DIAGONAL ACTIONS IN POSITIVE CHARACTERISTIC

MANFRED EINSIEDLER,
ELON LINDENSTRAUSS, and AMIR MOHAMMADI

Abstract

We prove positive-characteristic analogues of certain measure rigidity theorems in characteristic 0 . More specifically, we give a classification result for positive entropy measures on quotients of SL_{d} and a classification of joinings for higher-rank actions on simply connected, absolutely almost simple groups.

Contents

1. Introduction . 117
2. Notation . 121
3. Preliminary results . 123
4. High entropy part of Theorem 1.1 . 138
5. Low entropy part of Theorem 1.1 . 140
6. Proof of Theorem 1.1 . 142
7. Joining classification . 162

References . 172

1. Introduction

Let G be a locally compact, second countable group, and let Γ be a lattice in G. Put $X=G / \Gamma$. A subset $S \subset X$ is called homogeneous if there exists a closed subgroup $\Sigma<G$ and some $x \in X$ such that Σx is closed and supports a Σ-invariant probability measure. A probability measure μ on X is called homogeneous if $\operatorname{supp} \mu$ is homogeneous and μ is the Σ-invariant probability measure on supp μ.

Let A be a closed abelian subgroup of G. An A-invariant probability measure μ on G / Γ will be called almost homogeneous if

$$
\begin{equation*}
\mu=\int_{A / A \cap \Sigma} a_{*} \nu \mathrm{~d} a, \tag{1.1}
\end{equation*}
$$

DUKE MATHEMATICAL JOURNAL
Vol. 169, No. 1, © 2020 DOI 10.1215/00127094-2019-0038
Received 9 June 2017. Revision received 26 January 2019.
First published online 27 November 2019.
2010 Mathematics Subject Classification. Primary 37A17; Secondary 20C25, 20 G30.
where
(1) $\Sigma \subset G$ is a closed subgroup such that $A / A \cap \Sigma$ is compact,
(2) $\quad v$ is a homogeneous measure stabilized by Σ, and
(3) $\mathrm{d} a$ is the Haar probability measure on the group $A / A \cap \Sigma$.

Let K be a global function field, that is, a finite extension of the field of rational functions in one variable over a finite field \mathbb{F}_{p}. For any place w of K, we let K_{w} denote the completion of K at w, and we let \mathfrak{o}_{w} be the ring of integers in K_{w}. As in the case of number fields, the field K embeds diagonally in the restricted product $\prod_{w}^{\prime} K_{w}$. Given a place v, we put

$$
\mathcal{O}_{v}=K \cap \prod_{w \neq v} \mathfrak{o}_{w}
$$

to be the ring of v-integers in K.
For the rest of this paper, we will assume that a place v of K is fixed and we will put

$$
k:=K_{v}, \quad \mathfrak{o}:=\mathfrak{o}_{v}, \quad \text { and } \quad \mathcal{O}:=\mathcal{O}_{v} .
$$

Recall that we may and will identify k with $\mathbb{F}_{q}\left(\left(\theta^{-1}\right)\right)$, the field of Laurent series over the finite field \mathbb{F}_{q}; after this identification, we have $\mathfrak{o}=\mathbb{F}_{q}\left[\left[\theta^{-1}\right]\right]$ (see [38, Chapter 1]).

The most familiar case is the one where $K=\mathbb{F}_{q}(\theta)$, the field of rational functions in one variable with coefficients in \mathbb{F}_{q}. Then if we choose the valuation v coming from θ^{-1}, we have that $\mathcal{O}_{v}=\mathbb{F}_{q}[\theta]$ is the polynomial ring.

1.1. Positive entropy classification for measures on quotients of SL_{d}

Let $G=\operatorname{SL}(d, k)$, and let $\Gamma<G$ be an inner-type lattice in G (see Section 2.4 for the definition and discussion of inner-type lattices; for an explicit example, the reader may let $\Gamma=\operatorname{SL}(d, \mathcal{O}))$. Let $X:=G / \Gamma$. Furthermore, we let A be the full diagonal subgroup of $\operatorname{SL}(d, k)$. Throughout the present article, we always assume that $d>2$.

Given an A-invariant probability measure μ, we let $\mathrm{h}_{\mu}(a)$ denote the measuretheoretic entropy of $a \in A$. (We note that the following theorem is a positivecharacteristic analogue of the result of [11].)

THEOREM 1.1

Suppose that μ is an A-invariant ergodic probability measure on X, and further assume that $\mathrm{h}_{\mu}(a)>0$ for some $a \in A$. Then μ is almost homogeneous.

The conclusion of Theorem 1.1 cannot be strengthened to say that μ is homogeneous. In fact, $K=\mathbb{F}_{q}(\theta)$ has many subfields K^{\prime} (without a bound on [$\left.K: K^{\prime}\right]$).

Defining k^{\prime} to be the closure of K^{\prime} in k, one could take the measure v to be the Haar measure on the closed orbit $\Sigma \Gamma$ for $\Sigma=\operatorname{SL}\left(d, k^{\prime}\right)$, and μ could be as in (1.1) since $A /(A \cap \Sigma)$ is compact.

1.2. Joining classification

In 1967, Furstenberg [19] introduced the following notion that has since become a central tool in ergodic theory. Suppose that we are given two measure-preserving systems for a group S acting on Borel probability spaces $\left(X_{i}, m_{i}\right)$ for $i=1$, 2. A joining is a Borel probability measure μ on $X_{1} \times X_{2}$ such that the pushforwards satisfy $\left(\pi_{i}\right)_{*} \mu=m_{i}$ for $i=1,2$ and are invariant under the diagonal action on $X_{1} \times X_{2}$ that is, $s .\left(x_{1}, x_{2}\right)=\left(s . x_{1}, s . x_{2}\right)$ for all $s \in S$ and $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$.

We give a classification of ergodic joinings in the following setting. Let \mathbf{G}_{i} be connected, simply connected, absolutely almost simple groups defined over k for $i=1,2$. Put $G_{i}=\mathbf{G}_{i}(k)$, let Γ_{i} be a lattice in G_{i}, and define $X_{i}=G_{i} / \Gamma_{i}$ for $i=1,2$. Denote by m_{i} the Haar measure on X_{i}. Let $\lambda_{i}: \mathbf{G}_{m}^{2} \rightarrow \mathbf{G}_{i}$ be two algebraic homomorphisms with finite kernel defined over k, and put $\mathbf{A}_{i}=\lambda_{i}\left(\mathbf{G}_{m}^{2}\right)$. We define the notion of joining as above using these monomorphisms. Let $\mathbf{A}=\left\{\left(\lambda_{1}(t), \lambda_{2}(t)\right): t \in \mathbf{G}_{m}^{2}\right\}$, and let $A=\mathbf{A}(k)$. (The following theorem is a positive-characteristic analogue of the work of the first and second authors [12]; see also [16] for stronger results in the characteristic 0 setting.)

THEOREM 1.2

Assume that $\operatorname{char}(k) \neq 2$, Suppose that $\mathbf{G}_{i}, \mathbf{A}_{i}$, and X_{i} are as above for $i=1,2$. Let μ be an ergodic joining of the action of A_{i} on $\left(X_{i}, m_{i}\right)$ for $i=1,2$. Then μ is an algebraic joining. That is, one of the following holds:
(1) $\mu=m_{1} \times m_{2}$ is the trivial joining, or
(2) μ is almost homogeneous, and moreover, the group Σ appearing in the definition of an almost homogeneous measure satisfies the following:

- $\quad \pi_{i}(\Sigma)=G_{i}$ for $i=1,2$, and
- $\quad \operatorname{ker}\left(\left.\pi_{i}\right|_{\Sigma}\right)$ is contained in the finite group $Z\left(G_{1} \times G_{2}\right)$ for $i=1,2$.

It is also worth mentioning that even for joinings, in general, virtual homogeneity cannot be improved to homogeneity. Indeed, let k / k^{\prime} be a Galois extension of degree 2 with the nontrivial Galois automorphism τ. Let $\mathbf{G}_{1}=\mathbf{G}_{2}=\mathrm{SL}_{3}$, and let $\Gamma_{1}=\Gamma$ and $\Gamma_{2}=\tau(\Gamma)$ for a lattice $\Gamma \subset \operatorname{SL}(3, k)$. Let $\lambda_{1}=\lambda_{2}$ be the monomor$\operatorname{phism}(t, s) \mapsto \operatorname{diag}\left(t, s,(t s)^{-1}\right)$. The measure v could be the Haar measure on the closed orbit $\Sigma\left(\Gamma_{1} \times \Gamma_{2}\right)$ of $\Sigma=\{(g, \tau(g)): g \in \operatorname{SL}(3, k)\}$ and μ could be as in (1.1).

1.3. Main difference to the characteristic 0 setting

In the present article, we apply the high entropy method that was developed in the characteristic 0 setting in a series of papers (see, e.g., [9]-[11], [14]), and for Theorem 1.1 we also apply the low entropy method (see, e.g., [11], [13], [25]). These arguments crucially use leafwise measures for the root subgroups (or more generally the coarse Lyapunov subgroups), which are locally finite measures on unipotent subgroups (for a comprehensive treatment of leafwise measures, see [14]).

Suppose that we were able, using the above tools, to show that the leafwise measures on the coarse Lyapunov subgroups have some invariance. Then, using Poincaré recurrence along A, one could show that the invariance group has arbitrarily large and arbitrarily small elements. The key difference lies in the next step of the argument. In the characteristic 0 setting, a closed subgroup of a unipotent group containing arbitrarily small and arbitrarily large elements has to contain a 1-parameter subgroup-and hence the leafwise measures for the 1-parameter subgroup have to be Haar, which gives unipotent invariance for the measure under consideration.

In the positive-characteristic world this is very far from being true. In fact, using a fairly direct adaptation of the methods used in [11], [12] and elsewhere, one can find almost surely an unbounded subgroup of a unipotent group that has positive Hausdorff dimension which again preserves the leafwise measure. However, as there are uncountably many such subgroups and since these may vary from one point to another, it is not clear how to continue from this by purely dynamical methods.

Decomposing the measure μ according to the Pinsker σ-algebra \mathscr{P}_{a} (for some $a \in A$), we find a subgroup of G that preserves the conditional measure on an atom for \mathcal{P}_{a} and has a semisimple Zariski closure. To classify such subgroups, we use a result of Pink [29] (see also [23] for related results by Larsen and Pink). This allows us to deduce invariance under the group of points of a semisimple subgroup for some local subfield. After this, we use a measure classification result in [28] by Golsefidy and the third author as a replacement of Ratner's measure classification theorem in [32] and [33], extended to the S-arithmetic setting by Ratner [33] (resp., Margulis and Tomanov [27]).

We note that analogues of Ratner's measure rigidity theorems for general unipotent flows in positive-characteristic settings are not yet known. Some special cases have been investigated, specifically in [28], which we use in our proof, and an earlier work [8]. Finally, we note that ideally one would like to have a result similar to [15] in the setting at hand. A general treatment as in [15] will likely require more subtle algebraic considerations.

2. Notation

2.1

Throughout this article, K denotes a global function field. We let v be a place in K, fixed once and for all. Denote by \mathcal{O} the ring of v-integers in K. Put $k:=K_{v}$, the completion of K at v. Then k is identified with $\mathbb{F}_{q}\left(\left(\theta^{-1}\right)\right)$, the field of Laurent series over the finite field \mathbb{F}_{q} where q is a power of the prime number $p=\operatorname{char}(K)$. We denote by \mathfrak{o} the ring of integers in k. Then $\mathfrak{o}=\mathbb{F}_{q}\left[\left[\theta^{-1}\right]\right]$ and the maximal ideal \mathfrak{m} in \mathfrak{o} equals $\theta^{-1} \mathfrak{o}$. The norm on k will be denoted by $|\cdot|_{v}$, or simply by $|\cdot|$; note that with our notation we have $|\theta|_{v}>1$. With our normalizations, $\log _{q}(|r|)$ is the v valuation of $r \in k$. Unless explicitly mentioned otherwise, a subfield $k^{\prime} \subset k$ is always an infinite and closed subfield of k; hence, k / k^{\prime} is a finite extension.

2.2

Let \mathbf{G} be a connected, simply connected, semisimple k-algebraic group. Put $G=$ $\mathbf{G}(k)$. We always assume that \mathbf{G} is k-isotropic. Next, fix a maximal, k-split, k-torus \mathbf{S} of \mathbf{G}. We will always assume that $\mathbf{A}=\mathbf{S}$, in the case of Theorem 1.1, and that \mathbf{A}_{i} is contained in \mathbf{S}_{i}, for $i=1,2$, in the case of Theorem 1.2.

Let ${ }_{k} \Phi$ denote the set of relative roots ${ }_{k} \Phi(\mathbf{S}, \mathbf{G})$; this is a (possibly not reduced) root system (see [1, Theorem 21.6]). Let ${ }_{k} \Phi^{ \pm}$denote positive and negative roots with respect to a fixed ordering on ${ }_{k} \Phi$. Recall from [1, Remark 2.17, Proposition 21.9, Theorem 21.20] that for any $\alpha \in{ }_{k} \Phi$ there exists a unique affine k-split unipotent k subgroup $\mathbf{U}_{(\alpha)}$ which is normalized by $\mathbf{Z}_{\mathbf{G}}(\mathbf{S})$, the centralizer of \mathbf{S}, and its Lie algebra is $\mathfrak{g}_{(\alpha)}:=\mathfrak{g}_{\alpha}+\mathfrak{g}_{2 \alpha}$. Here, as usual, for a root $\beta \in{ }_{k} \Phi$ we let \mathfrak{g}_{β} be the subspace in the Lie algebra on which \mathbf{S} acts by the root β.

A subset $\Psi \subset{ }_{k} \Phi$ is said to be closed if $\alpha \in \Psi$ and $\frac{1}{2} \alpha \in \Phi$ imply that $\frac{1}{2} \alpha \in \Psi$, and if $\alpha, \beta \in \Psi$ and $\alpha+\beta \in{ }_{k} \Phi$ imply that $\alpha+\beta \in \Psi$. A subset $\Psi \subset_{k} \Phi$ is said to be positively closed if it is closed and is contained in ${ }_{k} \Phi^{+}$for some ordering of the root system. For any positively closed subset $\Psi \subset_{k} \Phi$ there exists a unique affine k-split unipotent k-subgroup \mathbf{U}_{Ψ} which is normalized by $\mathbf{Z}_{\mathbf{G}}(\mathbf{S})$, and its Lie algebra is the sum of $\left\{\mathfrak{g}_{(\alpha)}: \alpha \in \Psi\right\}$. Moreover, \mathbf{U}_{Ψ} is generated by $\left\{\mathbf{U}_{(\alpha)}: \alpha \in \Psi \backslash 2 \Psi\right\}$-that is, \mathbf{U}_{Ψ} is k-isomorphic as a k-variety to $\prod_{\alpha \in \Psi \backslash 2 \Psi} \mathbf{U}_{(\alpha)}$, where the product can be taken in any order (see [1, Proposition 21.9 and Theorem 21.20].

If $\Psi=\{\alpha\}$ and no multiple of α is a root, then we simply write \mathbf{U}_{α} for \mathbf{U}_{Ψ}. We also write $U_{\Psi}=\mathbf{U}_{\Psi}(k)$ for a positively closed subset $\Psi \subset{ }_{k} \Phi$. Given a subset $E \subset G$, we let $\langle E\rangle$ denote the closed (in the Hausdorff topology) group generated by E. For each $\alpha \in_{k} \Phi$, we fix a collection of 1-parameter subgroups $\left\{u_{\alpha, i}: 1 \leq i \leq\right.$ $\left.d_{\alpha}\right\}$ generating $U_{(\alpha)}$ and we define $U_{(\alpha)}[R]$ to be the compact group generated by $\left\{u_{\alpha, i}(r):|r|_{v}<R, 1 \leq i \leq d_{\alpha}\right\}$. For any positively closed $\Psi \subset \Phi$, we put

$$
U_{\Psi}[R]=\left\langle\left\{U_{(\alpha)}[R]:(\alpha) \subset \Psi\right\}\right\rangle .
$$

Given $a \in A$, we put

$$
\begin{equation*}
W_{G}^{ \pm}(a)=\left\{g \in G: \lim _{k \rightarrow \pm \infty} a^{-k} g a^{k}=\mathrm{id}\right\} \tag{2.1}
\end{equation*}
$$

to be the expanding (resp., contracting) horospherical subgroup corresponding to a.

2.3

Let ${ }_{k} \Phi(\mathbf{A}, \mathbf{G})$ denote the set of roots of \mathbf{A}, that is, the characters for the adjoint action of \mathbf{A} on the Lie algebra of \mathbf{G}. We consider $\Psi \subset_{k} \Phi(\mathbf{A}, \mathbf{G})$ to be positively closed if

$$
\begin{equation*}
\{\alpha \in \Phi(\mathbf{S}, \mathbf{G}): \alpha \mid A \in \Psi\} \tag{2.2}
\end{equation*}
$$

is positively closed in the sense of Section 2.2, and we set

$$
V_{\Psi}:=\prod_{\left.\alpha\right|_{A} \in \Psi} U_{(\alpha)}
$$

for any positively closed subset $\Psi \subset_{k} \Phi(\mathbf{A}, \mathbf{G})$. We also let \mathbf{V}_{Ψ} denote the underlying algebraic group. An important special case is when $\Psi=[\alpha]=\left\{r \alpha \in{ }_{k} \Phi(\mathbf{A}, \mathbf{G}): r>\right.$ $0\}$ for some $\alpha \in{ }_{k} \Phi(\mathbf{A}, \mathbf{G})$. In this case, $V_{[\alpha]}$ is called a coarse Lyapunov subgroup.

2.4. Inner-type lattices in $\operatorname{SL}(d, k)$

Recall that in Theorem 1.1 we assumed that Γ is an inner-type lattice in $\operatorname{SL}(d, k)$; we recall the definition here. Let D be a division algebra of dimension s^{2} over K, and let $B=\operatorname{Mat}_{r}(D)$ be a central simple algebra over K; we assume that $d=r s$. Let Ω be any field extension of K so that $B \otimes_{K} \Omega \simeq \operatorname{Mat}_{d}(\Omega)$-one can always find a finite separable extension of K with this property. Define the reduced norm $\operatorname{Nrd}_{B}: B \rightarrow \Omega$ of B by $\operatorname{Nrd}_{B}(g):=\operatorname{det}(g \otimes 1)$. Then $\operatorname{Nrd}_{B}(g) \in K$ for all $g \in B$ and $\operatorname{Nrd}_{B}(g)$ is independent of the choice of the splitting field Ω and the implicit isomorphism which we fixed. More generally (see, e.g., [7, Section 22]),

$$
\begin{equation*}
\operatorname{det}(g \otimes 1-\xi \mathrm{id}) \in K[\xi] \quad \text { for every } g \in B \tag{2.3}
\end{equation*}
$$

We now use B to define a K-group which is isomorphic to SL_{d} over the algebraic closure \bar{K} of K. Fix a K-basis \mathcal{C} for D, and consider the (left) regular representation ρ of D into $\operatorname{Mat}_{s^{2}}(K)$; that is, $g \in D$ is sent to the matrix corresponding to $y \mapsto g y$. If we express ρ in the basis \mathscr{C}, we get a system $\left\{f_{\ell}\left(g_{i j}\right)=0\right\}$ of linear equations in entries $g_{i j}$ with coefficients in K that together define the image of ρ. We identify $\operatorname{Mat}_{r s^{2}}(K)$ with $\operatorname{Mat}_{r}\left(\operatorname{Mat}_{s^{2}}(K)\right)$ and we let B^{\prime} be the subset of Mat $_{r s^{2}}(K)$ consisting of elements $g_{i j}^{c d}$ for $1 \leq i, j \leq s^{2}$ and $1 \leq c, d \leq r$ satisfying $\left\{f_{\ell}\left(g_{i j}^{c d}\right)=0\right\}$ for all $1 \leq c, d \leq r$. Then ρ identifies B and B^{\prime}. Moreover, in view of
the above discussion on Nrd_{B}, there exists a polynomial h with coefficients in K so that $\operatorname{Nrd}_{B}(g)=h\left(\rho\left(g^{c d}\right)\right)$ for all $g \in B$ (see [36] and [30, Chapter 2] for a similar discussion and construction).

For any K-algebra Υ, define

$$
\mathrm{SL}_{1, B}(\Upsilon):=\left\{g \in \operatorname{Mat}_{r s^{2}}(\Upsilon): f_{\ell}\left(g_{i j}^{c d}\right)=0, h\left(g_{i j}^{c d}\right)=1\right\} .
$$

If Ω is any field extension of K so that $B \otimes_{K} \Omega \simeq \operatorname{Mat}_{d}(\Omega)$, then $\operatorname{SL}_{1, B}(\Omega)$ is isomorphic to $\operatorname{SL}(d, \Omega)$. In particular, $\mathrm{SL}_{1, B}(\bar{K})$ is isomorphic to $\operatorname{SL}(d, \bar{K})$. A group so defined is called an inner K-form of SL_{d}.

Assume now that B is a central simple algebra over K as above; further, assume that it satisfies $B \otimes_{K} k \simeq \operatorname{Mat}_{d}(k)$. For every place w of K, define

$$
\mathrm{SL}_{1, B}\left(\mathfrak{o}_{w}\right):=\mathrm{SL}_{1, B}\left(K_{w}\right) \cap \mathrm{GL}_{r s^{2}}\left(\mathfrak{o}_{w}\right)
$$

Recall that $\mathrm{SL}_{1, B}(K)$ diagonally embeds in the restricted (with respect to $\mathrm{SL}_{1, B}\left(\mathfrak{o}_{w}\right)$) product $\prod_{w}^{\prime} \mathrm{SL}_{1, B}\left(K_{w}\right)$. Put

$$
\begin{equation*}
\Lambda_{B}=\left\{\gamma \in \mathrm{SL}_{1, B}(K): \gamma \in \mathrm{SL}_{1, B}\left(\mathfrak{o}_{w}\right) \text { for all } w \neq v\right\} \tag{2.4}
\end{equation*}
$$

Then Λ_{B} is a lattice in $\operatorname{SL}(d, k)$ (see, e.g., [26, Chapter I, Section 3]). We will call a subgroup $\Gamma<\operatorname{SL}(d, k)$ a lattice of inner type if there exists a central simple algebra B over K so that Γ is commensurable to Λ_{B}.

3. Preliminary results

3.1. Algebraic structure of compact subgroups of semisimple groups

Given a variety \mathbf{M} which is defined over k. there are two topologies on $\mathbf{M}(k)$, the set of k-points of \mathbf{M}; namely, the Zariski topology and the topology arising from the local field k. We will refer to the latter as the Hausdorff topology.

The following theorems are very special cases of the work of Pink [29] which play an important role in our study. Roughly speaking, they assert that compact and Zariski-dense subgroups of semisimple groups have an algebraic description.

THEOREM A. 1 ([29, Theorem 0.2, Theorem 7.2])
Suppose that $\mathcal{Q} \subset \mathrm{SL}(2, k)$ is a compact and Zariski-dense subgroup. Further, assume that

$$
\begin{equation*}
\mathcal{Q}=\langle\{g \in \mathcal{Q}: g \text { is a unipotent element }\}\rangle . \tag{3.1}
\end{equation*}
$$

Let $k^{\prime \prime}$ be the closed field of quotients generated by $\{\operatorname{tr}(\rho(g)): g \in Q\}$, where ρ is the unique irreducible subquotient of the adjoint representation of PGL_{2}, and set

$$
k^{\prime}:= \begin{cases}k^{\prime \prime} & \text { if } \operatorname{char}(k) \neq 2, \tag{3.2}\\ \left\{c: c^{2} \in k^{\prime \prime}\right\} & \text { if } \operatorname{char}(k)=2 .\end{cases}
$$

Then there is a k-isomorphism (unique up to unique isomorphism)

$$
\varphi: \mathrm{SL}_{2} \times{ }_{k^{\prime}} k \rightarrow \mathrm{SL}_{2}
$$

so that \mathcal{Q} is an open subgroup of $\varphi\left(\operatorname{SL}\left(2, k^{\prime}\right)\right)$.

Proof

Denote by $\overline{\mathcal{Q}}$ the image of \mathcal{Q} under the natural map from SL_{2} to PGL_{2}. Then $\overline{\mathcal{Q}}$ is Zariski-dense in PGL_{2}. By [29, Theorem 0.2], there exist

- a subfield $k^{\prime} \subset k$,
- an absolutely simple adjoint group \mathbf{L} defined over k^{\prime}, and
- a k-isogeny $\phi: \mathbf{L} \times{ }_{k^{\prime}} k \rightarrow \mathrm{PGL}_{2}$, whose derivative vanishes nowhere,
where k^{\prime} is unique, and where \mathbf{L} and ϕ are unique up to unique isomorphism, so that the following conditions hold.
- We have $\bar{Q} \subset \varphi\left(\mathbf{L}\left(k^{\prime}\right)\right)$ (see [29, Theorem 3.6]).
- Let $\widetilde{\mathbf{L}}$ denote the simply connected cover of \mathbf{L}, and let $\widetilde{\phi}$ be the induced isogeny from $\widetilde{\mathbf{L}} \times_{k^{\prime}} k$ to SL_{2}. Then any compact subgroup $Q^{\prime} \subset \widetilde{\phi}\left(\widetilde{\mathbf{L}}\left(k^{\prime}\right)\right)$ which is Zariski-dense and normalized by $[\bar{Q}, \bar{Q}]$ is an open subgroup of $\widetilde{\phi}\left(\widetilde{\mathbf{L}}\left(k^{\prime}\right)\right)$ (see [29, Theorem 7.2]).
The fact that k^{\prime} can be taken as in (3.2) follows from the proof of [29, Proposition 0.6(a)] (see, in particular, [29, Proposition 3.14])-in particular, since we are dealing with groups of type A_{1}, we only need the exceptional definition of k^{\prime} in characteristic 2. Moreover, [29, Proposition 1.6] implies that there are no nonstandard isogenies for groups of type A_{1}. Hence, by [29, Theorem 1.7(b)], the isogeny ϕ above is an isomorphism.

We now prove the other claims. First, let us recall from [20, Théorème 2] that since SL_{2} is simply connected, for every unipotent element $u \in \operatorname{SL}(2, k)$ there exists a parabolic k-subgroup, \mathbf{P}, of SL_{2} so that $u \in R_{u}(\mathbf{P}(k))$. Hence, (3.1) implies that

$$
\begin{equation*}
Q=\left\langle Q \cap R_{u}(P): P \text { is a parabolic subgroup of } \operatorname{SL}(2, k)\right\rangle . \tag{3.3}
\end{equation*}
$$

Let P be a parabolic subgroup so that $Q \cap R_{u}(P) \neq\{1\}$. Let a be a diagonalizable matrix in $\operatorname{PSL}(2, k) \subset \operatorname{PGL}(2, k)$ whose conjugation action contracts $R_{u}(P)$. Then a contracts $\phi(h)$ for any $h \in \mathbf{L}\left(k^{\prime}\right)$, where $\phi(h) \in R_{u}(P)$. Put $a^{\prime}=\phi^{-1}(a)$. The above implies that h can be contracted to identity using conjugation by a^{\prime}. In particular, h is a unipotent element. In view of (3.1) and the above discussion, $\widetilde{\mathbf{L}}\left(k^{\prime}\right)$ contains nontrivial unipotent elements. Thus, we get from [3, Corollaire 3.8] (see also
[20]) that $\widetilde{\mathbf{L}}$ is k^{\prime}-isotropic. Since $\widetilde{\mathbf{L}}$ is simply connected and ϕ is an isomorphism, we get $\widetilde{\mathbf{L}}=\mathrm{SL}_{2}$.

Finally, using [26, Chapter I, Theorem 2.3.1], we have

$$
\mathcal{Q} \cap R_{u}(P) \subset \widetilde{\phi}\left(\widetilde{\mathbf{L}}\left(k^{\prime}\right)\right)
$$

for any parabolic subgroup P of $\operatorname{SL}(2, k)$. Hence, $\mathcal{Q} \subset \widetilde{\phi}\left(\widetilde{\mathbf{L}}\left(k^{\prime}\right)\right)$ by (3.3). This finishes the proof in case (a).

