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Abstract
We prove positive-characteristic analogues of certain measure rigidity theorems
in characteristic 0. More specifically, we give a classification result for positive
entropy measures on quotients of SLd and a classification of joinings for higher-rank
actions on simply connected, absolutely almost simple groups.
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1. Introduction
Let G be a locally compact, second countable group, and let � be a lattice in G. Put
X D G=� . A subset S � X is called homogeneous if there exists a closed subgroup
† < G and some x 2 X such that †x is closed and supports a †-invariant proba-
bility measure. A probability measure � on X is called homogeneous if supp� is
homogeneous and � is the †-invariant probability measure on supp�.

Let A be a closed abelian subgroup of G. An A-invariant probability measure �

on G=� will be called almost homogeneous if

� D

Z
A=A\†

a�� da; (1.1)
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where
(1) † � G is a closed subgroup such that A=A \ † is compact,
(2) � is a homogeneous measure stabilized by †, and
(3) da is the Haar probability measure on the group A=A \ †.

Let K be a global function field, that is, a finite extension of the field of rational
functions in one variable over a finite field Fp . For any place w of K , we let Kw

denote the completion of K at w, and we let ow be the ring of integers in Kw . As
in the case of number fields, the field K embeds diagonally in the restricted productQ0

w Kw . Given a place v, we put

Ov D K \
Y

w¤v

ow

to be the ring of v-integers in K .
For the rest of this paper, we will assume that a place v of K is fixed and we will

put

k WD Kv; o WD ov; and O WD Ov:

Recall that we may and will identify k with Fq..��1//, the field of Laurent series
over the finite field Fq ; after this identification, we have o D FqŒŒ��1�� (see [38, Chap-
ter 1]).

The most familiar case is the one where K D Fq.�/, the field of rational functions
in one variable with coefficients in Fq . Then if we choose the valuation v coming from
��1, we have that Ov D FqŒ� � is the polynomial ring.

1.1. Positive entropy classification for measures on quotients of SLd

Let G D SL.d; k/, and let � < G be an inner-type lattice in G (see Section 2.4 for
the definition and discussion of inner-type lattices; for an explicit example, the reader
may let � D SL.d;O/). Let X WD G=� . Furthermore, we let A be the full diagonal
subgroup of SL.d; k/. Throughout the present article, we always assume that d > 2.

Given an A-invariant probability measure �, we let h�.a/ denote the measure-
theoretic entropy of a 2 A. (We note that the following theorem is a positive-
characteristic analogue of the result of [11].)

THEOREM 1.1
Suppose that � is an A-invariant ergodic probability measure on X , and further
assume that h�.a/ > 0 for some a 2 A. Then � is almost homogeneous.

The conclusion of Theorem 1.1 cannot be strengthened to say that � is homo-
geneous. In fact, K D Fq.�/ has many subfields K 0 (without a bound on ŒK W K 0�).
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Defining k0 to be the closure of K 0 in k, one could take the measure � to be the Haar
measure on the closed orbit †� for † D SL.d; k0/, and � could be as in (1.1) since
A=.A \ †/ is compact.

1.2. Joining classification
In 1967, Furstenberg [19] introduced the following notion that has since become a
central tool in ergodic theory. Suppose that we are given two measure-preserving sys-
tems for a group S acting on Borel probability spaces .Xi ;mi / for i D 1; 2. A join-
ing is a Borel probability measure � on X1 � X2 such that the pushforwards satisfy
.�i /�� D mi for i D 1; 2 and are invariant under the diagonal action on X1 � X2—
that is, s:.x1; x2/ D .s:x1; s:x2/ for all s 2 S and .x1; x2/ 2 X1 � X2.

We give a classification of ergodic joinings in the following setting. Let Gi be
connected, simply connected, absolutely almost simple groups defined over k for
i D 1; 2. Put Gi D Gi .k/, let �i be a lattice in Gi , and define Xi D Gi=�i for i D 1; 2.
Denote by mi the Haar measure on Xi . Let �i W G2

m ! Gi be two algebraic homomor-
phisms with finite kernel defined over k, and put Ai D �i .G2

m/. We define the notion
of joining as above using these monomorphisms. Let A D ¹.�1.t/; �2.t// W t 2 G2

mº,
and let A D A.k/. (The following theorem is a positive-characteristic analogue of
the work of the first and second authors [12]; see also [16] for stronger results in the
characteristic 0 setting.)

THEOREM 1.2
Assume that char.k/ ¤ 2; 3. Suppose that Gi , Ai , and Xi are as above for i D 1; 2.
Let � be an ergodic joining of the action of Ai on .Xi ;mi / for i D 1; 2. Then � is an
algebraic joining. That is, one of the following holds:
(1) � D m1 � m2 is the trivial joining, or
(2) � is almost homogeneous, and moreover, the group † appearing in the defini-

tion of an almost homogeneous measure satisfies the following:
� �i .†/ D Gi for i D 1; 2, and
� ker.�i j†/ is contained in the finite group Z.G1 � G2/ for i D 1; 2.

