar measure on each
vector space h′v′ := Lie(H′) ⊗ F ′

v′ which also gives rise to a normalization of the
Haar measure on H′(F ′

v′). Let us agree to refer to both these measures as |ω′
v′ |. We

denote by |ω′
A| the product measure on H′(AF ′); then

(5.1) |ω′
A|(H′(F ′)\H′(AF ′)) = D

1
2dimH′

F ′ τ (H′),

where τ (H′) is the Tamagawa number of H′, and DF ′ is the discriminant of F ′. In
the case at hand H′ is simply connected, thus, it is known that τ (H′) = 1; see [41]
and [50, Sect. 3.3] for historic remarks and references.

The volume formula (5.1) is for us just a starting point. It relates the Haar
measure on Y to the algebraic volume form ω′ (and the field F ′). However, the
volume of our homogeneous set Y as a subset of X depends heavily on the amount
of distortion (coming from the precise F -structure of H and g).
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5.4. The quasisplit form. Following [50, Sect. 0.4] we let H′ denote a simply
connected algebraic group defined and quasisplit over F ′ which is an inner form of
H′. Let L be the field associated8 toH′ as in [50, Sect. 0.2], it has degree [L : F ′] ≤ 3.
We note that H′ should be thought of as the least distorted version of H′; it and
the field L will feature in all upcoming volume considerations.

Let ω0 be a differential form on H′ corresponding to ω′. This can be described as
follows: Let ϕ : H′ → H′ be an isomorphism defined over some Galois extension of
F ′. We choose ω0 so that ω′ = ϕ∗(ω0); it is defined over F ′. It is shown in [50, Sect.
2.0–2.1] that, up to a root of unity of order at most 3, this is independent of the
choice of ϕ.

As was done in [50] we now introduce local normalizing parameters λv′ which
scale the volume form ω0 to a more canonical volume form on H′(F ′

v′).

5.5. Normalization of the Riemannian volume form. Let us start the defi-
nition of these parameters at the archimedean places.

Let g be any d-dimensional semisimple real Lie algebra. We may normalize an
inner product on g as follows: Let gC be the complexification of g and let g0 be
a maximal compact subalgebra. The negative Killing form gives rise to an inner
product ⟨·, ·⟩ on g0. This can be complexified to a Hermitian form on gC and then
restricted to a (real) inner product on g.

As usual, the choice of an inner product on a real vector space determines a
non-zero ν ∈ ∧dg∗ up to sign. We refer to this as the Riemannian volume form
on g, and again write |ν| for the associated Riemannian volume on g or on a real
Lie group with Lie algebra g. Note that the Hermitian form depends on the choice
of the maximal compact subalgebra, but the Riemannian volume is independent of
this choice.

For any archimedean place, let λv′ > 0 be such that λv′ |ω0
v′ | coincides with the

Riemannian volume on H′(F ′
v′) (using the above normalization).

5.6. Normalization of the Haar measure at the finite places. For any finite
place v′ of F ′, we choose an o′v′ -structure on H′, i.e., a smooth affine group scheme
over o′v′ with generic fiber H′. To define λv′ at the finite places we have to choose
the o′v′ -structure more explicitly, as in [50, Sect. 1.2].

We let {Pv′ ⊂ H′(F ′
v′)} denote a coherent collection of parahoric subgroups of

“maximal volume”; see [50, Sect. 1.2] for an explicit description. Let us recall that
by a coherent collection we mean that

∏
v′∈ΣF ′,f

Pv′ is a compact open subgroup

of H′(AF ′,f ).
Note that any F ′-embedding of H′ into GLN ′ gives rise to a coherent family of

compact open subgroups of H′(AF ′) which at almost all places satisfies the above
requirements on Pv′ ; see §5.1. At the other places we may choose Pv′ as above
and then use (1) in §5.1 to define the o′v′ -structure on H′(F ′

v′). Let us also remark
that maximality of the volume implies that the corresponding parahoric is either
hyperspecial (if H′ splits over an unramified extension) or special with maximum
volume (otherwise).

8In most cases L is the splitting field of H′ except in the case where H′ is a triality form of 6D4

where it is a degree 3 subfield of the degree 6 Galois splitting field with Galois group S3. Note
that there are three such subfields which are all Galois-conjugate.
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This allows us, in particular, to speak of “reduction modulo ϖ′
v′”. If v′ is a

finite place of F ′, we let Mv′ denote the reductive quotient of redv′(Pv′); this is a
reductive group over the residue field.

For any non-archimedean place, let ℓv′ ∈ F ′
v′ be so that ℓv′ω0

v′ is a form of
maximal degree, defined over o′v′ , whose reduction mod ϖ′

v′ is non-zero, and let
λv′ = |ℓv′ |v′ .

5.7. Product formula. Let us use the abbreviation DL/F ′ = DLD
−[L:F ′]
F ′ for the

norm of the relative discriminant of L/F ′; see [50, Thm. A]. It is shown in [50, Thm.
1.6] that

(5.2)
∏

v′∈ΣF ′

λv′ = D
1
2s(H

′)
L/F ′ ·A,

where A > 0 depends only on H over F̄ and [F ′ : Q], s(H′) = 0 when H′ splits over
F ′ in which case L = F ′, and s(H′) ≥ 5 otherwise; these constants depend only on
the root system of H′.

It should be noted that the parameters λv′ were defined using H′ and ω0 but
will be used to renormalize ω′

v′ on H′.

5.8. Local volume contributions. Recall that we fixed an open subset Ω0 =∏
v∈Σ∞

Ωv ×
∏

v∈Σf
Kv ⊂ G(A) and defined vol(Y ) of an algebraic semisimple

homogeneous set Y using this subset; see (1.1) and §2.3.
For every v ∈ Σ∞ we may assume that Ωv is constructed as follows. Fix a

bounded open subset Ξv ⊂ gv which is symmetric around the origin such that exp
is diffeomorphic on it and so that

(5.3) every eigenvalue σ of ad(u) for u ∈ Ξv satisfies |σ|v <
1

10
,

where we regard the norm |·|v as being extended to an algebraic closure of Fv. With
this we define Ωv = exp(Ξv). We will also require that properties similar to (5.3)
hold for finitely many finite-dimensional representations which will be introduced
in the proof below; see the discussion leading to (5.5).

To compare the Haar measure on H(Fv) with the Haar measure on the Lie
algebra hv in the following proof we also recall that the derivative of the exponential
map exp : hv → H(Fv) at u ∈ hv is given by9

(5.4)
1− exp(−adu)

adu
= 1− adu

2
+

(adu)2

3!
−+ · · · .

For v ∈ ΣF,f , set K∗
v = ι−1(gvKvg−1

v ), and put K∗
v = ι−1(gvΩvg−1

v ) for v ∈
ΣF,∞. Note that, for each finite place v, the group K∗

v is an open compact subgroup
of H(Fv). For any place v ∈ ΣF,f we can write

K∗
v ⊆

∏

v′|v

K∗
v′ where K∗

v′ is the projection of K∗
v into H′(F ′

v′).

Let Jv′ be the measure of K∗
v′ under λv′ |ω′

v′ |.
We define pv′ = char(kv′) and note that qv′ = #kv′ = plv′ for some l ≤ [F ′ : Q].

9We think of the derivative as a map from hv to itself by using left-mutiplication by the
inverse of exp(u) to identify the tangent plane at the point exp(u) with the tangent plane at the
identity. As the latter is measure preserving, this identification does not affect the estimates for
the Jacobian of the exponential map.
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Proposition. The local terms Jv′ as above satisfy the following properties:

(1) For v′ a finite place of F ′, Jv′ ≤ 1.
(2) Let v′ be a finite place of F ′ such that L/F ′ is unramified at v′. Suppose

that H′ is not quasisplit over F ′
v′ or K∗

v′ is not hyperspecial; then Jv′ ≤ 3/4.
If in addition qv′ > 13, then Jv′ ≤ max{ 1

pv′
, qv′+1

q2
v′

} ≤ 1/2.

(3) For an archimedean place v of F ,
(∏

v′|v λv′ |ω′
v′ |

)
(K∗

v ) is bounded above

by a constant depending only on G and Ω.

Proof (Case of v′ finite). Let Pv′ be a minimal parahoric subgroup containing K∗
v′ .

Let Mv′ be the reductive quotient of the corresponding kv′ -group redv′(Pv′) where
Pv′ is the smooth affine ov′ -group scheme whose ov′ -points are Pv′ ; existence of
such is guaranteed by Bruhat-Tits theory; see (1) of §5.1.

This gives

Jv′ = λv′ |ω′
v′ |(K∗

v′) ≤ λv′ |ω′
v′ |(Pv′) =

#Mv′(kv′)

q(dimMv′+dimMv′ )/2
v′

where the last equality is [50, Prop. 2.10]. The same proposition also shows that
the right-hand side is at most 1 as claimed in (1).

Using [50, Prop. 2.10] one more time we have: if H′ is not quasisplit over F ′
v′ ,

or H′ splits over the maximal unramified extension F̂ ′
v′ but Pv′ is not hyperspecial,

then
#Mv′(kv′)

q(dimMv′+dimMv′ )/2
v′

≤ qv′ + 1

q2v′
.

Therefore, we assume now (as we may), that H′ is quasisplit over F ′
v′ .

As the quasisplit inner form is unique we obtain that H′ and H′ are isomorphic
over F ′

v′ .
Note that if v′ does not ramify in L, then H′ splits over the maximal unramified

extension F̂ ′
v′ . Indeed, by the footnote on page 236 in most cases L is the splitting

field of H′ which gives the remark immediately. In the case of the triality form
of 6D4 the splitting field of H′ is a degree 6 Galois extension E/F ′ with Galois
group S3 which is generated by L ⊂ E and its Galois images. As v′ does not ramify
in L, this also implies that v′ does not ramify in E. As we may assume H′ and H′

are isomorphic over F ′
v′ , the group H′ also splits over F̂ ′

v′ .
In view of this the only case which needs extra argument is when H′ is F ′

v′ -

quasisplit, split over F̂ ′
v′ , the only parahoric subgroup containing K∗

v′ is a hyper-
special parahoric subgroup Pv′ , and K∗

v′ ! Pv′ . Note that (1) and the fact that
K∗

v′ ! Pv′ in particular imply that10 Jv′ ≤ 1/2. It remains to show that the
stronger bound holds in this case as well.

We will use the notation and statements recalled in §5.1. Let Pv′ be the smooth
group scheme associated to Pv′ by Bruhat-Tits theory. Since Pv′ is hyperspecial we
have redv′ Pv′ is an almost simple group. The natural map P ′

v → redv′ Pv′(kv′) is
surjective. We also recall that since H′ is simply connected redv′ Pv′ is connected;

see [60, 3.5.3]. Let P (1)
v′ denote the first congruence subgroup of Pv′ , i.e., the kernel

of the natural projection.

10Let us mention that this bound is sufficient for finding a “good place” in §5.10. However, the
stronger estimate in (2) will be needed in §5.12 if ι(H) is not simply connected and in Appendix B.
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First note that if P (1)
v′ ̸⊂ K∗

v′ , then the finite set P (1)
v′ /P (1)

v′ ∩ K∗
v′ injects into

Pv′/K∗
v′ . But P (1)

v′ is a pro-pv′ group and hence any subgroup of it has an index
which is a power of pv′ . Therefore, we get the claim under this assumption. In

view of this observation we assume P (1)
v′ ⊂ K∗

v′ . Therefore, since K∗
v′ ! Pv′ we

have K∗
v′/P

(1)
v′ is a proper subgroup of Pv′/P (1)

v′ = redv′ Pv′(kv′). The latter is a
connected almost simple group of Lie-type and the smallest index of its subgroups is
well understood. In particular, by [39, Prop. 5.2.1] the question reduces to the case
of simple groups of Lie-type. Then by the main Theorem in [43], for the exceptional
groups, and [15] for the classical groups, see also [39, Thm. 5.2.2] for a discussion,
we have [P∗

v′ : K∗
v′ ] ≥ qv′ so long as qv′ ≥ 13. The conclusion in part (2) follows

from these bounds.
(Case of v infinite:).11 Note that up to conjugation by G(Fv) there are only

finitely many homomorphisms from H(Fv) to G(Fv) with finite (central) kernel.
We fix once and for all representatives for these maps. We will refer to these
representatives as standard homomorphisms (and the list depends only on G(Fv)).
We fix a compact form hv,0 for the group H(Fv). Taking the negative of the
restriction of the Killing form to the compact form we extend it to a Hermitian
form on hCv and restrict it to a Euclidean structure on hv, which we will denote
by q. For each standard homomorphism we fix a standard Euclidean structure on
gv as follows: Let j0 be the derivative of a standard homomorphism. Let gv,0 ⊂ gCv
be a compact form of gv so that j0(hv,0) ⊂ gv,0. As above for the Euclidean structure
q on hv, we use the compact forms gv,0 to induce standard Euclidean structures
associated to j0 which we will denote by p0.

We also let ρ0 : G → SLD be a representation given by Chevalley’s theorem ap-
plied to the semisimple algebraic group j0(H) considered over Fv, and let wj0 ∈ FD

v

be so that j0(H) = StabG(wj0). As there are only finitely many standard homomor-
phisms we may require that the analogue of (5.3) holds also for these representa-
tions. In particular, we obtain that for u ∈ Ξv there is a one-to-one correspondence
between the eigenvalues and eigenvectors of Dρ0u and the eigenvalues and eigen-
vectors of ρ0(expu). Hence for any u ∈ Ξv and w ∈ FD

v we have

(5.5) ρ0(expu)w = w implies that ρ0(exp(tu))w = w for all t ∈ Fv.

Let Dι : hv → gv denote the derivative of the homomorphism ι : H(Fv) →
G(Fv). Then the map Ad(g−1

v ) ◦ Dι induces an inclusion of real Lie algebras
j : hv → gv, and a corresponding inclusion of complexifications jC : hCv → gCv . Let
g0 ∈ G(Fv) be so that j0 = Ad(g0) ◦ j is the derivative of one of the standard
homomorphisms. Then gv,j = Ad(g−1

0 )gv,0 ⊂ gCv is a compact form of gv so that
j(hv,0) ⊂ gv,j. The compact form gv,j induces a Euclidean structure on gv, which
we refer to as pj and satisfies ∥Ad(g0)u∥p0 = ∥u∥pj for all u ∈ gv.

Recall the definition of Ξv from (5.3). We now will analyze the preimage K∗
v of

gvΩvg−1
v in H(Fv) under the map ι, and show that it equals exp(j−1(Ξv)). Clearly

the latter is contained inK∗
v and we only have to concern ourselves with the opposite

implication. So let h ∈ K∗
v satisfy g−1

v ι(h)gv = expu ∈ Ωv for some u ∈ Ξv.
We need to show that u ∈ j(hv). Note that g−1

v ι(H)(Fv)gv is the stabilizer of
w = ρj0(g

−1
0 )wj0 in G(Fv). So exp(u) fixes w and by the property of Ξv in (5.5) we

obtain exp(Fvu) ⊂ g−1
v ι(H)(Fv)gv. Thus we have u ∈ j(hv) as we wanted.

11See also [50, Sect. 3.5].
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Let us write E(u) for the Jacobian of the exponential map and use the abbrevi-
ation µq =

∏
v′|v λv′ |ω′

v′ | for the normalized Riemannian volume on hv. We define

(5.6) Jv :=
(∏

v′|vλv′ |ω′
v′ |

)
(K∗

v ) =

∫

u∈j−1(Ξv)
E(u) dµq(u),

where we used also the definitions above. In view of (5.3) (which pulls back to an
analogous claim for u ∈ j−1(Ξv) and its adjoint on hv) and (5.4), E(u) is bounded
above and below for all u ∈ j−1(Ξv). Therefore

Jv ≍
∫

u∈j−1(Ξv)
dµq(u) = µq(j

−1(Ξv)).

Now note that for the derivative j0 of a standard homomorphism we have

∥u∥q ≍ ∥ j0(u)∥p0 = ∥ j(u)∥pj ,

which also gives

Jv ≍ µq(j
−1(Ξv)) ≍ µj(Ξv ∩ j(hv)),

where µj is the ℓ-dimensional Riemannian volume (induced by pj) on the sub-
space j(hv) ⊂ gv with ℓ = dim hv.

Let u1, . . . , uℓ ∈ j(hv) be an orthonormal basis, with respect to the standard
Euclidean structure p0, for j(hv). Then there exists a constant c1 (which depends
only on Ξv and so on G) such that

{∑
|λr|≤1/c1

λrur ∈ j(hv)
}
⊂ Ξv ∩ j(hv) ⊂

{∑
|λr|≤c1

λrur ∈ j(hv)
}

which gives

Jv ≍ µj(Ξv ∩ j(hv)) ≍ ∥u1 ∧ · · · ∧ uℓ∥pj =
∥u1 ∧ · · · ∧ uℓ∥pj

∥u1 ∧ · · · ∧ uℓ∥p0

.

However, the last expression is independent of the choice of the basis of j(hv). Let
us now choose it so that ui = Ad(g−1

0 )(u0,i) for i = 1, . . . , ℓ and a fixed orthonormal
basis u0,1, . . . , u0,ℓ of j0(hv) w.r.t. p0. This gives

Jv ≍ 1

∥ ∧ℓ Ad(g−1
0 )(u0,1 ∧ · · · ∧ u0,ℓ)∥p0

and part (3) of the proposition will follow if we show that

∥ ∧ℓ Ad(g−1
0 )(u0,1 ∧ · · · ∧ u0,ℓ)∥p0

is bounded away12 from 0 (independently of j).
To see this claim recall that the Killing form B := BG(Fv) is a G(Fv) invariant

non-degenerate bilinear form on gv whose restriction to j0(hv) is non-degenerate.
Let QB be the quadratic form on ∧ℓgv induced by B. Then |QB(·)| is bounded
from above by a multiple of ∥ · ∥2. Our claim follows from the fact that the value of
QB at the vector ∧ℓAd(g−1

0 )(u0,1∧ · · ·∧u0,ℓ) is non-zero and independent of g0. !

12This could also be seen using the more general fact that ∧ℓAd(G(Fv))(u0,1 ∧ · · ·∧ u0,ℓ) is a
closed subset of ∧ℓgv which does not contain 0.
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5.9. Finite index in volume normalization. Let C be the central kernel of
H → ι(H). We may identify g−1ι(H(A))g with the quotient of H(A) by the
compact group C(A) – it is a product of infinitely many finite groups.

The associated homogeneous space Y = G(F )ι(H(A))g is identified with

ι−1∆\H(A),

where

∆ = ι(H)(F ) ∩ ι(H(A)).
Note that ∆ is a discrete subgroup of ι(H(A)), which is a closed subgroup of G(A).
We need to compare the Haar measure on H(F )\H(A) (studied in this section)
with the Haar measure on ι−1∆\H(A) (used to define the volume of Y ).

Now H(F )C(A) ⊂ ι−1∆. The quotient ι−1∆/H(F )C(A) ∼= ∆/ι(H(F )) is iso-
morphic to a subgroup S ′ of the kernel

S := ker
(
H1(F,C) →

∏

v

H1(Fv,C)
)
.

This can be seen from the exact sequence of pointed sets

H(F )
ι→ ι(H)(F )

δ→ H1(F,C),

arising from Galois cohomology, whereby ∆ is identified with the preimage under
δ of S. The group S is finite by [49, Thm. 6.15] and so is S ′.

We endow H(A) with the measure for which H(F )\H(A) has volume 1, use on
ι(H(A)) the quotient measure by the Haar probability measure on C(A), and use
counting measure on ∆. With these choices the homogeneous space ∆\ι(H(A)) ∼=
ι−1∆\H(A) has total mass

1

#S ′mass of (H(F )C(A)\H(A)) ,

where the Haar measure on H(F )C(A) is such that each coset of C(A) has measure

1. Together this gives that the mass of ∆\ι(H(A)) equals #C(F )
#S′ .

Finally, the size of C(F ) is certainly bounded above and below in terms of
dim(H), by the classification of semisimple groups. As for S ⊃ S ′, it is finite13

by [49, Thm. 6.15]. Indeed we can give an explicit upper bound for it in terms
of dimH; see the proof of [49, Lemma 6.11]. We outline the argument. The
absolute Galois group of F acts on C(F̄ ), by “applying Galois automorphisms to
each coordinate”; we may choose a Galois extension E/F such that the Galois group
of E acts trivially on C(F̄ ). Then [E : F ] can be chosen to be bounded in terms of
dim(H). By the inflation-restriction sequence in group cohomology, the kernel of
H1(F,C) → H1(E,C) is isomorphic to a quotient of H1(Gal(E/F ),C(F̄ )), whose
size can be bounded in terms of dim(H). On the other hand, the image of S consists
of classes in H1(E,C) – i.e., homomorphisms from the Galois group of E to the
abelian group C(F̄ ) – which are trivial when restricted to the Galois group of each
completion of E. Any such homomorphism is trivial, by the Chebotarev density
theorem.