For the second theorem we need some more terminology. By a linear algebraic group \mathbf{G} over $k \oplus k$, we mean $\mathbf{G}_{1} \amalg \mathbf{G}_{2}$, where each \mathbf{G}_{i} is a linear algebraic group over k. The adjoint representation of \mathbf{G} on $\operatorname{Lie}(\mathbf{G})=\operatorname{Lie}\left(\mathbf{G}_{1}\right) \oplus \operatorname{Lie}\left(\mathbf{G}_{2}\right)$ is the direct sum of the adjoint representations of \mathbf{G}_{i} on $\operatorname{Lie}\left(\mathbf{G}_{i}\right)$, and the group of $(k \oplus k)$-points of \mathbf{G} is $\mathbf{G}(k \oplus k)=\mathbf{G}_{1}(k) \times \mathbf{G}_{2}(k)$.

Suppose that $\mathbf{G}=\mathbf{G}_{1} \amalg \mathbf{G}_{2}$ is a fiberwise absolutely almost simple, connected, simply connected $(k \oplus k)$-group. Let $\rho=\left(\rho_{1}, \rho_{2}\right)$, where ρ_{i} is the unique irreducible subquotient of the adjoint representation of $\mathbf{G}_{i}^{\text {ad }}$ (see [29, Section 1]). The trace $\operatorname{tr}(\rho(g))$ for an element $g=\left(g_{1}, g_{2}\right)$ in $\mathbf{G}(k \oplus k)$ is defined by

$$
\operatorname{tr}(\rho(g))=\left(\operatorname{tr}\left(\rho_{1}\left(g_{1}\right)\right), \operatorname{tr}\left(\rho_{2}\left(g_{2}\right)\right)\right) \in k \oplus k
$$

Given a subfield $k^{\prime} \subset k$ and a continuous embedding $\tau: k^{\prime} \rightarrow k$ of fields, we put

$$
\begin{equation*}
\Delta_{\tau}\left(k^{\prime}\right):=\left\{(c, \tau(c)): c \in k^{\prime}\right\} . \tag{3.4}
\end{equation*}
$$

As in [29, pp. 16-17], by a semisimple subring $k^{\prime \prime} \subset k \oplus k$, we mean one of the following:
($k^{\prime \prime}-1$) $k^{\prime \prime}=k_{1} \oplus k_{2}$, where $k_{i} \subset k$ is a closed subfield for $i=1,2$, or
$\left(k^{\prime \prime}-2\right) k^{\prime \prime}=\Delta_{\tau}\left(k^{\prime}\right)$ for a subfield $k^{\prime} \subset k$ and a continuous embedding $\tau: k^{\prime} \rightarrow k$.
If $k^{\prime \prime}=\Delta_{\tau}\left(k^{\prime}\right)$ and \mathbf{H} is a k^{\prime}-group, then we write, by abuse of notation, also \mathbf{H} for the corresponding $\tau\left(k^{\prime}\right)$-group as well as the $\Delta_{\tau}\left(k^{\prime}\right)$-group obtained from \mathbf{H}. The base change of \mathbf{H} from $\Delta_{\tau}(k)$ to $k \oplus k$ is then defined by

$$
\mathbf{H} \times_{\Delta_{\tau}\left(k^{\prime}\right)}(k \oplus k)=\left(\mathbf{H} \times{k^{\prime}} k\right) \coprod\left(\mathbf{H} \times \tau\left(k^{\prime}\right) k\right) .
$$

THEOREM A. 2 ([29, Theorem 0.2, Theorem 7.2])
Assume that $\operatorname{char}(k) \neq 2,3$, and let $\mathbf{G}_{i}, i=1,2$ be absolutely almost simple, connected, simply connected k-groups. Let $Q \subset \mathbf{G}_{1}(k) \times \mathbf{G}_{2}(k)$ be a compact subgroup so that $\pi_{i}(\mathbb{Q})$ is Zariski-dense in \mathbf{G}_{i} for $i=1,2$. Further, assume that

$$
\begin{equation*}
\mathcal{Q}=\langle\{g \in \mathcal{Q}: g \text { is a unipotent element }\}\rangle . \tag{3.5}
\end{equation*}
$$

Let $k^{\prime \prime} \subset k \oplus k$ be defined as follows:
$k^{\prime \prime}:=$ the closed ring of quotients generated by $\{\operatorname{tr}(\rho(g)): g \in \mathbb{Q}\}$.
Then one of the following holds.
(1) There are
(i) closed subfields $k_{i} \subset k$ so that $k^{\prime \prime}=k_{1} \oplus k_{2}$,
(ii) $\quad k_{i}$-groups \mathbf{H}_{i}, and
(iii) ak-isomorphism $\varphi_{i}: \mathbf{H}_{i} \times_{k_{i}} k \rightarrow \mathbf{G}_{i}$,
so that \mathcal{Q} contains an open subgroup of the form

$$
\mathcal{Q}_{1} \times \mathcal{Q}_{2} \subset \varphi_{1}\left(\mathbf{H}_{1}\left(k_{1}\right)\right) \times \varphi_{2}\left(\mathbf{H}_{2}\left(k_{2}\right)\right) .
$$

(2) There are
(i^{\prime}) a closed subfield $k^{\prime} \subset k$ and a continuous embedding $\tau: k^{\prime} \rightarrow k$ so that $k^{\prime \prime}=\Delta_{\tau}\left(k^{\prime}\right)$,
(ii') a k^{\prime}-group \mathbf{H}, and
(iii') $\quad a(k \oplus k)$-isomorphism $\varphi: \mathbf{H} \times_{k^{\prime \prime}}(k \oplus k) \rightarrow \mathbf{G}_{1} \amalg \mathbf{G}_{2}$,
so that \mathcal{Q} is an open subgroup of $\varphi\left(\mathbf{H}\left(k^{\prime \prime}\right)\right)$.
Moreover, $k^{\prime \prime}$ is unique, and \mathbf{H} and φ are unique up to unique isomorphisms.

Proof

Similar to Theorem A.1, these assertions are special cases of results in [29], as we now explain. Let $\mathbf{G}_{i}^{\text {ad }}$ denote the adjoint form of \mathbf{G}_{i} for $i=1$, 2. Denote by \bar{Q} the image of \mathcal{Q} under the natural map from $\mathbf{G}_{1} \amalg \mathbf{G}_{2}$ to $\mathbf{G}_{1}^{\text {ad }} \amalg \mathbf{G}_{2}^{\text {ad }}$. Then $\pi_{i}(\overline{\mathcal{Q}})$ is Zariski-dense in $\mathbf{G}_{i}^{\text {ad }}$ for $i=1,2$.

By [29, Theorem 0.2], we have the following. There exist

- a semisimple subring $k^{\prime \prime} \subset k \oplus k$,
- a fiberwise absolutely simple adjoint group \mathbf{L} defined over $k^{\prime \prime}$, and
- a \quad ($k \oplus k$)-isogeny $\phi: \mathbf{L} \times{ }_{k^{\prime \prime}}(k \oplus k) \rightarrow \mathbf{G}_{1}^{\text {ad }} \amalg \mathbf{G}_{2}^{\text {ad }}$ whose derivative vanishes nowhere,
where $k^{\prime \prime}$ is unique, and \mathbf{L} and ϕ are unique up to unique isomorphism, so that the following hold.
- We have $\bar{Q} \subset \phi\left(\mathbf{L}\left(k^{\prime \prime}\right)\right)$ (see [29, Theorem 3.6]).
- Let $\widetilde{\mathbf{L}}$ denote the simply connected cover of \mathbf{L}, and let $\widetilde{\phi}$ be the induced isogeny from $\widetilde{\mathbf{L}} \times_{k^{\prime \prime}}(k \oplus k)$ to $\mathbf{G}_{1} \amalg \mathbf{G}_{2}$. Then any compact subgroup $\mathcal{Q}^{\prime} \subset \widetilde{\phi}\left(\widetilde{\mathbf{L}}\left(k^{\prime \prime}\right)\right)$ which is fiberwise Zariski-dense and normalized by $[\bar{Q}, \bar{Q}]$ is an open subgroup of $\widetilde{\phi}\left(\widetilde{\mathbf{L}}\left(k^{\prime \prime}\right)\right)$ (see [29, Theorem 7.2]).
Recall our assumption that $\operatorname{char}(k) \neq 2,3$. Therefore, \mathbf{G}_{1} and \mathbf{G}_{2} have no nonstandard isogenies (see [29, Proposition 1.6]). This also implies that $k^{\prime \prime}$ can be taken as in (3.6) (see [29, Propositions 3.13 and 3.14]). Moreover, by [29, Theorem 1.7(b)], the isogeny ϕ above is an isomorphism.

The preceding discussion thus implies that if $k^{\prime \prime}=\Delta_{\tau}\left(k^{\prime}\right)$ (see $\left(k^{\prime \prime}-2\right)$), then (i^{\prime}), (ii'), and (iii') hold. Similarly, if $k^{\prime \prime}=k_{1} \oplus k_{2}$ (see ($k^{\prime \prime}-1$)), then (i), (ii), and (iii) hold, in view of the above discussion and the description of algebraic groups and their isogenies over $k_{1} \oplus k_{2}$ and $k \oplus k$. Finally, recall from (3.5) that \mathcal{Q} is generated by unipotent elements; therefore, $\mathcal{Q} \subset \widetilde{\phi}\left(\widetilde{\mathbf{L}}\left(k^{\prime \prime}\right)\right)$ (see [26, Chapter I, Theorem 2.3.1]). This finishes the proof of case (b).

We will also need the following lemma. Let \mathbf{U}^{+}(resp., \mathbf{U}^{-}) denote the group of upper (resp., lower) triangular unipotent matrices in SL_{2}. Also, let \mathbf{T} denote the group of diagonal matrices in SL_{2}. Put $U^{ \pm}:=\mathbf{U}^{ \pm}(k)$ and $T:=\mathbf{T}(k)$.

LEMMA 3.1
Let the notation be as in Theorem A.1. Put $E=\varphi\left(\mathrm{SL}\left(2, k^{\prime}\right)\right)$. Then
(1) $E=\left\langle E \cap U^{+}, E \cap U^{-}\right\rangle$,
(2) $E \cap T$ is unbounded.

Proof

We showed in the course of the proof of Theorem A. 1 that there are nontrivial unipotent elements $h^{ \pm} \in \operatorname{SL}\left(2, k^{\prime}\right)$ so that $\varphi\left(h^{ \pm}\right) \in U^{ \pm}$, respectively. Since SL_{2} is simply connected, it follows from [20, Théorème 2] that there are k^{\prime}-parabolic subgroups $\mathbf{P}^{ \pm}$of SL_{2} so that $h^{ \pm} \in R_{u}\left(\mathbf{P}^{ \pm}\right)$. The groups $R_{u}\left(\mathbf{P}^{ \pm}\right)$are 1-dimensional k^{\prime}-split unipotent subgroups; hence, $\varphi\left(R_{u}\left(\mathbf{P}^{ \pm}\right)\left(k^{\prime}\right)\right) \subset \varphi\left(\mathrm{SL}_{2}\right)$ is an infinite group. Note that $\varphi\left(\mathrm{SL}_{2}\right)=\mathrm{SL}_{2}$ in Theorem A.1. Let $\mathbf{U}_{ \pm}^{\prime}$ denote the Zariski closure of $\varphi\left(R_{u}\left(\mathbf{P}^{ \pm}\right)\left(k^{\prime}\right)\right)$. Then $\mathbf{U}_{ \pm}^{\prime}$ is a nontrivial connected unipotent subgroup of $\varphi\left(\mathrm{SL}_{2}\right)$ which intersects $\mathbf{U}^{ \pm} \cap \varphi\left(\mathrm{SL}_{2}\right)$ nontrivially. Therefore, $\mathbf{U}_{ \pm}^{\prime}=\mathbf{U}^{ \pm} \cap \varphi\left(\mathrm{SL}_{2}\right)$, which implies that

$$
\begin{equation*}
\varphi\left(R_{u}\left(\mathbf{P}^{ \pm}\right)\left(k^{\prime}\right)\right) \subset U^{ \pm} \cap E . \tag{3.7}
\end{equation*}
$$

Using the fact that SL_{2} is simply connected one more time, we note that $\operatorname{SL}\left(2, k^{\prime}\right)$ is generated by $R_{u}\left(\mathbf{P}^{ \pm}\right)\left(k^{\prime}\right)$ (see [26, Chapter 1, Theorem 2.3.1]). This and (3.7) imply (1) in the lemma.

We now show (2) in the lemma. Let $\mathbf{S}=\mathbf{P}^{+} \cap \mathbf{P}^{-}$. Then \mathbf{S} is a 1-dimensional k^{\prime}-split k^{\prime}-torus; put $S=\mathbf{S}\left(k^{\prime}\right)$. Now

$$
T^{\prime}:=\varphi(S) \subset T U^{+} \cap T U^{-}=T
$$

satisfies the claim in (2).

3.2. Measures invariant under semisimple groups

We will state in this section the measure classification result by Golsefidy and the third author in [28] for probability measures that are invariant under noncompact semisimple groups in the positive-characteristic setting. For this we need some notation and
definitions to help us generalize the notions defined in (2.1) to a general connected group. Let k be a local field. Suppose that \mathbf{M} is a connected k-algebraic group, and let $\lambda: \mathbf{G}_{m} \rightarrow \mathbf{M}$ be a noncentral homomorphism defined over k. Define $-\lambda(\cdot)=\lambda(\cdot)^{-1}$.

Recall that a morphism from \mathbf{G}_{m} to \mathbf{M} is said to have a limit at 0 when it can be extended to a morphism from \mathbf{A}^{1} to \mathbf{M}. As in [35, Section 13.4] and [6, Chapter 2 and Appendix C], we let $\mathbf{P}_{\mathbf{M}}(\lambda)$ denote the smooth closed subgroup of \mathbf{M} defined over k so that

$$
\mathbf{P}_{\mathbf{M}}(\lambda)(R)=\left\{r \in \mathbf{M}(R): \lambda r \lambda^{-1} \text { from } \mathbf{G}_{m} \text { to } \mathbf{M} \text { has a limit at } 0\right\}
$$

for any algebra R / k.
Let $\mathbf{W}_{\mathbf{M}}^{+}(\lambda)$ be the closed normal subgroup of $\mathbf{P}_{\mathbf{M}}(\lambda)$ so that

$$
\mathbf{W}_{\mathbf{M}}^{+}(\lambda)(R)=\left\{r \in \mathbf{M}(R): \lambda r \lambda^{-1} \text { from } \mathbf{G}_{m} \text { to } \mathbf{M} \text { has a limit at } 0\right\}
$$

for any algebra R / k. Similarly, define $\mathbf{W}_{\mathbf{M}}^{+}(-\lambda)$, which we will denote by $\mathbf{W}_{\mathbf{M}}^{-}(\lambda)$. The centralizer of the image of λ is denoted by $\mathbf{Z}_{\mathbf{M}}(\lambda)$. The subgroups $\mathbf{W}_{\mathbf{M}}^{+}(\lambda), \mathbf{Z}_{\mathbf{M}}(\lambda)$, and $\mathbf{W}_{\mathbf{M}}^{-}(\lambda)$ are smooth closed subgroups (see [6, Chapter 2 and Appendix C]).

The multiplicative group \mathbf{G}_{m} acts on $\operatorname{Lie}(\mathbf{M})$ via λ, and the weights are integers. The Lie algebras of $\mathbf{Z}_{\mathbf{M}}(\lambda)$ and $\mathbf{W}_{\mathbf{M}}^{ \pm}(\lambda)$ may be identified with the weight subspaces of this action corresponding to the zero, positive, and negative weights. It is shown in [6, Chapter 2 and Appendix C] that $\mathbf{P}_{\mathbf{M}}(\lambda), \mathbf{Z}_{\mathbf{M}}(\lambda)$, and $\mathbf{W}_{\mathbf{M}}^{ \pm}(\lambda)$ are k-subgroups of \mathbf{M}. Moreover, $\mathbf{W}_{\mathbf{M}}^{+}(\lambda)$ is a normal subgroup of $\mathbf{P}_{\mathbf{M}}(\lambda)$ and the product map

$$
\mathbf{Z}_{\mathbf{M}}(\lambda) \times \mathbf{W}_{\mathbf{M}}^{+}(\lambda) \rightarrow \mathbf{P}_{\mathbf{M}}(\lambda) \text { is a } k \text {-isomorphism of varieties. }
$$

A pseudoparabolic k-subgroup of \mathbf{M} is a group of the form $\mathbf{P}_{\mathbf{M}}(\lambda) R_{u, k}(\mathbf{M})$ for some λ as above, where $R_{u, k}(\mathbf{M})$ denotes the maximal connected normal unipotent k subgroup of \mathbf{M} (see [6, Definition 2.2.1]). We also recall from [6, Proposition 2.1.8(3)] that the product map

$$
\begin{equation*}
\mathbf{W}_{\mathbf{M}}^{-}(\lambda) \times \mathbf{Z}_{\mathbf{M}}(\lambda) \times \mathbf{W}_{\mathbf{M}}^{+}(\lambda) \rightarrow \mathbf{M} \text { is an open immersion of } k \text {-schemes. } \tag{3.8}
\end{equation*}
$$

It is worth mentioning that these results are generalizations to arbitrary groups of analogous and well-known statements for reductive groups.

Let $M=\mathbf{M}(k)$, and put

$$
W_{M}^{ \pm}(\lambda)=\mathbf{W}_{\mathbf{M}}^{ \pm}(\lambda)(k) \quad \text { and } \quad Z_{M}(\lambda)=\mathbf{Z}_{\mathbf{M}}(\lambda)(k)
$$

From (3.8) we conclude that $W_{M}^{-}(\lambda) Z_{M}(\lambda) W_{M}^{+}(\lambda)$ is a Zariski-open dense subset of M, which contains a neighborhood of identity with respect to the Hausdorff topology. For any λ as above, define

$$
\begin{equation*}
M^{+}(\lambda):=\left\langle W_{M}^{+}(\lambda), W_{M}^{-}(\lambda)\right\rangle \tag{3.9}
\end{equation*}
$$

LEMMA 3.2

(1) For any λ as above, $M^{+}(\lambda)$ is a normal and unimodular subgroup of M.
(2) There are only countably many subgroups of the form $M^{+}(\lambda)$ in M.

Combining results in [6, Appendix C] together with part (1) in the lemma, one can actually conclude that there are only finitely many such subgroups. We will only make use of the weaker statement above.

Proof

Part (1) is proved in [28, Lemma 2.1]. We now prove (2). First, note that if λ_{1}, λ_{2} : $\mathbf{G}_{m} \rightarrow \mathbf{M}$ are two homomorphisms so that $\lambda_{1}=g \lambda_{2} g^{-1}$ for some $g \in M$, then $M^{+}\left(\lambda_{1}\right)=g M^{+}\left(\lambda_{2}\right) g^{-1}$. Therefore, by part (1) we have

$$
\begin{equation*}
M^{+}\left(\lambda_{1}\right)=M^{+}\left(\lambda_{2}\right) \quad \text { whenever } \lambda_{1}=g \lambda_{2} g^{-1} \text { for some } g \in M \text {. } \tag{3.10}
\end{equation*}
$$

Now let \mathbf{S} be a maximal, k-split, k-torus in M. By [6, Theorem C.2.3], there is some $g \in M$ so that $g \lambda g^{-1}: \mathbf{G}_{m} \rightarrow \mathbf{S}$. The claim now follows from this, (3.10), and the fact that the finitely generated abelian group $X_{*}(\mathbf{S})=\operatorname{Hom}\left(\mathbf{G}_{m}, \mathbf{S}\right)$ is countable.

Given any subfield $l \subset k$ so that k / l is a finite extension, we let $\mathcal{R}_{k / l}$ denote the Weil's restriction of scalars (see [6, Section A.5]).

In the following, let \mathbf{G} be a connected k-group, and let $\Gamma \subset G$ be a discrete subgroup in $G=\mathbf{G}(k)$. Furthermore, let $k^{\prime} \subset k$ be a closed subfield, and let \mathbf{H} be an absolutely almost simple k^{\prime}-isotropic k^{\prime}-group. Assume that $\varphi: \mathbf{H} \times k^{\prime} k \rightarrow \mathbf{G}$ is a nontrivial k-homomorphism, and put $E=\varphi\left(\mathbf{H}\left(k^{\prime}\right)\right)$. We use in an essential way the following measure classification result by Golsefidy and the third author.

THEOREM B ([28, Theorem 6.9, Corollary 6.10])
Let v be a probability measure on G / Γ which is E-invariant and ergodic. Then there exist
(1) some $l=\left(k^{\prime}\right)^{q} \subset k$, where $q=p^{n}, p=\operatorname{char}(k)$, and n is a nonnegative integer,
(2) a connected l-subgroup \mathbf{M} of $\mathcal{R}_{k / l}(\mathbf{G})$ so that $\mathbf{M}(l) \cap \Gamma$ is Zariski-dense in M,
(3) an element $g_{0} \in G$
such that v is the $g_{0} L g_{0}^{-1}$-invariant probability Haar measure on the closed orbit $g_{0} L \Gamma / \Gamma$ with

$$
L=\overline{M^{+}(\lambda)(\mathbf{M}(l) \cap \Gamma)},
$$

where

- the closure is with respect to the Hausdorff topology, and
- $\quad \lambda: \mathbf{G}_{m} \rightarrow \mathbf{M}$ is a noncentral l-homomorphism, $M^{+}(\lambda)$ is defined in (3.9), and $E \subset g_{0} M^{+}(\lambda) g_{0}^{-1}$.

3.3. A version of the Borel density theorem

Let $k^{\prime} \subset k$ be an infinite closed subfield. We recall from [34, Proposition 1.4] that the discompact radical of a k^{\prime}-group is the maximal k^{\prime}-subgroup which does not have any nontrivial compact k^{\prime}-algebraic quotients. It is shown in [34, Proposition 1.4] that this subgroup exists and the quotient of the k^{\prime}-points of the original group by the k^{\prime}-points of the discompact radical is compact. Let \mathbf{A} be a k-split torus. Let $A_{k^{\prime}}^{\mathrm{sp}} \subset \mathcal{R}_{k / k^{\prime}}(\mathbf{A})\left(k^{\prime}\right)=A$ denote the k^{\prime}-points of the maximal, k^{\prime}-split, subtorus of $\mathcal{R}_{k / k^{\prime}}(\mathbf{A})$. Suppose that \mathbf{V} is a variety defined over k^{\prime}, and assume that $\mathcal{R}_{k / k^{\prime}}(\mathbf{A})$ acts on \mathbf{V} via k^{\prime}-morphisms. In particular, $A=\mathscr{R}_{k / k^{\prime}}(\mathbf{A})\left(k^{\prime}\right)$ acts on $V=\mathbf{V}\left(k^{\prime}\right)$ via k^{\prime}-morphisms.

LEmma 3.3 ([34, Theorem 1.1])
Let (X, η) be an A-invariant ergodic probability space. Let $f: X \rightarrow V$ be an A equivariant Borel map. Then there exists some $v_{0} \in \operatorname{Fix}_{A_{k^{\prime}}}^{\text {sp }}(V)$ so that $f_{*} \eta$ is the A invariant measure on the compact orbit $A v_{0}$. In particular, $f(x) \in A v_{0}$ for η-a.e. x.

Proof

This follows from [34, Theorem 1.1] in view of the fact that $A_{k^{\prime}}^{\mathrm{sp}}$ is the discompact radical of $\mathcal{R}_{k / k^{\prime}}(\mathbf{A})$ as defined in [34] (see also [34, Theorem 3.6]).

3.4. Pinsker σ-algebra and unstable leaves

Throughout this section we assume that \mathbf{G} is a k-isotropic, semisimple k-group, and we let \mathbf{A} be a k-split k-torus in \mathbf{G}. Put $G=\mathbf{G}(k)$ and $A=\mathbf{A}(k)$. Let Γ be a discrete subgroup of G, and put $X=G / \Gamma$. Let $a \in A$ be a nontrivial element. Recall that, for an a-invariant measure μ, we define the Pinsker σ-algebra as

$$
\mathcal{P}_{a}:=\left\{B \in \mathscr{B}: \mathrm{h}_{\mu}(a,\{B, X \backslash B\})=0\right\} .
$$

It is the largest σ-algebra with respect to which μ has zero entropy (see [37] for further discussion). Let us recall the following important and well-known proposition; we outline the proof for the sake of completeness.

PROPOSITION 3.4
The Pinsker σ-algebra, \mathcal{P}_{a}, is equivalent to the σ-algebra of Borel sets foliated by $W_{G}^{+}(a)$ leaves.

Note that the Pinsker σ-algebra for a equals the Pinsker σ-algebra for a^{-1}, which shows that the proposition also applies similarly for $W_{G}^{-}(a)$.

Proof

Suppose that \mathcal{C} is any σ-algebra whose elements are foliated by $W_{G}^{+}(a)$ leaves. Let $\mathrm{p}:(X, \mu) \rightarrow\left(Y, \mathrm{p}_{*} \mu\right)$ be the corresponding factor map. Using the Abramov-Rokhlin conditional entropy formula and the relationship between entropy and leafwise measures (see [14]), we get

$$
\mathrm{h}\left(a,\left(Y, \mathrm{p}_{*} \mu\right)\right)=0
$$

For the converse, we recall from [27, Section 9] (see also [14]) that there is a finite entropy generator (i.e., a countable partition ξ of finite entropy) such that $\bigvee_{n=-\infty}^{\infty} a^{-n} \xi$ is equivalent to the full Borel σ-algebra, and so that in addition the past is subordinate with respect to $W_{G}^{+}(a)$. That is to say, that on the complement of a null set, every atom of $\bigvee_{n=-\infty}^{0} a^{-n} \xi$ is an open subset of a $W_{G}^{+}(a)$-orbit. Hence, after removing a null set, any set measurable with respect to the tail $\bigcap_{k \in \mathbb{N}} \bigvee_{n=-\infty}^{-k} a^{-n} \xi$ is a union of $W_{G}^{+}(a)$-orbits. Since \mathcal{P}_{a} is equivalent to the tail of ξ modulo μ, the claim follows.

The following will be used in the course of the proof of Theorem 1.2.

LEMMA 3.5

Let $X_{i}=G_{i} / \Gamma$ be as in Theorem 1.2. In particular, $G_{i}=\mathbf{G}_{i}(k)$, where \mathbf{G}_{i} is a connected, simply connected, absolutely almost simple group defined over k for $i=1,2$. Let $a=\left(a_{1}, a_{2}\right) \in A$ be such that a generates an unbounded group, and suppose that μ is an ergodic joining of the A_{i}-action on $\left(X_{i}, m_{i}\right)$, for $i=1,2$. Let $\mu=$ $\int_{X_{1} \times X_{2}} \mu_{x}^{\mathcal{P} a} \mathrm{~d} \mu(x)$, where $\mu_{x}^{\mathcal{P} a}$ denotes the conditional measure for μ-a.e. x with respect to the Pinsker σ-algebra \mathcal{P}_{a}. Then there exists a subset $X^{\prime} \subset X_{1} \times X_{2}$ with $\mu\left(X^{\prime}\right)=1$ so that

$$
\pi_{i *}\left(\mu_{x}^{\mathcal{P}_{a}}\right)=m_{i} \quad \text { for all } x \in X^{\prime} \text { and } i=1,2 .
$$

Proof

Let P denote the Pinsker factor of X, and let $\Upsilon: X \rightarrow \mathrm{P}$ be the corresponding factor map. This is a zero entropy factor of X.

Put $Z=X_{1} \times X_{2} \times \mathrm{P}$, and let

$$
\nu=\int \mu_{x}^{\mathcal{P} a} \times \delta_{\Upsilon(x)} \mathrm{d} \Upsilon_{*} \mu(x)
$$

Let $\mathrm{p}_{i}: Z \rightarrow X_{i} \times \mathrm{P}$ be the natural projection. Then $\mathrm{p}_{i * \nu}$ is a measure on $X_{i} \times \mathrm{P}$ which projects to m_{i} and $\Upsilon_{*} \mu$ for $i=1,2$. Now $\left(X_{i}, m_{i}\right)$ is a system with completely positive entropy. This follows, for example, from Proposition 3.4 and the ergodicity of the action of $W^{ \pm}\left(a_{i}\right)$; note that the latter holds since \mathbf{G}_{i} is connected, simply connected, and absolutely almost simple (see [26, Chapter 1, Theorem 2.3.1], [26, Chapter 2, Theorem 2.7]). However, ($\mathrm{P}, \Upsilon_{*} \mu$) is a zero entropy system; therefore, by the disjointness theorem of Furstenberg [19] (see also [21, Theorem 18.16]), we obtain

$$
\begin{equation*}
\mathrm{p}_{i *} \nu=m_{i} \times \Upsilon_{*} \mu \tag{3.11}
\end{equation*}
$$

Let us now decompose $\mathrm{p}_{i *} \nu$ as

$$
\mathrm{p}_{i * \nu}=\int\left(\mathrm{p}_{i * \nu}\right)_{\left(x_{i}, p\right)}^{X_{i} \times \mathcal{B}_{\mathrm{P}}} \mathrm{dp}_{i * \nu} .
$$

Then (3.11) implies that, for $\mathrm{p}_{i * \nu} \nu$-a.e. $\left(x_{i}, p\right)$, we have

$$
\left(\mathrm{p}_{i *} \nu\right)_{\left(x_{i}, p\right)}^{X_{i} \times \mathcal{B}_{\mathrm{P}}}=m_{i} \times \delta_{p}
$$

This in view of the definition of v implies the claim.