It is also worth mentioning that even for joinings, in general, virtual homogene-
ity cannot be improved to homogeneity. Indeed, let k=k0 be a Galois extension of
degree 2 with the nontrivial Galois automorphism 	 . Let G1 D G2 D SL3, and let
�1 D � and �2 D 	.�/ for a lattice � � SL.3; k/. Let �1 D �2 be the monomor-
phism .t; s/ 7! diag.t; s; .ts/�1/. The measure � could be the Haar measure on the
closed orbit †.�1 � �2/ of † D ¹.g; 	.g// W g 2 SL.3; k/º and � could be as in
(1.1).
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1.3. Main difference to the characteristic 0 setting
In the present article, we apply the high entropy method that was developed in the
characteristic 0 setting in a series of papers (see, e.g., [9]–[11], [14]), and for The-
orem 1.1 we also apply the low entropy method (see, e.g., [11], [13], [25]). These
arguments crucially use leafwise measures for the root subgroups (or more gener-
ally the coarse Lyapunov subgroups), which are locally finite measures on unipotent
subgroups (for a comprehensive treatment of leafwise measures, see [14]).

Suppose that we were able, using the above tools, to show that the leafwise mea-
sures on the coarse Lyapunov subgroups have some invariance. Then, using Poincaré
recurrence along A, one could show that the invariance group has arbitrarily large and
arbitrarily small elements. The key difference lies in the next step of the argument. In
the characteristic 0 setting, a closed subgroup of a unipotent group containing arbitrar-
ily small and arbitrarily large elements has to contain a 1-parameter subgroup—and
hence the leafwise measures for the 1-parameter subgroup have to be Haar, which
gives unipotent invariance for the measure under consideration.

In the positive-characteristic world this is very far from being true. In fact,
using a fairly direct adaptation of the methods used in [11], [12] and elsewhere,
one can find almost surely an unbounded subgroup of a unipotent group that has
positive Hausdorff dimension which again preserves the leafwise measure. How-
ever, as there are uncountably many such subgroups and since these may vary from
one point to another, it is not clear how to continue from this by purely dynamical
methods.

Decomposing the measure � according to the Pinsker 
 -algebra Pa (for some
a 2 A), we find a subgroup of G that preserves the conditional measure on an atom
for Pa and has a semisimple Zariski closure. To classify such subgroups, we use a
result of Pink [29] (see also [23] for related results by Larsen and Pink). This allows
us to deduce invariance under the group of points of a semisimple subgroup for some
local subfield. After this, we use a measure classification result in [28] by Golsefidy
and the third author as a replacement of Ratner’s measure classification theorem in
[32] and [33], extended to the S -arithmetic setting by Ratner [33] (resp., Margulis
and Tomanov [27]).

We note that analogues of Ratner’s measure rigidity theorems for general unipo-
tent flows in positive-characteristic settings are not yet known. Some special cases
have been investigated, specifically in [28], which we use in our proof, and an earlier
work [8]. Finally, we note that ideally one would like to have a result similar to [15]
in the setting at hand. A general treatment as in [15] will likely require more subtle
algebraic considerations.
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2. Notation

2.1
Throughout this article, K denotes a global function field. We let v be a place in K ,
fixed once and for all. Denote by O the ring of v-integers in K . Put k WD Kv , the
completion of K at v. Then k is identified with Fq..��1//, the field of Laurent series
over the finite field Fq where q is a power of the prime number p D char.K/. We
denote by o the ring of integers in k. Then o D FqŒŒ��1�� and the maximal ideal m
in o equals ��1o. The norm on k will be denoted by j � jv , or simply by j � j; note
that with our notation we have j� jv > 1. With our normalizations, logq.jr j/ is the v-
valuation of r 2 k. Unless explicitly mentioned otherwise, a subfield k0 � k is always
an infinite and closed subfield of k; hence, k=k0 is a finite extension.

2.2
Let G be a connected, simply connected, semisimple k-algebraic group. Put G D

G.k/. We always assume that G is k-isotropic. Next, fix a maximal, k-split, k-torus
S of G. We will always assume that A D S, in the case of Theorem 1.1, and that Ai is
contained in Si , for i D 1; 2, in the case of Theorem 1.2.

Let kˆ denote the set of relative roots kˆ.S;G/; this is a (possibly not reduced)
root system (see [1, Theorem 21.6]). Let kˆ˙ denote positive and negative roots with
respect to a fixed ordering on kˆ. Recall from [1, Remark 2.17, Proposition 21.9,
Theorem 21.20] that for any ˛ 2 kˆ there exists a unique affine k-split unipotent k-
subgroup U.˛/ which is normalized by ZG.S/, the centralizer of S, and its Lie algebra
is g.˛/ WD g˛ C g2˛ . Here, as usual, for a root ˇ 2 kˆ we let gˇ be the subspace in the
Lie algebra on which S acts by the root ˇ.

A subset ‰ � kˆ is said to be closed if ˛ 2 ‰ and 1
2
˛ 2 ˆ imply that 1

2
˛ 2 ‰,

and if ˛;ˇ 2 ‰ and ˛ C ˇ 2 kˆ imply that ˛ C ˇ 2 ‰. A subset ‰ � kˆ is said to be
positively closed if it is closed and is contained in kˆC for some ordering of the root
system. For any positively closed subset ‰ � kˆ there exists a unique affine k-split
unipotent k-subgroup U‰ which is normalized by ZG.S/, and its Lie algebra is the
sum of ¹g.˛/ W ˛ 2 ‰º. Moreover, U‰ is generated by ¹U.˛/ W ˛ 2 ‰ n 2‰º—that is,
U‰ is k-isomorphic as a k-variety to

Q
˛2‰n2‰ U.˛/, where the product can be taken

in any order (see [1, Proposition 21.9 and Theorem 21.20].
If ‰ D ¹˛º and no multiple of ˛ is a root, then we simply write U˛ for U‰ .