Let us summarize the above discussions.

13It need not itself be trivial, because of Wang’s counterexample related to the Grunwald–Wang
theorem.
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Lemma. Normalize the Haar measure on H(A) so that the induced measure on
H(F )\H(A) is a probability measure. Then the induced measure on the homoge-

neous set G(F )ι(H(A))g equals #C(F )
#S′ ∈ [ 1

M ,M ], where M ≥ 1 only depends on
dimH.

5.10. The volume of a homogeneous set. In view of our definition of volume
and taking into account the choice of Ω0, the equation (5.1) implies that

(5.7) vol(Y ) =
#C(F )

#S ′ D
1
2dimH′

F ′

∏

v∈ΣF

(|ωv|(K∗
v ))

−1 ,

where |ωv| :=
∏

v′|v |ω′
v′ |.

Since K∗
v ⊆

∏
v′|v K

∗
v′

(5.8) vol(Y ) =
#C(F )

#S ′ AD
1
2s(H

′)
L/F ′ D

1
2dimH′

F ′

∏

v∈ΣF

(
|ωv|(K∗

v )
∏

v′|v λv′

)−1

≫ D
1
2s(H

′)
L/F ′ D

1
2dimH′

F ′

∏

v′∈ΣF ′,f

(λv′ |ω′
v′ |(K∗

v′))
−1

∏

v∈ΣF,f

[∏
v′|v K

∗
v′ : K∗

v

]
,

where we used (5.7) and (5.2) in the first line and part (3) of the proposition in
§5.8 in the second line. Let us note the rather trivial consequence14 vol(Y ) ≫ 1
of (5.8). Below we will assume implicitly vol(Y ) ≥ 2 (which we may achieve by
replacing Ωv by a smaller neighborhood at one infinite place in a way that depends
only on G).

Let Σ♭
ur be the set of finite places v such that L/F is unramified at v but at least

one of the following holds:

• K∗
v !

∏
v′|v K

∗
v′ , or

• there is some v′|v such that H′ is not quasisplit over F ′
v′ , or

• there is some v′|v such that K∗
v′ is not hyperspecial.

Then, in view of the proposition in §5.8 we find some κ6 > 0 such that

(5.9) vol(Y ) ≫ D
1
2s(H

′)
L/F ′ D

1
2dimH′

F ′ 2#Σ♭
ur ≫ Dκ6

L 2#Σ♭
ur ;

where s(H′) ≥ 0 as in §5.7. We note that (5.9) and the prime number theorem
imply the existence of a good place in the case at hand.

5.11. Existence of a good place in general. Recall that the discussion in this
section, so far, assumed H is F -almost simple. For the details of the proof of the
existence of a good place we return to the general case. Thus, let H = H1 · · ·Hk

be a direct product decomposition of H into F -almost simple factors. Let F ′
j/F

be a finite extension so that Hj = ResF ′
j/F

(H′
j) where H′

j is an absolutely almost

simple F ′
j-group for all 1 ≤ j ≤ k. As above [F ′

j : F ] is bounded by dimH. Let
H′

j and Lj/F ′
j be the corresponding algebraic group and number field defined as in

§5.4.
For any place v ∈ ΣF let K∗

v be as above. We have K∗
v ⊂

∏k
j=1

∏
v′|v K

∗
j,v′ where

K∗
j,v′ is the projection of K∗

v into H′
j(F

′
j,v′) and, in particular, it is a compact open

subgroup of H′
j(F

′
j,v′) when v is finite.

14This would also follow trivially from the definition if only we would know that the orbit
intersects a fixed compact subset.
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Proposition (Existence of a good place). There exists a place w of F such that

(i) G is quasisplit over Fw and split over F̂w, and Kw is a hyperspecial subgroup
of G(Fw),

(ii) Lj/F is unramified at w for every 1 ≤ j ≤ k,

(iii) H′
j,w′ is quasisplit over F ′

j,w′ (and split over F̂ ′
j,w′) for every 1 ≤ j ≤ k and

every w′|w,
(iv) K∗

w =
∏k

j=1

∏
w′|w K∗

j,w′ , and K∗
j,w′ is hyperspecial for all 1 ≤ j ≤ k and

all w′|w, and finally
(v) qw ≪ (log(volY ))2.

Proof. First note that similar to (5.7)–(5.9) we have

vol(Y ) ≫ 2I
k∏

j=1

(
Dκ6

Lj

∏
v′∈ΣF ′

j

(
λv′ |ω′

v′ |(K∗
j,v′)

)−1
)
,

where I is the number of finite places where the first assertion in (iv) does not
hold. Note that at the archimedean places replacing K∗

v by
∏

j,v′|v K
∗
j,v′ leads to a

lower bound of the volume to which we may again apply part (3) of the proposition
in §5.8.

As was done prior to (5.9), let Σ♭
ur be the set of finite places v of F where Lj/F

is unramified at v for all 1 ≤ j ≤ k but (iii) or (iv) does not hold. Then

vol(Y ) ≥ c22
#Σ♭

ur

k∏

j=1

Dκ6
Lj
.

This implies the proposition in view of the prime number theorem. More con-
cretely, suppose T = qw is the smallest norm of the prime ideal of a good place
(satisfying (i)–(iv)) and recall that by Landau’s prime ideal theorem the number of
prime ideals in F with norm below T is asymptotic to T

log T . Recall that (i) only fails
at finitely many places w ∈ Σf so we restrict ourselves to places w with qw ≥ c3.
Hence if T ≥ c4 = c4(F, c3) we may assume that there are more than T

2 log T places

with norm between c3 and T where (ii), (iii), or (iv) fails. Combining this with the
above estimate gives

√
qw =

√
T ≪ κ6

[F : Q]

T

2 log T
≤ log2 vol(Y )− log2 c2,

which implies (v). !
5.12. Comparison of two notions of volume. Let N be the normalizer of ι(H)
in G. By Lemma 2.2 we have

stab(µD) = g−1ι(H(A))N(F )g.

It will be essential for our argument in §7.7 to control the “interplay” between the
volume defined using HD = g−1ι(H(A))g (as done so far) and the volume defined
using g−1ι(H(AF ))N(F )g (which contains HD as an open subgroup). In fact it will
not be too difficult to reduce from γ ∈ N(F ) to the case where γ ∈ ι(H(Fv)) at
finitely many places. Note that γ ∈ ι(H(Fv)) at one place implies that γ ∈ ι(H)(F ).

Let us make this more precise; recall that vol(Y ) = mD(HD ∩Ω0)−1 where Ω0 =(∏
v∈ΣF,∞

Ωv

)
Kf and Kf =

∏
v∈ΣF,f

Kv. We write j(·) = g−1ι(·)g and use this

map also for one or several local factors. Note, in particular, that Hv = j(H(Fv)).
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Let w be a good place given by the proposition in §5.11. We define S = Σ∞∪{w},
FS =

∏
v∈S Fv, and

ΨS = j(H(FS))×
∏

v∈Σ\S

Kv.

Let H̃D = j(H(AF ))NS where

NS = g−1
{
γ ∈ ι(H)(F ) : γ ∈ ι(H(Fv)) for all v ∈ S

}
g,

Note that HD ⊂ H̃D ⊂ stab(µD). We will see in §7.7 that we need to compare
vol(Y ) with

ṽol(Y ) = m̃D(H̃D ∩ Ω0)
−1,

where m̃D is the unique Haar measure induced on stab(µD) from mD .
Define Λ := ΨS ∩ j(H(F )) and Λ̃ := ΨS ∩NS .

Lemma (Volume and index). The index of Λ in Λ̃ controls the ratio of the above
notions of volume, i.e., we have

(5.10) vol(Y ) ≪ [Λ̃ : Λ] ṽol(Y ),

where the implicit constant depends on G(Fv) for v ∈ Σ∞.

Proof. Set

B :=
{
j(H(AF ))γ : γ ∈ NS and

(
j(H(AF ))γ

)
∩ Ω0 ̸= ∅

}
.

We will first prove that #B ≤ [Λ̃ : Λ].
The properties of the good place w, in particular, guarantee that using the strong

approximation theorem for H we have

H(AF ) = H(FS)
( ∏

v∈Σ\S

K∗
v

)
H(F ).

Let now j(H(AF ))γ ∈ B; then there exists some gγ ∈ j(H(FS)
∏

v∈Σ\S K∗
v ) and

some δ ∈ j(H(F )) so that gγδγ ∈ Ω0. Hence for all v ∈ Σ \ S we have (δγ)v ∈ Kv.
This says

δγ ∈ NS ∩
(
j(H(FS))×

∏

v∈Σ\S

Kv

)
= Λ̃.

Suppose now δ′ ∈ j(H(F )) is so that δ′γ ∈ Λ̃; then

δ′δ−1 ∈ Λ̃ ∩ j(H(F )) = Λ" Λ̃.

Hence we get a map from B → Λ̃/Λ.
This map is injective. Indeed let γ, γ′ ∈ NS be as in the definition of B, suppose

that δγ , δγ′ ∈ j(H(F )) are as above, and δγγ and δγ′γ′ map to the same coset in

Λ̃/Λ. Then Λδγγ = Λδγ′γ′, and in particular, j(H(AF ))γ = j(H(AF ))γ′. In other

words we have shown that #B ≤ [Λ̃ : Λ].
With this we now have the estimate

m̃D(H̃D ∩ Ω0) =
∑

j(H(AF ))γ∈B

mD((hγγ)
−1Ω0) ≤ [Λ̃ : Λ]mD(Ω

−1
0 Ω0),

where we use for every j(H(AF ))γ ∈ B some hγ ∈ j(H(A)) with hγγ ∈ Ω0. The
claim now follows from the independence, up to a multiplicative scalar, of the notion
of volume from the neighborhood Ω0; see §2.3. !
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The landmark paper [6] by Borel and Prasad deals with questions similar to
bounding the above index, [Λ̃ : Λ]. The setup in [6] is that Λ is defined using a
coherent family of parahoric subgroups at every place. However, our group Λ is
defined using {K∗

v}, and K∗
v may only be a parahoric subgroup for almost all v. We

will use the strong approximation theorem to address this issue and then use [6] to
estimate the above index.

We will again need some reductions due to the fact that our group H is not
necessarily absolutely almost simple. Recall that H = H1 · · ·Hk is a product of
F -almost simple groups where Hi = ResF ′

i/F
(H′

i) with H′
i an absolutely almost

simple F ′
i -group.

Let v ∈ Σ \ S; that is: v is a finite place and v ̸= w. The Bruhat-Tits building
Bv of H(Fv) is the product of the corresponding buildings Bi,v for 1 ≤ i ≤ k. The
group Hv is naturally identified with j(

∏
i,v′|v H

′
i(F

′
i,v′)) and acts on Bv; this action

is identified with the action of
∏

i,v′|v H
′
i(F

′
i,v′) on the product of the corresponding

buildings Bi,v′ . Our group K∗
i,v′ (which by definition is the group obtained by

projecting K∗
v into H′

i(F
′
i,v′)) is a compact open subgroup of H′

i(F
′
i,v′) for all places

v′ of F ′
i over v. Hence by [60, §3.2] the fixed point set Fixi,v′ of K∗

i,v′ in Bi,v′ is a
compact and non-empty subset.

Let H denote the adjoint form of H and let ϕ : H → H be the universal
covering map. The adjoint form H is identified with

∏
i ResF ′

i/F
(H′

i) where H′
i is

the adjoint form of H′
i. Recall that Λ̃ ⊂ g−1ι(H)(F )g, and let ϕ′

v : j(H) → H be so

that ϕ = ϕ′
v ◦ j . Then ϕ′

v(Λ̃) ⊂ H(F ). In particular, Λ̃ naturally acts on Bi,v′ for
all i and all places v′ of F ′

i above v.

Lemma. The fixed point set F̃ixi,v′ of Λ̃ in Bi,v′ is a non-empty compact subset

which satisfies F̃ixi,v′ ⊂ Fixi,v′ .

Proof. Let Λv (resp., Λ̃v) be the closure (in the Hausdorff topology) of the projec-
tion of Λ (resp., Λ̃) in Kv. By the strong approximation theorem, we have

Λv = Hv ∩Kv = j(K∗
v ).

Moreover, taking projections, we may identify both Λ and Λ̃ as lattices in
j(H(FS)). Therefore, we have [Λ̃v : Λv] ≤ [Λ̃ : Λ] < ∞.

Hence, using [60, §3.2], the fixed point set F̃ixi,v′ of Λ̃ in Bi,v′ is a non-empty

compact subset which satisfies F̃ixi,v′ ⊂ Fixi,v′ as claimed. !

Let us fix, for every v ∈ Σ \ S, one point in Bv which is fixed by Λ̃. This
determines a subset Φi,v′ of the affine root system ∆i,v′ . The collection {Φi,v′}
gives us a coherent collection of parahoric subgroups Pi,v′ ⊂ H′

i(F
′
i,v′). For every

v ∈ Σ \ S, let P̃v denote the stabilizer of
∏

v′|v Φi,v′ in j(H)(Fv). We define two
subgroups

Λ′ = j
(∏

i

H′
i(F

′
i ) ∩

(
H ′

S ×
∏

i,v′!w
Pi,v′

))
,

Λ̃′ = Nj(H′
S)×

∏
v≠w P̃v

(Λ′),

where H ′
S =

∏
i

∏
v′|v,v∈S H′

i(F
′
i,v).
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Note that Λ ⊂ Λ′ and Λ̃ ⊂ Λ̃′ by the construction of the parahoric subgroups.15

Moreover, Λ′ is a finite index subgroup of Λ̃′; see [6, Prop. 1.4].
Recall the definition of the fields Li/F ′

i from §5.11. As we have done before we
define a subset Σ♭ ⊂ ΣF,f as follows. Let Σ♭

ur be the set of finite places v of F
where Lj/F is unramified at v for all 1 ≤ i ≤ k but at least one of the following
fails:

(1) H′
i,v′ is quasisplit over F ′

i,v′ (and split over F̂ ′
i,v′) for every 1 ≤ i ≤ k and

every v′|v,
(2) K∗

i,v′ is hyperspecial for all 1 ≤ i ≤ k and all v′|v and K∗
v =

∏
i,v′|v K

∗
i,v′ .

Define Σ♭
rm to be the set of places v ∈ ΣF,f so that Li/F is ramified at v for some

1 ≤ i ≤ k. Put Σ♭ = Σ♭
ur ∪ Σ♭

rm; note that Σ♭ ∩ S = ∅.
Let us note that if K∗

i,v′ is hyperspecial for all 1 ≤ i ≤ k and all v′|v but
K∗

v ̸=
∏

i,v′|v K
∗
i,v′ , then

(5.11)
[ ∏

i,v′|v

K∗
i,v′ : K∗

v

]
≥ pv.

Indeed the reduction mod v′ of the group scheme corresponding to K∗
i,v′ is an

almost simple group and K∗
i,v′ maps onto the ki,v′ points of this group. Let R

be the semisimple group obtained from
∏

i,v′|v K
∗
i,v′ by taking it modulo the first

congruence subgroup. By construction of K∗
i,v′ the image of K∗

v modulo the first
congruence subgroup of

∏
i,v′|v K

∗
i,v′ , let us call it R′, projects onto each factor of

R. If R′ does not equal R, then (5.11) follows. If these two equal each other, then
an argument as in the proof of part (2) of the proposition in §5.8 implies (5.11).

This observation together with parts (1) and (2) of the proposition in §5.8 implies
that for all v ∈ Σ♭

ur we have

(5.12)
( ∏

i,v′|v

λi,v′ |ω′
i,v′ |

)
(K∗

v ) ≤
pv + 1

p2v

if qv > 13.

Lemma (Bound on index). The index of Λ in Λ̃ satisfies the bound

(5.13) [Λ̃ : Λ] ≤ Nκ7+κ8(#Σ♭)
∏

i

2ha
Li
(DLi/F ′

i
)b

where

• κ7 =
∑

i[Li : Q] and κ8 = 2
∑

i[F
′
i : F ],

• hLi is the class number of Li,
• a = 2 if H′

i is an inner form of a split group of type Dr with r even, resp.,
a = 1 otherwise, and finally

• b = 1 if H′
i is an outer form of type Dr with r even, resp., b = 0 otherwise.

15To verify the second inclusion, for example, we first verify that Λ̃ belongs to j(H′
S)×

∏
v∉S P̃v :

it projects to j(H′
S) at places in S because Λ̃ ⊂ ΨS , and it projects to the P̃v by the way they

were chosen. We then verify Λ̃ normalizes Λ′. Because of the inclusion Λ̃ ⊂ NS we can regard
Λ̃ as acting on H(F ) =

∏
i H

′
i(F

′
i ). It preserves the subset of this defined by intersecting with

(H′
S ×

∏
Pi,v′ ) because each P̃v normalizes

∏
i,v′|v Pi,v′ .
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Proof. We first consider the map Λ̃/Λ → Λ̃′/Λ′. This is an injective map. Indeed,
if γ ∈ Λ′ ∩ Λ̃, then γ ∈ Λ̃ ⊂ ΨS and γ ∈ Λ′ ⊂ j(H(F )). Hence

γ ∈ ΨS ∩ j(H(F )) = Λ.

We, thus, get that [Λ̃ : Λ] ≤ [Λ̃′ : Λ′].
Bounding [Λ̃′ : Λ′] is rather non-trivial. This is done in [6, §2 and §5], and we

have

[Λ̃′ : Λ′] ≤
∏

i

2ha
Li
N [Li:Q]+2[F ′

i :F ]#Σ♭

(DLi/F ′
i
)b,

with a, b and hLi as in the statement of the lemma. !

The following is crucial in the application of the volume for the pigeon-hole
argument in §7.7.

Proposition (Equivalence of volume definitions). The above two notions of volume
are related in the sense that there exists some κ9 > 0 so that

(5.14) vol(Y )κ9 ≤ ṽol(Y ) ≤ vol(Y )

if vol(Y ) is sufficiently large depending only on the dimensions dimG and [F : Q].

Proof. For any number field E we have

hE ≤ 102
(

π
12

)[E:Q]
DE ;

see, e.g., equation (7) in the proof of [6, Prop. 6.1]. Also recall that

DLi/F ′
i
= DLi/D

[Li:F
′
i ]

F ′
i

≥ 1.

These imply the following16 estimates (for the field related quantities coming in
part from (5.13) and (5.8)). If H′

i is an outer form, then a = 1 and b ≤ 1. Hence in
this case we have

h−a
Li

D
1
2dimH′

i

F ′
i

D
1
2s(H

′
i)−b

Li/F ′
i

≫ D
1
2dimH′

i−c
F ′

i
D

1
2s(H

′
i)−2

Li/F ′
i

,

where c = [Li : F ′
i ] equals 3 if H′

i is a triality form of D4, resp., 2 otherwise.
Suppose H′

i is an inner form of type other than A1. Then Li = F ′
i , a ≤ 2, and

b = 0. Together we get

h−a
Li

D
1
2dimH′

i

F ′
i

D
1
2s(H

′
i)−b

Li/F ′
i

≫ D
1
2dimH′

i−2
F ′

i
D

1
2s(H

′
i)

Li/F ′
i

= D
1
2dimH′

i−2
F ′

i
.

Finally let H′
i be an inner form of type A1,; then Li = F ′

i , a = 1, b = 0, and we
have

h−a
Li

D
1
2dimH′

i

F ′
i

D
1
2s(H

′
i)−b

Li/F ′
i

≫ D
1
2dimH′

i−1
F ′

i
= D1/2

F ′
i
.

These estimates together with s(H′
i) ≥ 5 when H′

i is an outer form and Li = F ′
i

when H′
i is an inner form give

(5.15) h−a
Li

D
1
2dimH′

i

F ′
i

D
1
2s(H

′
i)−b

Li/F ′
i

≫
(
DF ′

i
DLi/F ′

i

)1/2
.

We now prove (5.14) and note that ṽol(Y ) ≤ vol(Y ) follows directly from the
definition.

16See [6, Prop. 6.1], and also [2, Prop. 3.3], for more general statements.
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For the opposite inequality we argue as follows:

ṽol(Y ) ≥ 1

[Λ̃ : Λ]
vol(Y ) by (5.10)

≥
(
Nκ7+κ8(#Σ♭)

∏

i

2ha
Li
(DLi/F ′

i
)b
)−1

vol(Y ) by (5.13).(5.16)

Now by (5.15) we have

(5.17)
(∏

i

2ha
Li
(DLi/F ′

i
)b
)−1

≫
∏

i

D
− 1

2dimH′
i+

1
2

F ′
i

D
− 1

2s(H
′
i)+

1
2

Li/F ′
i

.