3.5. Leafwise measures

Recall that \mathbf{G} is a k-isotropic, semisimple k-group, and let \mathbf{A} be a k-split k-torus in \mathbf{G}. Let \mathbf{S} be a maximal, k-split, k-torus of \mathbf{G} which contains \mathbf{A}. Let ${ }_{k} \Phi(\mathbf{S}, \mathbf{G})$ be the relative root system of \mathbf{G}, and let ${ }_{k} \Phi(\mathbf{A}, \mathbf{G})$ denote the set of roots of \mathbf{A} as in Section 2.

Definition

Let U be an A-normalized unipotent k-subgroup of G contained in some $W_{G}^{-}(a)$. The leafwise measure μ_{x}^{U} along U is defined for μ-a.e. $x \in X$. For all such x, we put

$$
g_{x}^{U}=\operatorname{supp}\left(\mu_{x}^{U}\right) \quad \text { and } \quad \ell_{x}^{U}=\left\{v \in U: v \mu_{x}^{U}=\mu_{x}^{U}\right\} .
$$

The leafwise measures are canonically defined up to proportionality, and we write \propto to denote proportionality. The main case we are interested in is when $V_{\Psi}:=U_{\vartheta(\Psi)}$ is the associated unipotent subgroup of a positively closed set $\Psi \subset_{k} \Phi(\mathbf{A}, \mathbf{G})$, in which case we will use $\mu_{x}^{\Psi}, \boldsymbol{\delta}_{x}^{\Psi}, \ell_{x}^{\Psi}$ to denote $\mu_{x}^{V_{\Psi}}, \boldsymbol{f}_{x}^{V_{\Psi}}, \ell_{x}^{V_{\Psi}}$, respectively.

LEMMA 3.6

Under the above assumptions, almost surely $\ell_{x}^{U}=\left\{v \in U: v \mu_{x}^{U} \propto \mu_{x}^{U}\right\}$.

Proof

This is true in general, but is particularly easy in the positive-characteristic case. Suppose that $u \in U$ is such that $u \mu_{x}^{U} \propto \mu_{x}^{U}$. Then $u \mu_{x}^{U}=\kappa \mu_{x}^{U}$ for some $\kappa>0$. Since U is unipotent, u is torsion of exponent p^{n} for some n, and hence $\kappa^{p^{n}}=1$, which implies (since $\kappa>0$) that $\kappa=1$.

We recall some properties of leafwise measures which will be used throughout this article. Our formulation is taken from [13] (see [25]; see also [14] and the references therein).

LEMMA 3.7

Let U be an A-normalized, unipotent, k-subgroup of G contained in some $W_{G}^{-}(a)$. Then there is a conull subset $X^{\prime} \subset X$ with the following properties.
(1) For all $x \in X^{\prime}$, the map $x \mapsto \mu_{x}^{U}$ from X to the space of Radon measures on U is normalized so that $\mu_{x}^{U}([1])=1$ is a measurable map. In particular, μ_{x}^{U} is defined for all $x \in X^{\prime}$.
(2) For every $x \in X^{\prime}$ and every $u \in U$ so that $u x \in X^{\prime}$, we have $\mu_{x}^{U} \propto\left(\mu_{u x}^{U}\right) u$, where $\left(\mu_{u x}^{U}\right) u$ denotes the pushforward of $\mu_{u x}^{U}$ under the map $v \mapsto v u$.
(3) For every $x \in X^{\prime}$, we have $\mu_{x}^{U}(U[1])=1$ and $\mu_{x}^{U}(U[\epsilon])>0$ for all $\epsilon>0$.
(4) Suppose that μ is a-invariant under some $a \in A$. Then for μ-a-e. $x \in X$, we have $\mu_{a x}^{U} \propto\left(a \mu_{x}^{U} a^{-1}\right)$.

Lemma 3.8 ([13, Section 6])
Let $a \in A$ be so that the Zariski closure of $\langle a\rangle, \mathbf{A}^{\prime}$ say, is k-isomorphic to \mathbf{G}_{m} and so that $\mathbf{A}^{\prime}(k) /\langle a\rangle$ is compact. Suppose that μ is a-invariant, and let U be an A normalized, unipotent, k-subgroup of G contained in $W_{G}^{-}(a)$. Let Q be any compact open subgroup of U. Then for μ-a.e. x, the Zariski closure of $\ell_{x}^{U} \cap Q$ is normalized by a and contains \mathscr{l}_{x}^{U}.

Proof

Let \mathcal{E} denote a countably generated σ-algebra that is equivalent to the σ-algebra of a-invariant sets. Then $\left(\mu_{x}^{\mathcal{E}}\right)_{y}^{U}=\mu_{y}^{U}$ for $\mu_{x}^{\mathcal{E}}$-a.e. y and μ-a.e. x (see, e.g., [14]). Therefore, we may assume that μ is a-ergodic. Let \mathfrak{U}_{0} denote a fixed compact open subgroup of U. For any $n \in \mathbb{Z}$, define

$$
\mathfrak{U}_{n}=a^{n} \mathfrak{U}_{0} a^{-n}
$$

Then $\mathfrak{U}_{n} \subset Q$ for large enough n; hence, it suffices to prove the lemma for $Q=\mathfrak{U}_{n}$. Let $X^{\prime} \subset X$ be a conull set where Lemma 3.7 holds. For any $x \in X^{\prime}$ and any $n \in \mathbb{Z}$, define

$$
\mathbf{F}_{x, n}=\text { the Zariski closure of } \mathfrak{U}_{n} \cap d_{x}^{U}
$$

Then $\mathbf{F}_{x, n}$ is a k-group (see, e.g., [35, Lemma 11.2.4(ii)]).
Note also that $\mathbf{F}_{x, n} \subset \mathbf{F}_{x, m}$ whenever $n \geq m$. Therefore, there exists some $n_{0}=$ $n_{0}(x)$ so that $\operatorname{dim} \mathbf{F}_{x, n}=\operatorname{dim} \mathbf{F}_{x, n_{0}}$ for all $n \geq n_{0}$, where dim is the dimension as a k-group. Since the number of connected components of $\mathbf{F}_{x, n_{0}}$ is finite, there exists $n_{1}=n_{1}(x)$ so that $\mathbf{F}_{x, n}=\mathbf{F}_{x, n_{1}}$ for all $n \geq n_{1}$. Put $\mathbf{F}_{x}:=\mathbf{F}_{x, n_{1}}$.

The definition of $\mathbf{F}_{x, n}$, in view of Lemma 3.7(4), implies that

$$
\mathbf{F}_{a x, n+1}=a \mathbf{F}_{x, n} a^{-1}
$$

Therefore, we have

$$
\begin{equation*}
\mathbf{F}_{a x}=a \mathbf{F}_{x} a^{-1} \tag{3.12}
\end{equation*}
$$

Let $k[\mathbf{G}]$ denote the ring of regular functions of \mathbf{G}. For every $x \in X^{\prime}$, let $J_{x} \subset$ $k[\mathbf{G}]$ be the ideal of regular functions vanishing on \mathbf{F}_{x}. Let $m(x)$ be the minimum integer so that J_{x} is generated by polynomials of degree at most $m(x)$. In view of (3.12), we have $m(x)=m(a x)$. Since μ is a-ergodic, we have that $x \mapsto m(x)$ is essentially constant. Replacing X^{\prime} by a conull subset if necessary, we assume that $m(x)=m$ for all $x \in X^{\prime}$.

Let $\Upsilon=\{h \in k[\mathbf{G}]: \operatorname{deg}(h) \leq m\}$. Using a similar argument as above, we may assume that $\operatorname{dim}\left(J_{x} \cap \Upsilon\right)=\ell$ for all $x \in X^{\prime}$.

Let $f: X \rightarrow \operatorname{Grass}(\ell)$, the Grassmannian of ℓ-dimensional subspaces of Υ, be the map defined by $f(x)=J_{x} \cap \Upsilon$ for all $x \in X^{\prime}$. Then f is an A-equivariant Borel map. Therefore, $v=f_{*} \mu$ is a probability measure on $\operatorname{Grass}(\ell)$ which is invariant and ergodic for a k-algebraic action of a on $\operatorname{Grass}(\ell)$. Hence,

$$
\bar{\nu}=\int_{\mathbf{A}^{\prime}(k) /\langle a\rangle} b_{*} \nu \mathrm{~d} b
$$

is an $\mathbf{A}^{\prime}(k)$-invariant, ergodic probability measure on $\operatorname{Grass}(\ell)$ equipped with an algebraic action of $\mathbf{A}^{\prime}(k)$. By [34, Theorem 3.6], \bar{v} is the delta mass at an $\mathbf{A}^{\prime}(k)$-fixed point, which implies that $v=\bar{v}$ is the delta mass at an $\mathbf{A}^{\prime}(k)$-fixed point. Therefore, f is essentially constant. Using the definition of f, we get that $a \mathbf{F}_{x} a^{-1}=\mathbf{F}_{x}$ for μ-a.e. x. This, (3.12), and the ergodicity of μ imply that $\mathbf{F}_{x}=\mathbf{F}$ for μ-a.e. x.

Now let $C \subset X^{\prime}$ be a compact subset with $\mu(C)>1-\epsilon$ so that

- $\quad n_{1}(x) \leq N_{1}$ for all $x \in C$,
- $\quad \mathbf{F}_{x}=\mathbf{F}$ for all $x \in C$.

By the pointwise ergodic theorem, for almost every $x \in X$, there is a sequence $m_{i} \rightarrow$ ∞ so that $a^{m_{i}} x \in C$ for all i. Now let x be such a point, and let $u \in d_{x}^{U}$. By Lemma 3.7(4), we have

$$
a^{m_{i}} u a^{-m_{i}} \in \mathfrak{U}_{N_{1}} \cap d_{a^{m_{i x}}}^{U} \subset \mathbf{F}(k)
$$

for all large enough i. Since $\mathbf{F}(k)$ is normalized by a, we get $u \in \mathbf{F}(k)$.

From this point on, we will assume that μ is A-invariant. We recall the product structure for leafwise measures (see [10]). Our formulation is taken from [14, Proposition 8.5 and Corollary 8.8].

LEMMA 3.9
Fix some $a \in A$. Let $H=T \ltimes U$, where $U<W_{G}^{-}(a)$ and $T<Z_{G}(a)$. Then there exists a conull subset $X^{\prime} \subset X$ with the following properties.
(1) For every $x \in X^{\prime}$ and $h \in H$ such that $h x \in X^{\prime}$, we have $\mu_{x}^{T} \propto\left(\mu_{h x}^{T}\right) t$, where $h=u t=t u^{\prime}$ for $t \in T$ and $u, u^{\prime} \in U$.
(2) For every $x \in X^{\prime}$, we have $\mu_{x}^{H} \propto \iota_{*}\left(\mu_{x}^{T} \times \mu_{x}^{U}\right)$, where $\iota(t, u)=t u$ is the product map.
(3) Assume further that T centralizes U. Then for all $x \in X^{\prime}$ and $t \in T$ so that $t x \in X^{\prime}$, we have $\mu_{x}^{U} \propto \mu_{t x}^{U}$.

By induction, as in [14, Section 8], this lemma implies a product structure for the conditional measures μ_{x}^{Ψ}.

PROPOSITION 3.10 ([10, Theorem 8.4])
Let $\Psi \subset_{k} \Phi(\mathbf{A}, \mathbf{G})$ be a positively closed subset of Lyapunov exponents. Let $\left[\alpha_{1}\right],\left[\alpha_{2}\right]$, $\ldots,\left[\alpha_{k}\right]$ be any ordering of the course Lyapunov weights contained in Ψ. Then for μ-a.e. $x \in X$,

$$
\mu_{x}^{\Psi} \propto \iota_{*}\left(\mu_{x}^{\left[\alpha_{1}\right]} \times \cdots \times \mu_{x}^{\left[\alpha_{k}\right]}\right)
$$

(For the proof, see, e.g., [10] or [14, Section 8].)

LEMMA 3.11

Suppose that μ is an A-invariant, ergodic probability measure. Let $\Psi \subset_{k} \Phi(\mathbf{A}, \mathbf{G})$ be a positively closed subset, and assume that $\alpha, \beta \in \Psi$ are linearly independent roots. Let $\Psi^{\prime} \subset \Psi$ be those elements of Ψ that can be expressed as a linear combination of α and β with strictly positive coefficients. Then Ψ^{\prime} is also closed, and for μ-a.e. x we have

$$
\left[\mathcal{S}_{x}^{[\alpha]}, \mathscr{f}_{x}^{[\beta]}\right] \subset \mathscr{l}_{x}^{\Psi} \quad \text { and } \quad\left[\mathscr{g}_{x}^{[\alpha]}, \mathscr{f}_{x}^{[\beta]}\right] \subset \mathscr{l}_{x}^{\Psi^{\prime}}
$$

Proof
By [2, Section 2.5], for example, both Ψ^{\prime} and $\Psi^{\prime} \cup\{\alpha, \beta\}$ are positively closed subsets
of ${ }_{k} \Phi(\mathbf{A}, \mathbf{G})$. Let $\left[\gamma_{1}\right], \ldots,\left[\gamma_{\ell}\right]$ be an enumeration of all course Lyapunovs in $\Psi \backslash$ $\left(\Psi^{\prime} \cup\{\alpha, \beta\}\right)$. Then by Proposition 3.10,

$$
\begin{align*}
\mu_{x}^{\Psi} & \propto \iota_{*}\left(\mu_{x}^{[\alpha]} \times \mu_{x}^{[\beta]} \times \mu_{x}^{\Psi^{\prime}} \times \mu_{x}^{\left[\gamma_{1}\right]} \times \cdots \times \mu_{x}^{[\gamma,]}\right) \\
& \propto \iota_{*}\left(\mu_{x}^{[\beta]} \times \mu_{x}^{[\alpha]} \times \mu_{x}^{\Psi^{\prime}} \times \mu_{x}^{\left[\gamma_{1}\right]} \times \cdots \times \mu_{x}^{[\gamma,]}\right) \tag{3.13}
\end{align*}
$$

where ι is the product map. Now let $f \in C_{c}\left(V^{\Psi}\right)$. Then (3.13) and Fubini's theorem imply that

$$
\begin{aligned}
& \int f(g) \mathrm{d} \mu_{x}^{W} \\
& \quad= \kappa \int f\left(v_{\alpha} v_{\beta} v_{\Psi^{\prime}} v_{\gamma_{1}} \cdots v_{\gamma \ell}\right) \mathrm{d} \mu_{x}^{V_{[\alpha]}} \mathrm{d} \mu_{x}^{V_{[\beta]}} \mathrm{d} \mu_{x}^{\Psi^{\prime}} \mathrm{d} \mu_{x}^{V_{\left[\gamma_{1}\right]}} \cdots \mathrm{d} \mu_{x}^{V_{\left[\gamma_{\ell}\right]}} \\
&=\kappa^{\prime} \int f\left(v_{\beta} v_{\alpha} v_{\Psi^{\prime}} v_{\gamma_{1}} \cdots v_{\gamma \ell}\right) \mathrm{d} \mu_{x}^{V_{[\alpha]}} \mathrm{d} \mu_{x}^{V_{[\beta]}} \mathrm{d} \mu_{x}^{\Psi^{\prime}} \mathrm{d} \mu_{x}^{V_{\left[\nu_{1}\right]}} \cdots \mathrm{d} \mu_{x}^{V_{\left[\nu_{\ell}\right]}} \\
&=\kappa^{\prime} \int f\left(v_{\alpha} v_{\beta}\left[v_{\beta}, v_{\alpha}\right] v_{\Psi^{\prime}} v_{\gamma_{1}} \cdots v_{\gamma \ell}\right) \mathrm{d} \mu_{x}^{V_{[\alpha]}} \mathrm{d} \mu_{x}^{V_{[\beta]}} \mathrm{d} \mu_{x}^{\Psi^{\prime}} \mathrm{d} \mu_{x}^{V_{\left[\gamma_{1}\right]}} \cdots \mathrm{d} \mu_{x}^{V_{\left[\gamma_{\ell}\right]}}
\end{aligned}
$$

for κ, κ^{\prime} independent of f. From this we get for $\mu_{x}^{[\alpha]}$-a.e. $v_{\alpha} \in V_{[\alpha]}$ and $\mu_{x}^{[\beta]}$-a.e. $v_{\beta} \in V_{[\beta]}$,

$$
\mu_{x}^{\Psi^{\prime}} \propto\left[v_{\beta}, v_{\alpha}\right] \mu_{x}^{\Psi^{\prime}}
$$

hence, applying Lemma 3.6, we deduce that $\left[v_{\beta}, v_{\alpha}\right] \mu_{x}^{\Psi^{\prime}}=\mu_{x}^{\Psi^{\prime}}$. Applying Proposition 3.10 again, we conclude that also $\left[v_{\beta}, v_{\alpha}\right] \mu_{x}^{\Psi}=\mu_{x}^{\Psi}$. Since ℓ_{x}^{Ψ} is a (Hausdorff) closed subgroup of V^{Ψ}, it follows that, almost surely,

$$
\begin{equation*}
\left[\mathcal{S}_{x}^{[\alpha]}, \delta_{x}^{[\beta]}\right] \subset \mathscr{d}_{x}^{\Psi} \tag{3.14}
\end{equation*}
$$

LEMMA 3.12 ([10, Section 8])

Let μ be an A-invariant probability measure on X. There is a conull subset $X^{\prime} \subset X$ with the following property. Let $\Psi \subset_{k} \Phi(\mathbf{A}, \mathbf{G})$ be a positively closed subset such that $V_{\Psi} \subset W_{G}^{-}(a)$ for some a. Then for all $x \in X^{\prime}$, if $v=\prod v_{\alpha} \in d_{x}^{\Psi}$, with $v_{\alpha} \in V_{[\alpha]}$ for all $[\alpha] \subset \Psi$, then $v_{\alpha} \in \mathcal{l}_{x}^{[\alpha]}$ for all $[\alpha]$.

Proof

We say that a root $\alpha \in \Psi$ is exposed (see [14]) if there exists an element $b \in A$ so that $\alpha(b)=1$ and $|\beta(b)|<1$ for all $\beta \in \Psi \backslash[\alpha]$. If Ψ is as above, then clearly it has at least one exposed Lyapunov weight α, and that $\Psi^{\prime}=\Psi \backslash[\alpha]$ is also positively closed. Moreover, for any $v_{\alpha} \in V_{[\alpha]}$ and $v^{\prime} \in V_{\Psi^{\prime}}$, it holds that $\left[v_{\alpha}, v^{\prime}\right] \in V_{\Psi^{\prime}}$. Suppose that $v_{\alpha} v^{\prime} \in \mathcal{l}_{x}^{\Psi}$ with $v_{\alpha} \in V_{[\alpha]}$ and $v^{\prime} \in V_{\Psi^{\prime}}$. Then

$$
\begin{aligned}
\int f(g) \mathrm{d} \mu_{x}^{\Psi} & =\kappa \int f\left(g_{\alpha} g^{\prime}\right) \mathrm{d} \mu_{x}^{V_{[\alpha]}} \mathrm{d} \mu_{x}^{\Psi^{\prime}} \\
& =\int f\left(v_{\alpha} v^{\prime} g\right) \mathrm{d} \mu_{x}^{\Psi} \\
& =\kappa \int f\left(v_{\alpha} v^{\prime} g_{\alpha} g^{\prime}\right) \mathrm{d} \mu_{x}^{V_{[\alpha]}} \mathrm{d} \mu_{x}^{\Psi^{\prime}} \\
& =\kappa \int f\left(v_{\alpha} g_{\alpha} v^{\prime}\left[v^{\prime}, g_{\alpha}\right] g^{\prime}\right) \mathrm{d} \mu_{x}^{V_{[\alpha]}} \mathrm{d} \mu_{x}^{\Psi^{\prime}}
\end{aligned}
$$

for some κ independent of f.
It follows by uniqueness of decomposition that for $\mu_{x}^{V_{[\alpha]}}$ a.e. g_{α},

$$
v^{\prime}\left[v^{\prime}, g_{\alpha}\right] \mu_{x}^{\Psi^{\prime}} \propto \mu_{x}^{\Psi^{\prime}}
$$

hence, by Lemma 3.6 we have that $v^{\prime}\left[v^{\prime}, g_{\alpha}\right] \in \mathcal{l}_{x}^{\Psi^{\prime}}$. It follows that $v_{\alpha} \mu_{x}^{V_{[\alpha]}}=\mu_{x}^{V_{[\alpha]}}$ and $v_{\alpha} \in \ell_{x}^{[\alpha]}$. Moreover, as for x a.e., the identity is in support of $\mu_{x}^{V_{[\alpha]}}$ by Lemma 3.7(3), we have that $v^{\prime} \in \mathcal{J}_{x}^{\Psi^{\prime}}$. The lemma now easily follows by induction on the cardinality of Ψ.

For any $W_{G}^{ \pm}(a)$, we fix some increasing sequence of compact open subgroups K_{n} with $W_{G}^{ \pm}(a)=\bigcup_{n} K_{n}$ and some decreasing sequence of compact open subgroups $O_{n} \subset K_{1}$ with $\{e\}=\bigcap_{n} O_{n}$. Then any closed subgroup $\ell<W_{G}^{ \pm}(a)$ is determined by the finite subgroups $\ell \cap K_{n} / O_{n}<K_{n} / O_{n}$, which allows us to speak of measurability of a subgroup depending on $x \in X$.

LEMMA 3.13

Let $a \in$ A. Then $\mathscr{l}_{x}^{W_{G}^{ \pm}(a)}$ is \mathcal{P}_{a}-measurable.

Proof

We prove this for $W_{G}^{-}(a)$; the proof in the other case is similar. There is a full measure set $X^{\prime} \subset X$ so that, whenever $x, w x \in X^{\prime}$, for some $w \in W_{G}^{-}(a)$, then we have

$$
\mu_{x}^{W_{G}^{-}(a)} \propto \mu_{w x}^{W_{G}^{-}(a)} w .
$$

This implies that $\ell_{x}^{W_{G}^{-}(a)}=\ell_{w x}^{W_{G}^{-}(a)}$. The lemma now follows from Proposition 3.4.

LEMMA 3.14

Let $\alpha \in{ }_{k} \Phi(\mathbf{A}, \mathbf{G})$ be such that $V_{[\alpha]}<W_{G}^{-}(a)$. Then the subgroup $\ell_{x}^{[\alpha]}$ is $\mathcal{P}_{a^{-}}$ measurable.

Proof

In view of Proposition 3.4, it suffices to show that $x \mapsto \ell_{x}^{[\alpha]}$ is constant along $W_{G}^{-}(a)-$ leaves almost surely, which is an immediate corollary of Lemmas 3.13 and 3.12.

4. High entropy part of Theorem 1.1

We now start the proof of Theorem 1.1. Recall that A is the full diagonal subgroup of $G=\operatorname{SL}(d, k)$. Throughout Sections 4-6, μ denotes an ergodic A-invariant measure on G / Γ.

For any $\alpha \in \Phi$, there exists a k-embedding $\varphi_{\alpha}: \mathrm{SL}_{2} \rightarrow \mathrm{SL}_{d}$ so that $U_{\alpha}=$ $\varphi_{\alpha}\left(U^{+}\right)$and $U_{-\alpha}=\varphi_{\alpha}\left(U^{-}\right)$, where $U^{ \pm}$denote the upper and lower triangular unipotent subgroups of SL_{2}. We let $H_{\alpha}:=\operatorname{Im}\left(\varphi_{\alpha}\right)$. Let T denote the diagonal subgroup of SL_{2}. Let $t_{\alpha}=\left(\begin{array}{cc}\theta & 0 \\ 0 & \theta^{-1}\end{array}\right) \in T$ be an element so that $\alpha\left(\varphi_{\alpha}\left(t_{\alpha}\right)\right)=\theta^{2}$ and $\beta\left(\varphi_{\alpha}\left(t_{\alpha}\right)\right)=\theta^{\varepsilon}$ with $\varepsilon \in\{-1,0,1\}$ for all $\beta \in \Phi \backslash\{ \pm \alpha\}$, where θ is as in Section 2.1. Put

$$
a_{\alpha}:=\varphi_{\alpha}\left(t_{\alpha}\right)
$$

Then $U_{\alpha} \subset W_{G}^{+}\left(a_{\alpha}\right)$.
Given a root $\alpha \in \Phi$, we define

$$
\Phi_{\alpha}^{+}:=\left\{\beta \in \Phi: U_{\beta} \subset W^{+}\left(a_{\alpha}\right)\right\},
$$

and put $\Phi_{\alpha}^{-}=-\Phi_{\alpha}^{+}$.

LEMMA 4.1
Let $\alpha \in \Phi$, and let $\beta \in \Phi_{\alpha}^{-} \backslash\{-\alpha\}$. The following hold:
(1) $\beta+\alpha \in \Phi_{\alpha}^{+}$,
(2) if $\beta+n \alpha \in \Phi$ for some integer $n \geq 1$, then $n=1$,
(3) $\alpha \in \Phi_{\beta}^{-}$.

Proof

Assertions (1) and (3) are general facts, which follow from the definitions and hold for any root system. Part (2) is a special feature of root systems of type A, which is the case we are concerned with here.

A well-known theorem by Ledrappier and Young [24] relates the entropy, the dimension of conditional measures along invariant foliations, and Lyapunov exponents, for a general C^{2} map on a compact manifold, and [27, Section 9] provides an adaptation of the general results to flows on locally homogeneous spaces.

The following is taken from [9, Lemma 6.2] (see also [11, Proposition 3.1] and [14]). For any root $\alpha \in \Phi$, there exists $s_{\alpha}(\mu) \in[0,1]$ so that, for any $a \in A$ with
$|\alpha(a)| \geq 1$, we have

$$
\mathrm{h}_{\mu}\left(a, U_{\alpha}\right)=s_{\alpha}(\mu) \log |\alpha(a)|,
$$

where $\mathrm{h}_{\mu}\left(a, U_{\alpha}\right)$ denotes the entropy contribution of U_{α}. Indeed, $s_{\alpha}(\mu)$ is defined as the local dimension of the leafwise measure along α as we now recall. Define

$$
D_{\mu}\left(a_{\alpha}, U_{\alpha}\right)(x)=\lim _{|n| \rightarrow \infty} \frac{\log \left(\mu_{x}^{U_{\alpha}}\left(a_{\alpha}^{n} U_{\alpha}[1] a_{\alpha}^{-n}\right)\right)}{n}
$$

where the limit exists by [10, Lemma 9.1], and define $\mathrm{h}_{\mu}\left(a_{\alpha}, U_{\alpha}\right)=\int D_{\mu}\left(a_{\alpha}\right.$, $\left.U_{\alpha}\right) \mathrm{d} \mu$, the entropy contribution of U_{α}. Since $D_{\mu}\left(a_{\alpha}, U_{\alpha}\right)(x)$ is A-invariant and μ is A-ergodic, we have

$$
\mathrm{h}_{\mu}\left(a_{\alpha}, U_{\alpha}\right)=D_{\mu}(a, U)(x) \quad \text { for } \mu \text {-a.e. } x .
$$

Therefore, $s_{\alpha}(\mu)=\frac{1}{2} D_{\mu}(a, U)(x)$ for μ-a.e. x. Moreover, the following properties hold:
$\left(s_{\alpha}-1\right) s_{\alpha}(\mu)=0$ if and only if μ_{x}^{α} is the delta mass at the identity,
$\left(s_{\alpha}-2\right) s_{\alpha}(\mu)=1$ if and only μ_{x}^{α} is the Haar measure on U_{α},
($s_{\alpha}-3$) for any $a \in A$ we have

$$
\mathrm{h}_{\mu}(a)=\sum s_{\alpha}(\mu) \log ^{+}|\alpha(a)|,
$$

where $\log ^{+}(\ell)=\max \{0, \log \ell\}$.
The following is the main result of this section.
PROPOSITION 4.2 ([15, Theorem 5.1])
Let $\alpha \in \Phi$ be so that μ_{x}^{α} is nontrivial for μ-a.e. x. Then at least one of the following holds.
(1) We have $\mu_{x}^{\beta}=\delta_{\text {id }}$ for all $\beta \in \Phi_{\alpha}^{-} \backslash\{-\alpha\}$ and μ-a.e. x.
(2) $\ell_{x}^{ \pm \alpha}$ are nondiscrete subgroups of $U_{ \pm \alpha}$ for μ-a.e. x.