We also write U‰ D U‰.k/ for a positively closed subset ‰ � kˆ. Given a subset
E � G, we let hEi denote the closed (in the Hausdorff topology) group generated
by E . For each ˛ 2 kˆ, we fix a collection of 1-parameter subgroups ¹u˛;i W 1 � i �

d˛º generating U.˛/ and we define U.˛/ŒR� to be the compact group generated by
¹u˛;i .r/ W jr jv < R;1 � i � d˛º. For any positively closed ‰ � ˆ, we put



122 EINSIEDLER, LINDENSTRAUSS, and MOHAMMADI

U‰ŒR� D
˝®

U.˛/ŒR� W .˛/ � ‰
¯˛

:

Given a 2 A, we put

W ˙
G .a/ D

®
g 2 G W limk!˙1 a�kgak D id

¯
(2.1)

to be the expanding (resp., contracting) horospherical subgroup corresponding to a.

2.3
Let kˆ.A;G/ denote the set of roots of A, that is, the characters for the adjoint action
of A on the Lie algebra of G. We consider ‰ � kˆ.A;G/ to be positively closed if®

˛ 2 ˆ.S;G/ W ˛jA 2 ‰
¯

(2.2)

is positively closed in the sense of Section 2.2, and we set

V‰ WD
Y

˛jA2‰

U.˛/

for any positively closed subset ‰ � kˆ.A;G/. We also let V‰ denote the underlying
algebraic group. An important special case is when ‰ D Œ˛� D ¹r˛ 2 kˆ.A;G/ W r >

0º for some ˛ 2 kˆ.A;G/. In this case, VŒ˛� is called a coarse Lyapunov subgroup.

2.4. Inner-type lattices in SL.d; k/

Recall that in Theorem 1.1 we assumed that � is an inner-type lattice in SL.d; k/; we
recall the definition here. Let D be a division algebra of dimension s2 over K , and let
B D Matr.D/ be a central simple algebra over K; we assume that d D rs. Let � be
any field extension of K so that B ˝K � ' Matd .�/—one can always find a finite
separable extension of K with this property. Define the reduced norm NrdB W B ! �

of B by NrdB.g/ WD det.g ˝ 1/. Then NrdB.g/ 2 K for all g 2 B and NrdB.g/ is
independent of the choice of the splitting field � and the implicit isomorphism which
we fixed. More generally (see, e.g., [7, Section 22]),

det.g ˝ 1 � �id/ 2 KŒ�� for every g 2 B: (2.3)

We now use B to define a K-group which is isomorphic to SLd over the alge-
braic closure NK of K . Fix a K-basis C for D, and consider the (left) regular repre-
sentation 
 of D into Mats2.K/; that is, g 2 D is sent to the matrix corresponding
to y 7! gy. If we express 
 in the basis C , we get a system ¹f`.gij / D 0º of lin-
ear equations in entries gij with coefficients in K that together define the image
of 
. We identify Matrs2.K/ with Matr.Mats2.K// and we let B 0 be the subset of
Matrs2.K/ consisting of elements gcd

ij for 1 � i , j � s2 and 1 � c, d � r satisfying

¹f`.gcd
ij / D 0º for all 1 � c, d � r . Then 
 identifies B and B 0. Moreover, in view of
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the above discussion on NrdB , there exists a polynomial h with coefficients in K so
that NrdB.g/ D h.
.gcd // for all g 2 B (see [36] and [30, Chapter 2] for a similar
discussion and construction).

For any K-algebra ‡ , define

SL1;B.‡/ WD
®
g 2 Matrs2.‡/ W f`.gcd

ij / D 0;h.gcd
ij / D 1

¯
:

If � is any field extension of K so that B ˝K � ' Matd .�/, then SL1;B.�/ is
isomorphic to SL.d;�/. In particular, SL1;B. NK/ is isomorphic to SL.d; NK/. A group
so defined is called an inner K-form of SLd .

Assume now that B is a central simple algebra over K as above; further, assume
that it satisfies B ˝K k ' Matd .k/. For every place w of K , define

SL1;B.ow/ WD SL1;B.Kw/ \GLrs2.ow/:

Recall that SL1;B.K/ diagonally embeds in the restricted (with respect to SL1;B.ow/)
product

Q0
w SL1;B.Kw/. Put

ƒB D
®
� 2 SL1;B.K/ W � 2 SL1;B.ow/ for all w ¤ v

¯
: (2.4)

Then ƒB is a lattice in SL.d; k/ (see, e.g., [26, Chapter I, Section 3]). We will call a
subgroup � < SL.d; k/ a lattice of inner type if there exists a central simple algebra
B over K so that � is commensurable to ƒB .

3. Preliminary results

3.1. Algebraic structure of compact subgroups of semisimple groups
Given a variety M which is defined over k. there are two topologies on M.k/, the
set of k-points of M; namely, the Zariski topology and the topology arising from the
local field k. We will refer to the latter as the Hausdorff topology.

The following theorems are very special cases of the work of Pink [29] which
play an important role in our study. Roughly speaking, they assert that compact and
Zariski-dense subgroups of semisimple groups have an algebraic description.

THEOREM A.1 ([29, Theorem 0.2, Theorem 7.2])
Suppose that Q � SL.2; k/ is a compact and Zariski-dense subgroup. Further, assume
that

Q D
˝
¹g 2 Q W g is a unipotent elementº

˛
: (3.1)

Let k00 be the closed field of quotients generated by ¹tr.
.g// W g 2 Qº, where 
 is the
unique irreducible subquotient of the adjoint representation of PGL2, and set
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k0 WD

´
k00 if char.k/ ¤ 2;

¹c W c2 2 k00º if char.k/ D 2:
(3.2)

Then there is a k-isomorphism (unique up to unique isomorphism)

' W SL2 �k0 k ! SL2;

so that Q is an open subgroup of '.SL.2; k0//.