Moreover, by (5.12) we have

(5.18) N−κ7−κ8(#Σ♭) ≫
(∏

Σ♭

( ∏

i,v′|v

λi,v′ |ω′
i,v′ |

)
(K∗

v )
)− 1

2
.

Note that for the few bad places with qv < 13 the power of N simply becomes an
implicit multiplicative constant.

In view of (5.17) and (5.18), the lower bound in (5.14) follows from (5.16) and
the asymptotic in (5.8). !

6. Algebraic properties at a good place

As in §§1.2 and 2.1 we let Y = YD be the MASH set for the data D = (H, ι, gD)
and let G be the ambient algebraic group; in particular we are assuming that H is
simply connected and that ι(H) is maximal in G. In this section we collect algebraic
properties of the MASH set Y and its associated groups at a good place w. These
properties may be summarized as saying that the acting group is not distorted at
w and will be needed in the dynamical argument of the next section.

6.1. Good places. We say a place w ∈ Σf is good (for Y ) when

• w satisfies (i)–(iv) in the proposition concerning the existence of good places
in §5.11,

• in particular G and ι(H) are quasisplit over Fw and split over F̂w, the
maximal unramified extension, and17

• char(kw) ≫N,F 1, where ρ(G) ⊂ SLN as before.

We note that the last property of a good place as above allows us, e.g., to avoid
difficulties arising from the theory of finite-dimensional representations of algebraic
groups over fields with “small” characteristic.

By the proposition in §5.11 we have: there is a good place w satisfying18

qw ≪ (log(volY ))2.

Let gD,w ∈ G(Fw) denote the component of gD at w. For simplicity in notation
we write jw : H → G for the homomorphism defined by jw(·) = g−1

D,wι(·)gD,w at the
good place w. We define the group H∗

w = H(Fw) and recall from §5.8 the notation
K∗

w = j−1
w (Kw). It is worth mentioning again that jw(H

∗
w) does not necessarily

equal jw(H)(Fw) or the group of Fw-points of any algebraic group.

17For the last claim increase in the proof of §5.11 the value of c3 accordingly.
18The good place for the proof of Theorem 4.1 is found as in §4.5: There are infinitely many

places where G splits, and all properties of a good place for the maximal subgroup H = {(h, h) :
h ∈ G} < G×G are satisfied for almost all places.
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6.2. Compatibility of hyperspecial subgroups. By the properties of the good
place G and H are quasisplit over Fw and split over F̂w. Furthermore, Kw and
K∗

w are hyperspecial subgroups of G(Fw) and H∗
w = H(Fw), respectively.

Let vert and vert∗ denote the vertices corresponding to Kw and K∗
w in the

respective buildings. As was recalled in §5.1, Bruhat-Tits theory associates smooth
group schemes Gw and Hw to vert and vert∗ in G(Fw) and H(Fw), respectively, so

that Kw = Gw(ow) and K∗
w = Hw(ow). Since jw is a homomorphism, jw(H)(F̂w)

acts on the building of H(F̂w).
Let pw be the prime number so that w | pw, i.e., pw = char(kw).

Lemma. For pw ≫ 1 the following hold. The stabilizer of vert∗ in jw(H)(F̂w)
equals jw(Hw(ôw)), i.e., the image of the stabilizer of vert∗ in H(F̂w) under the
map jw. Moreover, the homomorphism jw extends to a closed immersion from Hw

to Gw which we continue to denote by jw.

Proof. Let h ∈ jw(H)(F̂w) be in the stabilizer of vert∗ in jw(H)(F̂w). In the follow-
ing paragraph we will use similar arguments to that of [6, §2] and we refer to that
for unexplained notions. Then the induced action of h on the affine root system
fixes the vertex corresponding to vert∗; this implies h acts trivially on the affine root
system; see [35, 1.8]. It follows from [35, 1.8] and [6, Prop. 2.7] that h ∈ jw(H(F̂w))
(i.e., represents the trivial cohomology class with reference to [6, §2.5(1)]), at least
for pw large enough. Now by [60, 3.4.3] the smooth scheme structure corresponding

to the stabilizer of vert∗ in H(F̂w) is deduced from Hw by base change from ow to

ôw. Therefore, jw(Hw(ôw)) equals the stabilizer of vert∗ in jw(H)(F̂w) which is the
first claim of the lemma.

We now claim

(6.1) jw(Hw(ôw)) ⊂ Gw(ôw).

Assuming the claim, let us finish the proof. By the criterion described in [10, 1.7.3,
1.7.6], the homomorphism jw extends to an ow-morphism j̃w : Hw → Gw which
by [51, Cor. 1.3] is a closed immersion.

Let us now turn to the proof of (6.1). It suffices to prove

ρ ◦ jw(Hw(ôw)) ⊂ SLN (ôw).

Put ρw := ρ ◦ jw . Then ρw(Hw(ôw)) is a bounded subgroup of SLN (F̂w), hence it is

contained in a maximal parahoric subgroup P of SLN (F̂w) – we may even suppose
that P is a hyperspecial parahoric subgroup. Let us assume P ̸= SLN (ôw) as there
is nothing to prove otherwise.

Inside the building of SLN over F̂w, let v0 be the vertex corresponding to P
and let v be the vertex corresponding to SLN (ôw). Choose a geodesic, inside this
building, connecting the vertex v0 with the vertex v. Consider the collection C of all
facets whose interior meets this geodesic path. Any element of P ∩ SLN (ôw) fixes
all facets in C – recall that, in the building for SLN , fixing a facet setwise implies
fixing it pointwise. Therefore, ρw(Hw(ow)) fixes all the facets in C.

In this language, we must show that ρw(Hw(ôw)) fixes the vertex v. The union
of facets in C is connected, and so its 1-skeleton is connected; thus we may choose
a path v0, v1, . . . , vℓ = v starting from the vertex v0 and ending at v, where any
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two adjacent vertices belong to a common chamber. Let Pi be the stabilizer of
vi. We have seen above that ρw(Hw(ow)) ⊂ Pi and we will argue inductively that
ρw(Hw(ôw)) ⊂ Pi for all 0 ≤ i ≤ ℓ.

For each 0 ≤ i < ℓ there is an element gi∈PGLN (F̂w) so that Pi=giSLN (ôw)g
−1
i .

Denote by SLN,gi the corresponding scheme structure, that is, Pi = SLN,gi(ôw). As-
sume ρw(Hw(ôw)) ⊂ SLN,gi(ôw). By [10, 1.7.3, 1.7.6] the homomorphism ρw extends
to an ôw-morphism ρ̃w : Hw → SLN,gi which by [51, Cor. 1.3] is a closed immersion.

Let redw(ρ̃w) : Hw(k̂w) → SLN,gi(k̂w) be the corresponding homomorphism on spe-
cial fibers. Then the finite group redw(ρ̃w)

(
Hw(kw)

)
is contained in redw(Pi∩Pi+1)

which is a proper parabolic subgroup of SLN,gi ; and we must show that the same

is true with kw replaced by k̂w.
Since each proper parabolic subgroup of SLN can be expressed as the intersection

of certain subspace stabilizers, our assertion reduces to the following: Regarding
Hw as acting on an N -dimensional representation via redw(ρ̃w), and if pw ≫N 1,
the following holds:

If Hw(kw) fixes a subspace W ⊂ k̂w
N
, then Hw(k̂w) also fixes W .

Passing to exterior powers, and using the semisimplicity we reduce to the same
statement with the subspace W replaced by a vector v. But Hw is generated
by unipotent one-parameter subgroups, i.e., by closed immersions u : Ga → Hw.

Because the map Hw → SLN,gi/k̂w is a closed immersion, we can regard u as a

closed immersion Ga → SLN,gi/k̂w also, and from that we see that the coordinates
of u(t)v are polynomials in t whose degree is bounded in terms of N . Since these
polynomials vanish identically for t ∈ kw, we see that, for pw ≫ 1, they vanish
identically on k̂w, too. !

In view of the above lemma, and abusing the notation, jw(Hw) is a smooth sub-
group scheme of Gw. Taking reduction mod w on Gw, which induces the reduction
map on jw(Hw), we have jw(Hw) ⊂ Gw for the corresponding algebraic groups over

k̂w (the residue field of F̂w, i.e., the algebraic closure of kw).

6.3. Lemma (Inheritance of maximality). Let ι(H) < G, the place w ∈ Σf

and gD,w ∈ Gw be as above. Then jw(Hw) is a maximal connected algebraic subgroup
of Gw provided that pw is large enough.

Proof. First note that the subgroups Gw(ôw) and jw(Hw)(ôw) are hyperspecial sub-

groups of G(F̂w) and jw(H)(F̂w); see §5.1 (1) as well as [60, 2.6.1 and 3.4.3]. In
particular, jw(Hw) and Gw are connected by §5.1 (4).

Let us also recall our assumption that both G and H split over F̂w. Therefore,
by §5.1 (2) we have: jw(Hw) and Gw are ôw-Chevalley group schemes with generic

fibers jw(H)(F̂w) and G(F̂w), respectively.
We now show that this and maximality of ι(H) in G implies that the subgroup

jw(Hw) is a maximal subgroup of Gw.
We first claim that jw(Hw) is not contained in any proper parabolic subgroup of

Gw.
To see this, let H (resp., G) denote the split Chevalley group over Z which has

the same type as H (resp., G). These are affine schemes. For an arbitrary ring R,
we denote by HR the base change of H to R, and similarly for G.
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We want to make an argument involving the “scheme of homomorphisms from H
to G”. Such a scheme, whose R-points are canonically in bijection with homomor-
phisms of R-group schemes HR → GR is constructed in [19], but it is too big for us,
because it has many components corresponding to Frobenius twists of morphisms.
Thus we use a homemade variant.

Let OH and OG be the ring of global sections of the structure sheafs of H and
G, respectively. Fix generators f1, . . . , fr for OG as a Z-algebra. There are finitely
many conjugacy classes of homomorphisms HQ → GQ. Therefore, there exists a

finite-dimensional H(Q)-stable subvector space M̃ ⊂ OH ⊗ Q with the following

property: For any homomorphism ρ : HQ → GQ, the pullback ρ∗fi belongs to M̃ .

Write M = M̃ ∩OH .
Let S be the affine scheme defined thus: an R-point of S is a homomorphism of

Hopf algebras ρ∗ : OG ⊗ R → OH ⊗ R such that ρ(fi) ⊂ M ⊗ R. Said differently,
S(R) parameterizes homomorphisms of R-group schemes ρ : HR → GR with the
finiteness property just noted, i.e.,

(6.2) ρ∗fi ∈ M ⊗ R, 1 ≤ i ≤ r.

It is easy to see by writing out equations that this functor is indeed represented by
a scheme of finite-type over Z.

If R is an integral domain whose quotient field E has characteristic zero, then
S(R) actually classifies arbitrary homomorphisms HR → GR (i.e., there is no need to
impose the condition (6.2)). This is because an arbitrary homomorphism HE → GE

has the property (6.2), since we can pass from Q to E by means of the Lefschetz
principle.

Next, let M be the projective smooth Z-scheme of parabolic subgroups of G (see
[19, Theorem 3.3, Exposé XXVI]) and let Y ⊂ S × M be a scheme of finite-type
over Z defined as follows:

Y := {(ρ,P) : ρ(H) ⊂ P},

where the condition “ρ(H) ⊂ P” means, more formally, that the pull-back of the
ideal sheaf of P under ρ∗ is identically zero.

In view of the main theorem in [32] we have for all pw ≫ 1 the reduction map

Y(ôw) → Y(k̂w) is surjective. This together with our assumption that jw(Hw)(k̂w)

is contained in a proper parabolic subgroup of Gw(k̂w) implies that there exists
some f : Hw → Gw and some parabolic P of G so that f(H) ⊂ P, moreover, the
reductions of f and jw coincide. A contradiction will follow if we verify that f(H)
is conjugate to jw(H) (which is conjugate to ι(H) by definition).

Both f and jw define ôw-points of S and their reductions to k̂w-points coincide.
We will deduce from this that f(H) and jw(H) must actually be conjugate, as
follows.

By an infinitesimal computation (which we omit) the geometric generic fiber SQ
(i.e., the base-change of S to Q) is smooth, and moreover the orbit map of GQ is
surjective on each tangent space. Therefore, each connected component of SQ is a
single orbit of GQ.

Let S1, . . . ,Sr be these geometric connected components. We can choose a finite
extension E ⊃ Q so that every Si is defined over E and also has an E-point, call
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it xi. For simplicity, we suppose that E = Q, the general case being similar, but
notationally more complicated.

By “spreading out”, there is an integer A and a decomposition into disjoint
closed subschemes:

S ×Z Spec Z[ 1A ] =
∐

Si,

i.e., Si is a closed subscheme, the different Si are disjoint, and the union of Si is
the left-hand side. Note that each Si is both open and closed inside the left-hand
side.

In particular, if pw > A, any ôw-point of S will necessarily factor through some
Si. Therefore, if two ôw-points of S have the same reduction, they must factor
through the same Si. In particular, the associated F̂w-points of S belong to the
same Si, and therefore to the same geometric G-orbit (i.e., the same orbit over Q).
This implies that f(H) and jw(H) were conjugate inside G(Q), giving the desired
contradiction.

Let now S be a maximal, proper, connected subgroup of Gw so that jw(Hw) ⊂
S ⊂ Gw. Then by [7, Cor. 3.3] either S is a parabolic subgroup or it is reductive.
In view of the above discussion S must be reductive, and by the above claim in
fact semisimple. Hence there is an isomorphism f : S×Z k̂w → S where S denotes
the Chevalley group scheme over Z of the same type as S.

We are now in a similar situation to the prior argument, i.e., we will lift the of-
fending subgroup S to characteristic zero using [32]. Let H, S,G be split Chevalley
groups over Z of the same type as Hw,S,Gw. Consider the Z-scheme parameteriz-
ing pairs of homomorphisms

(ρ1 : H → G, ρ2 : Lie(S) → Lie(G)) with image(dρ1) ⊂ image(ρ2),

where we impose the same finiteness conditions of ρ1 as in the prior argument.
The pair (jw, f), together with identifications of Hw and S with H and S, gives

rise to a k̂w-point of this scheme with the maps dρ1 and ρ2 injective; for large
enough pw this lifts, again by [32], to an ôw-point (ρ̃1, ρ̃2), and still with dρ̃1 and
ρ̃2 injective.

But, then, ρ̃1(HF̂w
) cannot be maximal, e.g., by examining its derivative. As in

the previous argument we deduce that jw(H) is not maximal, and this contradiction
finishes the proof. !
6.4. A Lie algebra complement. We regard g as a sub-Lie-algebra of slN . Let
B be the Killing form of slN whose restriction to g we will still denote by B. The
properties of the good place w give us, in particular, that the restriction of B on
the Lie algebra hw = Lie(Hw) has the following property.

Lemma. Assuming pw is larger than an absolute constant depending only on the
dimension the following holds. If we choose an ow-basis {e1, . . . , edimH} for hw ∩
slN (ow), then det(B(ei, ej))ij is a unit in o×w . That is:

(6.3) B restricted to hw ∩ slN (ow) is anon-degenerate bilinear form over ow.

Proof. Let the notation be as in the previous section, in particular, abusing the no-
tation we denote the derivative of jw with jw as well. Let Hw denote the smooth ow-
group scheme whose generic fiber is H(Fw) and Hw(ow) = K∗

w given by Bruhat-Tits
theory. The Lie algebra Lie(jw(Hw)) of jw(Hw) is an ow-algebra. The Lie algebra
hw is isomorphic to Lie(jw(Hw)) ⊗ o w Fw. Fix an ow-basis {ei} for Lie(jw(Hw)), this
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gives a basis for hw. Now since H splits over F̂w and K∗
w is a hyperspecial subgroup

of H∗
w, we get: Hw(ôw) is a hyperspecial subgroup of H(F̂w); see [60, 2.6.1 and

3.4.1]. Fix a Chevalley ôw-basis {êi} for Lie(jw(Hw)) ⊗ o w ôw which is a Chevalley

basis for hw ⊗ Fw F̂w; see [60, §3.4.2 and 3.4.3].
Recall that jw(Hw) denotes the reduction modϖw of jw(Hw). This is a semisimple

kw-subgroup, therefore, in view of our assumption on characteristic19 of kw we get

detB(êi, êj) ̸= 0,

hence, detB(êi, êj) ∈ ôw
×
. This implies that detB(ei, ej) ∈ o×w , as {ei} is another

ôw-basis for Lie(jw(Hw)) ⊗ o w ôw. !

It follows from (6.3), and our assumption on char(kw) that there exists an ow-
module rslNw [0] which is the orthogonal complement of hw[0] in slN (ow) with respect
to B; see, e.g., [1]. Let rw[0] = rslNw [0] ∩ g and write rw for its Fw-span. Then we
have

(6.4) gw[m] = (hw ∩ gw[m]) ⊕ (rw ∩ gw[m]) for all m ≥ 0

(see discussion after (2.1) for notation).

6.5. The implicit function theorem at the good place. Recall that pw =
char(kw). The first congruence subgroup of SLN (ow) is a pro-pw group; see, e.g.,
[49, Lemma 3.8]. Moreover, a direct calculation shows that if the w-adic valuation of
pw is at most pw−2, then the first congruence subgroup of SLN (ow) is torsion free.
The condition on the valuation comes from estimating the radius of convergence of
the exponential map on N×N matrices with entries in Fw; we just use the estimate
that the p-adic valuation of n! is bounded by n/(p− 1). This condition is satisfied
in particular if w is unramified over pw or if pw ≥ [F : Q] + 2.

In what follows we assume w is so that pw ≥ max{N3, [F : Q] + 2}. In view of
the above discussion, for such w we have exp : gw[m] → Kw[m] is a diffeomorphism
for any m ≥ 1,; see, e.g., [20, Ch. 9] for a discussion.

Let us also put H ′
w = g−1

D,wι(H)(Fw)gD,w = jw(H)(Fw).

Lemma. For any m ≥ 1 we have

(i) Hw ∩Kw[m] = exp(hw ∩ gw[m]).
(ii) Moreover, every element of Kw[m] can be expressed as exp(z)h where h ∈

Hw ∩Kw[m], and z ∈ rw ∩ gw[m].

Proof. We shall use the following characterization of the Lie algebra of Hw: u
belongs to hw if and only if exp(tu) ∈ Hw for all sufficiently small t; see, e.g., [9] or
[29, Lemma 1.6].

For z ∈ hw ∩ gw[m], exp(tz) defines a p-adic analytic function of t for t ∈ ow.
If f is a polynomial function vanishing on H ′

w, we see that f(exp(tz)) vanishes for
t in a sufficiently small neighborhood of zero, and so also for t ∈ ow. Therefore,
exp(tz) ∈ Kw[m] ∩H ′

w. Recall that Kw[m] is a pro-pw group, hence, Kw[m] ∩H ′
w

is also a pro-pw group. This, in view of our assumption that p > N, implies that

19The requirement here is that char(kw) is big enough so that the following holds. The restric-
tion of B to each simple factor of Lie(jw(Hw)) is a multiple of the Killing form on that factor,
and this multiple is bounded in terms on N. We take char(kw) to be bigger than all the primes
appearing in these factors.
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Kw[m] ∩H ′
w ⊂ Hw, indeed [H ′

w : Hw] ≤ F×
w /(F×

w )N which is bounded by N2; see,
e.g., [49, Ch. 8].

Conversely, taking h ∈ Hw ∩Kw[m], there is some z ∈ gw[m] with exp(z) = h.
Then hℓ = exp(ℓz) ∈ Hw ∩Kw[m] for ℓ = 1, . . . . The map t "→ exp(tz) is pw-adic
analytic, so exp(ℓz) ∈ Hw ∩Kw[m] for all t in a pw-adic neighborhood of zero. It
follows that z in fact belongs to the Lie algebra of Hw.

The second assertion is a consequence of the first and the implicit function the-
orem, thanks to the fact that exp is a diffeomorphism on gw[m] (see the discussion
before the lemma). !
6.6. Adjustment lemma. As usual we induce a measure in Hw using a measure
on its Lie algebra. Then,

exp : hw ∩ gw[m] → Hw ∩Kw[m], m ≥ 1

is a measure preserving map. To see this, it is enough to compute the Jacobian
of this map; after identifying the tangent spaces at different points in Hw via
left translation the derivative may be thought of as a map hw → hw. We again
apply (5.4) for u ∈ hw. If now u ∈ hw ∩ gw[m], then adu preserves the lattice
hw ∩ gw[0] and induces an endomorphism of it that is congruent to 0 modulo the
uniformizer. It follows that (5.4) is congruent to the identity modulo ϖw, and in
particular the Jacobian is a unit which implies the claim.