Proof

Recall that, for $\operatorname{SL}(d)$, the roots α can be identified with ordered tuples of indices $(i, j) \in\{1, \ldots, d\}$ satisfying $i \neq j$. We use the local dimensions $s_{\alpha}=s_{(i, j)}$ to define a relation on $\{1, \ldots, d\}$. In fact, we write $i \precsim j$ if $i=j$ or $s_{(i, j)}>0$, and we write $i \sim j$ if $i \precsim j \precsim i$. Lemma 3.11 implies that \precsim is transitive; that is, if $i \precsim j \precsim k$, then also $i \precsim k$ for $i, j, k \in\{1, \ldots, d\}$.

It follows that \sim is an equivalence relation on $\{1, \ldots, d\}$ and that \precsim descends to a partial order on the quotient by \sim. Let us write $[i]$ for the equivalence classes with respect to \sim. To simplify matters, we may assume (by applying a suitable element of
the Weyl group) that, for every i, the equivalence class $[i]=\{m, m+1, m+2, \ldots, n\}$ consists of consecutive indices for some $m \leq i$ and $n \geq i$. Moreover, we may assume that $i \precsim j$ for two indices implies that either $i \sim j$ or $i \leq j$.

We now prove that $i \precsim j$ implies that $i \sim j$. Otherwise, we claim that we can choose a diagonal matrix a with two different eigenvalues (equal to powers of θ; see Section 2.1) such that the leafwise measures of the stable horospherical subgroup $W_{G}^{-}(a)$ are nontrivial and such that the leafwise measures of the unstable horospherical subgroup $W_{G}^{+}(a)$ are trivial almost surely. More precisely, assuming $[i]=\{m, m+1, m+2, \ldots, n\}$ (so that by the indirect assumption, $j>n$), we define a to be the diagonal matrix with the first m eigenvalues equal to $\theta^{(d-m)}$ and the last $d-m$ eigenvalues equal to θ^{-m}. By assumption, $s_{(i, j)}>0$, which implies that $h_{\mu}(a)>0$ by $\left(s_{\alpha}-3\right)$, the choice of a, and since $i \leq n<j$. However, for all $k \leq n<\ell$ we have $s_{\ell, k}=0$ (by our ordering of the indices) and hence $h_{\mu}\left(a^{-1}\right)=0$ also by ($s_{\alpha}-3$). This contradiction proves the claim that $i \precsim j$ implies that $i \sim j$.

Given a root $\alpha=(i, j)$ with $s_{\alpha}>0$, there are now two options: either $[i]=\{i, j\}$ or the cardinality of $[i]$ is at least 3 . In the first case, we have $s_{(i, \ell)}=s_{(j, \ell)}=s_{(\ell, i)}=$ $s_{(\ell, j)}=0$ for all $\ell \notin\{i, j\}$, and translating this to the language of roots, we obtain (1). In the second case, let $\ell \in[i] \backslash\{i, j\}$ and apply Lemma 3.11 for the roots $(i, \ell),(\ell, j)$ to see that $\ell_{x}^{(i, j)}$ (and similarly also $\ell_{x}^{(j, i)}$) is a nondiscrete group almost surely.

5. Low entropy part of Theorem 1.1

We use the notation introduced in Section 4. In view of Proposition 4.2, the following is the standing assumption for the rest of this section. There is a root $\alpha \in \Phi$ so that

$$
\begin{equation*}
s_{\alpha}=s_{-\alpha}>0 \quad \text { and } \quad s_{\beta}=0 \tag{5.1}
\end{equation*}
$$

for any $\beta \in \Phi_{\alpha}^{ \pm} \backslash\{\alpha,-\alpha\}$. Let us put

$$
Z_{\alpha}:=Z_{G}\left(U_{\alpha}\right) \cap Z_{G}\left(U_{-\alpha}\right)=Z_{G}\left(H_{\alpha}\right)
$$

We have the following.
LEmma 5.1 ([11, Lemma 4.4(1)])
There is a null set N so that, for all $x \in X \backslash N$, we have

$$
W_{G}^{+}\left(a_{\alpha}\right) x \cap(X \backslash N) \subset U_{\alpha} x
$$

In particular, for all $x \in X \backslash N$ if $u \in W_{G}^{+}\left(a_{\alpha}\right)$ is so that $u x \in W_{G}^{+}\left(a_{\alpha}\right) x \cap(X \backslash N)$ and $\mu_{x}^{\alpha}=\mu_{u x}^{\alpha}$, then $u \in l_{x}^{\alpha}$.

Proof

In view of Lemma 3.9, there is a null set N_{1} so that, for all $x \in X \backslash N_{1}$, we have that
$\mu_{x}^{W_{G}^{+}\left(a_{\alpha}\right)}$ is a product of the leafwise measures μ_{x}^{β} for all $U_{\beta} \subset W_{G}^{+}\left(a_{\alpha}\right)$. By (5.1), it follows that

$$
\begin{equation*}
\operatorname{supp}\left(\mu_{x}^{W_{G}^{+}\left(a_{\alpha}\right)}\right)=\operatorname{supp}\left(\mu_{x}^{\alpha}\right) \quad \text { for all } x \in X \backslash N_{1} \tag{5.2}
\end{equation*}
$$

Recall also that there is a null set N_{2} so that if $x, u x \in X \backslash N_{2}$ for some $u \in W_{G}^{+}\left(a_{\alpha}\right)$, then

$$
\begin{equation*}
\mu_{x}^{W_{G}^{+}\left(a_{\alpha}\right)} \propto \mu_{u x}^{W_{G}^{+}\left(a_{\alpha}\right)} u \tag{5.3}
\end{equation*}
$$

Let $x \in X \backslash\left(N_{1} \cup N_{2}\right)$. Then, by (5.2), we have $\operatorname{supp}\left(\mu_{x}^{W_{G}^{+}\left(a_{\alpha}\right)}\right) \subset U_{\alpha}$. Therefore, by (5.3), we get $u \in U_{\alpha}$. This finishes the proof of the first claim if we require that $N \supsetneq N_{1} \cup N_{2}$.

To see the last assertion, let $N_{3} \subset X$ be a null subset so that $\mu_{u x}^{\alpha} u \propto \mu_{x}^{\alpha}$ for all $x \notin N_{3}$. Set $N=N_{1} \cup N_{2} \cup N_{3}$. Let $x \in X \backslash N$, and let u be as in the statement. In view of the first part in the lemma, we have $u \in U_{\alpha}$. Our assumption and the fact that U_{α} is a commutative group give

$$
u \mu_{x}^{\alpha}=\mu_{u x}^{\alpha} u \propto \mu_{x}^{\alpha} .
$$

Now one argues as in the proof Lemma 3.11 and gets $u \in \mathcal{J}_{x}^{\alpha}$.
We also recall the following definition from [13].

Definition 5.2

Let $H, Z \subset G$ be closed subgroups of G. We say that the leafwise measures μ_{x}^{H} are locally Z-aligned modulo μ if, for every $\varepsilon>0$ and neighborhood $\mathrm{B}_{\text {id }}^{Z} \subset Z$ of the identity, there exists a compact set \mathbf{Q} with $\mu(\mathbf{Q})>1-\varepsilon$ and some $\delta>0$ so that for every $x \in \mathrm{Q}$ we have

$$
\left\{y \in \mathrm{Q}: \mu_{x}^{H}=\mu_{y}^{H}\right\} \cap \mathrm{B}_{x}(\delta) \subset \mathrm{B}_{\mathrm{id}}^{Z} x .
$$

The following is a direct corollary of the main result of [13], proved there explicitly also for the positive-characteristic case.

THEOREM 5.3 ([13, Theorem 1.4])
Under the assumption (5.1), one of the following holds.
(LE-1) We have that μ_{x}^{α} is locally Z_{α}-aligned modulo μ.
(LE-2) There exists an a_{α}-invariant subset $X_{\text {inv }}(\alpha) \subset X$ with $\mu\left(X_{\text {inv }}(\alpha)\right)>0$ so that for all $x \in X_{\text {inv }}(\alpha)$ there is an unbounded sequence $\left\{u_{x, m}\right\} \subset W_{G}^{+}\left(a_{\alpha}\right)$ such that $\mu_{x}^{\alpha}=\mu_{u_{x, m} x}^{\alpha}$.

6. Proof of Theorem 1.1

Recall the notation in Section 2.1 and in particular, $k=K_{v}$, where K is a global function field and v is a place of K and we work with the maximal torus \mathbf{A}. Throughout our discussion, $\Gamma \subset \operatorname{SL}(d, k)$ is a lattice of inner type (see Section 2.4).

$$
\operatorname{Put} \operatorname{GL}(n, \mathfrak{o})_{m}=\operatorname{ker}\left(\operatorname{GL}(n, \mathfrak{o}) \rightarrow \operatorname{GL}\left(n, \mathfrak{o} / \theta^{-m} \mathfrak{o}\right)\right)
$$

Lemma 6.1 ([11, Lemma 5.3])
For any positive integer n there exists some $m=m(n) \geq 1$ with the following property. Let $a=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ with

$$
\left|v\left(a_{i}\right)-v\left(a_{j}\right)\right|>m \quad \text { for all } i \neq j
$$

Then $g a$ is diagonalizable over k, for all $g \in \operatorname{GL}(n, \mathfrak{o})_{m}$. Moreover, if $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ are the eigenvalues of $g a$, then it is possible to order them so that $v\left(a_{i}\right)=v\left(a_{i}^{\prime}\right)$ for all i.

Proof

Let \tilde{k}_{n} be the composite of all field extensions of k of degree at most $n!$. Then the characteristic polynomial of any element in $\operatorname{GL}(n, k)$ splits over \tilde{k}_{n}. Moreover, \tilde{k}_{n} is a local field; that is, \tilde{k}_{n} / k is a finite extension. We let v denote the unique extension of v to \tilde{k}_{n}.

We begin with the following observation. There is some $m_{n} \geq 1$ so that every $g \in \operatorname{GL}(n, \mathfrak{o})_{m_{n}}$ can be decomposed as $g=g^{-} g^{0} g^{+}$with $g^{ \pm} \in W^{ \pm} \cap \operatorname{GL}(n, \mathfrak{o})_{1}$ and $g^{0} \in A \cap \operatorname{GL}(n, \mathfrak{o})_{1}$, where W^{+}(resp., W^{-}) is the group of upper (resp., lower) triangular unipotent matrices. Indeed, in view of (3.8), the product map is a diffeomorphism from

$$
\left(W^{-} \cap \operatorname{GL}(n, \mathfrak{o})_{1}\right) \times\left(A \cap \operatorname{GL}(n, \mathfrak{o})_{1}\right) \times\left(W^{+} \cap \operatorname{GL}(n, \mathfrak{o})_{1}\right)
$$

onto its image. Therefore the claim follows from the inverse function theorem.
We show that the lemma holds with $m=m_{n}$. First, note that after conjugating by a permutation matrix, we can assume that $v\left(a_{1}\right)>\cdots>v\left(a_{n}\right)$. Let $g \in \operatorname{GL}(n, \mathfrak{o})_{m}$, and let b_{1}, \ldots, b_{n} be the eigenvalues of $g a$ listed with multiplicity and ordered so that $v\left(b_{1}\right) \geq \cdots \geq v\left(b_{n}\right)$. Note that $b_{i} \in \tilde{k}_{n}$ for all $1 \leq i \leq n$. Let $\|\|$ be the max norm on the i th exterior power $\wedge^{i} \tilde{k}_{n}^{n}$ with respect to the standard basis $\left\{e_{j_{1}} \wedge \cdots \wedge e_{j_{i}}\right\}$. Denote by $\left\|\|\right.$ the operator norm of the action of $\operatorname{GL}\left(n, \tilde{k}_{n}\right)$ on $\wedge^{i} \tilde{k}_{n}^{n}$ for $1 \leq i \leq n$. Choosing a basis of \tilde{k}_{n}^{n} consisting of the generalized eigenvectors for $g a$, we get

$$
\begin{equation*}
\lim _{\ell}\left\|\wedge^{i}(g a)^{\ell}\right\|^{1 / \ell}=\left|b_{1} \cdots b_{i}\right| \quad \text { for all } i \tag{6.1}
\end{equation*}
$$

We now claim that

$$
\begin{equation*}
\left\|\wedge^{i}(g a)^{\ell}\right\|=\left\|\wedge^{i} a^{\ell}\right\|=\left|a_{1} \cdots a_{i}\right|^{\ell} \quad \text { for all } \ell . \tag{6.2}
\end{equation*}
$$

The second equality in the claim is immediate. To see the first equality, note that if $g_{1}, g_{2} \in \operatorname{GL}(n, \mathfrak{o})_{m}$, then

$$
g_{1} a g_{2}^{-} g_{2}^{0} g_{2}^{+} a=g_{1}\left(a g_{2}^{-} a^{-1}\right) a^{2} g_{2}^{0}\left(a^{-1} g_{2}^{+} a\right) .
$$

Moreover, since $g^{ \pm} \in \operatorname{GL}(n, \mathfrak{o})_{1}$ and $v\left(a_{i}\right)-v\left(a_{i+1}\right)>m$ for all i, we have that $a g_{2}^{-} a^{-1}$ and $g_{2}^{0} a^{-1} g_{2}^{+} a$ belong to GL $(n, \mathfrak{o})_{m}$. Using this, we get

$$
(g a)^{\ell}=g_{\ell} a^{\ell} a_{\ell}^{\prime} g_{\ell}^{\prime}
$$

where $g_{\ell}, g_{\ell}^{\prime} \in \operatorname{GL}(n, \mathfrak{o})_{m}$ and $a_{\ell}^{\prime} \in \operatorname{GL}(n, \mathfrak{o})_{1}$ for all ℓ. This implies (6.2).
Now (6.1) and (6.2) imply that $v\left(a_{i}\right)=v\left(b_{i}\right)$ for all $1 \leq i \leq n$, in particular, $v\left(b_{i}\right) \neq v\left(b_{j}\right)$ whenever $i \neq j$. This implies that the b_{i} 's are distinct and hence $g a$ is a semisimple element. We now show that $b_{i} \in k$ for all i. Recall that b_{1}, \ldots, b_{n} are roots of the characteristic polynomial of $g a$ which is a polynomial with coefficients in k. For every $1 \leq i \leq n$, let $\operatorname{Gal}\left(b_{i}\right)=\left\{b_{j}: b_{j}\right.$ is a Galois conjugate of $\left.b_{i}\right\}$. Then $\left\{b_{1}, \ldots, b_{n}\right\}$ is a disjoint union of $\bigsqcup_{j=1}^{r} \operatorname{Gal}\left(b_{i_{j}}\right)$ for some $\left\{i_{1}, \ldots, i_{r}\right\} \subset\{1, \ldots, n\}$. Since $v\left(b_{i}\right) \neq v\left(b_{j}\right)$ whenever $i \neq j$ and Galois automorphisms preserve the valuation, we get that $\operatorname{Gal}\left(b_{i}\right)=\left\{b_{i}\right\}$ for all i. This establishes the final claim in the lemma.

PROPOSITION 6.2

Recall that Γ is an inner type lattice. Then μ_{x}^{α} is not locally Z_{α}-aligned modulo μ. In particular, under the assumption (5.1), we have that (LE-2) in Theorem 5.3 holds.

Proof

We recall the argument from the proof of Theorem 5.1 in [11]. Let m be large enough so that the conclusion of Lemma 6.1 holds with $n=d-2$. Without loss of generality, we may assume that $\alpha\left(\operatorname{diag}\left(a_{1}, \ldots, a_{d}\right)\right)=a_{1} a_{2}^{-1}$. Define

$$
\tilde{\mathfrak{B}}=\left\{\left(\begin{array}{ccc}
r & 0 & 0 \\
0 & r & 0 \\
0 & 0 & C
\end{array}\right): r \in 1+\theta^{-2} \mathfrak{o}, C \in \mathrm{GL}(d-2, \mathfrak{o})_{m}\right\} \subset \mathrm{GL}(d, \mathfrak{o}) .
$$

Put $\mathfrak{B}:=\tilde{\mathfrak{B}} \cap Z_{\alpha}$; we note that \mathfrak{B} is a compact open subgroup of Z_{α}. Let $a=$ $\operatorname{diag}\left(a_{2}, a_{2}, a_{3}, \ldots, a_{d}\right) \in A \cap Z_{\alpha}$ with $v\left(a_{2}\right) \neq 0$, and $\left|v\left(a_{i}\right)-v\left(a_{j}\right)\right|>m$ for all $i>j \geq 2$. In particular, we have $\alpha(a)=1$.

Suppose that (LE-1) holds. Then, by Poincaré recurrence for μ-a.e. $g \Gamma \in G / \Gamma$, there exists a sequence $\ell_{i} \rightarrow \infty$ so that

$$
a^{\ell_{i}} g \Gamma \in \mathfrak{B} g \Gamma \quad \text { for all } i .
$$

Hence, for all i there exist some $\gamma_{i} \in \Gamma$ and some $h_{i} \in \mathfrak{B}$ so that $h_{i} a^{\ell_{i}}=g \gamma_{i} g^{-1}$. Now Lemma 6.1 implies the following. If ℓ_{i} is large enough and we write

$$
g \gamma_{i} g^{-1}=h_{i} a^{\ell_{i}}=\left(\begin{array}{ccc}
r_{i} & 0 & 0 \tag{6.3}\\
0 & r_{i} & 0 \\
0 & 0 & D_{i}
\end{array}\right),
$$

then D_{i} is diagonalizable whose eigenvalues have the same valuation as $a_{j}^{\ell_{i}}$ for all $3 \leq j \leq d$. Dropping the few first terms if necessary, we assume that (6.3) holds for all i.

Since Γ is an inner-type lattice, there exists a central simple algebra B over K so that Γ is commensurable with Λ_{B} (see Section 2.4). There exists some i (which we fix) and infinitely many j 's so that $\hat{\gamma}_{j}:=\gamma_{j} \gamma_{i}^{-1} \in \Lambda_{B}$. We have

$$
g \hat{\gamma}_{j} g^{-1}=h_{j} a^{\ell_{j}-\ell_{i}} h_{i}^{-1}
$$

hence if $\ell_{j}-\ell_{i}$ is large enough, we get from $h_{j}, h_{i}^{-1} \in \mathfrak{B} \subset \mathrm{GL}(n, \mathfrak{o})_{1}$ that

$$
g \hat{\gamma}_{j} g^{-1}=\left(\begin{array}{ccc}
r & 0 & 0 \\
0 & r & 0 \\
0 & 0 & D
\end{array}\right),
$$

where D is diagonalizable and whose eigenvalues have the same valuation as $a_{j}^{\ell_{j}-\ell_{i}}$ for all $3 \leq j \leq d$. Indeed, after conjugation by h_{i}^{-1}, we may apply Lemma 6.1. Altogether, (LE-1) in Theorem 5.3 implies that there exists an element $\gamma \in \Lambda_{B}$ with the following properties:

- $\quad \gamma$ is a semisimple element,
- no eigenvalue of γ is a root of unity,
- all of the eigenvalues of γ are simple except exactly one eigenvalue which has multiplicity 2.
We now claim that none of the eigenvalues of γ lies in K. To see this, assume that γ has an eigenvalue $\sigma \in K$. Recall from the definition of Λ_{B} in Section 2.4 that Λ_{B} is bounded in $\mathrm{SL}_{1, B}\left(K_{w}\right)$ for all $w \neq v$. In particular, $w(\sigma)=0$; otherwise, the group generated by γ in $\mathrm{SL}_{1, B}\left(K_{w}\right)$ would be unbounded. This in view of the product formula implies that $v(\sigma)=0$. Hence, σ is a root of unity, which is a contradiction.

Since $\gamma \in \Lambda_{B}$, by (2.3) we have that the coefficients of the characteristic polynomial of γ are in K. This and the fact that γ is semisimple imply that there exists a finite separable extension \tilde{K} of K which contains the eigenvalues of γ (see [1, Section 4.1(c)]). Thus, using the above claim, we get that the eigenvalue with multiplicity 2 is not in K and is separable over K. Since any Galois conjugate of this eigenvalue is also an eigenvalue of γ with the same multiplicity, we get a contradiction with the fact that γ has only one nonsimple eigenvalue.

6.1. Pinsker components have nontrivial invariance

We begin with the following corollary of the results in Sections 4 and 5.

COROLLARY 6.3

Under the assumptions of Theorem 1.1, we have the following: there exists some $\alpha \in$ Φ and a μ-conull subset $X_{\mathrm{inv}}(\alpha) \subset X$ so that $\ell_{x}^{ \pm \alpha}$ are nondiscrete for all $x \in X_{\mathrm{inv}}(\alpha)$.

Proof

Since $h_{\mu}(a)>0$, for some $a \in A$ there exists some $\alpha \in \Phi$ with $s_{\alpha}>0$. In view of Proposition 4.2, the claim in the corollary holds true almost surely unless α satisfies (5.1).

However, in this case Theorem 5.3 and Proposition 6.2 imply that (LE-2) must hold true. Put $X^{\prime}=\left\{x \in X: \ell_{x}^{ \pm \alpha}\right.$ is nontrivial $\}$. By (LE-2) and Lemma 5.1, we get that X^{\prime} has positive measure. Moreover, X^{\prime} is A-invariant in view of Lemma 3.7(4). Since μ is A-ergodic, we get that $\mu\left(X^{\prime}\right)=1$. Now choose $\ell \in \mathbb{Z}$ such that $X_{\ell}^{\prime}=$ $\left\{x \in X^{\prime}: \ell_{x}^{ \pm \alpha} \cap U_{ \pm \alpha}[\ell]\right.$ is nontrivial $\}$ satisfies $\mu\left(X_{\ell}^{\prime}\right)>0$. Applying ergodicity and the pointwise ergodic theorem, we see that $x \in X$ a.e. satisfies that there exist some $a \in A$ and infinitely many $n \geq 0$ and infinitely many $n \leq 0$ such that $a_{\alpha}^{n} a x \in X_{\ell}^{\prime}$. Using Lemma 3.7(4), this implies the corollary.

Throughout the rest of this section, we fix some root α so that the conclusion of Corollary 6.3 holds true, and we put $X_{\text {inv }}:=X_{\text {inv }}(\alpha)$. For any root β, let A_{β} denote the 1 -parameter diagonal subgroup which is the group of k-points of the Zariski closure of the group generated by a_{β}. For the sake of notational convenience, we will denote $A_{\beta}=\left\{\check{\beta}(t): t \in k^{\times}\right\}$, where $a_{\beta}=\check{\beta}(\theta)$. Recall that $V_{[\alpha]}$ is contained in $W_{G}^{+}\left(a_{\alpha}\right)$. For the rest of this section, we denote the Pinsker σ-algebra $\mathcal{P}_{a_{\alpha}}$ for a_{α} simply by \mathcal{P}. We further take a decomposition

$$
\begin{equation*}
\mu=\int_{X} \mu_{x}^{\mathcal{P}} \mathrm{d} \mu(x) \tag{6.4}
\end{equation*}
$$

where $\mu_{x}^{\mathcal{P}}$ denotes the \mathcal{P} conditional measure for μ-a.e. $x \in X$.
Since μ is A-invariant and A commutes with a_{α}, the σ-algebra \mathcal{P} is A-invariant. Hence, we get

$$
\begin{equation*}
a \mu_{x}^{\mathcal{P}}=\mu_{a x}^{\mathcal{P}} \quad \text { for } \mu \text {-a.e. } x \in X \tag{6.5}
\end{equation*}
$$

Recall the definition of $H_{\alpha}=\varphi_{\alpha}(\operatorname{SL}(2, k))$ from the beginning of Section 4. For every $x \in X$, we put

$$
\begin{equation*}
\mathscr{H}_{x}:=\left\{g \in H_{\alpha}: g \mu_{x}^{\mathcal{P}}=\mu_{x}^{\mathcal{P}}\right\} . \tag{6.6}
\end{equation*}
$$

It follows from (6.5) that

$$
\begin{equation*}
\mathscr{H}_{a x}=a \mathscr{H}_{x} a^{-1} \tag{6.7}
\end{equation*}
$$

for all $a \in A$ and μ-a.e. x.

COROLLARY 6.4

We have that $\left\langle\downarrow_{x}^{\alpha}, d_{x}^{-\alpha}\right\rangle$ is Zariski-dense in H_{α} as a k-group for μ-a.e. $x \in X_{\text {inv }}$. Moreover, $\left\langle\downarrow_{x}^{\alpha}, l_{x}^{-\alpha}\right\rangle \subset \mathscr{H}_{x}$.

Proof

The first claim follows from Corollary 6.3. To see the second claim, note that by Lemma 3.14, we know that $\delta_{x}^{ \pm \alpha}$ is measurable with respect to \mathscr{P}. Equivalently, the groups $\mathscr{l}_{x}^{ \pm \alpha}$ are (almost surely) constant on the atoms of a countably generated σ algebra \mathcal{P}^{\prime} that is equivalent to \mathcal{P}. We now decompose μ as in (6.4) into conditional measures for the σ-algebra \mathcal{P}^{\prime}, and we take the leafwise measures of $\mu_{x}^{\mathcal{P}^{\prime}}$ for the subgroup U_{α}.

However, Proposition 3.4 implies that we may assume that the atoms with respect to \mathcal{P}^{\prime} are unions of U_{α}-orbits. This implies in turn for the leafwise measure that $\left(\mu_{x}^{\mathcal{P}^{\prime}}\right)_{y}^{U_{\alpha}}=\mu_{y}^{\alpha}$ for $\mu_{x}^{\mathcal{P}^{\prime}}$-a.e. y and μ-a.e. x (see [18, Proposition 5.20] and [14, Proposition 7.22] for a similar argument). Fixing one such x, we obtain that $\left(\mu_{x}^{\mathcal{P}^{\prime}}\right)_{y}^{U_{\alpha}}$ is almost surely invariant under $\ell_{y}^{\alpha}=\ell_{x}^{\alpha}$. However, this implies by the relationship between the measure and its leafwise measures that $\mu_{x}^{\mathcal{P}^{\prime}}$ is invariant under ${d_{x}^{\alpha}}_{x}^{\alpha}$. Since $\mu_{x}^{\mathcal{P}^{\prime}}=\mu_{x}^{\mathcal{P}}$ almost surely, we may apply the same argument for $\ell_{x}^{-\alpha}$. Therefore, $\ell_{x}^{ \pm \alpha} \subset \mathscr{H}_{x}$ for μ-a.e. x.

6.2. Algebraic structure of \mathscr{H}_{x}

Recall from the beginning of Section 4 that $H_{\alpha}=\varphi_{\alpha}\left(\operatorname{SL}_{2}(k)\right)$. Put $U_{ \pm \alpha}\left(\mathfrak{o}_{v}\right)=$ $\varphi_{\alpha}\left(\mathbf{U}^{ \pm}\left(\mathfrak{o}_{v}\right)\right.$), where \mathbf{U}^{+}(resp., $\left.\mathbf{U}^{-}\right)$denotes the group of upper (resp., lower) triangular unipotent matrices in SL_{2}. Note that $H_{\alpha}=\left\langle U_{\alpha}, U_{-\alpha}\right\rangle$. By Corollary 6.4, for μ-a.e. x we have $\left\langle\ell_{x}^{\alpha}, d_{x}^{-\alpha}\right\rangle \subset \mathscr{H}_{x}$. Define

$$
\begin{equation*}
\mathcal{Q}_{x}:=\left\langle\mathscr{H}_{x} \cap U_{\alpha}\left(\mathfrak{o}_{v}\right), \mathscr{H}_{x} \cap U_{-\alpha}\left(\mathfrak{o}_{v}\right)\right\rangle . \tag{6.8}
\end{equation*}
$$

Put

$$
\begin{equation*}
X_{\mathcal{P}}:=\left\{x \in X: \mathcal{Q}_{x} \text { is Zariski-dense in } H_{\alpha} \text { and } \mathcal{Q}_{x} \cap U_{ \pm \alpha} \text { are infinite }\right\} . \tag{6.9}
\end{equation*}
$$

Corollary 6.4 and the above definitions imply that $X_{\mathcal{P}} \cap X_{\text {inv }}$ is conull in $X_{\text {inv }}$. In particular, Corollary 6.3 implies that $\mu\left(X_{\mathcal{P}}\right)=1$.