Proof
Denote by NQ the image of Q under the natural map from SL2 to PGL2. Then NQ is
Zariski-dense in PGL2. By [29, Theorem 0.2], there exist
� a subfield k0 � k,
� an absolutely simple adjoint group L defined over k0, and
� a k-isogeny � W L�k0 k ! PGL2, whose derivative vanishes nowhere,
where k0 is unique, and where L and � are unique up to unique isomorphism, so that
the following conditions hold.
� We have NQ � '.L.k0// (see [29, Theorem 3.6]).
� LeteL denote the simply connected cover ofL, and let e� be the induced isogeny

from eL �k0 k to SL2. Then any compact subgroup Q0 � e�.eL.k0// which is
Zariski-dense and normalized by Œ NQ; NQ� is an open subgroup of e�.eL.k0// (see
[29, Theorem 7.2]).

The fact that k0 can be taken as in (3.2) follows from the proof of [29, Propo-
sition 0.6(a)] (see, in particular, [29, Proposition 3.14])—in particular, since we are
dealing with groups of type A1, we only need the exceptional definition of k0 in
characteristic 2. Moreover, [29, Proposition 1.6] implies that there are no nonstan-
dard isogenies for groups of type A1. Hence, by [29, Theorem 1.7(b)], the isogeny �

above is an isomorphism.
We now prove the other claims. First, let us recall from [20, Théorème 2] that

since SL2 is simply connected, for every unipotent element u 2 SL.2; k/ there exists
a parabolic k-subgroup, P, of SL2 so that u 2 Ru.P.k//. Hence, (3.1) implies that

Q D
˝
Q \ Ru.P / W P is a parabolic subgroup of SL.2; k/

˛
: (3.3)

Let P be a parabolic subgroup so that Q \ Ru.P / ¤ ¹1º. Let a be a diagonal-
izable matrix in PSL.2; k/ � PGL.2; k/ whose conjugation action contracts Ru.P /.
Then a contracts �.h/ for any h 2 L.k0/, where �.h/ 2 Ru.P /. Put a0 D ��1.a/.
The above implies that h can be contracted to identity using conjugation by a0. In
particular, h is a unipotent element. In view of (3.1) and the above discussion, eL.k0/

contains nontrivial unipotent elements. Thus, we get from [3, Corollaire 3.8] (see also
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[20]) that eL is k0-isotropic. Since eL is simply connected and � is an isomorphism, we
get eL D SL2.

Finally, using [26, Chapter I, Theorem 2.3.1], we have

Q \ Ru.P / � e��eL.k0/
�

for any parabolic subgroup P of SL.2; k/. Hence, Q � e�.eL.k0// by (3.3). This fin-
ishes the proof in case (a).

For the second theorem we need some more terminology. By a linear algebraic
group G over k ˚ k, we mean G1

`
G2, where each Gi is a linear algebraic group

over k. The adjoint representation of G on Lie.G/ D Lie.G1/ ˚Lie.G2/ is the direct
sum of the adjoint representations of Gi on Lie.Gi /, and the group of .k ˚ k/-points
of G is G.k ˚ k/ D G1.k/ �G2.k/.

Suppose that G D G1

`
G2 is a fiberwise absolutely almost simple, connected,

simply connected .k ˚ k/-group. Let 
 D .
1; 
2/, where 
i is the unique irreducible
subquotient of the adjoint representation of Gad

i (see [29, Section 1]). The trace
tr.
.g// for an element g D .g1; g2/ in G.k ˚ k/ is defined by

tr
�

.g/

�
D

�
tr

�

1.g1/

�
; tr

�

2.g2/

��
2 k ˚ k:

Given a subfield k0 � k and a continuous embedding 	 W k0 ! k of fields, we put

�� .k0/ WD
®�

c; 	.c/
�

W c 2 k0
¯
: (3.4)

As in [29, pp. 16–17], by a semisimple subring k00 � k ˚ k, we mean one of the
following:
(k00-1) k00 D k1 ˚ k2, where ki � k is a closed subfield for i D 1; 2, or
(k00-2) k00 D �� .k0/ for a subfield k0 � k and a continuous embedding 	 W k0 ! k.

If k00 D �� .k0/ and H is a k0-group, then we write, by abuse of notation, also H
for the corresponding 	.k0/-group as well as the �� .k0/-group obtained from H. The
base change of H from �� .k/ to k ˚ k is then defined by

H��� .k0/ .k ˚ k/ D .H�k0 k/
a

.H��.k0/ k/:

THEOREM A.2 ([29, Theorem 0.2, Theorem 7.2])
Assume that char.k/ ¤ 2; 3, and let Gi , i D 1; 2 be absolutely almost simple, con-
nected, simply connected k-groups. Let Q � G1.k/ � G2.k/ be a compact subgroup
so that �i .Q/ is Zariski-dense in Gi for i D 1; 2. Further, assume that

Q D
˝
¹g 2 Q W g is a unipotent elementº

˛
: (3.5)

Let k00 � k ˚ k be defined as follows:



126 EINSIEDLER, LINDENSTRAUSS, and MOHAMMADI

k00 WD the closed ring of quotients generated by
®
tr

�

.g/

�
W g 2 Q

¯
: (3.6)

Then one of the following holds.
(1) There are

(i) closed subfields ki � k so that k00 D k1 ˚ k2,
(ii) ki -groups Hi , and
(iii) a k-isomorphism 'i W Hi �ki

k ! Gi ,
so that Q contains an open subgroup of the form

Q1 � Q2 � '1

�
H1.k1/

�
� '2

�
H2.k2/

�
:

(2) There are
(i0) a closed subfield k0 � k and a continuous embedding 	 W k0 ! k so

that k00 D �� .k0/,
(ii0) a k0-group H, and
(iii0) a .k ˚ k/-isomorphism ' W H�k00 .k ˚ k/ ! G1

`
G2,

so that Q is an open subgroup of '.H.k00//.
Moreover, k00 is unique, and H and ' are unique up to unique isomorphisms.