The following is useful in acquiring two measure theoretically generic points
to be algebraically “in transverse position” relative to each other; see the lemma
regarding nearby generic points in §7.8.
Lemma (Adjustment lemma). Let m ≥ 1 be an integer, and g ∈ Kw[m]. Given
subsets A1, A2 ∈ Kw[1]∩Hw of relative measure > 1/2, there exists αi ∈ Ai so that
α−1
1 gα2 = exp(z) for some z ∈ rw, ∥z∥ ≤ q−m

w .

Proof. Write, using the previous lemma, g = exp(z)h where z ∈ rw, ∥z∥ ≤ q−m
w , h ∈

Hw ∩Kw[m]. If α ∈ Kw[1] ∩Hw ⊂ SLN (ow) we have:

α−1g = exp(Ad(α−1)z)(α−1h).

The map f : α "→ α−1h is measure preserving. In view of our assumption on
the relative measures of A1 and A2, we may choose α ∈ A1 with f(α)−1 ∈ A2; the
conclusion follows. !
6.7. The principal SL2. In the dynamical argument we will use spectral gap
properties and dynamics of a unipotent flow. The following lemma will provide us
with an undistorted copy of SL2. Here undistorted refers to the property that the
“standard” maximal compact subgroup of SL2 is mapped into Kw which will be
needed to relate our notion of Sobolev norm with the representation theory of SL2.

As before we let Hw be a smooth ow-group scheme whose generic fiber is H(Fw)
and so that Hw(ow) = K∗

w.

Lemma. There exists a homomorphism of ow-group schemes

θ : SL2 −→ Hw,

such that the projection of θw(SL2(Fw)) into each Fw-almost simple factor of Hw

is non-trivial where θw = jw ◦θ.
The following proof is due to Brian Conrad. We are grateful for his permission

to include it here.[14]
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Proof. By our assumption Hw is semisimple. Letting R = ow for ease of notation,
pick a Borel R-subgroup B in Hw and a maximal R-torus T in B (which exist by
Hensel’s lemma and Lang’s theorem [49, §6.2]). Let R → R′ be a finite unramified
extension that splits T , so (Hw, T ,B)R′ is R′-split.

By the existence and isomorphism theorems for reductive groups over rings [13,
Thm. 6.1.16] this R′-split triple descends to a Z(pw)-split triple (H,T,B). By [13,
Thm. 7.1.9(3)], (Hw, T ,B) is obtained from (H,T,B) by twisting through an R′/R-
descent datum valued in the finite group of pinned R′-automorphisms of (H,T,B)
(all of which are defined over Z(pw)). A specific Z(pw)-homomorphism θ : SL2 → H
is constructed in [58, Prop. 2] that carries the diagonal torus into T and carries
the strictly upper triangular subgroup into B. Though it is assumed in [58] that
the target group is of adjoint-type, semisimplicity is all that is actually used in the
construction.

We claim that for any local extension of discrete valuation rings Z(pw) → A
(such as Z(p) → R′), the map θA is invariant under the finite group Γ of pinned
automorphisms of H. It suffices to check this invariance over the fraction field E
of A, and then even on Lie(HE) since char(E) = 0. This in turn follows from
the explicit description of Lie(θQ) in Serre’s paper because pinned automorphisms
permute simple positive root lines respecting the chosen bases for each.

Thus, θR′ is compatible with any Γ-valued R′/R-descent datum (such as the one
obtained above), so θR′ descends to an R-homomorphism SL2 → Hw. This has
the desired property relative to almost simple factors of the generic fiber over Fw

because (by design) the composition of θQ with projection to every simple factor of
the split isogenous quotient Had

Q is non-trivial. !

We will refer to θw(SL2) as the principal SL2 in what follows. We define the
one-parameter unipotent subgroup u : Fw → θw(SL2(Fw)) by

u(t) = θw

((
1 t
0 1

))
,

and define the diagonalizable element

a = θw

((
p−1
w 0
0 pw

))
∈ θw(SL2(Fw)).

6.8. Divergence of unipotent flows. In the dynamical argument of the next
section we will study the unipotent orbits of two nearby typical points. As is well
known the fundamental property of unipotent flows is their polynomial divergence.
We now make a few algebraic preparations regarding this behavior at the good
place w.

Recall that rw is invariant under the adjoint action of θw(SL2). Let rtrvw denote
the sum of all trivial θw(SL2) components of rw, and put rntw to be the sum of all
non-trivial θw(SL2) components of rw. In particular rw = rtrvw + rntw as a θw(SL2)
representation.

Even though we will not use this fact, let us remark that rtrvw does not contain any
Hw-invariant subspace. To see this let V be such a subspace. Let V [1] = V ∩gw[1],
in particular, V [1] is a compact open (additive) subgroup of V and the exponential
map is defined on V [1]. Then the Zariski closure of the group generated by exp(V [1])
is a proper subgroup of G which is normalized by Hw and centralized by θw(SL2).
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In particular, it is normalized by ι(H), the Zariski closure of Hw. This however
contradicts the maximality of ι(H) in view of the fact that G is semisimple.

Let rhwt
w be the sum of all of the highest weight spaces with respect to the diagonal

torus of θw(SL2) in rntw . Note that rhwt
w is the space of u(Fw)-fixed vectors in rntw .

Let rmov
w be the sum of all of the remaining weight spaces in rntw where mov stands

for moving.
Using this decomposition we write rw = rhwt

w + rmov
w + rtrvw ; therefore, given

z0 ∈ rw we have z0 = zhwt
0 + zmov

0 + ztrv0 . In view of the construction of θw(SL2)
and char(kw) ≫ 1 we also have

(6.5) rw[m] = rhwt
w [m] + rmov

w [m] + rtrvw [m] for all m ≥ 0.

Note that elements in rhwt
w are nilpotent.20

In the following we understand G as a subvariety of the N2-dimensional affine
space via ρ : G → MatN . We call a polynomial p : Fw → G(Fw) admissible if it
has the following properties:

(1) The image of p is centralized by u(Fw) and contracted by a−1, i.e., for every
t we have a−Np(t)aN → e as N → ∞; in particular the image of p consists
of unipotent elements.

(2) deg(p) ≤ N3.
(3) p(0) = e, the identity element.
(4) All coefficients of p belong to ow.
(5) p(Fw) ⊂ exp(r).
(6) There exists some t0 ∈ ow such that p(t0) is not small. More precisely, we

have p(t0) = exp(ϖr
wz), where 0 < r ≤ N2, and z is a nilpotent element

of rw[0] \ rw[1].
Note that p(Fw) ⊂ exp(rhwt

w ) for all admissible polynomials.
The following construction and its dynamical significance is one of the driving

tools in unipotent dynamics; we refer the reader, e.g., to [53] and [21, Lemma 4.7]
in the real case.

Lemma (Admissible polynomials). Let z0 ∈ rw[1] with zmov
0 ̸= 0. There exists

T ∈ Fw with |T | ≫ ∥zmov
0 ∥−⋆q−1

w , and an admissible polynomial function p so that:

exp(Ad(u(t))z0) = p(t/T )gt,

where gt ∈ G(Fw) satisfies d(gt, 1) ≤ ∥z0∥⋆qw whenever |t| ≤ |T |.

Proof. By the above we may write z0 = zhwt
0 +zmov

0 +ztrv0 with z•0 ∈ r•w[1]. By (6.5)
we have ∥z•0∥ ≤ ∥z0∥ for • = hwt,mov, trv.

Let us now decompose Ad(u(t))z0 = phwt(t) + pmov(t) + ztrv0 according to the
above splitting of rw. Since z0 /∈ rhwt

w + rtrvw , the polynomial phwt is non-constant,
has degree ≤ N2, and phwt(0) = zhwt

0 . Let p0(t) = phwt(t) − zhwt
0 , and choose

T ∈ Fw of maximal norm so that the polynomial p0(Ts) has coefficients of norm
less than one. Then p(s) := exp(p0(Ts)) defines a polynomial of degree at most N3.
In fact p0(Ts) is nilpotent for every s and exp(·) evaluated on nilpotent elements
is a polynomial of degree at most N with values in MatN . Moreover, it still has
integral coefficients so long as char(kw) > N . This polynomial satisfies conditions
(1)–(5) of admissibility by definition.

20This can be seen, e.g., because they can be contracted to zero by the action of the torus
inside θw(SL2).
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Note that each coefficient of p0(t) is bounded from above by a constant multiple
of ∥zmov

0 ∥ and so the rth coefficient of p0(tT ) is bounded from above by a constant
multiple of ∥zmov

0 ∥|T |r. By our choice of T we have that for some r ∈ {1, . . . , N2}
we have ∥zmov

0 ∥|T |rqrw ≫ 1. Therefore we obtain that |T | ≫ ∥zmov
0 ∥−⋆q−1

w .
Suppose that condition (6) fails, i.e., we have p0(Ts) ∈ gw[N2+1] for all s ∈ ow.

As char(kw) ≫N 1 we then may choose N2 points in ow with distance 1. Using
Lagrange interpolation for the polynomial p0(Ts) and these points we see that the
coefficients of p0(Ts) all belong to ow[N2+1]. However, this contradicts our choice
of T and proves (6).

Finally we define the function t "→ gt by the formula

p(t/T )gt = exp(Ad(u(t))z0) = exp
(
phwt(t) + pmov(t) + ztrv0

)

for all t ∈ Fw with |t| ≤ |T |. We note that the polynomial pmov(t) corresponds to
the weight spaces that are not of highest weight. We will now use the description of
the SL2-representation rw in terms of a basis consisting of weight vectors obtained
from a list of highest weight vectors in rhwt

w . In fact, our choice of the place w
implies that this basis can be chosen integrally and also over ow. Using this basis
we see that the coefficients of pmov(t) appear also as coefficients in phwt(t) up to
some constant factors of norm one – recall that pw ≫ N . Moreover, terms in
pmov(t) always have smaller degree than the corresponding terms with the same
coefficient (up to a norm one factor) in phwt(t). Together with our choice of T this
implies that

∥pmov(t)∥ ≤ |T |−1 ≪ ∥zmov
0 ∥⋆qw

for all t ∈ Fw with |t| ≤ |T |. In fact, this holds initially for each of the monomials
in the various weight spaces appearing in pmov, but then by the ultrametric triangle
inequality and integrality of the weight decomposition also for their combination
pmov. Since p(t/T ) = exp(phwt(t) − zhwt

0 ) and ∥zhwt
0 ∥, ∥ztrv0 ∥ ≤ ∥z0∥, the estimate

concerning d(gt, e) for all t ∈ Fw with |t| ≤ |T | now follows since the map exp :
gw[1] → Kw[1] is 1-Lipschitz. !

6.9. Efficient generation of the Lie algebra. In the dynamical argument of the
next section the admissible polynomial constructed above will give us elements of
the ambient group that our measure will be almost invariant under. We now study
how effectively this new element together with the maximal group Hw generate
some open neighborhood of the identity in G(Fw).

Lemma. There exist constants ℓ and L ≥ 1, depending on N, such that, for any
z ∈ rhwt

w [0] \ rhwt
w [1], the following holds: Every g ∈ Kw[L] can be written as

g = g1g2 . . . gℓ, where gi ∈ Kw ∩ (Hw ∪ exp(z)Hw exp(−z)).

Note that z as in the above lemma is a nilpotent element (because it belongs to
the highest weight space), and its exponential exp(z) belongs to Kw \Hw. It turns
out that the latter statement continues to hold even reduced modulo w, and this is
what is crucial for the proof.

It was mentioned in §6.5 that our choice of w implies that for all m ≥ 1 the
group Kw[m] is a torsion free pro-pw group; we also recall that Kw[m] ⊂ G(Fw)+.

Proof. Let Gw (resp., Hw) be smooth ow-group schemes with generic fiber Gw

(resp., H(Fw)) so that Kw = Gw(ow) (resp., K∗
w = Hw(ow)). Recall the nota-

tion: for any ow-group scheme M we let M denote the reduction mod ϖw. As was
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shown in the lemma of §6.2 jw(Hw(ôw)) and Gw(ôw) are hyperspecial subgroups

of jw(H)(F̂w) and G(F̂w), respectively. Furthermore, they are ôw Chevalley group

schemes with generic fibers jw(H)(F̂w) and G(F̂w); see, e.g., the discussion follow-
ing (6.3).

Since the group Hw is quasisplit over kw we may choose one-dimensional unipo-
tent subgroups Ui for 1 ≤ i ≤ dimH, with the property that the product map∏dimH

i=1 Ui → Hw is dominant. In fact, these can be taken to be the reduction mod
ϖw of smooth closed ow-subgroup schemes Ui of Hw; see [60, §3.5].

To see why, fix a collection Uα of one-dimensional unipotent groups which gen-
erate Hw as an algebraic group. We prove inductively on r that we may choose
α1, . . . ,αr such that the Zariski closure Zr of

∏r
i=1 Uαi

is r-dimensional. Suppose
this has been done for a given r. Then for any β the closure of Zr · Uβ is an irre-
ducible algebraic set; if it is r-dimensional, it must therefore coincide with Zr. If
r < dimH this cannot be true for all choices of β, by the generation hypothesis,
and we deduce that we can increase r by taking αr+1 = β.

By Lemma 6.3, jw(Hw) is a maximal connected algebraic subgroup of Gw. Now
let g be the reduction modulo ϖw of exp(z). We claim that

(6.6) g /∈ jw(Hw),

from where it follows that gjw(Hw)g−1 together with jw(Hw) generates Gw.

Indeed, if (6.6) failed, the elements gt for t ∈ Z belong to jw(Hw). Let z̄ be the

reduction of z to the Lie algebra of Gw. Now t ∈ A1 "→ exp(tz̄) ∈ SLN defines a
one-parameter subgroup of SLN over kw. Consider the associated homomorphism

(6.7) A1 → End(∧dimHLie(SLN )).

The degree of this map is bounded only in terms of N, dim(G). The value of (6.7)
at each t ∈ Z preserves the line in ∧dimHLie(SLN ) associated to the Lie algebra
of jw(Hw). In a suitable basis, this assertion amounts to the vanishing of various
matrix coefficients of (6.7). But if a matrix coefficient of the map (6.7) vanishes for
all t ∈ Z, it vanishes identically – possibly after increasing the implicit bound for
char(kw) in §6.1 if necessary. Therefore the one-parameter subgroup t "→ exp(tz̄)
of SLN normalizes the Lie algebra of jw(Hw). Therefore

[z̄,Lie jw(Hw)] ⊂ Lie jw(Hw).

But this contradicts the assumption on z – e.g., we can find an element H in the
Lie algebra of jw(Hw), arising from the SL2 in §6.7, such that [z̄,H] is a non-zero
multiple of z̄, and z̄ is not in Lie jw(Hw) by (6.4).

For simplicity in the notation, put U′
i = exp(z) jw(Ui) exp(−z). Arguing just as

above, we see that we may choose Xi (for i = 1, . . . , dimG), each equal to either
jw(Ui) or U′

i for some i, with Xi = jw(Ui) for i = 1, . . . , dimH and such that if we
define ϕ via

ϕ : X :=
dimG∏

i=1

Xi
(ιi)−−→

dimG∏

i=1

Gw
mult−−−→ Gw ,

then the map ϕ is dominant.
The above definition implies that ϕ is a polynomial map on the dimG dimen-

sional affine space with deg(ϕ) ≤ N4.
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Therefore, in view of our assumption on the characteristic of kw, one gets that ϕ
is a separable map. We recall the argument: note that ϕ is a map from the dimG

dimensional affine space X into the affine variety Gw. Let E = k̂w(X) and let E′ be

the quotient field of k̂w[ϕ∗(Gw)] in E. In view of the above construction, E is an
algebraic extension of E′. By Bezout’s theorem the degree of this finite extension
is bounded by a constant depending on deg(ϕ); see, e.g., [61] or [22, App. B]. The
claim follows in view of char(kw) ≫N 1.

In particular, Φ = det(D(ϕ)) is a non-zero polynomial. This implies that we
can find a finite extension k′w of kw and a point a′ ∈ X(k′w) so that Φ(a′) =
det(Da′(ϕ)) ̸= 0. Note that in fact under our assumption on char(kw) and since
deg(ϕ) ≤ N4 there is some point a ∈ X(kw) so that Φ(a) ̸= 0. This can be seen
by an inductive argument on the number of variables in the polynomial Φ. For
polynomials in one variable the bound one needs is char(kw) > deg(Φ); now we write
Φ(a1, . . . , adimG) =

∑
j Φ

j(a2, . . . , adimG)aj1 and get the claim from the inductive
hypothesis.

All together we get: there is a point a ∈ X(ow) so that det(Da(ϕ)) is a unit in
o×w . The implicit function theorem thus implies that there is some b ∈ Kw so that
ϕ
(
X(ow)

)
contains bKw[L], where L is an absolute constant. Therefore

(
ϕ
(
X(ow)

))−1(
ϕ
(
X(ow)

))

contains Kw[L] as we wanted to show. !

The following is an immediate corollary of the above discussion; this statement
will be used in what follows.

6.10. Proposition (Efficient generation). Let p : Fw → G(Fw) be an admissible
polynomial map as defined in §6.8. Then there exist constants L ≥ 1 and ℓ, de-
pending on N, so that: each g ∈ Kw[L] may be written as a product g = g1g2 . . . gℓ,
where

gi ∈
{
h ∈ Hw : ∥h∥ ≤ qLw

}
∪
{
p(t)p

s
w : t ∈ ow and 0 ≤ s ≤ 2N

}±1
.

Proof. Let t0 ∈ ow be as in property (6) of admissibility so that p(t0) = exp(ϖr
wz),

where 0 < r ≤ N2, and z ∈ rhwt
w [0] \ rhwt

w [1].
Let a ∈ θw(SL2(Fw)) be the element corresponding to the diagonal element

with21 eigenvalues p−1
w , pw. Since r > 0, we will use conjugation by a ∈ Hw

to produce again an element which we may use in the previous lemma. Indeed,
let j ≥ 1 be minimal for which ajp(t0)a−j = exp(ϖr

wAdjaz) /∈ Kw[1] and note
that j ≤ N2. If z′ = ϖr

wAdjaz ∈ rw[0] (and z′ /∈ rw[1] by choice of j), we set z′′ = z′

and will use this element below. However, if z′ /∈ rw[0], then ∥z′∥ = qiw for some
i ∈ N with i ≤ 2N . In this case we find that the element z′′ = piwz

′ ∈ rw[0] \ rw[1]
satisfies

ajp(t0)
pi
wa−j = aj exp(piwϖ

r
wz)a

−j = exp(piwz
′) = exp(z′′),

and can be used in the previous lemma. For this also note that we may assume
that F is unramified at w, since there are only finitely many ramified places for F

21We apologize for the notational clash between pw, which is the residue characteristic of Fw,
and the polynomials p, p0.
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and the implicit constants in the definition of “good place” are permitted to depend
on F ; this gives that pw is a uniformizer for F at w.

Increasing ℓ to accommodate the change in the formulation of the statements,
the proposition follows from the previous lemma. !

7. The dynamical argument

Throughout this section we let w ∈ Σf denote a good place for the MASH Y =
YD with D = (H, ι, gD). Moreover, we let θw(SL2) be the principal SL2 as in §6.7
satisfying that θw(SL2(Fw)) is contained in the acting subgroup Hw at the place w
and θw(SL2(ow)) < Kw.

7.1. Non-compactness. As usual, when X is not compact some extra care is
required to control the behavior near the “cusp”; using the well-studied non-
divergence properties of unipotent flows we need to show that “most” of the inter-
esting dynamics takes place in a “compact part” of X. We will also introduce in
this subsection the height function ht : X → R>0, which is used in our definition
of the Sobolev norms.

For the discussion in this subsection we make the following reduction: put G′ =
ResF/Q(G) and H′ = ResF/Q(H); then G′ and H′ are semisimple Q-groups and we
have the Q-homomorphism ResF/Q(ι) : H′ → G′. Moreover

L′(Q)\L′(AQ) = L(F )\L(AF ) for L = G,H

and we also get a natural isomorphism between L′(Zp) and
∏

v|p L(ov); see [49] for
a discussion of these facts. Similarly we write H′

j = ResF/Q(Hj) for any F -simple
factor Hj of H.

As is well known (e.g., see [5]) there exists a finite set Ξ ⊂ G′(AQ) so that

G′(AQ) =
⊔

ξ∈Ξ

G′(Q)ξG′
∞K ′

f ,

where G′
∞ = G′(R) and K ′

f is the compact open subgroup of G′(AQ,f ) corre-
sponding to Kf < G(AF,f ). We define G′

q and K ′
q similarly for every rational

prime q. We let S0 = S0(G) be the union of {∞} and a finite set of primes so
that Ξ ⊂

∏
v∈S0

G′
vK

′
f .