Note that for all $x \in X_{\mathcal{P}}$, the group \mathcal{Q}_{x} satisfies the conditions of Theorem A. 1 in Section 3.1. For any $x \in X_{\mathcal{P}}$, define

$$
k_{x}^{\prime}:=\text { the field generated by }\left\{\operatorname{tr}(\rho(g)): g \in \mathcal{Q}_{x}\right\}
$$

and put

$$
k_{x}:= \begin{cases}k_{x}^{\prime} & \text { if } \operatorname{char}(k) \neq 2, \tag{6.10}\\ \left\{c: c^{2} \in k_{x}^{\prime}\right\} & \text { if } \operatorname{char}(k)=2 .\end{cases}
$$

Theorem A. 1 then implies that there exist
(C-1) a unique (up to a unique isomorphism) k-isogeny $\varphi_{x}: \mathrm{SL}_{2} \times_{k_{x}} k \rightarrow \mathrm{SL}_{2}$ whose derivative vanishes nowhere, and
(C-2) some nonnegative integer m_{x}
so that

$$
\begin{equation*}
\varphi_{x}\left(\operatorname{SL}\left(2, \mathfrak{o}_{x}\right)_{m_{x}}\right) \subset \mathcal{Q}_{x} \subset \varphi_{x}\left(\operatorname{SL}\left(2, k_{x}\right)\right) \tag{6.11}
\end{equation*}
$$

where \mathfrak{o}_{x} is the ring of integers in k_{x} and

$$
\operatorname{SL}\left(2, \mathfrak{o}_{x}\right)_{m}:=\operatorname{ker}\left(\operatorname{SL}\left(2, \mathfrak{o}_{x}\right) \rightarrow \operatorname{SL}\left(2, \mathfrak{o}_{x} / \varpi_{x}^{m} \mathfrak{o}_{x}\right)\right)
$$

with ϖ_{x} a uniformizer in \mathfrak{o}_{x}. Let us put

$$
\begin{equation*}
E_{x}:=\varphi_{x}\left(\operatorname{SL}\left(2, k_{x}\right)\right) . \tag{6.12}
\end{equation*}
$$

We will use without further remark the following lemma, which is a consequence of the implicit function theorem. The group generated by $\mathbf{U}^{ \pm}\left(\varpi_{x}^{m} \mathfrak{o}_{x}\right)$ is an open subgroup of $\operatorname{SL}\left(2, \mathfrak{o}_{x}\right)_{m}$; for example, a direct computation yields that this group contains $\operatorname{SL}\left(2, \mathfrak{o}_{x}\right)_{2 m}$.

LEMMA 6.5

Consider the Borel σ-algebra arising from the Chabauty topology on closed subgroups of $(k,+)$ and $\mathrm{SL}(d, k)$.
(1) The map $x \mapsto k_{x}$ is a Borel map on $X_{\mathcal{P}}$.
(2) The equation (6.12) defines a Borel map, $x \mapsto E_{x}$, on $X_{\mathcal{P}}$.

Proof

The map $x \mapsto \mathcal{Q}_{x}$ is a Borel map from a conull subset of X into the set of closed subgroups of $H_{\alpha}\left(\mathfrak{o}_{v}\right)$. This and (6.10) imply that $x \mapsto k_{x}$ is a Borel map on the conull set $X_{\mathcal{P}}$, as we claimed in (1).

By part (1), the map $x \mapsto k_{x}$ is a Borel map. Also recall from Lemma 3.1(1) that $E_{x}=\left\langle E_{x} \cap U_{\alpha}, E_{x} \cap U_{-\alpha}\right\rangle$. Therefore, part (2) follows if we show that the map $x \mapsto E_{x} \cap U_{ \pm \alpha}$ is a Borel map. Note, however, that if we realize $U_{ \pm \alpha}=\left\{u_{r}: r \in k\right\}$
as a k_{x}-vectors space, then $E_{x} \cap U_{ \pm \alpha}=\left\{u_{r}: r \in k_{x}\right\}$ is a 1-dimensional k_{x}-subspace of $U_{ \pm \alpha}$, respectively. Hence,

$$
E_{x} \cap U_{ \pm \alpha}=\left\{u_{r r^{\prime}}: r \in k_{x}, u_{r^{\prime}} \in \mathbb{Q}_{x} \cap U_{ \pm \alpha}\right\}
$$

which implies the claim.

LEMMA 6.6

We have the following.
(1) The map $x \mapsto k_{x}$ is essentially constant.
(2) The map $x \mapsto E_{x}$ is an A-equivariant Borel map on a conull subset of X.

Proof

We claim that $k_{x} \subset k_{a x}$ for all $a \in A$. First, let us note that, by symmetry, this also implies that $k_{a x} \subset k_{x}$. Therefore, it implies that the map $x \mapsto k_{x}$ is A-invariant; since μ is A-ergodic, we get part (1).

We now show the claim. Let m_{x} be as in (C-2). Recall from (6.7) that there is a full measure set $X^{\prime} \subset X$ so that, for all $x \in X^{\prime}$ and all $a \in A$, we have $\mathscr{H}_{a x}=$ $a \mathscr{H}_{x} a^{-1}$. Now, for any a there exists some $m_{x, a} \geq m_{x}$ so that if $m \geq m_{x, a}$, then

$$
\begin{equation*}
a \varphi_{x}\left(\operatorname{SL}\left(2, \mathfrak{o}_{x}\right)_{m}\right) a^{-1} \subset \mathcal{Q}_{a x} \tag{6.13}
\end{equation*}
$$

Define $l_{x}(m)$ to be the field generated by $\left\{\operatorname{tr}(\rho(g)): g \in \varphi_{x}\left(\operatorname{SL}\left(2, \mathfrak{o}_{x}\right)_{m}\right)\right\}$. Then

$$
\begin{equation*}
l_{x}(m)=k_{x} \quad \text { for all } m \geq m_{x} \tag{6.14}
\end{equation*}
$$

Indeed, this is true for the field generated by $\left\{\operatorname{tr}(\rho(g)): g \in \operatorname{SL}\left(2, \mathfrak{o}_{x}\right)_{m}\right\}$. Since φ_{x} has nowhere vanishing derivative and there are no nonstandard isogenies for type A_{1} (see [29, Proposition 1.6]), we get $\rho_{1}=\rho_{2} \circ \varphi_{x}$, where ρ_{1} and ρ_{2} are the adjoint representation on the source and the target of φ_{x}. This implies (6.14). It follows from (6.13) and (6.14) that $k_{x} \subset k_{a x}$, as we claimed.

Let us now prove part (2). By part (1), there is an A-invariant conull set X^{\prime} and a subfield k^{\prime} so that $k_{x}=k^{\prime}$ for all $x \in X^{\prime}$. Let \mathfrak{o}^{\prime} denote the ring of integers in k^{\prime}. We note that the same proof as in the proof of Lemma 6.5(2) implies that $E_{x} \cap U_{ \pm \alpha}$ is the Zariski closure of $C \cap U_{ \pm}$in $\mathcal{R}_{k / k^{\prime}}\left(\mathrm{SL}_{d}\right)$ for any nontrivial open subgroup C of \mathcal{Q}_{x}.

Now let $a \in A$ and $x \in X^{\prime}$. Then by (6.13), we have

$$
a \varphi_{x}\left(\operatorname{SL}\left(2, \mathfrak{o}^{\prime}\right)_{m}\right) a^{-1} \subset \mathcal{Q}_{a x}
$$

for all $m \geq m_{x, a}$. Since $a \mathscr{H}_{x} a^{-1}=\mathscr{H}_{a x}$ and $\varphi_{x}\left(\operatorname{SL}\left(2, \mathfrak{o}^{\prime}\right)_{m}\right)$ is open in Q_{x} by (6.11), we thus get that $a \varphi_{x}\left(\operatorname{SL}\left(2, \mathfrak{o}^{\prime}\right)_{m}\right) a^{-1}$ is open in $\mathcal{Q}_{a x}$ for all $m \geq m_{x, a}$. Since $U_{ \pm \alpha}$ are normalized by A, for all $a \in A$ and all $m \geq m_{x, a}$ we have

$$
a \varphi_{x}\left(\operatorname{SL}\left(2, \mathfrak{o}^{\prime}\right)_{m}\right) a^{-1} \cap U_{ \pm \alpha}=a\left(\varphi_{x}\left(\operatorname{SL}\left(2, \mathfrak{o}^{\prime}\right)_{m}\right) \cap U_{ \pm \alpha}\right) a^{-1} .
$$

Taking the Zariski closure in $\mathcal{R}_{k / k^{\prime}}\left(\mathrm{SL}_{d}\right)$, we get that

$$
a\left(E_{x} \cap U_{ \pm \alpha}\right) a^{-1}=E_{a x} \cap U_{ \pm \alpha}
$$

This and Lemma 3.1(1) imply the claim.

PROPOSITION 6.7

For μ-a.e. $x \in X_{\mathcal{P}}$, we have $E_{x} \subset \mathscr{H}_{x}$.

Proof

Let $x \in X_{\mathcal{P}}$, and put $A_{x}^{\prime}:=E_{x} \cap A$. In view of Lemma 6.6(2), we have

$$
\begin{equation*}
A_{a x}^{\prime}=E_{a x} \cap A=a E_{x} a^{-1} \cap A=a\left(E_{x} \cap A\right) a^{-1}=A_{x}^{\prime} \tag{6.15}
\end{equation*}
$$

for μ-a.e. x and all $a \in A$. Since μ is A-ergodic, we get that $x \mapsto A_{x}^{\prime}$ is essentially constant. Let us denote by A^{\prime} this essential value.

Then by Lemma 3.1(2), we have that A^{\prime} is an unbounded subgroup of $A_{\alpha}=$ $H_{\alpha} \cap A$. The group A_{α} is a 1-dimensional, k-split, k-torus; therefore, A_{α} / A^{\prime} is compact. For any $s \in k$, we let $\check{\alpha}(s) \in A_{\alpha}$ be the cocharacter associated to α and evaluated at s-that is, $\check{\alpha}(s)$ is the diagonal matrix with eigenvalues s, s^{-1} and 1 with multiplicity $d-2$ so that $\alpha(\check{\alpha}(s))=s^{2}$. This implies that there exist some $\ell>0$ and some $r \in \mathfrak{o}_{v}^{\times}$, so that if we put $s:=\theta^{\ell} r$, then $\check{\alpha}(s) \in E_{x}$. In particular, $\check{\alpha}(s)$ normalizes both $E_{x} \cap U_{\alpha}$ and $E_{x} \cap U_{-\alpha}$.

For every $\varepsilon>0$, there is subset $X_{\mathcal{P}}(\varepsilon) \subset X_{\mathcal{P}}$ with $\mu\left(X_{\mathcal{P}}(\varepsilon)\right)>1-\varepsilon$ so that the map

$$
x \mapsto \mu_{x}^{\mathcal{P}}
$$

is continuous on $X_{\mathcal{P}}(\varepsilon)$. Now by Poincaré recurrence, for μ-a.e. $x \in X_{\mathcal{P}}(\varepsilon)$ there is a sequence $n_{x, i} \rightarrow \infty$ so that $\check{\alpha}\left(s^{n_{x, i}}\right) \in X_{\mathcal{P}}(\varepsilon)$ for all i and $\check{\alpha}\left(s^{n_{x, i}}\right) x \rightarrow x$. Then

$$
\lim _{i \rightarrow \infty} \mathscr{H}_{\check{\alpha}\left(s^{n} x, i\right) x} \subset \mathscr{H}_{x} .
$$

Recall from (6.11) that $\mathcal{Q}_{x} \cap U_{\alpha}$ contains an open compact subgroup of $E_{x} \cap U_{\alpha}$. Therefore, using (6.7) we get that

$$
E_{x} \cap U_{\alpha} \subset \lim _{i \rightarrow \infty} \check{\alpha}\left(s^{n_{x, i}}\right)\left(\mathcal{Q}_{x} \cap U_{\alpha}\right) \check{\alpha}\left(s^{-n_{x, i}}\right) \subset \lim _{i} \mathscr{H}_{\check{\alpha}\left(s^{n_{x, i}}\right) x} \subset \mathscr{H}_{x}
$$

for μ-a.e. $x \in X_{\mathcal{P}}(\varepsilon)$. Choosing a sequence $\varepsilon_{n} \rightarrow 0$, we get that $E_{x} \cap U_{\alpha} \subset \mathscr{H}_{x}$ for μ-a.e. $x \in X_{\mathcal{P}}$. Similarly, we get $E_{x} \cap U_{-\alpha} \subset \mathscr{H}_{x}$ for μ-a.e. $x \in X_{\mathcal{P}}$. Recall from Lemma 3.1(1) that E_{x} is generated by $E_{x} \cap U_{ \pm \alpha}$. Therefore, $E_{x} \subset \mathscr{H}_{x}$ for μ-a.e. $x \in X_{\mathcal{P}}$.

6.3. Applying the measure classification for semisimple groups

We now apply the measure classification theorem due to Golsefidy and the third author (Theorem B from Section 3.2).

LEMMA 6.8

Let μ be as in Theorem 1.1. Then there exist a closed infinite subfield $l<k$ and a smooth algebraic l-subgroup $\mathbf{M}<\mathcal{R}_{k / l}\left(\mathrm{SL}_{d}\right)$ such that $\mathbf{M}(l) \cap \Gamma$ is Zariski-dense in \mathbf{M} over l, and a noncentral cocharacter $\lambda: \mathbf{G}_{m} \rightarrow \mathbf{M}$ over l so that the topological group

$$
L=\overline{M^{+}(\lambda)(\mathbf{M}(l) \cap \Gamma)}
$$

satisfies that $L /(L \cap \Gamma)$ has finite volume. Moreover, for μ-a.e. x, the E_{x}-ergodic component of $\mu_{x}^{\mathcal{P}}$ equals $h v_{L}$ for some $h \in \operatorname{SL}(d, k)$ so that $x=h \Gamma$, and ν_{L} is the homogeneous measure on $L /(L \cap \Gamma)$.

Proof

Let k^{\prime} denote the essential value of the map $x \mapsto k_{x}$ (see Lemma 6.6(1)). In view of Proposition 6.7, for μ-a.e. x the measure $\mu_{x}^{\mathcal{P}}$ is invariant under E_{x}.

Since the σ-algebra \mathcal{P} is A-invariant, we have $a \mu_{x}^{\mathcal{P}}=\mu_{a x}^{\mathcal{P}}$ for all $a \in A$ and μ a.e. x. Moreover, by Lemma 6.6(2), we have $E_{a x}=a E_{x} a^{-1}$ for μ-a.e. x. Therefore, if we let

$$
\begin{equation*}
\mu_{x}^{\mathcal{P}}=\int v_{z} \mathrm{~d} \mu_{x}^{\mathcal{P}}(z) \tag{6.16}
\end{equation*}
$$

be the ergodic decomposition of $\mu_{x}^{\mathcal{P}}$ with respect to E_{x} (where for $\mu_{x}^{\mathcal{P}}$-a.e. z we let ν_{z} denote the E_{x}-ergodic components of $\mu_{x}^{\mathcal{P}}$), then

$$
\begin{equation*}
\mu_{a x}^{\mathcal{P}}=\int a_{*} v_{z} \mathrm{~d} \mu_{x}^{\mathcal{P}}(z) \tag{6.17}
\end{equation*}
$$

is the ergodic decomposition of $\mu_{a x}^{\mathcal{P}}$ with respect to $E_{a x}$.
Applying Theorem B in Section 3.2, we conclude that for $\mu_{x}^{\mathcal{P}}$-a.e. z the measure v_{z} is described as follows. There exist
(B-1) $l_{z}=\left(k^{\prime}\right)^{q_{z}} \subset k$, where $q_{z}=p^{n_{z}}, p=\operatorname{char}(k)$ and $n_{z} \geq 1$,
(B-2) a connected l_{z}-subgroup \mathbf{M}_{z} of $\mathcal{R}_{k / l_{z}}\left(\mathrm{SL}_{d}\right)$ so that $\mathbf{M}_{z}\left(l_{z}\right) \cap \Gamma$ is Zariskidense in \mathbf{M}_{z},
(B-3) an element $g_{z} \in G$,
such that v_{z} is the $g_{z} L_{z} g_{z}^{-1}$-invariant probability Haar measure on the closed orbit $g_{z} L_{z} \Gamma / \Gamma$ with

$$
L_{z}=\overline{M_{z}^{+}\left(\lambda_{z}\right)\left(\mathbf{M}_{z}\left(l_{z}\right) \cap \Gamma\right)}
$$

where

- the closure is with respect to the Hausdorff topology, and
- $\quad \lambda_{z}: \mathbf{G}_{m} \rightarrow \mathbf{M}_{z}$ is a noncentral l_{z}-homomorphism, $M_{z}^{+}\left(\lambda_{z}\right)$ is defined in (3.9), and $E_{x} \subset M_{z}^{+}\left(\lambda_{z}\right)$.
Note that \mathbf{M}_{z} in (B-2) is l_{z}-smooth—indeed, $\mathbf{M}_{z}\left(l_{z}\right)$ is Zariski-dense in \mathbf{M}_{z} (see [35, Lemma 11.2.4(ii)]).

For any z where v_{z} is described as above, let $\left(l_{z},\left[\mathbf{M}_{z}\right],\left[M_{z}^{+}\left(\lambda_{z}\right)\right]\right)$ be the corresponding triple where $[\bullet]$ denotes the Γ conjugacy class. This is well defined and we will refer to it as the triple associated to z. Given a triple $\left(l,[\mathbf{M}],\left[M^{+}(\lambda)\right]\right)$, put

$$
\mathfrak{S}\left(l,[\mathbf{M}],\left[M^{+}(\lambda)\right]\right)=\left\{z \in X:\left(l,[\mathbf{M}],\left[M^{+}(\lambda)\right]\right) \text { is associated to } z\right\}
$$

Note that there are only countably many such triples. Indeed, there are only countably many closed subfields $l \subset k^{\prime}$ as in Theorem $\mathrm{B}(1)$; also, there are only countably many M's as in Theorem $\mathbf{B}(2)$. For any such l and \mathbf{M}, there are only countably many choices of $M^{+}(\lambda)$ by Lemma 3.2(2). Therefore, there exists a triple $\left(l,[\mathbf{M}],\left[M^{+}(\lambda)\right]\right)$ such that

$$
\mu\left(\mathfrak{S}\left(l,[\mathbf{M}],\left[M^{+}(\lambda)\right]\right)\right)>0
$$

Note, however, that in view of (6.17), $\mathfrak{S}\left(l,[\mathbf{M}],\left[M^{+}(\lambda)\right]\right)$ is A-invariant. This, together with the fact that μ is A-ergodic, implies that

$$
\mu\left(\mathfrak{S}\left(l,[\mathbf{M}],\left[M^{+}(\lambda)\right]\right)\right)=1
$$

This finishes the proof of the lemma.
We let l, \mathbf{M}, and $L:=\overline{M^{+}(\lambda)(\mathbf{M}(l) \cap \Gamma)}$ be as in Lemma 6.8. Define

$$
\begin{equation*}
\mathbf{N}:=\text { the Zariski closure of } N_{G^{\prime}}(\mathbf{M}(l)) \cap \Gamma \text { in } \mathbf{G}^{\prime} \tag{6.18}
\end{equation*}
$$

where $\mathbf{G}^{\prime}:=\mathscr{R}_{k / l}\left(\mathrm{SL}_{d}\right)$ and $G^{\prime}:=\mathbf{G}^{\prime}(l)=\mathrm{SL}(d, k)$. Therefore, \mathbf{N} is a smooth group defined over l (see, e.g., [35, Lemma 11.2.4(ii)]). In view of (B-2) above, we have

$$
\begin{equation*}
\mathbf{M} \subset \mathbf{N}^{\circ} \quad \text { and } \quad \mathbf{N} \subset N_{\mathbf{G}^{\prime}}(\mathbf{M}) \tag{6.19}
\end{equation*}
$$

where \mathbf{N}° denotes the connected component of the identity in \mathbf{N}.

LEMMA 6.9

We let A_{l}^{sp} be the group of l-points of the maximal, l-split, torus subgroup of $\mathcal{R}_{k / l} A$. Then there exists some $g_{0} \in \mathrm{SL}(d, k)$ so that $A_{l}^{\mathrm{sp}} \subset g_{0} \mathbf{N}(l) g_{0}^{-1}$ and $\overline{A g_{0} \Gamma / \Gamma}=$ $\operatorname{supp}(\mu)$.

Proof

Recall that $L \Gamma$ is a closed subset of G and that, for μ-a.e. x and $\mu_{x}^{\mathcal{P}}$-a.e. z, we have

$$
\begin{equation*}
\operatorname{supp}\left(v_{z}\right)=g L \Gamma / \Gamma \tag{6.20}
\end{equation*}
$$

for some $g \in G$. We note that, while the element g is not well defined, the set $g L \Gamma$ is well defined. This, in view of (B-2), determines the set $g \mathbf{M}(l) \Gamma$ as the smallest set of the form $\mathbf{R}(l) \Gamma$, where \mathbf{R} is an l-subvariety so that $v_{z}(\mathbf{R}(l) \Gamma / \Gamma)>0$ (see [28, Theorem 6.9]; see also the original [27, Proposition 3.2]). Now let $g, g^{\prime} \in G$ be such that $g \mathbf{M}(l) \Gamma=g^{\prime} \mathbf{M}(l) \Gamma$. Then

$$
\mathbf{M}(l) \subset \bigcup_{\gamma} g^{-1} g^{\prime} \mathbf{M}(l) \gamma .
$$

Hence, by Baire's category theorem, there is some γ_{0} so that $\mathbf{M}(l) \cap g^{-1} g^{\prime} \mathbf{M}(l) \gamma_{0}$ is open in $\mathbf{M}(l)$. Since \mathbf{M} is Zariski-connected, any open (in Hausdorff topology) subset of $\mathbf{M}(l)$ is Zariski-dense in \mathbf{M} (see [26, Chapter 1, Proposition 2.5.3]). This and equality of the dimensions imply that $\mathbf{M}(l)=g^{-1} g^{\prime} \mathbf{M}(l) \gamma_{0}$. Therefore, $g^{-1} g^{\prime} m_{0} \gamma_{0}=1$ for some $m_{0} \in \mathbf{M}(l)$ and we get

$$
\mathbf{M}(l)=g^{-1} g^{\prime} \mathbf{M}(l) \gamma_{0}=\gamma_{0}^{-1} \mathbf{M}(l) \gamma_{0} .
$$

That is, $\gamma_{0} \in N_{G}(\mathbf{M}(l)) \cap \Gamma$ and

$$
g^{-1} g^{\prime}=\gamma_{0}^{-1} m_{0}^{-1} \in\left(N_{G}(\mathbf{M}(l)) \cap \Gamma\right) \mathbf{M}(l) .
$$

Hence, by (6.18) and (6.19), we have

$$
\begin{equation*}
g^{-1} g^{\prime} \in\left(N_{G}(\mathbf{M}(l)) \cap \Gamma\right) \mathbf{M}(l) \subset \mathbf{N}(l) . \tag{6.21}
\end{equation*}
$$

Let $N=\mathbf{N}(l)$ and $G^{\prime}=\mathbf{G}^{\prime}(l)=\operatorname{SL}(d, k)$. Then, by (6.21), we get a Borel measurable map f from $\mathfrak{S}\left(l, \mathbf{M}, M^{+}(\lambda)\right)$ to $G^{\prime} / N=\operatorname{SL}(d, k) / N$ defined by $f(x)=g_{x} N$.

The preceding discussion, in view of (6.17), implies that f is an A-equivariant Borel map, where the action of A on $\operatorname{SL}(d, k) / N$ is induced from the natural action of $\mathcal{R}_{k / l}(\mathbf{A})$ on $\mathbf{G}^{\prime} / \mathbf{N}$.

Now by Lemma 3.3 there exists some

$$
g_{0} N \in \operatorname{Fix}_{A_{l}^{\text {sp }}}(\operatorname{SL}(d, k) / N)
$$

so that $f_{*} \mu$ is the A-invariant measure on the compact orbit $A g_{0} N$. Using the Birkhoff ergodic theorem for the action of A on X and the compactness of the orbit $A g_{0} N$, we can choose the representative $g_{0} \in \mathrm{SL}(d, k)$ so that $\overline{A g_{0} \Gamma / \Gamma}=\operatorname{supp}(\mu)$. Let us recall that $\operatorname{Fix}_{A_{l}^{\text {sp }}}(\operatorname{SL}(d, k) / N)=\left\{g N: g^{-1} A_{l}^{\text {sp }} g \subset N\right\}$. In particular, g_{0} satisfies

$$
\begin{equation*}
g_{0}^{-1} A_{l}^{\mathrm{sp}} g_{0} \subset N, \tag{6.22}
\end{equation*}
$$

as we claimed.

6.4. The algebraic K-groups \mathbf{F} and \mathbf{H}

While the groups $\mathbf{M}<\mathbf{N}$ are still somewhat mysterious at this stage, we can describe their k-Zariski closure quite precisely. Recall that $\Gamma \subset \operatorname{SL}(d, k)$ is a lattice of inner type. Hence, there exists a central simple algebra B over K so that Γ is commensurable with Λ_{B} (see Section 2.4). We define the shorthand $\Gamma_{B}:=\Gamma \cap \Lambda_{B}$.

LEMMA 6.10
With notation as in Theorem 1.1, let \mathbf{F} be a connected, noncommutative algebraic subgroup of SL_{d} so that $\mathbf{F}(k) \cap \Gamma$ is Zariski-dense in \mathbf{F} and $A^{\prime}=A \cap g_{0} \mathbf{F}(k) g_{0}^{-1}$ is cocompact in A for some $g_{0} \in \operatorname{SL}(d, k)$. Then \mathbf{F} is defined over K and we have the following:
(1) $g_{0}^{-1} \mathbf{A} g_{0} \subset \mathbf{F}$;
(2) $\quad \mathbf{F}$ has no \tilde{K}-rational character for any purely inseparable algebraic field extension \tilde{K} of K;
(3) \mathbf{F} is a reductive K-group;
(4) $\quad \mathbf{F}(k) \cap \Gamma$ is a lattice in $\mathbf{F}(k)$;
(5) the commutator group $[\mathbf{F}, \mathbf{F}]$ is nontrivial, simply connected, and almost K simple;
(6) moreover, $[\mathbf{F}, \mathbf{F}](k) \cong \prod_{i=1}^{n} \mathrm{SL}\left(d_{0}, k\right)$ with $d=n d_{0}$; in fact, apart from the order of the indices, the group $g_{0}[\mathbf{F}, \mathbf{F}] g_{0}^{-1}$ equals the subgroup consisting of n block matrices along the diagonal.

Proof

Since Γ_{B} is finite index in Γ and \mathbf{F} is connected, we have that $\mathbf{F}(k) \cap \Gamma_{B}$ is Zariskidense in \mathbf{F}. This and the fact that $\Gamma_{B} \subset \Lambda_{B}$ imply that \mathbf{F} is defined over K (see [35, Lemma 11.2.4(ii)]). Since A / A^{\prime} is compact and since \mathbf{A} is Zariski-connected and k-split, we also have that A^{\prime} is Zariski-dense in \mathbf{A}. Since also $g_{0}^{-1} A^{\prime} g_{0} \subset \mathbf{F}(k)$, we obtain $g_{0}^{-1} \mathbf{A} g_{0} \subset \mathbf{F}$ as k-groups. Let \tilde{K} be a finite purely inseparable extension of K. For every place w of k, there exists a unique extension \tilde{w} of w to \tilde{K}. Recall that $k=K_{v}$ for a fixed place v of K. Let (see (2.4))

$$
\tilde{\Lambda}_{B}=\left\{\gamma \in \mathrm{SL}_{1, B}(\tilde{K}): \gamma \in \mathrm{SL}_{1, B}\left(\mathfrak{o}_{\tilde{w}}\right) \text { for all } \tilde{w} \neq \tilde{v}\right\}
$$

Let $\tilde{\mathcal{O}}$ be the ring of \tilde{v}-integers in \tilde{K}. Suppose that χ is an arbitrary \tilde{K}-rational character of \mathbf{F}. Then there exists some $D \in \tilde{\mathcal{O}}$, depending on χ, so that

$$
\mathfrak{B}:=\chi\left(\Gamma_{B} \cap \mathbf{F}\right) \subset \chi\left(\tilde{\Lambda}_{B} \cap \mathbf{F}(\tilde{K})\right) \subset \frac{1}{D} \tilde{\mathcal{O}}
$$

In particular, there exists some $\ell_{0} \in \mathbb{Z}$ so that, for any place $\tilde{w} \neq \tilde{v}$ in \tilde{K} and any $r \in \mathfrak{B}$, we have $\tilde{w}(r) \geq \ell_{0}$. Note further that \mathfrak{B} is a multiplicative group; hence, $\tilde{w}(\mathfrak{B})$ is a subgroup of $(\mathbb{Z},+)$. In consequence, we have $\tilde{w}(r)=0$ for any place $\tilde{w} \neq \tilde{v}$ in \tilde{K} and any $r \in \mathfrak{B}$. By the product formula, we also get that $\tilde{v}(r)=0$ for all $r \in \mathfrak{B}$. Therefore, \mathfrak{B} is a finite group consisting of roots of unity. This implies that there is a finite index subgroup $\Gamma^{\prime} \subset \Gamma_{B} \cap \mathbf{F}$ so that $\chi\left(\Gamma^{\prime}\right)=1$. Since \mathbf{F} is connected and $\Gamma_{B} \cap \mathbf{F}$ is Zariski-dense in \mathbf{F}, the group Γ^{\prime} is also Zariski-dense in \mathbf{F}. This implies that χ is trivial on \mathbf{F}, as claimed in (2).