Proof
Similar to TheoremA.1, these assertions are special cases of results in [29], as we now
explain. Let Gad

i denote the adjoint form of Gi for i D 1; 2. Denote by NQ the image of
Q under the natural map from G1

`
G2 to Gad

1

`
Gad

2 . Then �i . NQ/ is Zariski-dense
in Gad

i for i D 1; 2.
By [29, Theorem 0.2], we have the following. There exist

� a semisimple subring k00 � k ˚ k,
� a fiberwise absolutely simple adjoint group L defined over k00, and
� a .k ˚ k/-isogeny � W L �k00 .k ˚ k/ ! Gad

1

`
Gad

2 whose derivative vanishes
nowhere,

where k00 is unique, and L and � are unique up to unique isomorphism, so that the
following hold.
� We have NQ � �.L.k00// (see [29, Theorem 3.6]).
� LeteL denote the simply connected cover ofL, and let e� be the induced isogeny

from eL�k00 .k ˚ k/ to G1

`
G2. Then any compact subgroup Q0 � e�.eL.k00//

which is fiberwise Zariski-dense and normalized by Œ NQ; NQ� is an open sub-
group of e�.eL.k00// (see [29, Theorem 7.2]).

Recall our assumption that char.k/ ¤ 2; 3. Therefore, G1 and G2 have no non-
standard isogenies (see [29, Proposition 1.6]). This also implies that k00 can be taken
as in (3.6) (see [29, Propositions 3.13 and 3.14]). Moreover, by [29, Theorem 1.7(b)],
the isogeny � above is an isomorphism.
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The preceding discussion thus implies that if k00 D �� .k0/ (see (k00-2)), then (i0),
(ii0), and (iii0) hold. Similarly, if k00 D k1 ˚ k2 (see (k00-1)), then (i), (ii), and (iii)
hold, in view of the above discussion and the description of algebraic groups and
their isogenies over k1 ˚ k2 and k ˚ k. Finally, recall from (3.5) that Q is generated
by unipotent elements; therefore, Q � e�.eL.k00// (see [26, Chapter I, Theorem 2.3.1]).
This finishes the proof of case (b).

We will also need the following lemma. Let UC (resp., U�) denote the group of
upper (resp., lower) triangular unipotent matrices in SL2. Also, let T denote the group
of diagonal matrices in SL2. Put U ˙ WD U˙.k/ and T WD T.k/.

LEMMA 3.1
Let the notation be as in Theorem A.1. Put E D '.SL.2; k0//. Then
(1) E D hE \ U C;E \ U �i,
(2) E \ T is unbounded.

Proof
We showed in the course of the proof of Theorem A.1 that there are nontrivial unipo-
tent elements h˙ 2 SL.2; k0/ so that '.h˙/ 2 U ˙, respectively. Since SL2 is simply
connected, it follows from [20, Théorème 2] that there are k0-parabolic subgroups
P˙ of SL2 so that h˙ 2 Ru.P˙/. The groups Ru.P˙/ are 1-dimensional k0-split
unipotent subgroups; hence, '.Ru.P˙/.k0// � '.SL2/ is an infinite group. Note that
'.SL2/ D SL2 in Theorem A.1. Let U0

˙ denote the Zariski closure of '.Ru.P˙/.k0//.
Then U0

˙ is a nontrivial connected unipotent subgroup of '.SL2/ which intersects
U˙ \ '.SL2/ nontrivially. Therefore, U0

˙ D U˙ \ '.SL2/, which implies that

'
�
Ru.P˙/.k0/

�
� U ˙ \ E: (3.7)

Using the fact that SL2 is simply connected one more time, we note that SL.2; k0/ is
generated by Ru.P˙/.k0/ (see [26, Chapter 1, Theorem 2.3.1]). This and (3.7) imply
(1) in the lemma.

We now show (2) in the lemma. Let S D PC \ P�. Then S is a 1-dimensional
k0-split k0-torus; put S D S.k0/. Now

T 0 WD '.S/ � T U C \ T U � D T

satisfies the claim in (2).

3.2. Measures invariant under semisimple groups
Wewill state in this section the measure classification result by Golsefidy and the third
author in [28] for probability measures that are invariant under noncompact semisim-
ple groups in the positive-characteristic setting. For this we need some notation and
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definitions to help us generalize the notions defined in (2.1) to a general connected
group. Let k be a local field. Suppose thatM is a connected k-algebraic group, and let
� W Gm ! M be a noncentral homomorphism defined over k. Define ��.�/ D �.�/�1.