We now recall the standard terminology for S-arithmetic quotients (S is a finite
set). Set K ′(S) =

∏
q/∈S K ′

q and put ZS = Z[ 1q : q ∈ S], QS = R ×
∏

q∈S Qq and

G′
S = G′(QS). We let g′ be the Lie algebra of G′. We choose an integral lattice g′Z

in the Q-vector space g′, with the property that [g′Z, g
′
Z] ⊂ g′Z. Let g′ZS

= ZSg′Z be
the corresponding ZS-module. We also define ∥u∥S =

∏
v∈S ∥u∥v for elements u of

the Lie algebra g′S = QS ⊗ Q g′ over QS .
Our choice of S0 now implies G′(AQ) = G′(Q)G′

SK
′(S) whenever S ⊇ S0, which

also gives

G′(Q)\G′(AQ)/K
′(S) ∼= XS = ΓS\G′

S = ΓS0\
(
G′

S0
×

∏

q∈S\S0

K ′
q

)

where ΓS = G′(Q)∩K ′(S). In that sense we have a projection map πS(x) = xK ′(S)
from X to XS .
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Similar to [24], for every x ∈ X we put

ht(x) := ht(πS(x)) = sup
{
∥Ad(g−1)u∥−1

S : u ∈ g′ZS
\ {0} and

g ∈ G′
S with πS(x) = ΓSg

}
.

We note that in the definition of ht(πS(x)) we may also fix the choice g of the
representative for a given πS(x), the supremum over all u ∈ g′ZS

will be independent
of the choice. If S $S0, we may choose g such that gq ∈ K ′

q for q ∈ S \ S0. This
in turn implies that the definition of ht(x) is also independent of S ⊇ S0. Define

S(R) := {x ∈ X : ht(x) ≤ R}.
Note that

(7.1) ht(xg) ≪ ∥g∥2ht(x) for any g ∈ Gv, v ∈ Σ.

If v ∈ Σf the implicit constant is 1 and moreover

(7.2) ht(xg) = ht(x) for any g ∈ Kv.

Finally, we need the following.

7.2. Lemma. There exists constants κ10 > 1 and c1 > 0 such that for all x ∈ X
the map

(7.3) g "→ xg is injective on
{
g = (g∞, gf ) : d(g∞, 1) ≤ c1ht(x)

−κ10, gf ∈ K ′
f

}
.

Proof. Suppose that xg1 = xg2 for g1, g2 belonging to the set above. In what follows
take S = S0. Let g1,S and g2,S be the S component of g1 and g2.

Fix g ∈ G′
S such that πS(x) = ΓSg. Then ΓSgg1,S = ΓSgg2,S , and so g1,Sg

−1
2,S

fixes g−1g′ZS
. In particular, g1,∞g−1

2,∞ fixes

Lx := g−1g′ZS
∩ g′Z,

the intersection being taken inside of g′; this can also be described as those elements
u ∈ g−1g′ZS

that satisfy ∥u∥v ≤ 1 for all non-archimedean v ∈ S.
We consider Lx as a Z-lattice inside the real vector space g′ ⊗ R. For every

λ ∈ Lx we have ∥λ∥ ≥ ht(x)−1. The covolume of Lx inside g′ ⊗ R is the same
as the covolume of g−1g′ZS

inside g′ ⊗ QS , and this latter covolume is independent
of x. By lattice reduction theory, then, Lx admits a basis λ1, . . . ,λd such that
∥λi∥ ≪ ht(x)(d−1).

Thus, if we choose the constant κ10 sufficiently large and c1 suitably small, we
have

∥(g1,∞g−1
2,∞)λi − λi∥ < ht(x)−1 for all 1 ≤ i ≤ d,

and thus the fact that g1,∞g−1
2,∞ fixes the lattice Lx setwise implies that it in fact

fixes Lx pointwise. This forces g1,∞g−1
2,∞ to belong to the center of G′

∞, and this
will be impossible if we choose c1 small enough. !

Let w ∈ Σf be the good place as above, which gives that Hj(Fw) is not compact
for all j, and let pw be the prime so that w | pw. Then H′

j(Qpw) is not compact for
all j.

We have the following analogue22 of [24, Lemma 3.2].

22We note that due to the dependence on p we do not obtain at this stage a fixed compact
subset that contains 90% of the measure for all MASH; see the corollary in §1.7.
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7.3. Lemma (Non-divergence estimate). There are positive constants κ11 and κ12,
depending on [F : Q] and dimG, so that for any MASH set Y we have

µD (X \S(R)) ≪ pκ11
w R−κ12,

where pw is a rational prime with w | pw for a good place w ∈ ΣF for Y .

Proof. The proof is similar to the proof of [24, Lemma 3.2], using the S-arithmetic
version of the quantitative non-divergence of unipotent flows which is proved in [40],
for which we set S = S0 ∪ {pw}. We recall parts of the proof.

Recall that H′
j(Qpw) is not compact for any F -almost simple factor Hj of H and

that H(Fw) is naturally identified with the group of Qpw -points of ResFw/Qpw
(H);

see, e.g., [49]. Let Hw = g−1
D,wι(H(Fw))gD,w be the component of the acting group

at the place w, where gD ∈ G(A) is the group element from the data D = (H, ι, gD)
determining the MASH set Y = YD .

Let us note that discrete ZS-submodules of Qk
S are free [40, Prop. 8.1]. Fur-

thermore, by [40, Lemma 8.2] if ∆ =
⊕ℓ

i=1 ZSvi is a discrete ZS-module, then the

covolume of ∆ in V =
⊕ℓ

i=1 QSvi is defined by cov(∆) =
∏

v∈S ∥v1 ∧ · · · ∧ vℓ∥v
and we will refer to ∆ as an S-arithmetic lattice in V .

Let h ∈ G′
S . A subspace V ⊂ g′S is called ΓSh-rational if V ∩ Ad−1

h g′ZS
is an

S-arithmetic lattice in V ; the covolume of V with respect to ΓSh is defined to be
cov(V ∩ Ad−1

h g′ZS
) (and is independent of the representative). One argues as in

the proof of [24, Lemma 3.2] (given in Appendix B of [24]) and gets: there exist
positive constants c2 and κ13 such that

(7.4) there is no x-rational, Hw-invariant

proper subspace of covolume ≤ c2p
−κ13
w

where we fix some x ∈ πS(Y ). We define ρ = c2p−κ13
w .

Let now U = {u(t)} be a one-parameter Qpw -unipotent subgroup of Hw which
projects non-trivially into all Qpw -simple factors of ResFw/Qpw

(H). Then, since
the number of x-rational proper subspaces of covolume ≤ ρ = c2p−κ13

w is finite
and by the choice of U above, a.e. h ∈ Hw has the property that hUh−1 does
not leave invariant any proper x-rational subspace of covolume ≤ ρ. Alternatively,
we may also conclude for a.e. h ∈ Hw ∩ Kw that U does not leave invariant any
proper xh-rational subspace of covolume ≤ ρ.

Since H is simply connected, it follows from the strong approximation theorem
and the Mautner phenomenon that µD is ergodic for the action of {u(t)}. This also
implies that the U -orbit of xh equidistributes with respect to µD for a.e. h. We
choose h ∈ Hw ∩Kw so that both of the above properties hold true for x′ = xh.

Let x′ = ΓSh′. Hence, for any ΓSh′-rational subspace V , if we let

ψV (t) = cov(Adu(t)(V ∩Ad−1
h ′ g′ZS

)),

then either ψV is unbounded or equals a constant ≥ ρ. Thus, by [40, Thm. 7.3]
there exists a positive constant κ14 so that

(7.5) |{t : |t|w ≤ r, x′u(t) /∈ S(ϵ−1)}| ≪ pκ14
w ( ϵρ )

α|{t : |t|w ≤ r}|
for all large enough r and ϵ > 0, where α = κ12 only depends on the degree of the
polynomials appearing in the matrix entries for the elements of the one-parameter
unipotent subgroup U (see [40, Lemma 3.4]). The lemma now follows as the U -orbit
equidistributes with respect to µD .
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We note that the proof of (7.4) also uses non-divergence estimates and induction
on the dimension, which is the reason why the right-hand side contains a power of
p. !

7.4. Spectral input. As in §6.7 we let θw(SL2) < g−1
D,wι(H)gD,w be the princi-

pal SL2 and also recall the one-parameter unipotent subgroup

u(t) := θw

((
1 t
0 1

))
.

In the following we will assume that the representations of SL2(Fw), via θw, both
on

L2
0(µD) :=

{
f ∈ L2(X,µD) :

∫
f dµD = 0

}
,

and on L2
0(X, volG) are 1/M -tempered (i.e., the matrix coefficients of the M -fold

tensor product are in L2+ϵ(SL2(Fw)) for all ϵ > 0). (Recall again here that H is
simply connected.) As was discussed in §4 this follows directly in the case when
H(Fw) has property (T), see [47, Thm. 1.1–1.2], and in the general case we apply
property (τ ) in the strong form; see [12], [30], and [24, §6].23

7.5. Adelic Sobolev norms. Let C∞(X) denote the space of functions which
are invariant by a compact open subgroup of G(Af ) and are smooth at all infinite
places. There exist a system of norms Sd on C∞

c (X) with the following properties;
see Appendix A, in particular, see (A.3) and (A.4).

S0. (Norm on Cc(X)). Each Sd is a pre-Hilbert norm on C∞
c (X) = C∞(X) ∩

Cc(X) (and so in particular finite there).
S1. (Sobolev embedding). There exists some d0 depending on dimG and [F : Q]

such that for all d ≥ d0 we have ∥f∥L∞ ≪d Sd(f).
S2. (Trace estimates). Given d0, there are d > d′ > d0 and an orthonormal basis

{ek} of the completion of C∞
c (X) with respect to Sd which is orthogonal

with respect to Sd′ so that
∑

k

Sd′(ek)
2 < ∞ and

∑

k

Sd0(ek)
2

Sd′ (ek)
2 < ∞.

S3. (Continuity of representation). Let us write g ·f for the action of g ∈ G(A)
on f ∈ C∞

c (X). For all d ≥ 0 we have

Sd(g · f) ≪ ∥g∥4dSd(f)

for all f ∈ C∞
c (X) and where

∥g∥ =
∏

v∈Σ

∥gv∥.

Moreover, we have Sd(g·f) = Sd(f) if in addition g ∈ Kf . For the unipotent
subgroup u(·) in the principal SL2 at the good place w we note that ∥u(t)∥ ≤
(1 + |t|w)N for all t ∈ Fw.

S4. (Lipshitz constant at w). There exists some d0 depending on dimG and [F :
Q] such that for all d ≥ d0 the following holds. For any r ≥ 0 and any

23Note that the Fw-rank of the almost simple factors of H are never zero, since H is Fw

quasisplit.

Licensed to Univ of Calif, San Diego. Prepared on Tue Apr  7 15:09:09 EDT 2020 for download from IP 137.110.41.37.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



264 M. EINSIEDLER, G. MARGULIS, A. MOHAMMADI, AND A. VENKATESH

g ∈ Kw[r] we have

∥g · f − f∥∞ ≤ q−r
w Sd(f)

for all f ∈ C∞
c (X).

S5. (Convolution on ambient space). Recall from §§1.4 and 2.1 that π+ is the
projection onto the space of G(A)+ invariant functions and that L2

0(X, vol)
is the kernel of π+. Let AvL be the operation of averaging overKw[L], where
L is given by Proposition 6.10. For t ∈ Fw we define Tt = AvL ⋆ δu(t) ⋆AvL
by convolution. For all x ∈ X, all f ∈ C∞

c (X), and d ≥ d0 we have

|Tt(f − π+f)(x)| ≪ q(d+2)L
w ht(x)d∥Tt∥2,0Sd(f),

where ∥Tt∥2,0 denotes the operator norm of Tt on L2
0(X, volG). Once

more d0 depends on dimG and [F : Q].
S6. (Decay of matrix coefficients). For all d ≥ d0 we have

(7.6)
∣∣∣⟨u(t)f1, f2⟩L2(µD ) −

∫
f1 dµD

∫
f̄2 dµD

∣∣∣ ≪ (1 + |t|w)−1/2MSd(f1)Sd(f2),

where d0 depends on dimG and [F : Q]; recall that H is simply connected.

7.6. Discrepancy along v-adic unipotent flows. We let M be as in §7.4 and
choose the depending parameter m = 100M .

We say a point x ∈ X is T0-generic w.r.t. the Sobolev norm S if for any ball of

the form J = {t ∈ Fw : |t − t0|w ≤ |t0|1−1/m
w }, with its center satisfying n(J) =

|t0|w ≥ T0, we have

(7.7) DJ (f)(x) =

∣∣∣∣
1

|J |

∫

t∈J
f(xu(t)) dt−

∫
f dµD

∣∣∣∣ ≤ n(J)−1/mS(f)

for all f ∈ C∞
c (X). Here |J | denotes the Haar measure of J and we note that the

definition of n(J) = |t0|w is independent of the choice of the center t0 ∈ J .

Lemma (T0-generic points). For a suitable d0 depending only on dimG and [F : Q]
and all d ≥ d0 the measure of points that are not T0-generic w.r.t. Sd is decaying
polynomially with T0. More precisely,

µD

({
y ∈ Y : y is not T0-generic

})
≪ T−1/4M

0

for all T0 > q⋆w.

Proof. We let S = Sd0 and will make requirements on d0 ≥ 1 during the proof. We
first consider a fixed f in L2(X) which is in the closure of C∞

c (X) with respect to
S. Since H is simply connected, by (7.6) we have

(7.8)

∣∣∣∣⟨u(t)f, f⟩L2(µD ) −
∣∣∣
∫

f dµD

∣∣∣
2
∣∣∣∣ ≪ (1 + |t|w)−1/2MS(f)2,

where we assume d0 is sufficiently big for S6. to hold.
For a fixed J let DJ (f)(x) be defined in (7.7). Then we have

∫

X

∣∣DJ (f)(x)
∣∣2 dµD =

1

|J |2

∫

J×J
⟨u(t)f, u(s)f⟩ ds dt−

(∫
f dµD

)2

.

Split J × J into |t − s|w ≤ n(J)
1
2(1−1/m) and |t − s|w > n(J)

1
2(1−1/m); in view

of (7.8) we thus get
∫

X

∣∣DJ (f)(x)
∣∣2 dµD ≪ n(J)−

1
4M (1− 1

m )S(f)2.
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Still working with a fixed function f , this implies in particular that

µD

({
x ∈ X : DJf(x) ≥ n(J)−1/mλ

})
≪ λ−2n(J)

8M+1
4Mm − 1

4M S(f)2

for any λ > 0. We note that by our choice of m the second term − 1
4M in the

exponent is more significant than the first fraction.
Given n ∈ N, the number of disjoint balls J as above with n(J) = qnw is bounded

above by qwn(J)1/m. Consequently, summing over all possible values of n ∈ N with
qnw ≥ T0 and all possible subsets J as above, we see that

(7.9) µD

({
x ∈ X : DJf(x) ≥ n(J)−1/mλ S(f) and n(J) ≥ T0

})

≪ λ−2qw
∑

qnw≥T0

q
n
(
12M+1
4Mm − 1

4M

)

w ≪ λ−2T−1/8M
0 ,

where we used T0 > q⋆w.
To conclude, we use property S2. of the Sobolev norms. Therefore, there are

d > d′ > d0 and an orthonormal basis {ek} of the completion of C∞
c (X) with

respect to Sd which is orthogonal with respect to Sd′ so that

(7.10)
∑

k

Sd′(ek)
2 < ∞ and

∑

k

S(ek)
2

Sd′ (ek)
2 < ∞.

Put c = (
∑

k Sd′(ek)2)−1/2 and let B be the set of points so that for some k and
some J with n(J) ≥ T0 we have24

DJek(x) ≥ c n(J)−1/mSd′(ek).

In view of (7.9), applied for f = ek with λk = cSd′ (ek)
S(ek)

, and (7.10) the measure of

this set is ≪ T−1/8M
0 .

Let f ∈ C∞
c (X) and write f =

∑
fkek and suppose x ̸∈ B. Let J be a ball

with n(J) ≥ T0. Then using the triangle inequality for DJ we obtain

DJ (f)(x) ≤
∑

k

|fk|DJ (ek)(x) ≤ cn(J)−1/m
∑

k

|fk|Sd′(ek)

≤ cn(J)−1/m

(
∑

k

|fk|2
)1/2 (∑

k

Sd′(ek)
2

)1/2

= n(J)−1/mSd(f). !
7.7. Pigeon-hole principle. We now use a version of the pigeon-hole principle to
show that if vol(Y ) is large, then in some part of the space and on certain “small
but not too small” scales Y is not aligned along stab(µ). This gives the first step
to producing nearby generic points to which we may apply the effective ergodic
theorem, discussed above.

With the notation as in §7.1 put

Xcpt = S
(
p(κ11+20)/κ12
w

)
;

then by Lemma 7.3 we have µD(Xcpt) ≥ 1− 2−20.

24Thanks to S1. and assuming d0 is big enough, all expressions considered here are continuous
w.r.t. Sd for all d ≥ d0.
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Let us also assume that the analogue of (5.3) holds for ∧ℓAd for 1 ≤ ℓ ≤ dimG
where as usual Ad denotes the adjoint representation. Therefore, we have that the
analogue of (5.5) holds for ∧ℓAd.More precisely, for any infinite place v, any u ∈ Ξv,

and all z ∈
∧ℓ gv we have

(7.11) ∧ℓAd(expu)z = z implies that Ad(exp(tu))z = z for all t ∈ Fv

for all 1 ≤ ℓ ≤ dimG.
We now fix Θ∗ =

∏
v∈Σ∞

Θ∗
v × Kf ⊂ G(A) with Θ∗

v ⊂ exp(Ξv) open for all
infinite places v so that the map g′ ∈ Θ∗ "→ xg′ ∈ X is injective for all x ∈ Xcpt.
Note that in view of our choice of Xcpt and (7.3) we may and will choose Θ∗with
volG(Θ∗) ≫ p−κ15

w for some κ15 > 0. We will also use the notation

Θ∗[wm] = {g ∈ Θ∗ : gw ∈ Kw[m]}

for all m ≥ 0.
Recall from the stabilizer lemma (Lemma 2.2) that the stabilizer of our MASH

set is given by Stab(µD) = g−1
D ι(H(A))N(F )gD where N denotes the normalizer

of ι(H) in G. In the following we will use §5.12 and in particular the notation

S = Σ∞ ∪ {w}, H̃D , and NS introduced there.
We claim that

(7.12) stab(µD) ∩Θ∗[w1] ⊂ H̃D = NSHD .

To see this let g′ = γh ∈ stab(µD) ∩ Θ∗[w1] with γ ∈ g−1
D N(F )gD and h ∈ HD .

At all v ∈ Σ∞ apply (7.11) with ℓ = dimH(Fv), with the vector z belonging
to ∧ℓAd(g−1

v )Lie(ι(H)(Fv)), and taking u such that exp(u) = g′v. The quoted
statement shows that a one-parameter subgroup containing g′v normalizes Hv, and
since the connected component of the normalizer of the Lie group Hv equals Hv

this implies γv ∈ Hv. In particular we get γ ∈ g−1
D ι(H)(F )gD . At the place w we

use the fact that

Kw[1] ∩ ι(H)(Fw) ⊂ ι(H(Fw))

to establish the claim.
For a subset N ⊂ G(A) denote the “doubled sets” by N2 = N · N−1 and

N4 = N2 · N2.

Lemma. Suppose a measurable subset E ⊂ Y satisfies µD (E) > 3/4. Let N ⊂ G

be open with N4 ⊂ Θ∗[w1] and volG(N ) > 2ṽol(Y )−1. Then there exist x, y ∈ E so
that x = yg0 with g0 ∈ N4 \ stab(µD).

Proof. Let {xi : 1 ≤ i ≤ I} be a maximal set of points in Xcpt such that xiN
are disjoint. By our choice of Θ∗ (as a function of Xcpt and so of qw) we have
I ≤ volG(N )−1. By maximality of I we also have that {xiN2 : 1 ≤ i ≤ I} covers
Xcpt. This observation implies in particular that there exists some i0 so that

µD(xi0N2 ∩ E) ≥ 1

2I
.