We note that part (2) and [5, Theorem 1.3.6] imply part (4) directly. Below we give an argument using (3) which avoids the full force of [5, Theorem 1.3.6]. In particular, the classification of pseudoreductive groups in [6] which is used to resolve the main difficulties in [5] is not used in our proof of (4).

We now prove part (3). Let \tilde{K} be a finite, purely inseparable extension of K so that $R_{u}(\mathbf{F})$ is defined and splits over \tilde{K} (see [1, Corollaries 15.5, 18.4]). Restricting the adjoint representation of \mathbf{F} to the Lie algebra of $R_{u}(\mathbf{F})$ and taking the determinant, we obtain a \tilde{K}-character. We claim that if $R_{u}(\mathbf{F})$ is nontrivial, then this character is also nontrivial. In view of this claim, (3) follows from (2).

We now show the claim. Recall that $R_{u}(\mathbf{F})$ is a \tilde{K}-split, unipotent subgroup. Since SL_{d} is simply connected, we get from [20] (see also [3]) that there exists a \tilde{K}-parabolic subgroup \mathbf{P} of SL_{d} so that $R_{u}(\mathbf{F}) \subset R_{u}(\mathbf{P})$ and $N_{\mathrm{SL}_{d}}\left(R_{u}(\mathbf{F})\right) \subset \mathbf{P}$. The claim now follows; indeed, $g_{0}^{-1} \mathbf{A} g_{0} \subset \mathbf{F} \subset N_{\mathrm{SL}_{d}}\left(R_{u}(\mathbf{F})\right)$ and $g_{0}^{-1} \mathbf{A} g_{0}$ is a maximal torus which is k-split and hence also $\tilde{K}_{\tilde{v}}$-split. Part (4) follows from (2), (3), and [22]. Note that the absence of a unipotent radical (defined over k or not) makes the necessary arguments in our case much simpler. For the rest of the argument, we fix a maximal K-torus \mathbf{T} in \mathbf{F} which is k-split (see [6, Corollary A.2.6]). Note that by [6, Theorem C.2.3], there is some $g \in \mathbf{F}(k)$ so that

$$
g \mathbf{T} g^{-1}=g_{0}^{-1} \mathbf{A} g_{0}
$$

We now establish part (5). First, note that \mathbf{F} is not commutative, so $[\mathbf{F}, \mathbf{F}]$ is nontrivial. Let K^{\prime} be a separable field extension of K such that \mathbf{T} splits over K^{\prime}. Therefore, there exists some $g_{1} \in \mathrm{SL}_{d}\left(K^{\prime}\right)$ so that $g_{1} \mathbf{T} g_{1}^{-1}$ is the full diagonal subgroup of SL_{d}. Moreover, let $\mathbf{T}_{0} \subset \mathbf{T}$ be the central torus of \mathbf{F}. Then

$$
g_{1}[\mathbf{F}, \mathbf{F}] g_{1}^{-1} \subset g_{1}\left[\mathbf{Z}_{\mathrm{SL}_{d}}\left(\mathbf{T}_{0}\right), \mathbf{Z}_{\mathrm{SL}_{d}}\left(\mathbf{T}_{0}\right)\right] g_{1}^{-1}=\prod_{i} \mathrm{SL}_{d_{i}}
$$

for some integers d_{1}, d_{2}, \ldots (that depend on the subgroup $g_{1} \mathbf{T}_{0} g_{1}^{-1}$). Since $\mathbf{T} \subset \mathbf{F}$ has absolute rank $d-1$, the rank of $[\mathbf{F}, \mathbf{F}]$ equals $d-1-\operatorname{dim}\left(\mathbf{T}_{0}\right)$. Moreover, the torus \mathbf{T}_{0} is central in $\mathbf{Z}_{\mathrm{SL}_{d}}\left(\mathbf{T}_{0}\right)$; hence, we have

$$
d-1-\operatorname{dim}\left(\mathbf{T}_{0}\right) \geq \operatorname{rank}\left(\left[\mathbf{Z}_{\mathrm{SL}_{d}}\left(\mathbf{T}_{0}\right), \mathbf{Z}_{\mathrm{SL}_{d}}\left(\mathbf{T}_{0}\right)\right]\right)=\sum_{i}\left(d_{i}-1\right) .
$$

Together with the above inclusion, we thus get that $d-1-\operatorname{dim}\left(\mathbf{T}_{0}\right)=\sum_{i}\left(d_{i}-1\right)$. Since $[\mathbf{F}, \mathbf{F}]$ is semisimple and $\prod_{i} \mathrm{SL}_{d_{i}}$ has no proper semisimple subgroup of the same rank, we get $g_{1}[\mathbf{F}, \mathbf{F}] g_{1}^{-1}=\prod_{i} \mathrm{SL}_{d_{i}}$. Let W_{1}, \ldots be the various irreducible subspaces for the action of $[\mathbf{F}, \mathbf{F}]$ on the d-dimensional vector space that are defined over K^{\prime} and correspond to the various blocks of $g_{1}[\mathbf{F}, \mathbf{F}] g_{1}^{-1}$. As \mathbf{F} is nonabelian, at least one of the subspace (say, W_{1}) has dimension at least 2 . Let \mathbf{W} be the sum of W_{1} and all its Galois images. Then \mathbf{W} is invariant under \mathbf{F} and is defined over K-recall that K^{\prime} / K is separable. Since \mathbf{F} has no K-rational characters, we see that \mathbf{W} has full dimension. Otherwise, the determinant of the restriction of \mathbf{F} to \mathbf{W} gives a K-character which is nontrivial since \mathbf{T} is a maximal torus-indeed, over K^{\prime} we can conjugate \mathbf{T} to \mathbf{A} the diagonal subgroup. Now any subspace of the standard d dimensional representation of SL_{d} that is invariant under \mathbf{A} and whose weights sum to zero is trivial. This implies that $[\mathbf{F}, \mathbf{F}]$ is semisimple and almost K-simple. In particular, we obtain $d_{i}=d_{j}$ for all i, j, which gives part (6).

Define

$$
\begin{equation*}
\hat{\mathbf{F}}:=\text { the Zariski closure of } \mathbf{N}(l) \cap \Gamma \text { in } \mathrm{SL}_{d} . \tag{6.23}
\end{equation*}
$$

In particular, $\hat{\mathbf{F}}$ is a smooth group defined over k (see [35, Lemma 11.2.4(ii)]). Put $\mathbf{F}=\hat{\mathbf{F}}^{\circ}$, the connected component of the identity in $\hat{\mathbf{F}}$. Since $\left[\Gamma: \Gamma_{B}\right]<\infty$, we have that \mathbf{F} coincides with the connected component of the identity in $\hat{\mathbf{F}}_{B}:=$ the Zariski closure of $\mathbf{N}(l) \cap \Gamma_{B}$ in SL_{d}. Now $\hat{\mathbf{F}}_{B}$ is a smooth group defined over K; therefore, \mathbf{F} is also a smooth group defined over K and hence over k.

LEMMA 6.11
(1) $\quad \mathbf{N}(l) \subset \hat{\mathbf{F}}(k)$ and hence $\mathbf{N}(l)$ is Zariski-dense in $\hat{\mathbf{F}}$.
(2) \mathbf{F} satisfies the conditions in Lemma 6.10.

Proof

For part (1), we note first that the definition (6.23) implies that

$$
\mathbf{N}(l) \cap \Gamma \subset \hat{\mathbf{F}}(k)=\mathcal{R}_{k / l}(\hat{\mathbf{F}})(l) \subset \mathbf{G}^{\prime}(l) .
$$

Therefore, by (6.18) we have $\mathbf{N} \subset \mathscr{R}_{k / l}(\hat{\mathbf{F}})$. Taking l-points, we get part (1).
We now show that part (1) implies (2). To see this, we first note that \mathbf{F} is connected by definition. Next recall that by (6.19) we have $E_{x} \subset \mathbf{M}(l) \subset \mathbf{N}(l)$ for μ a.e. x. In view of the definition of E_{x} (see (6.12)) and the fact that \mathbf{F} is finite index in $\hat{\mathbf{F}}$, we get that \mathbf{F} is noncommutative. Moreover, note that \mathbf{F} is Zariski-open and closed in $\hat{\mathbf{F}}$. By the definition of $\hat{\mathbf{F}}$ in (6.23), we have that $\hat{\mathbf{F}}(k) \cap \Gamma$ is Zariskidense in $\hat{\mathbf{F}}$. Together, it follows that $\mathbf{F}(k) \cap \Gamma$ is Zariski-dense in \mathbf{F}. Finally, by (6.22)
we have $g_{0}^{-1} A_{l}^{\text {sp }} g_{0} \subset \mathbf{N}(l) \subset \hat{\mathbf{F}}(k)$. Since $A_{l}^{\text {sp }}$ is cocompact in A, we obtain the last assumption-namely, that $A \cap g_{0} \mathbf{F}(k) g_{0}^{-1}$ is cocompact in A.

Put

$$
\begin{equation*}
\hat{\mathbf{H}}:=\text { the Zariski closure of } \mathbf{M}(l) \cap \Gamma_{B} \text { in } \mathrm{SL}_{d} . \tag{6.24}
\end{equation*}
$$

Note that $\hat{\mathbf{H}}$ is a smooth group defined over K and hence over k. Put $\mathbf{H}:=\hat{\mathbf{H}}^{\circ}$, the connected component of the identity in $\hat{\mathbf{H}}$; then \mathbf{H} is also a smooth group defined over K and hence over k.

LEMMA 6.12
(1) $\quad \mathbf{M}(l) \subset \mathbf{H}(k)$, and hence $\mathbf{M}(l)$ is Zariski-dense in \mathbf{H}.
(2) $[\mathbf{F}, \mathbf{F}]=\mathbf{H}$.
(3) \mathbf{H} is almost K-simple.
(4) $\mathbf{H}(k) \cong \prod \mathrm{SL}\left(d_{0}, k\right)$ where $d=n d_{0}$.

Proof

Recall from (B-2) that $\mathbf{M} \subset \mathscr{R}_{k / l}\left(\mathrm{SL}_{d}\right)$ is connected and that $\mathbf{M}(l) \cap \Gamma$ is Zariskidense in \mathbf{M}. Since \mathbf{M} is connected and $\left[\Gamma: \Gamma_{B}\right]<\infty$, we get that

$$
\begin{equation*}
\mathbf{M}(l) \cap \Gamma_{B} \text { is Zariski-dense in } \mathbf{M} . \tag{6.25}
\end{equation*}
$$

Therefore, as in the proof of Lemma 6.11(1), we have

$$
\mathbf{M}(l) \cap \Gamma_{B} \subset \hat{\mathbf{H}}(k)=\mathcal{R}_{k / l}(\hat{\mathbf{H}})(l) \subset \mathbf{G}^{\prime}(l) .
$$

This in view of our preceding discussion implies that $\mathbf{M} \subset \mathscr{R}_{k / l}(\hat{\mathbf{H}})$. Since \mathbf{M} is connected and $\mathcal{R}_{k / l}(\mathbf{H})$ is a finite index subgroup of $\mathcal{R}_{k / l}(\hat{\mathbf{H}}),{ }^{1}$ we get that $\mathbf{M} \subset$ $\mathcal{R}_{k / l}(\mathbf{H})$. Taking l-points, part (1) follows.

By (6.19), we have $g \mathbf{M}(l) g^{-1}=\mathbf{M}(l)$ for all $g \in \mathbf{N}(l)$. Hence, by part (1) and Lemma 6.11(1), we obtain that $\mathbf{H} \subset \mathbf{F}$ is a normal subgroup of $\hat{\mathbf{F}}$ and hence of \mathbf{F}. Moreover, since $E_{x} \subset \mathbf{M}(l)$ for μ-a.e. x, we have that \mathbf{H} is noncommutative. As was mentioned above, \mathbf{H} is a K-subgroup of \mathbf{F}. Hence, Lemmas 6.11(2) and 6.10(5) imply that

$$
\begin{equation*}
[\mathbf{F}, \mathbf{F}] \subset \mathbf{H} \tag{6.26}
\end{equation*}
$$

We now show the other inclusion. In view of Lemmas 6.10 and 6.11, we have that $g_{0} \mathbf{R}(k) \Gamma / \Gamma$ is a closed orbit with finite $g_{0} \mathbf{R}(k) g_{0}^{-1}$-invariant measure for $\mathbf{R}=$ $\mathbf{F},[\mathbf{F}, \mathbf{F}]$. Moreover, by the choice of g_{0} in Lemmas 6.9 and 6.10(1), we have that
${ }^{1}$ Indeed, in view of the smoothness of \mathbf{H}, it follows from [6, Proposition A.5.9] that $\mathcal{R}_{k / l}(\mathbf{H})$ is connected.

$$
\begin{equation*}
\mu \text { is supported on } \overline{A g_{0} \Gamma / \Gamma} \subset g_{0} \mathbf{F}(k) \Gamma / \Gamma . \tag{6.27}
\end{equation*}
$$

Since $E_{x} \subset[\mathbf{F}, \mathbf{F}]$ and since any E_{x}-ergodic component of μ is supported on a homogeneous space $g_{0} g[\mathbf{F}, \mathbf{F}](k) \Gamma / \Gamma$, for some $g \in \mathbf{F}(k)$ we get that $\mathbf{M}(l) \subset[\mathbf{F}, \mathbf{F}](k)$. This completes the proof of part (2) thanks to part (1) and (6.26). The fact that \mathbf{H} satisfies parts (3) and (4) now follow from part (2) and Lemmas 6.11 and 6.10.

Let us put $A_{\mathbf{H}}=A \cap g_{0} \mathbf{H}(k) g_{0}^{-1}$. In view of Lemmas 6.11 and 6.12, we see that $g_{0} \mathbf{H}(k) g_{0}^{-1}$ has a block structure. Put $C_{\mathbf{H}}=g_{0} Z(\mathbf{F}(k)) g_{0}^{-1}$. Then $A^{\prime \prime}:=A_{\mathbf{H}} C_{\mathbf{H}}$ is a cocompact subgroup of A. We have the following.

LEMMA 6.13

We can decompose the measure as

$$
\mu=\int_{A / \operatorname{Stab}(\eta)} a_{*} \eta \mathrm{~d} a,
$$

where $\mathrm{d} a$ is the Haar measure on the compact group $A / \operatorname{Stab}(\eta)$, and η is an $A_{\mathbf{H}^{-}}$ ergodic component of μ which is supported on $g_{0} \mathbf{H}(k) \Gamma / \Gamma$. Moreover, we have

$$
\eta=\int v_{z} \mathrm{~d} \eta(z)
$$

Proof

Recall from (6.27) that μ is supported on the closed orbit $g_{0} \mathbf{F}(k) \Gamma / \Gamma$. Hence, $C_{\mathbf{H}} \cap$ $g_{0} \Gamma g_{0}^{-1}$ acts trivially on $\operatorname{supp}(\mu)$. Moreover, by Lemmas 6.11 and 6.10(4), we have that $Z(\mathbf{F}(k)) \Gamma / \Gamma$ is compact. This and the fact that $A / A^{\prime \prime}$ is compact implies that

$$
\begin{equation*}
A / A_{\mathbf{H}}\left(C_{\mathbf{H}} \cap g_{0} \Gamma g_{0}^{-1}\right) \tag{6.28}
\end{equation*}
$$

is a compact group. Therefore, the $A_{\mathbf{H}}\left(C_{\mathbf{H}} \cap g_{0} \Gamma g_{0}^{-1}\right)$-ergodic decomposition of μ can be written as

$$
\int_{A / A_{\mathbf{H}}\left(C_{\mathbf{H}} \cap g_{0} \Gamma g_{0}^{-1}\right)} a_{*} \eta \mathrm{~d} a,
$$

where η is an $A_{\mathbf{H}}\left(C_{\mathbf{H}} \cap g_{0} \Gamma g_{0}^{-1}\right)$-invariant measure on $g_{0} \mathbf{H}(k) \Gamma / \Gamma$. This implies the decomposition of μ as in the lemma.

For the final claim, we note that the above discussion also shows that $\mathfrak{B}^{A_{\mathbf{H}}} \subset \mathcal{P}$, where $\mathscr{B}^{A_{\mathbf{H}}}$ is the σ-algebra of $A_{\mathbf{H}}$-invariant sets. Hence, the conditional measures $\mu_{x}^{\mathcal{P}}$ for the Pinsker σ-algebra can be obtained by double conditioning-that is,

$$
\mu_{y}^{\mathcal{P}}=\left(\mu_{x}^{\mathcal{B}^{A_{\mathbf{H}}}}\right)_{y}^{\mathcal{P}}
$$

for μ-a.e. x and $\mu_{x}^{\mathcal{B}^{A_{H}}}$-a.e. y. Again because of the compactness of (6.28) and the equivariance properties of the conditional measures, it suffices to consider one of the conditional measure $\eta=\mu_{x}^{\mathcal{B}^{A_{H}}}$. For the Pinsker conditional measure $\eta_{y}^{\mathcal{P}}$, we have considered in (6.16) a decomposition into ergodic components for the group E_{y}. These ergodic components have been completely described in Lemma 6.8. The lemma follows by integration over η.

The following proposition describes the algebraic structure of the group L in Lemma 6.8. It turns out to be more convenient for us to explicate the structure of the finite index subgroup

$$
L_{B}:=\overline{M^{+}(\lambda)\left(\mathbf{M}(l) \cap \Gamma_{B}\right)}
$$

of L. Note that $L \Gamma / \Gamma=L_{B} \Gamma / \Gamma$.
PROPOSITION 6.14
Let n be as in Lemma 6.12(4). Then there exist
(1) a collection $\left(l_{i}: 1 \leq i \leq n\right)$ of closed (not necessarily distinct) subfields of k,
(2) for every $1 \leq i \leq n$, a connected, simply connected, absolutely almost simple l_{i}-group \mathbf{H}_{i} and an isomorphism $\varphi_{i}: \mathbf{H}_{i} \times_{l_{i}} k \rightarrow \mathrm{SL}_{d_{0}}$ (where $\mathrm{SL}_{d_{0}}$ is considered as the ith block subgroup corresponding to the indices $(i-1) d_{0}+$ $1, \ldots, i d_{0}$)
so that $L_{B}=\prod_{i=1}^{n} \varphi_{i}\left(\mathbf{H}_{i}\left(l_{i}\right)\right) \subset \mathbf{H}(k)$.

Proof

In view of (6.25) and parts (3) and (4) of Lemma 6.12, the groups \mathbf{M} and \mathbf{H} satisfy the conditions in [28, Section 7] for the lattice Γ_{B}. Therefore, [28, Theorem 7.1], which in turn relies heavily on [6], [29], and [23], implies the following. There exist
(a) a collection $\left(l_{i}: 1 \leq i \leq r\right)$ of closed subfields of k,
(b) for every $1 \leq j \leq n$, some $1 \leq i(j) \leq r$ and a continuous field embedding $\tau_{j}: l_{i(j)} \rightarrow k$,
(c) for every $1 \leq i \leq r$, a connected, simply connected, absolutely almost simple l_{i}-group \mathbf{H}_{i} (which is a form of $\mathrm{SL}_{d_{0}}$),
(d) for every $i \in\{1, \ldots, r\}$, some $j \in\{1, \ldots, n\}$ with $i(j)=i$,
(e) \quad an isomorphism $\varphi: \coprod_{i=1}^{r} \mathbf{H}_{i} \times_{\tau\left(\oplus_{i=1}^{r} l_{i}\right)} \bigoplus_{i=1}^{n} k \rightarrow$ SL $_{d_{0}}$, with $\tau=$ $\left(\tau_{1}, \ldots, \tau_{n}\right)$
so that $L_{B}=\varphi\left(\prod_{i=1}^{r} \mathbf{H}_{i}\left(l_{i}\right)\right) \subset \mathbf{H}(k)$.
We now claim that

$$
\begin{equation*}
r=n . \tag{6.29}
\end{equation*}
$$

Assuming (6.29), and after possibly renumbering and replacing l_{i} by $\tau_{i}\left(l_{i}\right)$ for $1 \leq$ $i \leq r=n$, we get the proposition.

We now turn to the proof of (6.29). Put $\Delta:=\mathbf{H}(k) \cap \Gamma$, and recall the notation $A_{\mathbf{H}}=A \cap g_{0} \mathbf{H}(k) g_{0}^{-1}$. In view of Lemma 6.13, we can reduce the study of the measure μ to the study of the measure η, which is an $A_{\mathbf{H}}$-ergodic invariant measure on $g_{0} \mathbf{H}(k) / \Delta$. Put

$$
\mathbf{H}^{\prime}:=\mathcal{R}_{\oplus_{j=1}^{n} k / \tau\left(\oplus_{i=1}^{r} l_{i}\right)}\left(\coprod_{j=1}^{n} \mathrm{SL}_{d_{0}}\right)
$$

Then \mathbf{H}^{\prime} is a smooth $\bigoplus_{i=1}^{r} l_{i}$-group and $\mathbf{H}^{\prime}\left(\bigoplus_{i=1}^{r} l_{i}\right)=\mathbf{H}(k)$ (see [6, Proposition A.5.2]). Moreover, $L_{B}=\varphi\left(\prod_{i=1}^{r} \mathbf{H}_{i}\left(l_{i}\right)\right)$ is the group of $\bigoplus_{i=1}^{r} l_{i}$-points of a $\bigoplus_{i=1}^{r} l_{i}$-subgroup of \mathbf{H}^{\prime} (see [6, Proposition A.5.7]). Define

$$
\begin{equation*}
\mathbf{R}:=\text { the Zariski closure of } N_{\mathbf{H}(k)}\left(L_{B}\right) \cap \Delta \text { in } \mathbf{H}^{\prime} . \tag{6.30}
\end{equation*}
$$

Put

$$
R=\mathbf{R}\left(\bigoplus_{i=1}^{r} l_{i}\right) \subset \mathbf{H}(k)
$$

Then $R \subset N_{\mathbf{H}(k)}\left(L_{B}\right)$.
In view of (6.20) and Lemma 6.13, we have the following. For η-a.e. $x \in \mathbf{H}(k) / \Delta$ and $\eta_{x}^{\mathcal{P}}$-a.e. z, we have

$$
\operatorname{supp}\left(v_{z}\right)=g_{0} g L \Delta / \Delta=g_{0} g L_{B} \Delta / \Delta
$$

for some $g \in \mathbf{H}(k)$. Therefore, arguing for each i separately, as in the proof of Lemma 6.9 we get the following. There is a cocompact subgroup $A_{\mathbf{H}}^{\prime} \subset A_{\mathbf{H}}$ and some $g_{1} \in \mathbf{H}(k)$ so that

$$
g_{1}^{-1} g_{0}^{-1} A_{\mathbf{H}}^{\prime} g_{0} g_{1} \subset R
$$

moreover, $\overline{A_{\mathbf{H}} g_{0} g_{1} \Gamma}=\operatorname{supp}(\eta)$.
In particular, we have that $A_{\mathbf{H}}^{\prime}$ normalizes the group $g_{0} g_{1} L_{B} g_{1}^{-1} g_{0}^{-1}$. Recall now that $A_{\mathbf{H}}$ is a maximal torus in the block diagonal group $g_{0} \mathbf{H}(k) g_{0}^{-1}$. These and the fact that $A_{\mathbf{H}}^{\prime}$ is cocompact in $A_{\mathbf{H}}$ imply that the block structure of L_{B} and \mathbf{H} agree with each other; that is, $r=n$. To see this, assume that $i(j)=1$ for $j=1$, 2 . Let a be an element in $A_{\mathbf{H}}^{\prime}$ which equals the identity in all the blocks $j=2, \ldots, n$, and in the first block it is a diagonal element which generates an unbounded group. Then since a normalizes $g_{0} g_{1} L_{B} g_{1}^{-1} g_{0}^{-1}$, we get a contradiction.

COROLLARY 6.15

We have that $N_{\mathbf{H}(k)}\left(L_{B}\right) / Z(\mathbf{H}(k)) L_{B}$ is a torsion abelian group.

Proof

In view of Proposition 6.14, it suffices to argue in each $\mathrm{SL}_{d_{0}}$-block separately. Hence, we fix some $i \in\{1, \ldots, n\}$. First, note that \mathbf{H}_{i} is an l_{i}-form of $\mathrm{SL}_{d_{0}}$. Suppose now that $g \in \operatorname{SL}\left(d_{0}, k\right)$ normalizes $\mathbf{H}_{i}\left(l_{i}\right)$. Since $\mathbf{H}_{i}\left(l_{i}\right)$ is Zariski-dense in the l_{i}-group \mathbf{H}_{i} (see, e.g., [26, Chapter 1, Proposition 2.5.3], we thus get that g induces an l_{i} automorphism of \mathbf{H}_{i}. Extending the scalars from l_{i} to k, we see that the automorphism is inner; that is, this automorphism $\sigma_{i}(g)$ belongs to $\mathbf{H}_{i}^{\text {ad }}(k)$. Together it follows that $\sigma_{i}(g) \in \mathbf{H}_{i}^{\text {ad }}\left(l_{i}\right)$. This automorphism is, moreover, nontrivial if and only if g is not central in $\mathrm{SL}_{d_{0}}$. Hence, we get a monomorphism $g \mapsto \sigma(g)$ from

$$
N_{\mathrm{SL}\left(d_{0}, k\right)}\left(L_{B} \cap \operatorname{SL}\left(d_{0}, k\right)\right) / Z\left(\operatorname{SL}\left(d_{0}, k\right)\right)
$$

into $\mathbf{H}_{i}^{\text {ad }}\left(l_{i}\right)$. This map sends $\mathbf{H}_{i}\left(l_{i}\right)$ to $\left[\mathbf{H}_{i}^{\text {ad }}\left(l_{i}\right), \mathbf{H}_{i}^{\text {ad }}\left(l_{i}\right)\right]$ by [26, Chapter 1 , Theorem 2.3.1], and the claims hold true by [26, Chapter 1, Theorem 2.3.1].

Let us now complete the proof of Theorem 1.1.