Recall that a morphism from Gm to M is said to have a limit at 0 when it can be
extended to a morphism from A1 toM. As in [35, Section 13.4] and [6, Chapter 2 and
Appendix C], we let PM.�/ denote the smooth closed subgroup of M defined over k

so that

PM.�/.R/ D
®
r 2 M.R/ W �r��1 from Gm toM has a limit at 0

¯
for any algebra R=k.

Let WC
M.�/ be the closed normal subgroup of PM.�/ so that

WC
M.�/.R/ D

®
r 2 M.R/ W �r��1 from Gm toM has a limit at 0

¯
for any algebra R=k. Similarly, define WC

M.��/, which we will denote by W�
M.�/.

The centralizer of the image of � is denoted by ZM.�/. The subgroups
WC

M.�/, ZM.�/, and W�
M.�/ are smooth closed subgroups (see [6, Chapter 2 and

Appendix C]).
The multiplicative group Gm acts on Lie.M/ via �, and the weights are integers.

The Lie algebras of ZM.�/ and W˙
M.�/ may be identified with the weight subspaces

of this action corresponding to the zero, positive, and negative weights. It is shown in
[6, Chapter 2 and Appendix C] that PM.�/, ZM.�/, and W˙

M.�/ are k-subgroups of
M. Moreover, WC

M.�/ is a normal subgroup of PM.�/ and the product map

ZM.�/ �WC
M.�/ ! PM.�/ is a k-isomorphism of varieties:

A pseudoparabolic k-subgroup of M is a group of the form PM.�/Ru;k.M/ for
some � as above, where Ru;k.M/ denotes the maximal connected normal unipotent k-
subgroup ofM (see [6, Definition 2.2.1]). We also recall from [6, Proposition 2.1.8(3)]
that the product map

W�
M.�/ �ZM.�/ �WC

M.�/ ! M is an open immersion of k-schemes: (3.8)

It is worth mentioning that these results are generalizations to arbitrary groups of
analogous and well-known statements for reductive groups.

Let M D M.k/, and put

W ˙
M .�/ D W˙

M.�/.k/ and ZM .�/ D ZM.�/.k/:

From (3.8) we conclude that W �
M .�/ZM .�/W C

M .�/ is a Zariski-open dense subset of
M , which contains a neighborhood of identity with respect to the Hausdorff topology.
For any � as above, define
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M C.�/ WD
˝
W C

M .�/;W �
M .�/

˛
: (3.9)

LEMMA 3.2
(1) For any � as above, M C.�/ is a normal and unimodular subgroup of M .
(2) There are only countably many subgroups of the form M C.�/ in M .

Combining results in [6, Appendix C] together with part (1) in the lemma, one
can actually conclude that there are only finitely many such subgroups. We will only
make use of the weaker statement above.

Proof
Part (1) is proved in [28, Lemma 2.1]. We now prove (2). First, note that if �1; �2 W

Gm ! M are two homomorphisms so that �1 D g�2g�1 for some g 2 M , then
M C.�1/ D gM C.�2/g�1. Therefore, by part (1) we have

M C.�1/ D M C.�2/ whenever �1 D g�2g�1 for some g 2 M: (3.10)

Now let S be a maximal, k-split, k-torus in M. By [6, Theorem C.2.3], there is some
g 2 M so that g�g�1 W Gm ! S. The claim now follows from this, (3.10), and the
fact that the finitely generated abelian group X�.S/ D Hom.Gm;S/ is countable.

Given any subfield l � k so that k=l is a finite extension, we let Rk=l denote the
Weil’s restriction of scalars (see [6, Section A.5]).

In the following, let G be a connected k-group, and let � � G be a discrete
subgroup in G D G.k/. Furthermore, let k0 � k be a closed subfield, and let H be
an absolutely almost simple k0-isotropic k0-group. Assume that ' W H�k0 k ! G is a
nontrivial k-homomorphism, and put E D '.H.k0//. We use in an essential way the
following measure classification result by Golsefidy and the third author.

THEOREM B ([28, Theorem 6.9, Corollary 6.10])
Let � be a probability measure on G=� which is E-invariant and ergodic. Then there
exist
(1) some l D .k0/q � k, where q D pn, p D char.k/, and n is a nonnegative

integer,
(2) a connected l -subgroup M of Rk=l.G/ so that M.l/ \ � is Zariski-dense in

M,
(3) an element g0 2 G

such that � is the g0Lg�1
0 -invariant probability Haar measure on the closed orbit

g0L�=� with

L D M C.�/
�
M.l/ \ �

�
;
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where
� the closure is with respect to the Hausdorff topology, and
� � W Gm ! M is a noncentral l -homomorphism, M C.�/ is defined in (3.9),

and E � g0M C.�/g�1
0 .

3.3. A version of the Borel density theorem
Let k0 � k be an infinite closed subfield. We recall from [34, Proposition 1.4] that the
discompact radical of a k0-group is the maximal k0-subgroup which does not have
any nontrivial compact k0-algebraic quotients. It is shown in [34, Proposition 1.4]
that this subgroup exists and the quotient of the k0-points of the original group by
the k0-points of the discompact radical is compact. Let A be a k-split torus. Let
A

sp
k0 � Rk=k0.A/.k0/ D A denote the k0-points of the maximal, k0-split, subtorus of

Rk=k0.A/. Suppose that V is a variety defined over k0, and assume that Rk=k0.A/

acts on V via k0-morphisms. In particular, A D Rk=k0.A/.k0/ acts on V D V.k0/ via
k0-morphisms.