Fix some y1 ∈ xi0N2∩E; then any y2 ∈ xi0N2∩E is of the form y1g, where g ∈ N4.
Suppose, contrary to our claim, that every y2 ∈ xi0N2 ∩ E were actually of the

form y1h with h ∈ stab(µD) ∩ N4. Recall that stab(µD) ∩ N4 ⊂ H̃D . The orbit
map h "→ y1h, upon restriction to N4, is injective by assumption (on Θ∗) and
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y1 ∈ supp(µD), we thus get µD(xi0N2 ∩ E) ≤ m̃D(N4 ∩ H̃D). The definition of the
volume of a homogeneous set together with the above discussion now gives

volG(N ) ≤ 1

I
≤ 2µD(xi0N2 ∩ E) ≤ 2m̃D(N4 ∩ H̃D ) ≤ 2ṽol(Y )−1

which contradicts our assumption. !

7.8. Combining pigeon-hole and adjustment lemmas. For any v ∈ Σ∞ let
Θv ⊂ Θ∗

v be so that (Θv)4 ⊂ Θ∗
v and put Θ =

∏
v∈Σ∞

Θv × Kf . We may assume
that volG(Θ) ≥ c3 vol(Y )−1 where c3 depends only on G(Fv) for v ∈ Σ∞. We define
Θ[wm] = Θ∩Θ∗[wm]. We will use the notation νg(f) := ν(g · f) (with f ∈ Cc(X))
for the action of g ∈ G on a probability measure ν on X.

Put S = Sd for some d > d0 so that the conclusion of the generic points lemma
of §7.6 holds true.

Lemma (Nearby generic points). Let r ≥ 0 be so that

2 volG(Θ[wr])−1 ≤ vol(Y )κ9.

There exists x1, x2 ∈ Xcpt ∩ Y and g ∈ G so that x2 = x1g and

(1) x1, x2 are both T -generic for µD for some T > q⋆w;
(2) g ∈ Θ∗[wr];
(3) we may write25 gw = exp(z), where z ∈ rw is not fixed by Ad(u(t)) and in

particular z ̸= 0. Moreover ∥z∥ ≤ q−r
w .

Proof. Let us call x ∈ Xcpt a T -good point if the fraction of h ∈ Kw[1] ∩ Hw for
which xh is T -generic exceeds 3/4, with respect to the Haar measure on Hw. Note
that by the defintion xh ∈ Xcpt for all h ∈ Kw and x ∈ Xcpt. We apply the generic
points lemma in §7.6 and obtain that for T ≥ q⋆w the µD -measure of the set of
T -generic points exceeds 0.99. Using Fubini’s theorem, and our choice of Xcpt we
conclude that the measure of the set E = {y is a T -good point} exceeds 3/4.

By our assumption on r and (5.14) we have volG(Θ[wr]) ≥ 2ṽol(Y )−1. Let N =
Θ[wr]. Applying the lemma in §7.7 there are T -good points y1, y2 ∈ X such that

y1 = y2g0 where g0 ∈ Θ∗[wr] \ stab(µ).

By the adjustment lemma in §6.6 and definition of T -good points, there exists
g1, g2 ∈ Kw[1] ∩ Hw so that xi := yigi are T -generic, and so that g := g−1

1 g0g2
satisfies gw = exp(z), where z ∈ rw and ∥z∥ ≤ q−r

w .
Now let us show that z is not centralized by u(t). Suppose to the contrary.

Because x2 = x1g and x1, x2 are T -generic, for any f ∈ C∞
0 (X) and any t0 ∈ Fw

with |t0| > T , we have

|µD (f)− µg
D(f)| ≤ DJ (f)(x2) +DJ (g · f)(x1) ≤ |t0|−1/m(S(f) + S(g · f))

which implies µD is invariant under g. But we assumed g0 /∈ stab(µD) which also
implies g /∈ stab(µD). !

25As before gw denotes simply the w-component of g ∈ G(A).
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7.9. Combining generic point and admissible polynomial lemmas. We refer
to §6.8 for the definition of admissible polynomials.

Lemma (Polynomial divergence). There exists an admissible polynomial p : Fw →
G(Fw) so that:

(7.13)
∣∣∣µp(t)

D (f)− µD(f)
∣∣∣ ≤ vol(Y )−⋆S(f) for all t ∈ ow.

Proof. We maximize r in the nearby generic points lemma of §7.8. This gives

pκ15
w q(r+1) dimG

w ≫ vol(Y )κ9. Using qw ≪ (log vol(Y ))2 we may simply write qrw ≫
vol(Y )⋆.

Let x1, x2 be two T0-generic points given by this lemma, in particular, there
is g ∈ Θ∗[wr] so that x2 = x1g where gw = exp(z0), and z0 ∈ rw is not fixed
by Ad(u(t)). In the notation of §6.8 we have zmov

0 ̸= 0. Then by the admissible
polynomials lemma in §6.8 there exists T ∈ Fw with

|T | ≫ ∥zmov
0 ∥−⋆ ≥ ∥z0∥−⋆ ≫ vol(Y )⋆,

and an admissible polynomial p so that:

(7.14) exp(Ad(u(t))z0) = p(t/T )gt

where d(gt, 1) ≤ ∥z0∥⋆ when |t| ≤ |T |.
Suppose t0 ∈ Fw with |t0| ≤ |T | and as in §7.6 put J = {t ∈ Fw : |t − t0|w ≤

|t0|1−1/m
w }. Fix some arbitrary f ∈ C∞

c (X). Then by the generic point lemma in
§7.6 and assuming |t0|w ≥ T0 we have

(7.15)

∣∣∣∣
1

|J |

∫

t∈J
f(xiu(−t)) dt−

∫
f dµD

∣∣∣∣ ≤ |t0|−1/mS(f), i = 1, 2.

Let p̃ : Fw → G(A), be a polynomial given by p̃(t/T )w = p(t/T ) with p as above
and26 p̃(t)v = gv for all v ̸= w. Using property S4. and (7.14) this polynomial
satisfies

f(x2u(−t)) = f(x1u(−t)p̃(t/T )) +O(∥z0∥⋆S(f))(7.16)

= f(x1u(−t)p̃(t0/T )) +O(|T |−⋆S(f)) +O(∥z0∥⋆S(f))

for |t0| ≥ |T |1/2 and t ∈ J (defined by t0), where we used S4. and the definition of
J in the last step.

All together we get

(7.17)
∣∣∣µp̃(t/T )

D (f)− µD(f)
∣∣∣ ≤ vol(Y )−⋆S(f) for |T |1/2 ≤ |t|w ≤ |T |.

Indeed this follows from (7.15) and (7.16).
Now choose t1 ∈ ow with |t1| ∈ [|T |−1/2, qw|T |−1/2], this implies that (7.17)

holds for t = t1T . Also note that with this choice p(t1) ∈ Kw[κ logqw(vol(Y ))]
for some constant κ > 0 (that only depends on the parameters appearing in the
definition of an admissible polynomial). The latter implies that (7.17) holds for p(t1)
instead of p̃(t/T ) trivially as a consequence of S4. Since p(t/T ) = p̃(t/T )p̃(0)−1 =
p̃(t/T )p̃(t1)−1p(t1), we get (7.13) from (7.17) in view of property S3. – note that,
if |t| ≤ |T |−1/2, (7.17) holds for p(t/T ) instead of p̃(t/T ) trivially as a consequence
of S4. !

26The element g above need not have “small” v components for v ̸= w.
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7.10. Proof of Theorem 1.5. For simplicity in notation we write µ for µD . Let
p : Fw → G(Fw) be the admissible polynomial given by the polynomial divergence
lemma in §7.9. Let AvL be the operation of averaging over Kw[L], where L is given
by Proposition 6.10. Then, it follows from that proposition and property S3. that

|µ(f)− µ(AvL ∗f)| ≪ q⋆w(volY )−⋆S(f) ≪ vol(Y )−⋆S(f)
for all f ∈ C∞

c (X). Note that in Proposition 6.10 any g ∈ Kw[L] is written as a
bounded product of two types of elements. The first type of elements belong to
{h ∈ Hw : ∥h∥ ≤ qLw}, preserve µ, and distort the Sobolev norm by a power of qw.
The second type of elements are powers of the values of the admissible polynomial
at ow, preserve the Sobolev norm, and almost preserve the measure.

Let t ∈ Fw. Denote by δu(t) the delta-mass at u(t), and let ⋆ denote convolution
of measures. Using the fact that µ is u(t)-invariant the above gives

(7.18) |µ(f)− µ(AvL ⋆δu(t) ⋆AvL ∗f)| ≤ vol(Y )−⋆(S(δu(t) ⋆AvL ∗f) + S(f)).
Recall that we are assuming H is simply connected, thus ι(H(A)) ⊂ G(A)+ and
in particular π+f is Hw-invariant. Also since Kw[L] ⊂ G(A)+, the support of
AvL ⋆δu(t) ⋆ AvL is contained in G(A)+. These observations together with (7.18)
imply

|µ(f − π+f)|
≪ |µ(AvL ⋆δu(t) ⋆AvL ∗(f − π+f))|+ vol(Y )−⋆(S(δu(t) ⋆AvL ∗f) + S(f)).

But AvL reduces Sobolev norms, and by property S3. the application of u(t)
multiplies them by at most (1 + |t|w)4Nd. Therefore

|µ(f − π+f)| ≪
∫

X
|Tt(f − π+f)(x)| dµ(x) + vol(Y )−⋆(1 + |t|w)4dNS(f),

where we write Tt for the “Hecke operator” AvL ⋆δu(t) ⋆AvL.
By property S5. we have for any x ∈ X

|Tt(f − π+f)(x)| ≪ q(d+2)L
w ht(x)d∥Tt∥2,0S(f);

moreover, by (A.12) we have ∥Tt∥2,0 ≪ |t|−1/2M
w q2dLw .

Let R > 0 be a (large) parameter; writing
∫
X |Ttf(x)| dµ(x) as integrals over

S(R) and X \S(R), in view of the lemma in §7.1, we get

|µ(f − π+f)|

≪
(
|t|−1/2M

w q(3d+2)L
w Rd + pκ11

w R−κ12+ vol(Y )−⋆(1 + |t|w)4dN
)
S(f).

Optimizing |t|w and R, using the fact that qw ≪ (log vol(Y ))2, we get the theorem.
We note that the power of vol(Y ) depends only on the parameter M from S6.,
dimF G and [F : Q]. !
7.11. Beyond the simply connected case. The proof of the main theorem above
assumed that H is simply connected. In this section, using the discussion in the
simply connected case, we will relax this assumption. It is worth mentioning that
for most applications the theorem in the simply connected case already suffices.

Let H̃ denote the simply connected covering of H, and let π : H̃ → H denote the
covering map. We define H ′ = H(F )π(H̃(A)), which is closed since it corresponds

to a finite volume orbit of π(H̃(A)) in H(F )\H(A). By the properties of the simply
connected cover H ′ is a normal subgroup of H(A) and H(A)/H ′ is abelian; see,
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e.g., [49, p. 451]. As H(F )\H(A) has finite volume the same applies to H(A)/H ′

which implies this quotient is compact. Let ν be the probability Haar measure on
this compact abelian group.

Suppose the data D is fixed as in the introduction, dropping the assumption
that H is simply connected and let Y = YD be as before. We also define the MASH
set and measure

(
Ỹ , µ̃

)
=

(
ι
(
H(F )\H(F )π(H̃(A))

)
g, µ̃

)
,

which is defined by the simply connected group H̃, the homomorphism ι ◦ π, and
the same element g ∈ G(A) as for Y .

Then, we have µ =
∫
H(A)/H′ µ̃hdν(h) where µ̃h is the probability Haar measure

on ι
(
H(F )\H(F )π(H̃(A))h

)
g.

Moreover, in view of our definition of volume and the fact that H(A)/H ′ is
abelian we have vol(Ỹ ) = vol(Ỹ g−1ι(h)g) (as those orbits have the same stabilizer
group). Applying Theorem 1.5 we get

|µ̃h (f)− µ̃h (π+(f))| ≤ vol(Ỹ )−κ0S(f) for all h ∈ H(A)/H ′.

All together we thus have |
∫
X(f − π+(f))dµ| ≤ vol(Ỹ )−κ0S(f).

It seems likely that the argument in §5.12 could be used to show that vol(Ỹ ) ≍
vol(Y )⋆. We will not pursue this here.

7.12. Proof of Corollary in §1.7. We will first consider MASH measures for
which the algebraic group H is simply connected.

Let ϵ > 0 be arbitrary. Choose some compact Z ⊂ X with µxG(A)+(Z) > 1− ϵ
2

for every x ∈ X. Now choose some fϵ ∈ C∞
c (X) with 1Z ≤ fϵ ≤ 1. Applying

Theorem 1.5 to fϵ and any MASH measure µD with D = (H, ι, g) and H simply
connected we find some c4 with

∫
fϵ dµD >

∫

X
fϵ dvolG −c4S(fϵ) vol(Y )−κ0.

In particular, there exists some c5 = c5(ϵ) such that if vol(Y ) > c5, then

µD(supp(fϵ)) ≥
∫

fϵ dµD > 1− ϵ.

In the case where vol(Y ) ≤ c5 we first find a good place w as in §6.1 with qw ≪ϵ 1
and then apply Lemma 7.3 to find another compact set Z ′ with µD (Z ′) > 1−ϵ. The
set Xϵ = supp(fϵ) ∪ Z ′ now satisfies the corollary for all MASH measures with H
simply connected.

If µD is a MASH measure and H is not simply connected, then we can repeat
the argument from the previous subsection to obtain µD(Xϵ) > 1− ϵ also.

Appendix A. Adelic Sobolev norms

We begin by defining, for each finite place v, a certain system of projections
prv[m] of any unitary G(Fv)-representation; these have the property that

∑

m≥0

prv[m] = 1.
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The definitions in the archimedean place likely can be handled in a similar fashion
using spectral theory applied to a certain unbounded self-adjoint differential oper-
ator (e.g., by splitting the spectrum into intervals [em, em+1)). However, we will
work instead more directly with differential operators in the definition of the norm.

A.1. Finite places. Let v be a finite place. Let Avv[m] be the averaging projection
on Kv[m]-invariant vectors, put prv[0] = Avv[0] and prv[m] = Avv[m]−Avv[m−1]
for m ≥ 1.

We note that, if µ is any spherical (=Kv[0]-bi-invariant) probability measure
on G(Fv), then convolution with µ commutes with prv[m] for all m. Indeed, the
composition (in either direction) of µ with prv[m] is zero for m ≥ 1, and equals µ
for m = 0.

A.2. Adelization. We denote by m any function on the set of finite places of F to
non-negative integers, which is zero for almost all v. Write ∥m∥ =

∏
v q

mv
v . Note

that

(A.1) ∥m∥ ≥ 1 and #{m : ∥m∥ ≤ N} = Oϵ(N
1+ϵ),

which follows since ℓϵ bounds the number of ways in which ℓ can be written as a
product of [F : Q] factors.

For such m, we set K[m] :=
∏

v∈Σf
Kv[mv], and pr[m] :=

∏
v prv[mv]. Then

pr[m] acts on any unitary G(A)-representation, and
∑

m pr[m] = 1. We remark
that if f ∈ C∞(X), then

∑
m pr[m]f = f and the left-hand side is actually a finite

sum. We may refer to this as the decomposition of f into pure level components.
If we fix a Haar measure on G(Af ), then

(A.2) vol(K[m])−1 ≪ ∥m∥1+dim(G),

where the implicit constant depends on G, ρ (cf. §2.1) and the choice of Haar
measure. Here one uses a local calculation in order to control [Kv[0] : Kv[mv]] for
a finite place v; see, e.g., [46, Lemma 3.5].

A.3. Definition of the Sobolev norms. For any archimedean place v we fix
a basis {Xv,i} for gv = g ⊗ F Fv. Let V = L2(X), where, as in the text, X =
G(F )\G(A). Given an integer d ≥ 0 we define a degree d Sobolev norm by

(A.3) Sd(f)
2 :=

∑

m

(
∥m∥d

∑

D
∥ pr[m](1 + ht(x))dDf(x)∥22

)
,

where the inner sum is over all monomials D =
∏

v∈Σ∞
Dv with Dv ∈ U(gv) of

degree at most dv in the given basis {Xv,i} and degD =
∑

dv ≤ d. For a compactly
supported smooth function on X any of these Sobolev norms is finite. It is easy to
see that

(A.4) Sd(f) ≤ Sd′(f) if d < d′.

Note that since ht(·) is Kf = K[0]-invariant, we see that pr[m] commutes with
multiplication by (1 + ht(x)) and with the differential operators Dv.

We note that the contribution of the finite places to the above is related to the
“level” of f, since for a finite place v a function of the form prv[mv]f should be
thought of as having pure level mv at v.

Also note that, if X is compact, then ht(·) is uniformly bounded and may be
dropped from the definition.
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A.4. Property S1. – Upper bound for L∞-norms. We shall now verify prop-
erty S1. of the Sobolev norms. Let us recall from (7.3) that the map g "→ xg is an
injection for all g = (g∞, gf ) with g∞ ∈ G∞ = G(FΣ∞) with d(g∞, 1) ≤ c1ht(x)−κ10

and gf ∈ Kf .
Let f belong to the completion of C∞

c (X) with respect to Sd. Suppose first that
f is invariant under K[m] for some m. For any x ∈ X define the function g "→ f(xg)
on

Ω∞(x) = {g ∈ G∞ : d(g, 1) ≤ c1ht(x)
−κ10}.

Then by the usual Sobolev inequality, see, e.g., [24, Lemma 5.1.1], there is some
integer d0 > [F : Q] dimG so that we have

|f(x)|2 ≪
∑

D

1
vol(Ω∞(x))

∫

Ω∞(x)
|Df |2,

where the sum is taken over all D of degree at most d0.
Let d ≥ 1+κ10d0,. If we integrate the above over K[m], then in view of the fact

that f is invariant under K[m] we get from (A.2) and the estimate vol(Ω∞(x))−1 ≪
ht(x)κ10[F :Q] dimG that

|f(x)|2 ≪ vol(K[m])−1 vol(Ω∞(x))−1
∑

D

∫

Ω∞(x)×K[m]
|Df |2(A.5)

≪ ∥m∥d
∑

D

∫

Ω∞(x)×K[m]
|(1 + ht(x))dDf |2

≪ ∥m∥d
∑

D
∥(1 + ht(x))dDf∥22,

where again the sum is over all D of degree at most d.
Let us now drop the assumption that f is invariant under a fixed compact

subgroup of Kf . In this case we may decompose f into a converging sum f =∑
m pr[m]f, and obtain

(A.6) |f(x)|2 = |
∑

m

pr[m]f(x)|2 ≤
∑

m

∥m∥−2
∑

m

∥m∥2| pr[m]f(x)|2

≪
∑

m

∥m∥−2
∑

m,D
∥m∥d+2∥ pr[m](1 + ht(x))dDf∥22 ≪ Sd+2(f)

2,

where we used Cauchy-Schwarz, the above, the definition in (A.3), and the estimate
∑

m

∥m∥−2 =
∑

k≥1

∑

m:∥m∥=k

k−2 ≪ϵ

∑

k

k−2+ϵ < ∞.

A.5. Property S2. – Trace estimates. Let r ≥ 0, let D0 be a monomial of
degree at most r, and let m be arbitrary. Furthermore, let f ∈ C∞

c (X), and apply
(A.5) to the function D0 pr[m]f, multiplying the inequality by ∥m∥r(1+ht(x))r we
get

∥m∥r|(1 + ht(x))rD0 pr[m]f(x)|2

≤ c∥m∥d+r
∑

D

∫

Ω∞(x)×K[m]
|(1 + ht(x))d+rD pr[m]f |2,
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where the sum is over D of degree at most d+r and d ≥ κ10d0 is as above. Moreover,
this also gives

∥m∥r|(1 + ht(x))rD0 pr[m]f(x)|2 ≤ c∥m∥−sSd+r+s(f)

for all d as above and s ≥ 0.
For x ∈ X put Lx,m(f) = ∥m∥r(1+ht(x))rD0 pr[m]f(x). Then the above implies

Tr(|Lx,m|2|S2
d′) ≤ c∥m∥−s for all d′ ≥ d+ r + s and any s ≥ 0;

see [3] and [24] for a discussion of relative traces.
Integrating over x ∈ X, using (A.1) to sum over m, and summing over D0 with

degD0 ≤ r we get Tr(S2
r |S2

d′) ≪ 1, again for all d′ ≥ d+ r + s and s ≥ 2.
Let us now use the notation of S2. Given d0, the above shows that there ex-

ists d′ > d0 and d > d′ with Tr(S2
d0
|S2

d′) < ∞ and Tr(S2
d′ |S2

d) < ∞. To find an
orthonormal basis with respect to Sd′ which is orthogonal with respect to Sd as in
S2. one may argue as follows. Recall that Sd′(f) ≤ Sd(f) and therefore, by Riesz
representation theorem, there exists some positive definite operator Opd′,d so that

⟨f1, f2⟩Sd′ = ⟨Opd′,d f1, f2⟩Sd for f1, f2 ∈ C∞
c (X).