Proof of Theorem 1.1

In view of Lemma 6.13, we may and will restrict our attention to the measure η appearing in the statement of that lemma. Similar to the proof of (6.29), put $\Delta:=$ $\mathbf{H}(k) \cap \Gamma$. Define

$$
\mathbf{H}^{\prime}:=\mathcal{R}_{\oplus_{j=1}^{n} k / \oplus_{i=1}^{n} l_{i}}\left(\coprod_{i=1}^{n} \mathrm{SL}_{d_{0}}\right)
$$

Then \mathbf{H}^{\prime} is a smooth $\bigoplus_{i=1}^{n} l_{i}$-group and $\mathbf{H}^{\prime}\left(\bigoplus_{i=1}^{n} l_{i}\right)=\mathbf{H}(k)$ (see [6, Proposition A.5.2]). Moreover, $L_{B}=\prod_{i=1}^{n} \mathbf{H}_{i}\left(l_{i}\right)$ is the group of $\bigoplus_{i=1}^{n} l_{i}$-points of a $\bigoplus_{i=1}^{n} l_{i}$-subgroup of \mathbf{H}^{\prime} (see [6, Proposition A.5.7]). Since $\mathbf{H}^{\prime}\left(\bigoplus_{i=1}^{r} l_{i}\right)=\mathbf{H}(k)$, we may view $Z(\mathbf{H}(k))$ as a finite subgroup of $\mathbf{H}^{\prime}\left(\bigoplus_{i=1}^{r} l_{i}\right)$. Define

$$
\mathbf{R}:=Z(\mathbf{H}(k)) \quad\left(\text { the Zariski closure of } N_{\mathbf{H}(k)}\left(L_{B}\right) \cap \Delta \text { in } \mathbf{H}^{\prime}\right)
$$

Put $R=\mathbf{R}\left(\bigoplus_{i=1}^{n} l_{i}\right) \subset \mathbf{H}(k)$. Since $\mathbf{H}(k)=\mathbf{H}^{\prime}\left(\oplus\left(l_{i}\right)\right)$, we have $Z(\mathbf{H}(k)) \subset R$. Moreover, $R \subset N_{\mathbf{H}(k)}\left(L_{B}\right)$, and by Corollary 6.15 , we have

$$
\begin{equation*}
[R, R] \subset Z(\mathbf{H}(k)) L_{B} \tag{6.31}
\end{equation*}
$$

In view of (6.20) and Lemma 6.13, for η-a.e. $x \in g_{0} \mathbf{H}(k) / \Delta$, we have

$$
\begin{equation*}
\operatorname{supp}\left(\nu_{x}\right)=g_{0} g L \Delta / \Delta=g_{0} g L_{B} \Delta / \Delta \tag{6.32}
\end{equation*}
$$

for some $g \in \mathbf{H}(k)$ depending on x.
Therefore, arguing as in the proof of Lemma 6.9, we get the following. There is a cocompact subgroup $A_{\mathbf{H}}^{\prime} \subset A_{\mathbf{H}}$ containing $Z(\mathbf{H}(k))$ and there is some $g_{1} \in \mathbf{H}(k)$ so that $g_{1}^{-1} g_{0}^{-1} A_{\mathbf{H}}^{\prime} g_{0} g_{1} \subset R$. We may furthermore require that $\overline{A_{\mathbf{H}} g_{0} g_{1} \Gamma / \Gamma}=\operatorname{supp}(\eta)$. This gives the decomposition

$$
\begin{equation*}
\eta=\int_{A_{\mathbf{H}} / A_{\mathbf{H}}^{\prime}} a_{*} \eta^{\prime} \mathrm{d} a, \tag{6.33}
\end{equation*}
$$

where

- $\mathrm{d} a$ is the Haar measure on the compact group $A_{\mathbf{H}} / A_{\mathbf{H}}^{\prime}$,
- $\quad \eta^{\prime}$ is an $A_{\mathbf{H}}^{\prime}$-invariant and ergodic probability measure on $g_{0}^{\prime} R / \Delta^{\prime}$, where $\Delta^{\prime}:=R \cap \Delta$ and $g_{0}^{\prime}=g_{0} g_{1}$.
Note that we have implicitly identified here $g_{0}^{\prime} R / \Delta^{\prime}$ with $g_{0}^{\prime} R \Delta / \Delta$ (which in turn itself has already been implicitly identified with $\left.g_{0}^{\prime} R \Gamma / \Gamma\right)$.

We now further investigate the measure η^{\prime}. In view of (6.32), we can write

$$
\begin{equation*}
\eta^{\prime}=\int_{g_{0}^{\prime} R / \Delta^{\prime}} v_{x} \mathrm{~d} \eta^{\prime}(x) \tag{6.34}
\end{equation*}
$$

where v_{x} is the $g_{0}^{\prime} g L_{B} g^{-1} g_{0}^{\prime-1}$-invariant measure on $g_{0}^{\prime} g L_{B} \Delta^{\prime} / \Delta^{\prime}$, where we write x as $x=g_{0}^{\prime} g \Delta^{\prime} / \Delta^{\prime}$ for $g \in R$.

Since L_{B} is normal in R, we get that η^{\prime} is $g_{0}^{\prime} L_{B} g_{0}^{\prime-1}$-invariant. Moreover, since $Z(\mathbf{H}(k)) \subset A_{\mathbf{H}}^{\prime}$, we also have that η^{\prime} is $Z(\mathbf{H}(k))$-invariant. Finally, since $L_{B} \Delta / \Delta$ is closed in $\mathbf{H}(k) / \Delta$, we have that $Z(\mathbf{H}(k)) L_{B} \Delta^{\prime}$ is a closed subgroup of R. Let $L_{B}^{\prime}=$ $Z(\mathbf{H}(k)) L_{B}$. We define η_{1}^{\prime} as the pushforward of η^{\prime} under the canonical quotient map from $g_{0}^{\prime} R / \Delta^{\prime}$ into $g_{0}^{\prime} R / L_{B} \Delta^{\prime}$, and similarly η_{2}^{\prime} as the pushforward to $g_{0}^{\prime} R / L_{B}^{\prime} \Delta^{\prime}$. With this we obtain from (6.34) that, for $v_{L_{B}}=v_{L_{B} \Delta^{\prime} / \Delta^{\prime}}$,

$$
\begin{align*}
\eta^{\prime} & =\int_{g_{0}^{\prime} R / L_{B} \Delta^{\prime}} g_{*} \nu_{L_{B}} \mathrm{~d} \eta_{1}^{\prime}\left(g L_{B} \Delta^{\prime}\right) \\
& =\int_{g_{0}^{\prime} R / L_{B}^{\prime} \Delta^{\prime}} g_{*}\left(\int_{Z(\mathbf{H}(k))} h_{*} \nu_{L_{B}} \mathrm{~d} h\right) \mathrm{d} \eta_{2}^{\prime}\left(g L_{B}^{\prime} \Delta^{\prime}\right) \\
& =\left(g_{0}^{\prime}\right)_{*} \int_{R / L_{B}^{\prime} \Delta^{\prime}} g_{*}\left(\int_{Z(\mathbf{H}(k))} h_{*} \nu_{L_{B}} \mathrm{~d} h\right) \mathrm{d} \eta_{P}\left(g L_{B}^{\prime} \Delta^{\prime}\right), \tag{6.35}
\end{align*}
$$

for a $\left(g_{0}^{\prime}\right)^{-1} A_{\mathbf{H}}^{\prime} g_{0}^{\prime}$-invariant and ergodic probability measure η_{P} on $P=R / L_{B}^{\prime} \Delta^{\prime}$. We note that the measure defined by the inner integral in (6.35) is actually homogeneous. Furthermore, by Corollary 6.15 we know that $P=R / L_{B}^{\prime} \Delta^{\prime}$ is a torsion abelian group.

We claim that
the image of $\left(g_{0}^{\prime}\right)^{-1} A_{\mathbf{H}}^{\prime} g_{0}^{\prime}$ in P is compact and in particular closed.
Assuming (6.36), let us finish the proof. Indeed, (6.36) implies that η_{P} equals the Haar measure on a coset of

$$
\left(\left(g_{0}^{\prime}\right)^{-1} A_{\mathbf{H}}^{\prime} g_{0}^{\prime}\right) L_{B}^{\prime} \Delta^{\prime} / L_{B}^{\prime} \Delta^{\prime} .
$$

This together with (6.33) finishes the proof.
We now prove (6.36). Let $\left\{s_{1}, \ldots, s_{r}\right\} \subset\left(g_{0}^{\prime}\right)^{-1} A_{\mathbf{H}}^{\prime} g_{0}^{\prime}$ be a subset which generates a cocompact subgroup of $\left(g_{0}^{\prime}\right)^{-1} A_{\mathbf{H}}^{\prime} g_{0}^{\prime}$. By Corollary 6.15 , there exists some $m \in \mathbb{N}$ so that $s_{i}^{m} \in Z(\mathbf{H}(k)) L_{B}=L_{B}^{\prime}$ for all $1 \leq i \leq r$. Let D be the group generated by $\left\{s_{1}^{m}, \ldots, s_{r}^{m}\right\}$. Then D is cocompact in $\left(g_{0}^{\prime}\right)^{-1} A_{\mathbf{H}}^{\prime} g_{0}^{\prime}$ and the natural orbit map from $\left(g_{0}^{\prime}\right)^{-1} A_{\mathbf{H}}^{\prime} g_{0}^{\prime}$ to P factors through the natural map from $\left(g_{0}^{\prime}\right)^{-1} A_{\mathbf{H}}^{\prime} g_{0}^{\prime} / D$ to P. These maps are continuous and $\left(g_{0}^{\prime}\right)^{-1} A_{\mathbf{H}}^{\prime} g_{0}^{\prime} / D$ is compact; thus, (6.36) follows.

7. Joining classification

7.1. On the group generated by certain commutators

A key to the classification of joinings is the following simple general fact about a rank- $2 k$-torus. Let \mathbf{G} denote a connected, simply connected, absolutely almost simple group defined over a local field k with $\operatorname{char}(k)>3$. Let $\lambda: \mathbf{G}_{m}^{2} \rightarrow \mathbf{G}$ be an algebraic monomorphism defined over k; let $\mathbf{A}=\lambda\left(\mathbf{G}_{m}^{2}\right)$. Fix a maximal, k-split, k-torus $\mathbf{S} \subset \mathbf{G}$ so that $\mathbf{A} \subset \mathbf{S}$. Further, let $\mathbf{T} \supset \mathbf{S}$ be a maximal torus of \mathbf{G} which is defined over k. Put $\Phi:=\Phi(\mathbf{T}, \mathbf{G}),{ }_{k} \Phi:={ }_{k} \Phi(\mathbf{S}, \mathbf{G})$, and $\bar{\Phi}:={ }_{k} \Phi(\mathbf{A}, \mathbf{G})$. For $\Psi \subset \bar{\Phi}$, set

$$
\begin{equation*}
\vartheta(\Psi):=\left\{\alpha \in \Phi(\mathbf{T}, \mathbf{G}):\left.\alpha\right|_{\mathbf{A}} \in \Psi\right\} . \tag{7.1}
\end{equation*}
$$

PROPOSITION 7.1

The group \mathbf{G} is generated by the commutators $\left[\mathbf{V}_{[\alpha]}, \mathbf{V}_{[\beta]}\right]$, where α, β run over all linearly independent pairs in $\bar{\Phi}$.

We need the following lemma from [12, Lemma 4.2] (see also [10, Lemma 9.6]).

LEMMA 7.2

Let $\delta \in \bar{\Phi}$ and $\delta^{\prime} \in \vartheta([\delta])$. Then there exist some $\beta \in \bar{\Phi}$ and some $\beta^{\prime} \in \vartheta([\beta])$ with the following properties:
(1) $\{\beta, \delta\}$ is a linearly independent subset of $\bar{\Phi}$,
(2) $\delta^{\prime}-\beta^{\prime} \in \Phi$.

Proof

Let \bar{k} be the algebraic closure of k. Let

$$
\Upsilon=\left\{\alpha \in \mathbb{R} \otimes X^{*}(\mathbf{T}):\left.\alpha\right|_{\mathbf{A}} \in \mathbb{R} \delta\right\}
$$

where $X^{*}(\mathbf{T})$ denotes the group of characters of \mathbf{T}.
Let \mathfrak{g}^{\prime} be the \bar{k}-span of $\left\{\mathfrak{g}_{\alpha^{\prime}},\left[\mathfrak{g}_{\alpha^{\prime}}, \mathfrak{g}_{\beta^{\prime}}\right]: \alpha^{\prime}, \beta^{\prime} \in \Phi \backslash \Upsilon\right\}$. It follows easily from the Jacobi identity (see the proof of [12, Lemma 4.2] for details) that \mathfrak{g}^{\prime} is an ideal of \mathfrak{g}. Recall that $\mathbf{A}=\lambda\left(\mathbf{G}_{m}^{2}\right)$. Therefore, $\bar{\Phi}$ has at least two linearly independent roots, and \mathfrak{g}^{\prime} is not central. Since \mathfrak{g} has no proper noncentral ideals, we have $\mathfrak{g}^{\prime}=\mathfrak{g}$.

In particular, we get that

$$
\mathfrak{g}_{\delta^{\prime}} \subset \sum_{\alpha^{\prime} \in \Phi_{1} \backslash \Upsilon} \mathfrak{g}_{\alpha^{\prime}}+\sum_{\alpha^{\prime}, \beta^{\prime} \in \Phi \backslash \Upsilon}\left[\mathfrak{g}_{\alpha^{\prime}}, \mathfrak{g}_{\beta^{\prime}}\right]
$$

 β^{\prime}, we have $\left[\mathfrak{g}_{\alpha^{\prime}}, \mathfrak{g}_{\beta^{\prime}}\right] \subseteq \mathfrak{g}_{\alpha^{\prime}+\beta^{\prime}}$ and hence $\delta^{\prime}=\alpha^{\prime}+\beta^{\prime}$ for some $\alpha^{\prime}, \beta^{\prime} \in \Phi \backslash \Upsilon$. In particular, since $\beta^{\prime} \notin \Upsilon$, it holds that $\beta:=\left.\beta^{\prime}\right|_{\mathbf{A}}$ is linearly independent from δ.

Proof of Proposition 7.1

Since the statement of the proposition is on the level of algebraic groups, the validity of the statement over the algebraic closure \bar{k} of k implies that of the statement when the groups are considered as algebraic groups over k. Over \bar{k}, we can write for every $\alpha \in \bar{\Phi}$,

$$
\mathbf{V}_{[\alpha]}=\prod_{\delta^{\prime} \in \vartheta([\alpha])} \mathbf{U}_{\delta^{\prime}}
$$

with each $\mathbf{U}_{\delta^{\prime}}$ a 1-parameter unipotent group over \bar{k}.
Since the group \mathbf{G} is absolutely almost simple, and in particular semisimple, the root groups $\mathbf{U}_{\delta^{\prime}}$ for $\delta^{\prime} \in \Phi$ generate. Therefore, to prove the proposition, it is enough to show that for every $\delta^{\prime} \in \Phi$, one can find α and β in $\bar{\Phi}$, linearly independent, so that

$$
\begin{equation*}
\mathbf{U}_{\delta^{\prime}} \subset\left[\mathbf{V}_{[\alpha]}, \mathbf{V}_{[\beta]}\right] \tag{7.2}
\end{equation*}
$$

Let β, β^{\prime} be as in Lemma 7.2 applied to $\delta:=\left.\delta^{\prime}\right|_{\mathbf{A}_{1}}$ and δ^{\prime}, and let $\alpha^{\prime}=\delta^{\prime}-\beta^{\prime}$ and $\alpha=\left.\alpha^{\prime}\right|_{\mathbf{A}}$. In particular, α and β are linearly independent.

Recall that $\operatorname{char}(k) \neq 2,3$. Hence, by [4, Section 4.3], irregular commutation relations do not occur. This means in particular (see also [2, Section 2.5]) that

$$
\left[\mathbf{U}_{\alpha^{\prime}}, \mathbf{U}_{\beta^{\prime}}\right]=\mathbf{U}_{\alpha^{\prime}+\beta^{\prime}}
$$

But $\mathbf{U}_{\alpha^{\prime}} \subset \mathbf{V}_{[\alpha]}, \mathbf{U}_{\beta^{\prime}} \subset \mathbf{V}_{[\beta]}$, and by definition $\alpha^{\prime}+\beta^{\prime}=\delta^{\prime}$. Thus (7.2) is proved, and hence the proposition follows.

7.2. The main entropy inequality and the invariance group of the leafwise measures

 From now on, we use notation from Theorem 1.2. In particular, for $i=1,2, \mathbf{G}_{i}$ denotes a connected, simply connected, absolutely almost simple group defined over k. We put $G_{i}=\mathbf{G}_{i}(k)$ and $G=G_{1} \times G_{2}$. Recall also that $\operatorname{char}(k)>3$. Suppose that there are fixed two algebraic monomorphisms $\lambda_{i}: \mathbf{G}_{m}^{2} \rightarrow \mathbf{G}_{i}$ defined over k; let $\mathbf{A}_{i}=\lambda_{i}\left(\mathbf{G}_{m}^{2}\right)$ and $A_{i}=\mathbf{A}_{i}(k)$. For $i=1,2$, fix a maximal, k-split, k-torus $\mathbf{S}_{i} \subset \mathbf{G}_{i}$ so that $\mathbf{A}_{i} \subset \mathbf{S}_{i}$, and set ${ }_{k} \Phi_{i}:={ }_{k} \Phi\left(\mathbf{S}_{i}, \mathbf{G}_{i}\right)$ and $\bar{\Phi}_{i}:={ }_{k} \Phi\left(\mathbf{A}_{i}, \mathbf{G}_{i}\right)$. Define \mathbf{A} to be the smooth k-group so that$$
\mathbf{A}(R):=\left\{\left(\lambda_{1}(r), \lambda_{2}(r)\right): r \in \mathbf{G}_{m}(R)^{2}\right\}
$$

for any algebra R / k; let $A:=\mathbf{A}(k)$.
Let

$$
\bar{\Phi}={ }_{k} \Phi\left(\mathbf{A}, \mathbf{G}_{1} \times \mathbf{G}_{2}\right) .
$$

Using the natural homomorphisms from \mathbf{A} to \mathbf{A}_{i}, for $i=1,2$ we can view ${ }_{k} \Phi\left(\mathbf{A}_{i}, \mathbf{G}_{i}\right)$ as subsets of $\bar{\Phi}$; moreover, we have

$$
\bar{\Phi}={ }_{k} \Phi\left(\mathbf{A}_{1}, \mathbf{G}_{1}\right) \cup_{k} \Phi\left(\mathbf{A}_{2}, \mathbf{G}_{2}\right)
$$

For each $\alpha \in \bar{\Phi}$, we can write the coarse Lyapunov group $V_{[\alpha]} \subset G_{1} \times G_{2}$ as a product $V_{[\alpha]}^{1} \times V_{[\alpha]}^{2}$ with $V_{[\alpha]}^{i} \subset G_{i}$; by convention, if $\alpha \notin \bar{\Phi}$, then $V_{[\alpha]}^{i}=\{1\}$. For $i=1,2$, fix a maximal, compact, open subgroup $\mathfrak{G}_{i} \subset G_{i}$ and put $\mathfrak{G}:=\mathfrak{G}_{1} \times \mathfrak{G}_{2}$. Recall that μ denotes an ergodic joining for the action of A_{i} on $\left(X_{i}, m_{i}\right)$ for $i=1,2$.

Proposition C ([12, Section 3])
Let $a=\left(a_{1}, a_{2}\right) \in A$, and let $\Psi \subset \bar{\Phi}$ be a positively closed subset. Put

$$
W=V_{\Psi} \subset W_{G_{1} \times G_{2}}^{-}(a)
$$

Then $W=W_{1} \times W_{2}$, where $W_{i} \subset G_{i}$ for $i=1,2$ and

$$
\begin{equation*}
\mathrm{h}_{\mu}(a, W) \leq \mathrm{h}_{m_{1}}\left(a_{1}, W_{1}\right)+\mathrm{h}_{\mu}\left(a,\{\mathrm{id}\} \times W_{2}\right) . \tag{7.3}
\end{equation*}
$$

Furthermore, the following hold.
(1) If the equality holds in (7.3), then W_{1} is the smallest algebraic subgroup of W_{1} which contains $\pi_{1}\left(\operatorname{supp}\left(\mu_{x}^{W}\right) \cap \mathfrak{G}\right)$.
(2) The equality holds for $W=W_{G_{1} \times G_{2}}^{-}$(a).
(3) \quad For every $\alpha \in \bar{\Phi}$, the equality holds for $W=V_{[\alpha]}$.

Proof

The main inequality follows from [12, Proposition 3.1]. ${ }^{2}$ Parts (2) and (3) follow from

[^0][12, Proposition 3.3, Corollary 3.4]. To see part (1), note first that by [13, Proposition 6.2], we have that
$$
\pi_{1}\left(\overline{\operatorname{supp}\left(\mu_{x}^{W}\right) \cap \mathfrak{G}^{z}}\right)
$$
is a (Zariski-closed) subgroup which is normalized by a and contains $\pi_{1}\left(\operatorname{supp}\left(\mu_{x}^{W}\right)\right)$. Part (1) now follows from [12, Proposition 3.2].

COROLLARY 7.3

For any $\alpha \in \bar{\Phi}$, we have that $\pi_{i}\left(\mathcal{S}_{x}^{[\alpha]} \cap \mathfrak{G}\right)$ is Zariski-dense in $\pi_{i}\left(V_{[\alpha]}\right)$ for $i=1,2$.

Proof

In view of Proposition C(3), this is a direct consequence of Proposition C(1) and the definition of $\mathscr{S}_{x}^{[\alpha]}$.

Fix an element $a=\left(a_{1}, a_{2}\right) \in A$ that is regular with respect to $\bar{\Phi}$ (i.e., $\alpha(a) \neq 1$ for any $\alpha \in \bar{\Phi}$). We denote the Pinsker σ-algebra, \mathcal{P}_{a}, simply by \mathscr{P}. Disintegrate μ as

$$
\begin{equation*}
\mu=\int_{X} \mu_{x}^{\mathcal{P}} \mathrm{d} \mu(x) \tag{7.4}
\end{equation*}
$$

where $\mu_{x}^{\mathcal{P}}$ denotes the \mathcal{P}-conditional measure for μ-a.e. $x \in X$. Similar to (6.6), define

$$
\mathscr{H}_{x}:=\left\{g \in G_{1} \times G_{2}: g \mu_{x}^{\mathcal{P}}=\mu_{x}^{\mathcal{P}}\right\} .
$$

We have $a \mathscr{H}_{x} a^{-1}=\mathscr{H}_{a x}$ for all $a \in A$ and μ-a.e. x (see (6.7)).

LEMMA 7.4

For μ-a.e. x and any linearly independent $\alpha, \beta \in \Phi$, the measure $\mu_{x}^{\mathcal{P}}$ is almost surely invariant under $\left[\delta_{x}^{[\alpha]}, \delta_{x}^{[\beta]}\right]$-that is, $\left[\delta_{x}^{[\alpha]}, \delta_{x}^{[\beta]}\right] \subset \mathscr{H}_{x}$.

Proof

By Lemma 3.14, for every $\alpha \in \bar{\Phi}$ and μ-a.e. x, we have that $\mu_{x}^{\mathcal{P}}$ is invariant under $I_{x}^{[\alpha]}$, and hence, by Lemma 3.12, is invariant under I_{x}^{Ψ} for any positively closed $\Psi \subset$ $\bar{\Phi}$. By Lemma 3.11, we have therefore that, for any linearly independent $\alpha, \beta \in \Phi$, the measure $\mu_{x}^{\mathcal{P}}$ is almost surely invariant under $\left[\mathscr{f}_{x}^{[\alpha]}, \boldsymbol{f}_{x}^{[\beta]}\right]$.

Recall that $\mathfrak{G}=\mathfrak{G}_{1} \times \mathfrak{G}_{2}$ is a compact, open subgroup of $G=G_{1} \times G_{2}$. Define

$$
\mathcal{Q}_{x}:=\left\langle\left\{g \in \mathscr{H}_{x} \cap \mathfrak{G}: g \text { is unipotent }\right\}\right\rangle .
$$

COROLLARY 7.5

For μ-a.e. $x, \pi_{i}\left(\mathcal{Q}_{x}\right)$ is Zariski-dense in \mathbf{G}_{i} and $\pi_{i}\left(\mathscr{H}_{x}\right)$ is unbounded for $i=1,2$.

Proof

For any x, let $\mathbf{L}_{i, x}$ denote the Zariski closure of $\pi_{i}\left(Q_{x}\right)$ in \mathbf{G}_{i}. Let $\alpha, \beta \in \bar{\Phi}$ be two linearly independent roots. By Corollary 7.3, almost surely $\pi_{i}\left(\mathcal{S}_{x}^{[\alpha]} \cap \mathfrak{G}\right)$ is Zariskidense in $\pi_{i}\left(\mathbf{V}_{[\alpha]}\right)$ and similarly for β, for $i=1,2$. By Lemma 7.4, $\left[\mathcal{S}_{x}^{[\alpha]} \cap \mathfrak{G}, \mathscr{P}_{x}^{[\beta]} \cap\right.$ $\mathfrak{G}] \subset Q_{x}$. It follows that

$$
\pi_{i}\left(\left[\mathbf{V}_{[\alpha]}, \mathbf{V}_{[\beta]}\right]\right) \subset \mathbf{L}_{i, x}
$$

for any two linearly independent $\alpha, \beta \in \bar{\Phi}$. The first part of the claim follows using Proposition 7.1.

For the second, by Lemmas 7.4 and 3.12 there is an $\alpha \in \bar{\Phi}$ such that $d_{x}^{[\alpha]}$ is nontrivial. If $\ell_{x}^{[\alpha]}$ were to be bounded on a set of positive measure, then its diameter would be a monotone, increasing, measurable function under an appropriate subsemigroup of A, in contradiction to Poincaré recurrence.

7.3. Proof of Theorem 1.2

Let $X^{\prime} \subset X$ be a conull subset so that the conclusions of Lemma 3.5 and Corollary 7.5 hold true on X^{\prime}. By Corollary 7.5, for all $x \in X^{\prime}$ the group Q_{x} satisfies the conditions of Theorem A. 2 in Section 3.1. Therefore, there are two possibilities to consider.

Case 1 . There is a subset $X^{\prime \prime} \subset X^{\prime}$ with $\mu\left(X^{\prime \prime}\right)>0$ so that for all $x \in X^{\prime \prime}$ and $i=1,2$, the following conditions hold. There are

- \quad subfields $k_{i, x} \subset k$,
- $k_{i, x}$-groups $\mathbf{H}_{i, x}$,
- k-isomorphism $\varphi_{i, x}: \mathbf{H}_{i, x} \times_{k_{i, x}} k \rightarrow \mathbf{G}_{i}$, and
- open, compact subgroups $\mathcal{Q}_{i, x} \subset \varphi_{i, x}\left(\mathbf{H}_{i, x}\left(k_{i, x}\right)\right)$
so that $\mathcal{Q}_{1, x} \times \mathcal{Q}_{2, x} \subset \mathcal{Q}_{x}$.

LEMMA 7.6
For every $x \in X^{\prime \prime}$ and every $h \in \mathcal{Q}_{1, x}$, define

$$
F_{x}(h):=\left\{v(h, 1) v^{-1}: v \in \mathscr{H}_{x}\right\}
$$

(1) For every $h \in \mathcal{Q}_{1, x}$, we have $F_{x}(h) \subset \mathscr{H}_{x}$.
(2) There exists an element $h \in \mathcal{Q}_{1, x}$ such that $F_{x}^{\alpha}(h)$ is unbounded.

Proof
Part (1) is immediate since $Q_{x, 1} \times\{1\} \subset Q_{x}$.

We now prove part (2). Let $\left\{v_{n}\right\} \subset \mathscr{H}_{x}$ be a sequence so that $\pi_{1}\left(v_{n}\right) \rightarrow \infty$ (see Corollary 7.5). Let

$$
v_{n}=\left(v_{n, 1}, v_{n, 2}\right)=\left(r_{n, 1}^{\prime} s_{n, 1} r_{n, 1}, r_{n, 2}^{\prime} s_{n, 2} r_{n, 2}\right)
$$

be the Cartan decomposition of v_{n}. Then $s_{n, 1} \rightarrow \infty$. Passing to a subsequence if necessary, we assume that

- $\quad\left\{r_{n, i}\right\}$ and $\left\{r_{n, i}^{\prime}\right\}$ converge for $i=1,2$, and moreover,
- $\quad \mathbf{P}:=\left\{g \in \mathbf{G}_{1}:\left\{s_{n, 1}^{-1} g s_{n, 1}\right\}\right.$ is bounded $\}$ is a proper parabolic k-subgroup of \mathbf{G}_{1}.
Since $\mathcal{Q}_{1, x}$ is Zariski-dense in the k-group \mathbf{G}_{1}, there exists some $h \in \mathcal{Q}_{1, x}$ which does not lie in $r^{-1} \mathbf{P} r$ where $r_{n, 1} \rightarrow r$. The claim in part (2) holds for this h.

Proof of Theorem 1.2: Case 1

Let $x \in X^{\prime \prime}$, and let h and $F_{x}(h)$ be as in Lemma 7.6(2). Suppose that $\left\{\left(g_{n}, 1\right)\right\} \subset$ $F_{x}(h)$ is an unbounded sequence. By part (1) of that lemma, we have

$$
\begin{equation*}
\left(g_{n}, 1\right) \in \mathscr{H}_{x} \quad \text { for all } n \tag{7.5}
\end{equation*}
$$

Recall from Lemma 3.5 that

$$
\begin{equation*}
\pi_{i *}\left(\mu_{x}^{\mathcal{P}}\right)=m_{i} \quad \text { for } i=1,2 \tag{7.6}
\end{equation*}
$$

Since \mathbf{G}_{1} is connected, simply connected, and absolutely almost simple, it follows from the generalized Mautner phenomenon (see [26, Chapter 1, Theorem 2.3.1], [26, Chapter 2, Theorem 7.2]) that $\left(X_{1}, m_{1}\right)$ is ergodic for the action of the unbounded group $\left\langle\left\{g_{n}\right\}\right\rangle$. This, together with (7.5) and (7.6), implies that $\mu_{x}^{\mathcal{P}}=m_{1} \times m_{2}$ (see, e.g., the argument in Case 1 of the proof of [17, Proposition 4.3]). Since $\mu\left(X^{\prime \prime}\right)>0$ and μ is A-ergodic, we get that $\mu=m_{1} \times m_{2}$.