LEMMA 3.3 ([34, Theorem 1.1])
Let .X;�/ be an A-invariant ergodic probability space. Let f W X ! V be an A-
equivariant Borel map. Then there exists some v0 2 FixA

sp
k0

.V / so that f�� is the A-

invariant measure on the compact orbit Av0. In particular, f .x/ 2 Av0 for �-a.e. x.

Proof
This follows from [34, Theorem 1.1] in view of the fact that A

sp
k0 is the discompact

radical of Rk=k0.A/ as defined in [34] (see also [34, Theorem 3.6]).

3.4. Pinsker 
 -algebra and unstable leaves
Throughout this section we assume that G is a k-isotropic, semisimple k-group, and
we let A be a k-split k-torus in G. Put G D G.k/ and A D A.k/. Let � be a discrete
subgroup of G, and put X D G=� . Let a 2 A be a nontrivial element. Recall that, for
an a-invariant measure �, we define the Pinsker 
 -algebra as

Pa WD
®
B 2 B W h�

�
a; ¹B;X n Bº

�
D 0

¯
:

It is the largest 
 -algebra with respect to which � has zero entropy (see [37] for
further discussion). Let us recall the following important and well-known proposition;
we outline the proof for the sake of completeness.

PROPOSITION 3.4
The Pinsker 
 -algebra, Pa, is equivalent to the 
 -algebra of Borel sets foliated by
W C

G .a/ leaves.
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Note that the Pinsker 
 -algebra for a equals the Pinsker 
 -algebra for a�1, which
shows that the proposition also applies similarly for W �

G .a/.

Proof
Suppose that C is any 
 -algebra whose elements are foliated by W C

G .a/ leaves. Let
p W .X;�/ ! .Y;p��/ be the corresponding factor map. Using the Abramov–Rokhlin
conditional entropy formula and the relationship between entropy and leafwise mea-
sures (see [14]), we get

h
�
a; .Y;p��/

�
D 0:

The definition of the Pinsker 
 -algebra then implies that C � Pa.
For the converse, we recall from [27, Section 9] (see also [14]) that there is

a finite entropy generator (i.e., a countable partition � of finite entropy) such thatW1
nD�1 a�n� is equivalent to the full Borel 
 -algebra, and so that in addition the

past is subordinate with respect to W C
G .a/. That is to say, that on the complement of a

null set, every atom of
W0

nD�1 a�n� is an open subset of a W C
G .a/-orbit. Hence, after

removing a null set, any set measurable with respect to the tail
T

k2N

W�k
nD�1 a�n� is

a union of W C
G .a/-orbits. Since Pa is equivalent to the tail of � modulo �, the claim

follows.

The following will be used in the course of the proof of Theorem 1.2.

LEMMA 3.5
Let Xi D Gi=� be as in Theorem 1.2. In particular, Gi D Gi .k/, where Gi is a con-
nected, simply connected, absolutely almost simple group defined over k for i D 1; 2.
Let a D .a1; a2/ 2 A be such that a generates an unbounded group, and suppose
that � is an ergodic joining of the Ai -action on .Xi ;mi /, for i D 1; 2. Let � DR

X1�X2
�

Pa
x d�.x/, where �

Pa
x denotes the conditional measure for �-a.e. x with

respect to the Pinsker 
 -algebra Pa. Then there exists a subset X 0 � X1 � X2 with
�.X 0/ D 1 so that

�i�.�Pa
x / D mi for all x 2 X 0 and i D 1; 2:

Proof
Let P denote the Pinsker factor of X , and let ‡ W X ! P be the corresponding factor
map. This is a zero entropy factor of X .

Put Z D X1 � X2 � P, and let

� D

Z
�Pa

x � ı‡.x/ d‡��.x/:
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Let pi W Z ! Xi � P be the natural projection. Then pi�� is a measure on Xi � P
which projects to mi and ‡�� for i D 1; 2. Now .Xi ;mi / is a system with completely
positive entropy. This follows, for example, from Proposition 3.4 and the ergodicity
of the action of W ˙.ai /; note that the latter holds since Gi is connected, simply
connected, and absolutely almost simple (see [26, Chapter 1, Theorem 2.3.1], [26,
Chapter 2, Theorem 2.7]). However, .P;‡��/ is a zero entropy system; therefore,
by the disjointness theorem of Furstenberg [19] (see also [21, Theorem 18.16]), we
obtain

pi�� D mi � ‡��: (3.11)

Let us now decompose pi�� as

pi�� D

Z
.pi��/

Xi �BP
.xi ;p/

dpi��:

Then (3.11) implies that, for pi��-a.e. .xi ; p/, we have

.pi��/
Xi �BP
.xi ;p/

D mi � ıp:

This in view of the definition of � implies the claim.

3.5. Leafwise measures
Recall that G is a k-isotropic, semisimple k-group, and let A be a k-split k-torus
in G. Let S be a maximal, k-split, k-torus of G which contains A. Let kˆ.S;G/ be
the relative root system of G, and let kˆ.A;G/ denote the set of roots of A as in
Section 2.

Definition
Let U be an A-normalized unipotent k-subgroup of G contained in some W �

G .a/.
The leafwise measure �U

x along U is defined for �-a.e. x 2 X . For all such x, we put

SU
x D supp.�U

x / and IU
x D ¹v 2 U W v�U

x D �U
x º:

The leafwise measures are canonically defined up to proportionality, and we write
/ to denote proportionality. The main case we are interested in is when V‰ WD U#.‰/

is the associated unipotent subgroup of a positively closed set ‰ � kˆ.A;G/, in

which case we will use �‰
x , S‰

x , I‰
x to denote �

V‰
x , S

V‰
x , I

V‰
x , respectively.