This operator satisfies Tr(Opd′,d) = Tr(S2
d′ |S2

d) and so it is compact. Now choose an
orthonormal basis with respect to Sd consisting of eigenvectors for Opd′,d . There-
fore, this basis is still orthogonal with respect to Sd′ , and S2. follows from the
definition of the relative trace.

A.6. Property S3. – Bounding the distortion by g ∈ G(Fv). Let v ∈ G(Fv)
for some v ∈ Σf . Note that g commutes with any differential operator D used
above as well as with the averaging and projection operators Avv′ [·] and prv′ [·]
for v′ ∈ Σf \ {v}.

So if g ∈ Kv (or more generally g ∈ Kf ), then gKv[mv]g−1 = Kv[mv] for
all mv ≥ 0. This implies that the action of g commutes also with the decomposition
of f ∈ C∞

c (X) into pure level components at v, and so Sd(g · f) = S(f) by (7.2)
and (A.3).

Let now g ̸∈ Kv and f ∈ C∞
c (X). This also implies

gKv[2 logqv ∥g∥+m]g−1 ⊆ Kv[m].

Using this, that prv[ℓ]f is invariant under Kv[ℓ] for ℓ ≥ 0, and that

Avv[ℓ− 1](prv[ℓ]f) = 0

for ℓ ≥ 1, we get for all m, ℓ ≥ 0 that

prv[m](g · (prv[ℓ]f)) = 0 unless |m− ℓ| ≤ 2 logqv ∥g∥.

Applying this and defining R = 2 logqv ∥g∥ we get

∥(1 + ht)d prv[m](g · f)∥2

=
∥∥∥prv[m](1 + ht)d

(
g ·

∑

|ℓ−m|≤R

prv[ℓ]f
)∥∥∥

2

≤
∑

|ℓ−m|≤R

∥(1 + g−1 · ht)d prv[ℓ]f∥2

≪ (2R+ 1)∥g∥2d max
|ℓ−m|≤R

∥(1 + ht)d prv[ℓ]f∥2,
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where we also used (7.1). Fixing f ∈ C∞
c (X) we now apply this for the func-

tions
∏

v′∈Σf\{v}prv′ [mv′ ]Df and sum over all m and D to get

Sd(g · f)2

≪ (2R+ 1)2∥g∥4d
∑

m,D
∥m∥d

∑

|ℓ−mv|≤R

∥∥∥(1 + ht)d prv[ℓ]
∏

v′∈Σf\{v}

prv′ [mv′ ]Df
∥∥∥
2

2

≤ (2R+ 1)3∥g∥6dSd(f)
2 ≪ ∥g∥8dSd(f)

2,

which gives S3.
For v ∈ Σ∞ the argument consists of expressing the element Adg(D) in terms of

the basis elements considered in the definition of Sd(·), and bounding the change
of the height as above.

Let now u(·) be the unipotent subgroup as in Property S3. In view of the
definition of Kw we get ρ ◦ θw(SL2(ow)) ⊂ SLN (ow). Therefore, ∥u(t)∥ ≤ |t|Nw as
was claimed.

A.7. Property S4. – Estimating the Lipshitz constant at w. Let f belong
to the completion of C∞

c (X) with respect to Sd. First note that if f is invariant
under K[m] for some m, then g · f is also invariant under K[m] for all g ∈ Kw.
Therefore, pr[m]g · f = g · pr[m]f for all g ∈ Kw. Also note that if g ∈ Kw[r] and
f is K[m] invariant with mw ≤ r, then g · f = f.

Let now g ∈ Kw[r] and let f be in the completion of C∞
c (X) with respect to Sd.

Therefore, as in (A.6) we can use (A.5) and get

|(g · f − f)(x)|2 =

∣∣∣∣∣∣

∑

m

pr[m](g · f − f)(x)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑

m

(g · pr[m]f − pr[m]f)(x)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑

m:mw>r

(g · pr[m]f − pr[m]f)(x)

∣∣∣∣∣∣

2

≤
∑

m:mw>r

∥m∥−2
∑

m:mw>r

∥m∥2|(g · pr[m]f − pr[m]f)(x)|2

≤
∑

m:mw>r

∥m∥−2
∑

m

∥m∥2| pr[m](g · f − f)(x)|2

≪
∑

mw>r

∥m∥−2
∑

m,D
∥m∥d+2∥ pr[m](1 + ht(x))dD(g · f − f)∥22

≪ q−2r
w Sd+2(g · f − f)2 ≪ q−2r

w Sd+2(f)
2,

where in the last inequality we used property S3.

A.8. Property S6. – Bounds for matrix coefficients. Recall that at the good
place w there exists a non-trivial homomorphism θ : SL2(Fw) → Hw ⊂ G(Fw) such
that KSL2 = θ(SL2(ow)) ⊂ Kf . We also write

u(t) = θ

((
1 t
0 1

))
.
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Let ν be a MASH measure on X which is invariant and ergodic by θ(SL2(Fw)).
Recall from §7.4 that the SL2(Fw)-representation on

L2
0(X, ν) =

{
f ∈ L2(X, ν) :

∫
fdν = 0

}

is 1/M -tempered.
Let f1, f2 ∈ C∞

c (X). Consider I := ⟨u(t)f1, f2⟩L2(ν) −
∫
f1dν

∫
f̄2dν. By [16]

(see also §4.3) |I| can be bounded above by

(A.7) (1 + |t|w)−1/2M dim(KSL2 · f1)1/2 dim(KSL2 · f2)1/2∥f1∥L2(ν)∥f2∥L2(ν).

Suppose that f1 is fixed by K[m], the dimension of KSL2·f1 is bounded above by
the number of K[m] ∩KSL2-cosets in KSL2, which in turn is bounded by

(A.8)
[
Kw[0] : Kw[mw]

]
≪ qmw dimG

w .

Decomposing f1 :=
∑

prv[m]f1 and similarly for f2, we see that in general:

|I| ≪ (1 + |t|w)−1/2M
∏

i∈{1,2}

⎛

⎝
∑

m

∥m∥ 1
2dimG∥ pr[m]fi∥L2(ν)

⎞

⎠ .

We now apply Cauchy-Schwarz inequality and (A.5) to the expression in the paren-
thesis to get

⎛

⎝
∑

m

∥m∥ 1
2dimG∥ pr[m]fi∥L2(ν)

⎞

⎠
2

≪
∑

m

∥m∥dimG+2∥ pr[m]fi∥2L2(ν)

≪
∑

m

∥m∥dimG+2+d
∑

D
∥(1 + ht(x))dD(pr[m]fi)∥22 ≪ SdimG+2+d(fi).

This gives property S6.

A.9. Property S5. – The operator Tt and Sobolev norms. We will use the
same notation as above. Recall that we defined the operator Tt to be AvL ⋆δu(t) ⋆
AvL where AvL is the operation of averaging over Kw[L], with L > 0 as in Propo-
sition 6.10.

Here we will modify the argument in the proof of property S1. to get the desired
property. Let us note again that ht(·) is invariant under K[0].

Let d ≥ κ10d0 and let f be an arbitrary smooth compactly supported function.
Then

(A.9) D pr[m]Ttπ
+f = pr[m]DTtπ

+f = 0, whenever degD ≥ 1.

Indeed π+(f) is invariant under G(A)+ and the latter contains exp(gv) for all
v ∈ Σ∞. We also note that Ttπ+ = π+ because G(A)+ contains {u(t)} and L ≥ 1
satisfies Kw[L] ⊂ G(A)+. Given m let us put pr(w)[m] =

∏
v ̸=w pr[mv]. Note that

(A.10) DTt = TtD and pr(w)[m]Tt = Tt pr
(w)[m].
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For any m put Φm(x) = pr[m]Tt(f − π+f)(x); note that Φm is K[m] invariant.
Arguing as in (A.5) for the function Φm(·) and using (A.10) we get

|Φm(x)|2 ≪ vol(K[m])−1 vol(Ω∞(x))−1
∑

D

∫

Ω∞(x)×K[m]
|DΦm|2(A.11)

≪ ∥m∥dht(x)d
∑

D
∥ pr[m]Tt(D(f − π+f))∥22

≪ ∥m∥dht(x)d∥Tt∥22,0
∑

D
∥ pr(w)[m]Df∥22,

where in the last step we used the fact that both prw[mw] and π+ are projections,
together with (A.9) and (A.10).

Since Tt = AvL ⋆δu(t) ⋆ AvL, we have: pr[m]Tt = 0 for all mw > L. Also recall
that

∑
m pr[m] = 1. Therefore,

Tt(f − π+f)(x) =
∑

m:mw≤L

pr[m]Tt(f − π+f)(x)︸ ︷︷ ︸
Φm(x)

.

Arguing as in the last paragraph in §A.4, using (A.11) and the above identity
we get

|Tt(f − π+f)(x)|2 ≪ ht(x)d∥Tt∥22,0
∑

m:mw≤L
D

∥m∥d+2∥ pr(w)[m]Df∥22

≪ ht(x)d∥Tt∥22,0(L+ 1)q(d+2)L
w

∑

m:mw=0
D

∥m∥d+2∥ pr(w)[m]Df∥22

≪ ht(x)d∥Tt∥22,0q(d+2)L
w

∑

m:mw=0
D

∥m∥d+2
∥∥
∑

mw

pr[mw](pr
(w)[m]Df)

∥∥2
2

≪ ht(x)d∥Tt∥22,0q(d+2)L
w

∑

m,D
∥m∥d+2∥ pr[m]Df∥22

which implies S5.
Let us note that the argument in §A.8 applies to the representation of SL2(Fw)

on L2
0(X, volG), i.e., the orthogonal complement ofG(A)+-invariant functions. Sup-

pose this representation is 1/M -tempered; then similar to (A.7) we get
∣∣⟨u(t) · f1, f2⟩ − ⟨π+f1,π

+f2⟩
∣∣

≪ (1 + |t|w)−1/2M dim(KSL2·f1)1/2 dim(KSL2·f2)1/2∥f1∥2∥f2∥2.
This estimate and (A.8), in view of the definition of Tt, imply

(A.12) ∥Tt∥2,0 ≪ (1 + |t|w)−1/2Mq2dLw .

Appendix B. The discriminant of a homogeneous set

The paper [23] defined the discriminant of a homogeneous set in the case when
the stabilizer is a torus. Here we shall adapt this definition to the case at hand; see
also [24, Sec. 17].

LetH be a semisimple, simply connected group defined over F. As in §1.1 we fix a
non-trivial F -homomorphism ι : H → G with central kernel and let (gv)v ∈ G(A).
Put Y = ι(H(F )\H(A))(gv)v.
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We choose a differential form ω of top degree on H and an F -basis {f1, . . . , fr}
for Lie(H) such that ω(z) = 1 for

z = f1 ∧ · · · ∧ fr ∈ ∧rLie(H).

Using ρ : G → SLN and ι we have ρ ◦ ι(z) ∈ ∧rslN . We put zv := ρ ◦Ad(gv)−1 ◦
ι(z). For each v ∈ Σ, we denote by ωv the form of top degree on H(Fv) induced by
ω.

Let ∥ ∥v be a compatible system of norms on the vector spaces ∧rslN ⊗ Fv. In
particular, we require at all the finite places v that the norm ∥ ∥v is the max norm.
Denote by B the bilinear form on ∧rh induced by the Killing form. We define the
discriminant of the homogeneous set Y by

(B.1) disc(Y ) = D(H)
E(H)

∏

v

discv(Y ) = D(H)
E(H)

∏

v

∥zv∥v,

where

(1) discv(Y ) = |B(ωv,ωv)|1/2v ∥zv∥v is the local discriminant at v, and is inde-
pendent of the choice of the F -basis,

(2) D(H) ≥ 1 is defined in (B.13), and
(3) 0 < E(H) ≤ 1 is defined in (B.15).

The second equality in (B.1) uses the fact that
∏

v |B(ωv,ωv)|v = 1 which is a
consequence of the product formula and the equality B(ωv,ωv) = B(ω,ω).

One key feature of this definition is that it is closely related to the volume in the
sense that

(B.2) vol(Y )⋆ ≪ disc(Y ) ≪ vol(Y )⋆.

We outline a proof of this in this section.
Before doing that let us use (B.2) to complete the discussion from §3.

B.1. Proof of Lemma 3.3. We use the notation from §3. In particular, F = Q,
Q is a positive definite integral quadratic form in n variables, H′ = SO(Q), and
H = Spin(Q).

Let gQ ∈ PGL(n,R) be so that g−1
Q H′(R)gQ = SO(n,R) and put

Y = YQ = π(H(Q)\H(A))(gQ, e, . . .).
We recall that K ′ and K ′(∞) are compact open subgroups of H′(Af ) and

H′(A), respectively. Also recall the notation K∗= K ′ ∩ π(H(Af )), and K∗(∞) =
π(H(R))K∗. Finally put

K∗
Q(∞) = g−1

Q K∗(∞)gQ = g−1
Q K ′(∞)gQ ∩HD .

Lemma. We have the following:

(B.3) vol(Y )⋆ ≪ spin genus(Q) ≪ vol(Y ).

Proof. Using the definition of the volume as in (1.1), we have up to a multiplicative
constant depending on Ω0, that vol(Y ) ≍ mY (K∗

Q(∞))−1. On the other hand we
have

1 = µD (Y ) =
∑

h

mY

(
K∗

Q(∞)
)

ℓh
,

where 1 ≤ ℓh ≤ #
(
H′(Q) ∩ hK ′(∞)h−1

)
for every double coset representative

H′(Q)hK∗(∞) ∈ H′(Q)\H′(Q)π(H(A))/K∗(∞).
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Since ℓh is bounded by the maximum of orders of finite subgroups of PGLn(Q),
see, e.g., [57, LG, Ch. IV, App. 3, Thm. 1] we get that, up to a constant depending
on Ω0, we have

(B.4) vol(Y ) ≍ #
(
H′(Q)\H′(Q)π(H(A))/K∗(∞)

)
.

Recall that

spin genus(Q) = #
(
H′(Q)\H′(Q)π(H(A))K ′(∞)/K ′(∞)

)
.

Hence (B.4) implies the claimed upper bound in the lemma.
We now turn to the proof of the lower bound. The idea is to use strong approxi-

mation and discussion in §5.12 to relate the orbit space appearing on the right side
of (B.4) to the spin genus.

Let p be a good prime for Y given by the proposition in §5.11. In view of the
strong approximation theorem applied to the simply connected group H, the choice
of p, and the definition of K∗(∞) we have

(B.5) π(H(A)) = π(H(Q))π(H(Qp))K
∗(∞),

where we have identified H(Qp) as a subgroup of H(A).
Therefore, every double cosetH′(Q)π(h)K ′(∞) has a representative in π(H(Qp)).

That is: we use (B.5) and write π(h) = π(δ, δ, . . .)π
(
(h′

p, e, . . .)
)
k∗, where δ ∈ H(Q),

h′
p ∈ H(Qp), and k∗∈ K∗(∞).

Let now h(1)
p , h(2)

p ∈ H(Qp) be so that

(B.6) π
(
(h(2)

p , e, . . .)
)
= (γ, γ, . . .)π

(
(h(1)

p , e, . . .)
)
k,

where γ ∈ H′(Q), k ∈ K ′(∞). Let us write k =
(
kp, (kq)q ̸=p

)
; we note that q = ∞

is allowed. Then we have
γkq = 1 for all q ̸= p.

Hence we get k = (kp, γ−1, γ−1, . . .). This, in particular, implies γ ∈ K ′
q for all

q ̸= p, that is,
(γ, γ, . . .) ∈ H′(Q) ∩H′(Qp)K

′(∞).

Put Λ′ := H′(Q) ∩ H′(Qp)K ′(∞) and Λ := π(H(Q)) ∩ H′(Qp)K ′(∞). Taking
their projections into H′(Qp), we identify Λ and Λ′ as two lattices in H′(Qp). Note
that Λ is a normal subgroup of Λ′. We write

Λ′/Λ = ∪r
i=1Λγi.

Also write K ′
p/K

∗
p = ∪s

j=1kjK
∗
p . The above discussion thus implies

(B.7) π(h(2)
p ) ∈

⊔

i,j

Λγiπ(h
(1)
p )kjK

∗
p .

Define the natural surjective map from π(H(Q))\π(H(A))/K∗(∞) toH′(Q)\H′(Q)
π(H(A))K ′(∞)/K ′(∞) by

π(H(Q))
(
π(hp), e, . . .

)
K∗(∞) "→ H′(Q)

(
π(hp), e, . . .

)
K ′(∞).

Then since Λ ⊂ π(H(Q)) and K∗
p ⊂ K∗(∞) we get from (B.7) that the preimage

of H′(Q)
(
π(hp), e, . . .

)
K ′(∞) is contained in

⋃
i,j Di,j where

Di,j :=
{
π(H(Q))

(
π(h′

p), e, . . .
)
K∗(∞) : γiπ(hp)kj ∈ Λπ(h′

p)K
∗
p

}
.

Note also that Di,j has at most one element.
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Putting this all together, we get the following:

spin genus(Q) = #
(
H′(Q)\H′(Q)π(H(A))K ′(∞)/K ′(∞)

)

the above discussion # ≫
#
(
H′(Q)\H′(Q)π(H(A))/K∗(∞)

)

[Λ′ : Λ][K ′
p : K∗

p ]

(B.4) # ≫ vol(Y )

[Λ′ : Λ][K ′
p : K∗

p ]
.(B.8)

We now bound the denominator in (B.8). First note that

[K ′
p : K∗

p ] ≤ [H′(Qp) : π(H(Qp))] ≤ M

where M ≪ 1 is an absolute constant.
Bounding the term [Λ′ : Λ] is far less trivial and relies on results in §5.12. Put

Λ̃ = H′(Q) ∩ π(H(Qp))K ′(∞). Then

[Λ′ : Λ] = [Λ′ : Λ̃][Λ̃ : Λ] ≤ [H′(Qp) : π(H(Qp))][Λ̃ : Λ] ≤ M [Λ̃ : Λ].

Finally the index [Λ̃ : Λ] is controlled as in (5.13). We note that the quan-
tities appearing on the right side of (5.13), in particular Σ♭, are the same for
the group π(H(A)), which we used to obtain the bound in (B.8), as well as for
(gQ, e, . . .)−1π(H(A))(gQ, e, . . .), which is used to define Y. Therefore, in view of
the equivalence of volume definitions proposition in §5.12 we get

spin genus(Q) ≫ vol(Y )⋆

which is the claimed lower bound. !

By (B.2) we also know vol(Y ) ≍ disc(Y )⋆. So it remains to discuss the genus
of Q. For this we are making the following claim.

Claim. For any given T the number of equivalence classes of quadratic forms Q
with | spin genus(Q)| < T is ≪ T ⋆.

Proof. Let X ′ ⊂ X be a compact set so that µ(X ′) > 0.9 for any MASH mea-
sure µ; this exists by the corollary in §1.7. Suppose Q is a quadratic form with
| spin genus(Q)| < T . We see that

G(Q)(gQ, e, . . .)HD ∩X ′ is non-empty.

We may assume that X ′ is invariant under SO(n,R); then the above also gives
some ι(h) ∈ ι(H(Af )) with G(Q)(gQ, ι(h)) ∈ X ′. By the correspondence between
the spin genus of Q and the g−1

Q K ′(∞)gQ-orbits in Y we have found a quadratic
form Qh in the spin genus of Q for which the conjugating matrix gQh can be chosen
from a fixed compact subset L ⊂ PGL(n,R).

Let us now note that the spin genus of Qh equals the spin genus of Q. So in view
of (B.3) the MASH set YQh associated to the quadratic form Qh has volume which
is bounded above and below by powers of the volume of the MASH set YQ.

We will use the assumption gQh ∈ L in order to relate the size of the spin genus
with the volume of the rational MASH set Y ′

h = π(HQh(Q)\HQh(A)), where HQh

is the spin cover of the orthogonal group of Qh (and we intentionally did not
include gQh in the definition). Indeed, since gQh ∈ L, we get from (B.2) and (B.3)
that

(B.9) | spin genus(Q)| ≍ vol(YQh)
⋆ ≍ vol(Y ′

h )
⋆ ≍ disc(Y ′

h )
⋆.
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The definition of disc(Y ′
h ), see (B.1), gives

disc(Y ′
h ) =

D(HQh
)

E(HQh
)

∏

v∈Σ

∥zv∥v =
D(HQh

)
E(HQh

) ∥z(h)∥∞,

where z(h) ∈ ∧rslN is the primitive integral vector which is a rational multiple of
(zv)v; and in the second equality we used the product formula. Note that z(h) =
f1∧ · · ·∧fr determines the group HQh and hence the form Qh (up to homotheties).
In particular, since D(HQh)/E(HQh) ≥ 1 we get ∥z(h)∥∞ ≪ T ⋆. As there are
only ≪ T ⋆ many integral vectors of norm ≪ T ⋆ in ∧rslN we obtain the claimed
estimate. !