The rest of this section is devoted to the analysis of the following case.
Case 2 . Replacing X^{\prime} by a conull subset, which we continue to denote by X^{\prime}, we have the following. For every $x \in X^{\prime}$, there are

- a subfield $k_{x} \subset k$ and a continuous embedding $\tau_{x}: k_{x} \rightarrow k$,
- a k_{x}-group \mathbf{H}_{x},
- $\quad \mathrm{a}(k \oplus k)$-isomorphism $\varphi_{x}: \mathbf{H}_{x} \times_{\Delta_{\tau_{x}}\left(k_{x}\right)}(k \oplus k) \rightarrow \mathbf{G}_{1} \amalg \mathbf{G}_{2}$ where as in (3.4), $\Delta_{\tau_{x}}\left(k_{x}\right)=\left\{\left(c, \tau_{x}(c)\right): c \in k_{x}\right\}$,
so that \mathcal{Q}_{x} is an open subset of the image under φ_{x} of $\mathbf{H}_{x}\left(k_{x}\right)$ with the latter considered as a subset of the $(k \oplus k)$-points of $\mathbf{H}_{x} \times_{\Delta_{\tau_{x}}\left(k_{x}\right)}(k \oplus k)$ using the injection of rings $\Delta_{\tau_{x}}: k_{x} \rightarrow k \oplus k$. Moreover, $\Delta_{\tau_{x}}\left(k_{x}\right)$ is unique, and \mathbf{H}_{x} and φ_{x} are unique up to unique isomorphisms. Let us further recall that
$k_{x}=$ the field of quotients of the ring generated by $\left\{\operatorname{tr}(\rho(g)): g \in \mathcal{Q}_{x}\right\}$,
where ρ denotes the nonconstant irreducible representation occurring as subquotient of the adjoint representation of $\mathbf{G}_{1}^{\text {ad }}$.

Put $E_{x}:=\varphi_{x}\left(\mathbf{H}_{x}\left(k_{x}\right)\right) \subset G_{1} \times G_{2}$.

PROPOSITION 7.7

(1) There is a subfield $k^{\prime} \subset k$ and an embedding $\tau: k^{\prime} \rightarrow k$ so that $\Delta_{\tau_{x}}\left(k_{x}\right)=$ $\Delta_{\tau}\left(k^{\prime}\right)$ on a conull subset of X.
(2) The map $x \mapsto E_{x}$ is an A-equivariant Borel map on a conull subset of X.

Proof

In view of (7.7) and the fact that $x \mapsto \mathcal{Q}_{x}$ is a Borel map, we get that $x \mapsto \Delta_{\tau_{x}}\left(k_{x}\right)$ is a Borel map (see the proof of Lemma 6.5(1)). To see the other claims in part (1), first recall that $a \mathscr{H}_{x} a^{-1}=\mathscr{H}_{a x}$ for all $a \in A$ and μ-a.e. $x \in X$. Hence, for any $a \in A$ there exists some finite index subgroup $\mathcal{Q}_{x}(a) \subset \mathcal{Q}_{x}$ so that

$$
\begin{equation*}
a \mathcal{Q}_{x}(a) a^{-1} \subset \mathcal{Q}_{a x} . \tag{7.8}
\end{equation*}
$$

Therefore, the same arguments as in the proof of Lemma 6.6(1) apply here and finish the proof of part (1) (see (6.13) and (6.14)).

We now turn to the proof of part (2). Put

$$
\mathbf{G}^{\prime}:=\mathcal{R}_{k \oplus k / \Delta_{\tau}\left(k^{\prime}\right)}\left(\mathbf{G}_{1} \coprod \mathbf{G}_{2}\right)
$$

This is a $\Delta_{\tau}\left(k^{\prime}\right)$-group.
Now, part (1), the fact that φ_{x} is an isomorphism, and the universal property of the restriction of scalars functor (see [6, Section A.5]) imply that

$$
E_{x}=\left(\mathcal{R}_{k \oplus k / \Delta_{\tau}\left(k^{\prime}\right)}\left(\varphi_{x}\right)\left(\mathbf{H}_{x}\right)\right)\left(\Delta_{\tau}\left(k^{\prime}\right)\right)
$$

Hence, using [26, Chapter 1, Proposition 2.5.3], we get that E_{x} is identified with the $\Delta_{\tau}\left(k^{\prime}\right)$-points of the Zariski closure of \mathcal{Q}_{x} in the $\Delta_{\tau}\left(k^{\prime}\right)$-group \mathbf{G}^{\prime}. Since the map $x \mapsto \mathcal{Q}_{x}$ is Borel, we thus get that $x \mapsto E_{x}$ is a Borel map.

To see the A-equivariance, first recall from (7.8) that $a Q_{x}(a) a^{-1}$ is an open subgroup of $\mathcal{Q}_{a x}$. Thus, using [26, Chapter 1, Proposition 2.5.3], we get that $E_{a x}$ is the Zariski closure of $a Q_{x}(a) a^{-1}$ in $\mathbf{G}^{\prime}\left(\Delta_{\tau}\left(k^{\prime}\right)\right)$. On the other hand, this Zariski closure equals $a E_{x} a^{-1}$; the claim follows.

Lemma 7.8

For μ-a.e. $x \in X$, we have $E_{x} \subset \mathscr{H}_{x}$, and E_{x} is not compact.

Proof

We first recall from [31, Theorem T] that since \mathbf{H}_{x} is connected, simply connected, and absolutely almost simple, any open and unbounded subgroup of E_{x} equals E_{x}. Thus, since $\mathcal{Q}_{x} \subset \mathscr{H}_{x}$ is an open subgroup of E_{x}, both assertions in the lemma will follow if we show that $\mathscr{H}_{x} \cap E_{x}$ is unbounded for μ-a.e. $x \in X$.

However, the proof of Corollary 7.5 shows that for some $\alpha \in \bar{\Phi}$, we have that $\mathcal{Q}_{x} \cap d_{x}^{[\alpha]}$ is nontrivial. Since $x \mapsto E_{x}$ is an A-equivariant map, using Poincaré recurrence as in Corollary 7.5 it follows that $\mathscr{H}_{x} \cap E_{x}$ is unbounded.

Proof of Theorem 1.2: Case 2

The argument is similar to the proof of Theorem 1.1.
Step 1. Let

$$
\begin{equation*}
\mu_{x}^{\mathcal{P}}=\int_{X} v_{z} \mathrm{~d} \mu_{x}^{\mathcal{P}}(z) \tag{7.9}
\end{equation*}
$$

be the ergodic decomposition of $\mu_{x}^{\mathcal{P}}$ with respect to E_{x}.
As before, $k \oplus k$ is a $\Delta_{\tau}\left(k^{\prime}\right)$-algebra. Put

$$
\mathbf{G}^{\prime}:=\mathcal{R}_{k \oplus k / \Delta_{\tau}\left(k^{\prime}\right)}\left(\mathbf{G}_{1} \coprod \mathbf{G}_{2}\right)
$$

This is a connected group defined over $\Delta_{\tau}\left(k^{\prime}\right)$ (see [6, Section A5]). Moreover, $\Gamma_{1} \times$ Γ_{2} is a lattice in $\mathbf{G}^{\prime}\left(\Delta_{\tau}\left(k^{\prime}\right)\right)=\mathbf{G}_{1}(k) \times \mathbf{G}_{2}(k)=G_{1} \times G_{2}=G$.

Applying Theorem B in Section 3.2, we conclude that for $\mu_{x}^{\mathcal{P}}$-a.e. z the measure v_{z} is described as follows. There exist
(1) $\quad l_{z}=\left(k^{\prime}\right)^{q_{z}}$ where $q_{z}=p^{n_{z}}, p=\operatorname{char}(k)$, and $n_{z} \geq 1$,
(2) a connected $\Delta_{\tau}\left(l_{z}\right)$-subgroup \mathbf{M}_{z} of $\mathcal{R}_{\Delta_{\tau}\left(k^{\prime}\right) / \Delta_{\tau}\left(l_{z}\right)}\left(\mathbf{G}^{\prime}\right)$ so that

$$
\mathbf{M}_{z}\left(\Delta_{\tau}\left(l_{z}\right)\right) \cap\left(\Gamma_{1} \times \Gamma_{2}\right)
$$

is Zariski-dense in \mathbf{M}_{z}, and
(3) an element $g_{z} \in G_{1} \times G_{2}$,
such that ν_{z} is the $g_{z} L_{z} g_{z}^{-1}$-invariant probability Haar measure on the closed orbit $g_{z} L_{z}\left(\Gamma_{1} \times \Gamma_{2}\right) /\left(\Gamma_{1} \times \Gamma_{2}\right)$ with

$$
L_{z}=\overline{M_{z}^{+}\left(\lambda_{z}\right)\left(\mathbf{M}_{z}\left(\Delta_{\tau}\left(l_{z}\right)\right) \cap\left(\Gamma_{1} \times \Gamma_{2}\right)\right)}
$$

where

- the closure is with respect to the Hausdorff topology, and
- $\quad \lambda_{z}: \mathbf{G}_{m} \rightarrow \mathbf{M}_{z}$ is a noncentral $\Delta_{\tau}\left(l_{z}\right)$-homomorphism, $M_{z}^{+}\left(\lambda_{z}\right)$ is defined in (3.9), and $E_{x} \subset M_{z}^{+}\left(\lambda_{z}\right)$.

Arguing as in the proof of Lemma 6.8, there exists a triple $\left(l_{0},\left[\mathbf{M}_{0}\right],\left[M_{0}^{+}\left(\lambda_{0}\right)\right]\right)$ so that

$$
\left(l_{z},\left[\mathbf{M}_{z}\right],\left[M_{z}^{+}\left(\lambda_{z}\right)\right]\right)=\left(l_{0},\left[\mathbf{M}_{0}\right],\left[M_{0}^{+}\left(\lambda_{0}\right)\right]\right) \quad \text { for } \mu \text {-a.e. } x \text { and } \mu_{x}^{\mathcal{P}} \text {-a.e. } z .
$$

Put $L_{0}:=\overline{M_{0}^{+}\left(\lambda_{0}\right)\left(\mathbf{M}_{0}\left(\Delta_{\tau}\left(l_{0}\right)\right) \cap\left(\Gamma_{1} \times \Gamma_{2}\right)\right)}$.
Step 2. One of the following holds:
(a) $L_{0}=G_{1} \times G_{2}$, or
(b) $\quad \pi_{i}\left(L_{0}\right)=G_{i}$ and $\operatorname{ker}\left(\left.\pi_{i}\right|_{L_{0}}\right) \subset C\left(G_{1} \times G_{2}\right)$ for $i=1,2$.

To see this, first note that, by Lemma 3.5, we have $\pi_{i *} \mu_{x}^{\mathcal{P}}=m_{i}$ for μ-a.e. $x \in X$ and $i=1,2$. This, together with (7.9), implies that

$$
m_{i}=\pi_{i *} \mu_{x}^{\mathcal{P}}=\int_{X} \pi_{i *} v_{z} \mathrm{~d} \mu_{x}^{\mathcal{P}}(z) \quad \text { for } \mu \text {-a.e. } x
$$

Since v_{z} is invariant under E_{x}, the projection $\pi_{i *}\left(v_{z}\right)$ is invariant under $\pi_{i}\left(E_{x}\right)$. By Lemma 7.8, the group $\pi_{i}\left(E_{x}\right)$ is an unbounded subgroup of G_{i} for $i=1,2$. Since \mathbf{G}_{i} is simply connected, m_{i} is $\pi_{i}\left(E_{x}\right)$-ergodic (see [26, Chapter 1, Theorem 2.3.1], [26, Chapter 2, Theorem 7.2]). Therefore,

$$
\pi_{i *} \nu_{z}=m_{i} \quad \text { for } \mu_{x}^{\mathcal{P}} \text {-a.e. } z .
$$

In particular, we get that $\pi_{i}\left(g_{z} L_{0} g_{z}^{-1}\right)=G_{i}$ for $\mu_{x}^{\mathcal{P}}$-a.e. z and $i=1,2$.
Since \mathbf{G}_{i} is absolutely almost simple, any proper normal subgroup of G_{i}, as an abstract group, is central (see [26, Chapter 1, Theorem 1.5.6]). This implies that one of the following holds:

- $L_{0}=G_{1} \times G_{2}$, or
- $\quad \pi_{i}\left(L_{0}\right)=G_{i}$ and $\operatorname{ker}\left(\left.\pi_{i}\right|_{L_{0}}\right) \subset C\left(G_{1} \times G_{2}\right)$ for $i=1,2$, as we claimed. If $L_{0}=G \times G$, then we are done with the proof. Hence, our standing assumption for the rest of the argument is that (b) above holds.

Step 3. The assertion in (b) also holds for M_{0} and $M_{0}^{+}\left(\lambda_{0}\right)$ in place of L_{0}. Let us first show this for M_{0}. Since $L_{0} \subset M_{0}$, we have

$$
\pi_{i}\left(M_{0}\right)=G_{i} \quad \text { for } i=1,2 .
$$

Therefore, as above, either $M_{0}=G_{1} \times G_{2}$ or (b) holds for M_{0}. Assume to the contrary that $M_{0}=G_{1} \times G_{2}$. Recall that $\lambda_{0}: \mathbf{G}_{m} \rightarrow \mathbf{M}_{0}$ is a noncentral homomorphism. Since \mathbf{G}_{i} is connected, simply connected, and absolutely almost simple for $i=1,2$, using [26, Chapter 1, Proposition 1.5.4, Theorem 2.3.1], we have that either

- $M_{0}^{+}\left(\lambda_{0}\right)=G_{1} \times G_{2}$, or
- $\quad M_{0}^{+}\left(\lambda_{0}\right) \subset G_{i}$ for some $i=1,2$.

However, since $M_{0}^{+}\left(\lambda_{0}\right) \subset L_{0}$, the above contradict our assumption that (b) holds.

We now turn to the proof of the claim for $M_{0}^{+}\left(\lambda_{0}\right)$. Since $M_{0} \neq G_{1} \times G_{2}$ and $M_{0}^{+}\left(\lambda_{0}\right) \subset M_{0}$, the claim follows if we show that

$$
\begin{equation*}
\pi_{i}\left(M_{0}^{+}\left(\lambda_{0}\right)\right)=G_{i} \quad \text { for } i=1,2 \tag{7.10}
\end{equation*}
$$

To see this, note that $\lambda_{0}\left(l_{0}^{\times}\right) \subset M_{0}\left(\lambda_{0}\right)$. Since (b) holds for M_{0}, we have that $\pi_{i}\left(\lambda_{0}\left(l_{0}^{\times}\right)\right)$is unbounded for $i=1,2$. Therefore, (7.10) follows from [26, Chapter 1, Proposition 1.5.4, Theorem 2.3.1].

Let us record the following corollaries of the above discussion for later use. Since (b) holds for $M_{0}^{+}\left(\lambda_{0}\right), L_{0}$, and M_{0}, we have

$$
\begin{equation*}
N_{G_{1} \times G_{2}}\left(M_{0}\right) \subset C M_{0}, \tag{7.11}
\end{equation*}
$$

where $C:=Z\left(G_{1} \times G_{2}\right)$. We also have that

$$
\begin{equation*}
M_{0}^{+}\left(\lambda_{0}\right) \text { is a finite index subgroup of } L_{0} \text { and of } M_{0} \tag{7.12}
\end{equation*}
$$

Step 4. Both

$$
M_{0}^{+}\left(\lambda_{0}\right)\left(\Gamma_{1} \times \Gamma_{2}\right) /\left(\Gamma_{1} \times \Gamma_{2}\right) \quad \text { and } \quad M_{0}\left(\Gamma_{1} \times \Gamma_{2}\right) /\left(\Gamma_{1} \times \Gamma_{2}\right)
$$

are closed orbits with probability-invariant Haar measures. In particular, v_{x} is the Haar measure on the closed orbit

$$
g_{x} M_{0}^{+}\left(\lambda_{0}\right)\left(\Gamma_{1} \times \Gamma_{2}\right) /\left(\Gamma_{1} \times \Gamma_{2}\right)
$$

Indeed, let $\Lambda:=M_{0} \cap\left(\Gamma_{1} \times \Gamma_{2}\right)$. Then by (7.12) and Step $1, \Lambda$ is a lattice in M_{0}, as was claimed for M_{0}.

Using (7.12) once more, we have that $\Lambda \cap M_{0}^{+}\left(\lambda_{0}\right)$ has finite index in Λ. This implies that $\Lambda \cap M_{0}^{+}\left(\lambda_{0}\right)$ is a lattice in $M_{0}^{+}\left(\lambda_{0}\right)$; hence, the claim for $M^{+}\left(\lambda_{0}\right)$.

Step 5. We are now in a position to finish the proof. In view of (7.11), (7.12), and Step 4, we can argue as in the proof of Lemma 6.9 (see, in particular, (6.21)) and get the following. Let $C^{\prime}:=C \cap\left(\Gamma_{1} \times \Gamma_{2}\right)$. The decomposition

$$
\mu=\int v_{x} \mathrm{~d} \mu
$$

yields the Borel map $f(x)=g_{x} C^{\prime} M_{0}$ from a conull subset of X to $G_{1} \times G_{2} / C^{\prime} M_{0}$. Moreover, f is an A-equivariant map. Hence, it follows from Lemma 3.3 that there exists some

$$
g_{0} \in \operatorname{Fix}_{A_{l_{0}}^{\text {sp }}}\left(G_{1} \times G_{2} / C^{\prime} M_{0}\right)
$$

so that $f_{*} \mu$ is the A-invariant measure on the compact orbit $A g_{0}$.

By Lemma 3.2 and (7.12), we have that $M_{0}^{+}\left(\lambda_{0}\right)$ is a normal and finite index subgroup of M_{0}; furthermore, C^{\prime} is a finite group. Therefore, arguing as we did to complete the proof of Theorem 1.1 after (6.34), we get that there is some $g_{1} \in M_{0}$ so that

$$
\mu=\int_{A / A \cap g_{0} g_{1} M_{0}^{+}\left(\lambda_{0}\right) g_{1}^{-1} g_{0}^{-1}} a_{*} v \mathrm{~d} a
$$

where $\mathrm{d} a$ is the probability Haar measure on the compact group

$$
A / A \cap g_{0} g_{1} M_{0}^{+}\left(\lambda_{0}\right) g_{1}^{-1} g_{0}^{-1}
$$

and v is the probability Haar measure on the closed orbit

$$
g_{0} g_{1} M_{0}^{+}\left(\lambda_{0}\right)\left(\Gamma_{1} \times \Gamma_{2}\right) /\left(\Gamma_{1} \times \Gamma_{2}\right)
$$

Hence, Theorem 1.2(2) holds with $\Sigma=g_{0} g_{1} M_{0}^{+}\left(\lambda_{0}\right) g_{1}^{-1} g_{0}^{-1}$.
Acknowledgments. The authors would like to thank Alireza Salehi Golsefidy, Michael Larsen, Shahar Mozes, Gopal Prasad, and Richard Pink for helpful conversations. The results of [28] are used in our work in an essential way, and we thank Alireza Salehi Golsefidy for agreeing to present the results in that paper in a way that would be convenient for our purposes. We would also like to thank the anonymous referees for their helpful comments.

Einsiedler's work was partially supported by Swiss National Science Foundation grants 152819 and 178958. Lindenstrauss's work was partially supported by European Research Council AdG grant 267259. Mohammadi's work was partially supported by National Science Foundation grants DMS-1724316, DMS-1764246, and DMS-1128155 and by an Alfred P. Sloan Research Fellowship.

References

[1] A. BOREL, Linear Algebraic Groups, 2nd ed., Grad. Texts in Math. 126, Springer, New York, 1991. MR 1102012. DOI 10.1007/978-1-4612-0941-6. (121, 144, 154)
[2] A. BOREL and J. TITS, Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55-150. MR $0207712 .(135,163)$
[3] - Éléments unipotents et sous-groupes paraboliques de groupes réductifs, I, Invent. Math. 12 (1971), 95-104. MR 0294349. DOI 10.1007/BF01404653. $(124,154)$
[4] -, Homomorphismes "abstraits" de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499-571. MR 0316587. DOI 10.2307/1970833. (163)
[5] B. CONRAD, Finiteness theorems for algebraic groups over function fields, Compos. Math. 148 (2012), no. 2, 555-639. MR 2904198.
DOI 10.1112/S0010437X11005665. (154)
[6] B. CONRAD, O. GABBER, and G. PRASAD, Pseudo-Reductive Groups, New Math. Monogr. 17, Cambridge Univ. Press, Cambridge, 2010. MR 2723571. DOI 10.1017/CBO9780511661143. (128, 129, 154, 156, 158, 159, 160, 168, 169)
[7] P. K. DRAXL, Skew Fields, London Math. Soc. Lecture Note Ser. 81, Cambridge Univ. Press, Cambridge, 1983. MR 0696937. DOI 10.1017/CBO9780511661907. (122)
[8] M. EINSIEDLER and A. GHOSH, Rigidity of measures invariant under semisimple groups in positive characteristic, Proc. Lond. Math. Soc. (3) 100 (2010), no. 1, 249-268. MR 2578474. DOI 10.1112/plms/pdp029. (120)
[9] M. EINSIEDLER and A. KATOK, Invariant measures on G / Γ for split simple Lie groups G, Comm. Pure Appl. Math. 56 (2003), no. 8, 1184-1221. MR 1989231. DOI 10.1002/cpa.10092. (120, 138)
[10] -, Rigidity of measures: The high entropy case and non-commuting foliations, Israel J. Math. 148 (2005), 169-238. MR 2191228. DOI 10.1007/BF02775436. (120, 135, 136, 139, 162)
[11] M. EINSIEDLER, A. KATOK, and E. LINDENSTRAUSS, Invariant measures and the set of exceptions to Littlewood's conjecture, Ann. of Math. (2) $\mathbf{1 6 4}$ (2006), no. 2, 513-560. MR 2247967. DOI 10.4007/annals.2006.164.513. (118, 120, 138, 140, 142, 143)
[12] M. EINSIEDLER and E. LINDENSTRAUSS, Joinings of higher-rank diagonalizable actions on locally homogeneous spaces, Duke Math. J. 138 (2007), no. 2, 203-232. MR 2318283. DOI 10.1215/S0012-7094-07-13822-5. (119, 120, 162, 163, 164, 165)
[13] - On measures invariant under diagonalizable actions: The rank-one case and the general low-entropy method, J. Mod. Dyn. 2 (2008), no. 1, 83-128. MR 2366231. DOI 10.3934/jmd.2008.2.83. (120, 133, 141, 165)
[14] , "Diagonal actions on locally homogeneous spaces" in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc. 10, Amer. Math. Soc., Providence, 2010, 155-241. MR 2648695. (120, 131, 133, 135, 136, 138, 146)
[15] -, On measures invariant under tori on quotients of semisimple groups, Ann. of Math. (2) $\mathbf{1 8 1}$ (2015), no. 3, 993-1031. MR 3296819. DOI 10.4007/annals.2015.181.3.3. (120, 139)
[16] -, Joinings of higher-rank torus actions on homogeneous spaces, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 83-127. MR 3949028. DOI 10.1007/s10240-019-00103-y. (119)
[17] M. EINSIEDLER and A. MOHAMMADI, A joinings classification and a special case of Raghunathan's conjecture in positive characteristic, with an appendix by Kevin Wortman, J. Anal. Math. 116 (2012), 299-334. MR 2892622. DOI 10.1007/s11854-012-0008-4. (167)
[18] M. EINSIEDLER and T. WARD, Ergodic Theory with a View Towards Number Theory, Grad. Texts in Math. 259, Springer, London, 2010. MR 2723325. DOI 10.1007/978-0-85729-021-2. (146)
[19] H. FURSTENBERG, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49. MR 0213508. DOI 10.1007/BF01692494. (119, 132)
[20] P. GILLE, Éléments unipotents des groupes algébriques semi-simples simplement connexes en caractéristique p>0, C. R. Math. Acad. Sci. Paris 328 (1999), no. 12, 1123-1128. MR 1701371. DOI 10.1016/S0764-4442(99)80425-X. (124, 125, 127, 154)
[21] E. GLASNER, Ergodic Theory via Joinings, Math. Surveys Monogr. 101, Amer. Math. Soc., Providence, 2003. MR 1958753. DOI 10.1090/surv/101. (132)
[22] G. HARDER, Minkowskische Reduktionstheorie über Funktionenkörpern, Invent. Math. 7 (1969), 33-54. MR 0284441. DOI 10.1007/BF01418773. (154)
[23] M. J. LARSEN and R. PINK, Finite subgroups of algebraic groups, J. Amer. Math. Soc. 24 (2011), no. 4, 1105-1158. MR 2813339. DOI 10.1090/S0894-0347-2011-00695-4. (120, 158)
[24] F. LEDRAPPIER and L.-S. YOUNG, The metric entropy of diffeomorphisms, II: Relations between entropy, exponents and dimension, Ann. of Math. (2) 122 (1985), no. 3, 540-574. MR 0819557. DOI 10.2307/1971329. (138)
[25] E. LINDENSTRAUSS, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163 (2006), no. 1, 165-219. MR 2195133. DOI 10.4007/annals.2006.163.165. (120, 133)
[26] G. A. MARGULIS, Discrete Subgroups of Semisimple Lie Groups, Ergeb. Math. Grenzgeb. (3) 17, Springer, Berlin, 1991. MR 1090825. DOI 10.1007/978-3-642-51445-6. (123, 125, 127, 132, 152, 160, 167, 168, 170, 171)
[27] G. A. MARGULIS and G. M. TOMANOV, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math. 116 (1994), no. 1-3, 347-392. MR 1253197. DOI 10.1007/BF01231565. (120, 131, 138, 152)
[28] A. MOHAMMADI and A. S. GOLSEFIDY, Characteristic free measure rigidity for the action of solvable groups on homogeneous spaces, Geom. Funct. Anal. 28 (2018), no. 1, 179-227. MR 3777416. DOI 10.1007/s00039-018-0435-1. (120, 127, 129, 152, 158, 172)
[29] R. PINK, Compact subgroups of linear algebraic groups, J. Algebra 206 (1998), no. 2, 438-504. MR 1637068. DOI 10.1006/jabr.1998.7439. (120, 123, 124, 125, 126, 148,158)
[30] V. PLATONOV and A. RAPINCHUK, Algebraic Groups and Number Theory, Pure Appl. Math. 139, Academic Press, Boston, 1994. MR 1278263. (123)
[31] G. PRASAD, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110 (1982), no. 2, 197-202. MR 0667750. (169)
[32] M. RATNER, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math. 165 (1990), no. 3-4, 229-309. MR 1075042. DOI 10.1007/BF02391906. (120)
[33] , On Raghunathan's measure conjecture, Ann. of Math. (2) $\mathbf{1 3 4}$ (1991), no. 3, 545-607. MR 1135878. DOI 10.2307/2944357. (120)
[34] Y. SHALOM, Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan's property (T), Trans. Amer. Math. Soc. 351 (1999), no. 8, 3387-3412. MR 1615966. DOI 10.1090/S0002-9947-99-02363-6. (130, 134)
[35] T. A. SPRINGER, Linear Algebraic Groups, reprint of the 1998 2nd ed., Mod. Birkhäuser Class., Birkhäuser, Boston, 2009. MR 2458469. (128, 134, 151, 153, 155)
[36] G. TOMANOV, "Actions of maximal tori on homogeneous spaces" in Rigidity in Dynamics and Geometry (Cambridge, 2000), Springer, Berlin, 2002, 407-424. MR 1919414. (123)
[37] P. WALTERS, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1982. MR 0648108. (130)
[38] A. WEIL, Basic Number Theory, Grundlehren Math. Wiss. 144, Springer, New York, 1967. MR 0234930. (118)

Einsiedler

Departement Mathematik, ETH Zürich, Zürich, Switzerland; manfred.einsiedler@math.ethz.ch

Lindenstrauss

Einstein Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel; elon@math.huji.ac.il

Mohammadi

Department of Mathematics, University of California, San Diego, California, USA;
ammohammadi@ucsd.edu

[^0]: ${ }^{2}$ The arguments in [12] generalize to the setting at hand without a change.