We can now finish the proof of Lemma 3.3. Let us recall from the definitions
that

genus(Q) =
⊔

i

spin genus(Qi)

whereQi ∈ genus(Q). Let YQi denote the MASH’s which correspond to Qi as above.
Then by (B.3) we have spin genus(Qi) ≍ vol(Yi)⋆. Note however that vol(Yi) =
vol(Yj) for all i, j since the corresponding algebraic stabilizers are the same; indeed
Yi = Yjh for some h ∈ SO(Q) and SO(Q) normalizes the algebraic stabilizer of Yi.
Suppose now genus(Q) = S. Then the above MASH sets all have the same volume
vol(Yi) = V which, in view of the above claim, gives S ≪ V ⋆ and finishes the proof
of Lemma 3.3.

B.2. Expressing the discriminant in terms of the volume. Recall the no-
tation from the proof of part (3) in the proposition27 in §5.8. In particular,
we fixed finitely many standard homomorphisms of H(Fv) into G(Fv) for any
archimedean place v. Recall also that corresponding to the standard homomor-
phism j0 = Ad(g0) ◦ j we have a Euclidean structure p0 and that ∥ ∥p0 denotes the
corresponding Euclidean norm.

In this section we have fixed a compatible family of norms ∥ ∥v. Note that for
any archimedean place v we have ∥ ∥v ≍ ∥ ∥p0 with constants depending only on
the dimension. Therefore, without loss of generality we may and will assume that
{f1, . . . , fr} are chosen so that

(B.10) 1/c ≤ ∥ ∧r j0(f1 ∧ · · · ∧ fr)∥p0 ≤ c

for any archimedean place v where c is a universal constant.
Fix an archimedean place v, as in the proof of part (3) in the proposition in §5.8

we have

(B.11) u1 ∧ · · · ∧ ur

=
∥u1∧···∧ur∥p0

∥∧rAd(g−1
0 )(∧r j0(f1∧···∧fr))∥p0

∧r Ad(g−1
0 )(∧r j0(f1 ∧ · · · ∧ fr)),

where {u1, . . . , ur} is chosen as in there.
Note that 1/c ≤ ∥ ∧r Ad(g−1

0 )(∧r j0(f1 ∧ · · · ∧ fr))∥pj ≤ c, by (B.10). Hence we
get

(B.12) Jv ≍ ∥u1 ∧ · · · ∧ ur∥pj ≍ 1
∥∧rAd(g−1

0 )(∧r j0(f1∧···∧fr))∥p0

≍ 1
∥zv∥v

where the implied constants are absolute.

27We note that the standing assumption in §5.8 was that H is F -simple. However, the proof
of part (3) in the proposition in §5.8 works for the case of semisimple groups.
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Therefore, in view of (5.6) and (5.7), in order to prove (B.2) we need to control
the contribution from finite places.

We will use the notation from §5. Since H is simply connected we can write
H as the direct product H = H1 · · ·Hk of its F -almost simple factors. Let F ′

j/F
be a finite extension so that Hj = ResF ′

j/F
(H′

j) where H′
j is an absolutely almost

simple F ′
j-group for all 1 ≤ j ≤ k. Then [F ′

j : F ] is bounded by dimH. Let H′
j and

Lj/F ′
j be defined as in §5.4. Put

(B.13) D(H) =
(∏

j D
s(H′

j)

Lj/Fj
D

dimH′
j

F ′
j

)1/2
.

For each j let ω′
j denote a differential form of top degree on H′

j and choose an

F ′
j-basis {f

(j)
1 , . . . , f (j)

rj } for Lie(H′
j) so that ω′

j(z
(j)) = 1 where

z(j) = f (j)
1 ∧ · · · ∧ f (j)

rj ∈ ∧rjLie(H′
j).

We may and will work with the F -basis {f1, . . . , fr} for Lie(H) obtained from

{f (j)
i } using the restriction of scalars, i.e., we assume fixed a basis {e(j)l } for F ′

j/F

and write f (j)
i in this basis for each 1 ≤ i ≤ rj . As before put z = f1 ∧ · · ·∧ fr and

let ω be a form of top degree on H so that ω(z) = 1.
For each v′ ∈ ΣF ′

j
, let ω′

j,v′ denote the form of top degree on H′
j(F

′
j,v′) induced

by ω′
j . Similarly, for any v ∈ Σ let ωv denote the form of top degree on H(Fv)

induced by ω.
Given v ∈ Σ we define a form of top degree on H(Fv) by ω̃v :=

(
(ω′

j,v′)v′|v
)
j
.

Since H(Fv) is naturally isomorphic to
∏

j

∏
v′|v H

′
j(F

′
j,v′), it follows from the def-

initions that ω̃v(z) = 1. Therefore, for every v ∈ Σ we have ω̃v = ωv.
Let v ∈ ΣF,f ; following our notation in §5.3, we denote by |ωv| the measure

induced on Lie(H) ⊗ Fv and abusing the notation the measure on H(Fv). Since
ωv(z) = 1, the ov-span of the {fi} has volume 1 with respect to |ωv|. Applying a
suitable change of basis to the {fi}, we may assume that there is an integral basis,
{e1, . . . , eN2−1}, for slN (ov) with the property that each ρ ◦ Ad(g−1

v ) ◦ ι(fi) = ciei
for 1 ≤ i ≤ r. Then, ∥zv∥v =

∏
i |ci|v where ∥ ∥v denotes the compatible family of

norms which we fixed before and zv = ρ ◦Ad(g−1
v ) ◦ ι(z).

For every v ∈ Σf let H′
v be the scheme theoretic closure of ρ(g−1

v ι(H)gv) in
SLN/ov. Then for each v ∈ Σf we have

H′
v(ov) = ρ(g−1

v ι(H)gv) ∩ SLN (ov).

Put Hv := ι−1(gvρ−1(H′
v)g

−1
v ) for any v ∈ Σf .

Recall that K∗
v = ι−1(gvρ−1(SLN (ov))g−1

v ); using the above notation we have
K∗

v = Hv(ov).
We write Lie(K∗

v ) = Dρ ◦Ad(g−1
v ) ◦ ι(Lie(H) ⊗ Fv) ∩ slN (ov).

Let redv denote reduction mod ϖv with respect to the scheme structure induced
by Hv. In particular redv K∗

v = K∗
v/(K

∗
v )

(1) where (K∗
v )

(1) is the first congruence
subgroup of Hv(ov). For pv ≫ 1, (K∗

v )
(1) is the image under the exponential map

of the first congruence subalgebra of Lie(K∗
v ).

Let us recall that kv is the residue field of Fv with char(kv) = pv and #kv =
qv = plv for some l ≤ [F : Q]. Similarly k′j,v′ , is the residue field of F ′

j,v′ and

#k′j,v′ = q′j,v′ = p
lj
v .
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With this notation, the above discussion implies that for pv ≫ 1 we have

∥zv∥v =
∏

i |ci|v =
∣∣ωv(c

−1
1 f1 ∧ · · · ∧ c−1

r fr)
∣∣−1

=
(
|ωv|({u ∈ Lie(H) ⊗ Fv : Dρ ◦Ad(g−1

v ) ◦ ι(u) ∈ slN (ov)})
)−1

=
(
|ωv|(Lie(K∗

v ))
)−1

=
(
|ωv|(K∗

v )
)−1

(#(redv K
∗
v ) · q− dimH

v ).

In the last equality, we used the fact that exp is a measure preserving diffeomor-

phism on sl(1)N (ov) and h[1] for all pv ≫ 1.
For small pv, not covered above, exp is a measure preserving diffeomorphism on

h[m] for large enough m; see §6.5, in particular (5.4) and the discussion in that
paragraph. Hence the contribution of these small primes is ≪ 1.

Recall that H = H1 · · ·Hk is a direct product and |ωv| =
∏

j

∏
v′|v |ω′

j,v′ |. There-
fore, the above, in view of (5.7), (B.1), and (B.12), implies

(B.14)
∏

v

∥zv∥ ≍ 1
D({F ′

j})
vol(Y )

∏

v∈Σf

#(redv K
∗
v ) · q− dimH

v ,

where D({F ′
j}) =

∏
j D

dimH′
j/2

F ′
j

.

B.3. The upper bound. Let the notation be as in §5.6, in particular, for all j
and all v′ ∈ ΣF ′

j ,f
the parahoric subgroup P ′

j,v′ of maximum volume in H′
j(F

′
j,v′) is

fixed as in that section. Abusing the notation, we denote the corresponding smooth
o′j,v′ group scheme by P ′

j,v′ . Given a v ∈ ΣF,f put Pv :=
∏

j

∏
v′|v Pj,v′ . Define

E(H) : =
∏

v∈ΣF,f
#Pv(kv)q− dimH

v(B.15)

=
∏

j

∏
v′∈ΣF ′

j ,f
#P ′

j,v′(k′j,v′) · (q′j,v′)− dimH′
j .

Using Prasad’s volume formula and the order of almost simple finite groups of
Lie-type, see [50, Rmk. 3.11], we have the following. The quantity E(H) is a
product of the values of the Dedekind zeta functions of F ′

j and certain Dirichlet
L-functions attached to Lj/F ′

j at some integer points. In particular, E(H) is a
positive constant depending on F ′

j , Lj , and H′
j . Moreover, [50, §2.5, §2.9] imply

#P ′
j,v′(k′j,v) · (q′j,v)− dimH′

j < 1.

All together we have shown

(B.16) 0 < E(H) ≤ 1.

Let Σ♭
ur denote the set of places v ∈ ΣF,f so that

• for all j and all v′ ∈ ΣF ′
j ,f

with v′|v we have v′ is unramified in Lj , and
• one of the following holds:

– there is some j and some v′|v so that the group H′
j is not quasisplit

over F ′
j , or

– all H′
j ’s are quasisplit over F ′

j,v′ , hence H′
j is isomorphic to H′

j over
F ′
j,v′ for all j and all v′|v, but K∗

v is not hyperspecial.
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It was shown in (5.12) that we have

(B.17) λv|ωv|(K∗
v ) ≤

pv

p2
v+1 for all v ∈ Σ♭

ur

if qv > 13.
Let Σ♭

r be the set of places v ∈ ΣF,f so that there exists some j and some v′|v
in F ′

j which ramified in Lj . Put Σ♭ := Σ♭
ur ∪ Σ♭

r.

Put D({Lj}, {F ′
j}) :=

∏
j D

s(H′
j)/2

Lj/F ′
j

. Then, as we got (5.8) from (5.7), in view

of (B.17) we get

(B.18) vol(Y ) ≫ D({Lj}, {F ′
j})D({F ′

j})
∏

v∈Σ♭
ur

pv.

Combining (B.14) and (B.18) we get the upper bound as follows:

disc(Y ) = D(H)
E(H)

∏

v

∥zv∥v

≍ D({Lj}, {F ′
j}) vol(Y )

∏
v∈Σf

#(redv K∗
v )·q

− dim H
v

E(H)

≪ vol(Y )⋆
∏

v∈Σf
#(redv Hv(kv)) · q− dimH

v
E(H)

≪ vol(Y )⋆
∏

v∈Σ♭

#(redv Hv(kv))
#Pv(kv)

≪ vol(Y )⋆,

where in the last inequality we used #(redv Hv(kv)) ≤ q⋆v , and also the fact that
for any v ∈ Σ♭

r we have pv|D({Lj}, {Fj}).

B.4. The lower bound. We now turn to the lower bound. For this part we work
with normalized volume forms. Fix the notation

λv|ωv| :=
∏

j

∏
v′|vλ

′
j,v′ω′

j,v′ ;

see §5.6 for the notation on the right side of the above.
We will need the following. If M is a connected linear algebraic group over kv,

then

(B.19) (qv − 1)dimM ≤ #M(kv) ≤ (qv + 1)dimM;

see, e.g., [46, Lemma 3.5].
Given a parahoric subgroup Pv of H(Fv), let Pv denote the smooth ov group

scheme associated to it by Bruhat-Tits theory. Recall from §5.1 that Pv maps onto
Pv(kv). We also remark that since H is simply connected the kv-group scheme Pv

is connected; see [60, 3.5.3].
Let v ∈ Σf for any j and any v′|v we choose a parahoric subgroup P ′

j,v′ which
is minimal among those parahoric subgroups containing πj,v′K∗

v ; here πj,v′ denotes
the natural projection. Put

Pv :=
∏

j

∏

v′|v

P ′
j,v′ .

Then K∗
v ⊂ Pv.

We will prove the lower bound in a few steps. First we prove some local estimates,
i.e., we bound terms appearing in the product on the right side of (B.14) for all
v ∈ Σf . Taking the product of these estimates then we will get the lower bound.
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1. Step. We have
(
λv|ωv|(K∗

v )
)−1(

#(redv K
∗
v ) · q− dimH

v

)
(B.20)

=
(
λv|ωv|(Pv)

)−1
[Pv : K∗

v ]
(
#(redv K

∗
v ) · q− dimH

v

)

=
(
λv|ωv|(Pv)

)−1 [Pv:P
(1)
v ][P (1)

v :(K∗
v )

(1)]
[K∗

v :(K
∗
v )

(1)]
(#

(
redv K

∗
v ) · q− dimH

v

)

by (3) in §5.1
=

(
λv|ωv|(Pv)

)−1
[P (1)

v : (K∗
v )

(1)](#Pv(kw)) · q− dimH
v ),

where P (1)
v and (K∗

v )
(1) denote the first congruence subgroups defined using the

ov-scheme structures Pv and Hv, respectively.

2. Step. In this step we will estimate the contribution coming from the product∏
v∈Σf

(
#Pv(kv)

)
· q− dimH

v .

The fact that for any v ∈ Σ♭
r we have pv|D({Lj}, {Fj}) together with (B.18)

implies #Σ♭ ≪ log(vol(Y )).
Now sincePv is connected, we can use (B.19) together with the definition of E(H)

and get
∏

v∈Σf

(
#Pv(kv) · q− dimH

v

)
=

∏

v∈Σf

(
#Pv(kv) · q− dimH

v

) ∏

v∈Σ♭

#Pv(kv)·q− dim H
v

#Pv(kv)·q− dim H
v

≫ E(H)
(
log vol(Y )

)−κ16(B.21)

for some κ16 > 0 depending only on F and G.

3. Step. We will now get a control over
(
λv|ωv|(Pv)

)−1
[P (1)

v : (K∗
v )

(1)].
We claim that there exists some 0 < κ17 < 1, depending only on dimF G, so

that for all v ∈ Σf at least one of the following holds: either
(
λv|ωv|(Pv)

)−1
[P (1)

v : (K∗
v )

(1)] ≥
(
λv|ωv|(K∗

v )
)−κ17

=
(
λv|ωv|(Pv)

)−κ17

(
(#Pv(kv))[P

(1)
v :(K∗

v )
(1)]

#(redv K∗
v )

)κ17

,(B.22)

or v ∈ Σ♭
r and

(B.23)
(
λv|ωv|(Pv)

)−1
[P (1)

v : (K∗
v )

(1)] ≥ 1 ≥
(
λv|ωv|(K∗

v )
)−κ17p−1/2

v .

Let us first recall that λv|ωv|(Pv) ≤ 1; see [50, Prop. 2.10]. Therefore, if Pv = K∗
v ,

then (B.22) holds for any 0 < κ17 < 1. In particular, if v ̸∈ Σf \ Σ♭, then (B.22)
holds for any 0 < κ17 < 1.

Recall that K∗
v ⊂ Pv. Assume first that (K∗

v )
(1) ! P (1)

v .

Then, since P (1)
v is a pro-pv group we have [P (1)

v : (K∗
v )

(1)] ≥ pv. We again note
that by [50, Prop. 2.10] we have

(B.24) q− dimH
v ≤ λv|ωv|(Pv) ≤ 1.

Therefore, (B.22) follows if we show

#(redv K
∗
v )

κ17[P (1)
v : (K∗

v )
(1)]1−κ17 ≥

(
#Pv(kv)

)κ17

≥
(
λv|ωv|(Pv)

)1−κ17
(
#Pv(kv)

)κ17.

The second inequality holds for any 0 < κ17 < 1 in view of the upper bound
in (B.24). The first inequality follows from the upper bound in (B.19) and our

assumption [P (1)
v : (K∗

v )
(1)] ≥ pv if we take 0 < κ17 < 1 to be small enough.

Licensed to Univ of Calif, San Diego. Prepared on Tue Apr  7 15:09:09 EDT 2020 for download from IP 137.110.41.37.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EFFECTIVE EQUIDISTRIBUTION AND PROPERTY (τ) 285

Similarly, if λv|ωv|(Pv) ≤ 2/pv, then (B.22) becomes
(
λv|ωv|(Pv)

)−1+κ17[P (1)
v : (K∗

v )
(1)]1−κ17 ≥ (pv/2)

−1+κ17

≥
(

#Pv(kv)

#(redv K∗
v )

)κ17

.

Since
#Pv(kv)

#(redv K∗
v )

= p⋆v, the above estimate, and hence (B.22), hold for all small

enough κ17 provided that λv|ωv|(Pv) ≤ 2/pv.
In view of these observations and [50, Prop. 2.10] we get that (B.22) holds unless

P (1)
v = (K∗

v )
(1) and we are in one of the following cases:

• v ∈ Σ♭
ur, H is Fv-quasisplit, and Pv is a hyperspecial parahoric subgroup,

or
• v ∈ Σ♭

r and Pv is a special parahoric subgroup.

First note that under the assumption P (1)
v = (K∗

v )
(1), the estimate in (B.23)

follows from (B.24) so long as we choose κ17 small enough. This establishes the
claim for v ∈ Σ♭

r.

Therefore, we may now assume that P (1)
v = (K∗

v )
(1), v ∈ Σ♭

ur, and Pv is hyperspe-
cial. We claim that these imply Pv = K∗

v if pv ≫ 1 which then implies that (B.22)
holds for any 0 < κ17 < 1.

Assume pv ≫ 1 is large enough, so that the exponential map is a diffeomor-

phism from sl(1)N (ov) onto SL(1)
N (ov). Our assumption P (1)

v = (K∗
v )

(1) implies that

Lie(K∗
v ) = Lie(Pv). Since Pv is hyperspecial, we have Pv/P

(1)
v is the kv-points of

a semisimple group which is generated by unipotent subgroups. These unipotent
subgroups are reduction mod ϖv of unipotent subgroups of Pv [60, §3.5.1]. In view
of our assumption pv ≫ 1, unipotent subgroups of Pv are obtained using the ex-

ponential map from Lie(Pv) = Lie(K∗
v ). Hence K∗

v surjects onto Pv/P
(1)
v . Since

P (1)
v = (K∗

v )
(1), this implies Pv = K∗

v as we claimed.

4. Step. We now conclude the proof of the lower bound. We use the notation

J∞ =
(∏

v∈Σ∞
Jv

)−1
.

Recall that in view of part (iii) of the proposition in §5.8 we have Jv ≪ 1 for all
the archimedean places v. Taking the product of (B.22) over all v ∈ Σf , using the
fact that pv|D({Lj}, {F ′

j}) for all v ∈ Σ♭
r and (B.23), and arguing as in §5.10 we

get the lower bound as follows:

disc(Y ) = D(H)
E(H)

∏

v

∥zv∥v

≍ D({Lj}, {F ′
j}) vol(Y )

∏
v∈Σf

#(redv K∗
v )·q

− dim H
v

E(H) (B.14)

≫ D(H)
∏

v∈Σ

(
λv|ωv|(K∗

v )
)−1

∏
v∈Σf

#(redv K∗
v )·q

− dim H
v

E(H) (5.8)

≫ D(H)J∞

∏
v∈Σf

(
λv|ωv|(K∗

v )
)−1(

#(redv K∗
v )·q

− dim H
v

)

E(H)

≫ D(H)
(log vol(Y ))κ16

J∞
∏

v∈Σf

(
λv|ωv|(Pv)

)−1
[P (1)

v : (K∗
v )

(1)] (B.20), (B.21)
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≫ D(H)1/2

(log vol(Y ))κ16
J∞

∏

v∈Σf

(
λv|ωv|(K∗

v )
)−κ17 (B.22), (B.23)

≫ D(H)κ17

(log vol(Y ))κ16

∏

v∈Σ

(
λv|ωv|(K∗

v )
)−κ17 J∞,D(H) ≫ 1

≫ vol(Y )κ18 (5.8).

The proof of the lower bound in (B.2) is now complete.
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