LEMMA 3.6
Under the above assumptions, almost surely IU

x D ¹v 2 U W v�U
x / �U

x º.
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Proof
This is true in general, but is particularly easy in the positive-characteristic case. Sup-
pose that u 2 U is such that u�U

x / �U
x . Then u�U

x D ��U
x for some � > 0. Since

U is unipotent, u is torsion of exponent pn for some n, and hence �pn
D 1, which

implies (since � > 0) that � D 1.

We recall some properties of leafwise measures which will be used throughout
this article. Our formulation is taken from [13] (see [25]; see also [14] and the refer-
ences therein).

LEMMA 3.7
Let U be an A-normalized, unipotent, k-subgroup of G contained in some W �

G .a/.
Then there is a conull subset X 0 � X with the following properties.
(1) For all x 2 X 0, the map x 7! �U

x from X to the space of Radon measures on
U is normalized so that �U

x .Œ1�/ D 1 is a measurable map. In particular, �U
x

is defined for all x 2 X 0.
(2) For every x 2 X 0 and every u 2 U so that ux 2 X 0, we have �U

x / .�U
ux/u,

where .�U
ux/u denotes the pushforward of �U

ux under the map v 7! vu.
(3) For every x 2 X 0, we have �U

x .U Œ1�/ D 1 and �U
x .U Œ��/ > 0 for all � > 0.

(4) Suppose that � is a-invariant under some a 2 A. Then for �-a-e. x 2 X , we
have �U

ax / .a�U
x a�1/.

LEMMA 3.8 ([13, Section 6])
Let a 2 A be so that the Zariski closure of hai, A0 say, is k-isomorphic to Gm and
so that A0.k/=hai is compact. Suppose that � is a-invariant, and let U be an A-
normalized, unipotent, k-subgroup of G contained in W �

G .a/. Let Q be any compact
open subgroup of U . Then for �-a.e. x, the Zariski closure of IU

x \ Q is normalized
by a and contains IU

x .

Proof
Let E denote a countably generated 
 -algebra that is equivalent to the 
 -algebra
of a-invariant sets. Then .�E

x /U
y D �U

y for �E
x -a.e. y and �-a.e. x (see, e.g., [14]).

Therefore, we may assume that � is a-ergodic. Let U0 denote a fixed compact open
subgroup of U . For any n 2 Z, define

Un D an
U0a�n:

Then Un � Q for large enough n; hence, it suffices to prove the lemma for Q D Un.
Let X 0 � X be a conull set where Lemma 3.7 holds. For any x 2 X 0 and any n 2 Z,
define
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Fx;n D the Zariski closure of Un \ IU
x :

Then Fx;n is a k-group (see, e.g., [35, Lemma 11.2.4(ii)]).
Note also that Fx;n � Fx;m whenever n � m. Therefore, there exists some n0 D

n0.x/ so that dimFx;n D dimFx;n0
for all n � n0, where dim is the dimension as a

k-group. Since the number of connected components of Fx;n0
is finite, there exists

n1 D n1.x/ so that Fx;n D Fx;n1
for all n � n1. Put Fx WD Fx;n1

.
The definition of Fx;n, in view of Lemma 3.7(4), implies that

Fax;nC1 D aFx;na�1:

Therefore, we have

Fax D aFxa�1: (3.12)

Let kŒG� denote the ring of regular functions of G. For every x 2 X 0, let Jx �

kŒG� be the ideal of regular functions vanishing on Fx . Let m.x/ be the minimum
integer so that Jx is generated by polynomials of degree at most m.x/. In view of
(3.12), we have m.x/ D m.ax/. Since � is a-ergodic, we have that x 7! m.x/ is
essentially constant. Replacing X 0 by a conull subset if necessary, we assume that
m.x/ D m for all x 2 X 0.

Let ‡ D ¹h 2 kŒG� W deg.h/ � mº. Using a similar argument as above, we may
assume that dim.Jx \ ‡/ D ` for all x 2 X 0.

Let f W X ! Grass.`/, the Grassmannian of `-dimensional subspaces of ‡ , be
the map defined by f .x/ D Jx \ ‡ for all x 2 X 0. Then f is an A-equivariant Borel
map. Therefore, � D f�� is a probability measure on Grass.`/ which is invariant and
ergodic for a k-algebraic action of a on Grass.`/. Hence,

N� D

Z
A0.k/=hai

b�� db

is an A0.k/-invariant, ergodic probability measure on Grass.`/ equipped with an alge-
braic action of A0.k/. By [34, Theorem 3.6], N� is the delta mass at an A0.k/-fixed
point, which implies that � D N� is the delta mass at an A0.k/-fixed point. Therefore,
f is essentially constant. Using the definition of f , we get that aFxa�1 D Fx for
�-a.e. x. This, (3.12), and the ergodicity of � imply that Fx D F for �-a.e. x.

Now let C � X 0 be a compact subset with �.C / > 1 � � so that
� n1.x/ � N1 for all x 2 C ,
� Fx D F for all x 2 C .
By the pointwise ergodic theorem, for almost every x 2 X , there is a sequence mi !

1 so that ami x 2 C for all i . Now let x be such a point, and let u 2 IU
x . By

Lemma 3.7(4), we have
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ami ua�mi 2 UN1
\ IU

ami x � F.k/

for all large enough i . Since F.k/ is normalized by a, we get u 2 F.k/.

From this point on, we will assume that � is A-invariant. We recall the product
structure for leafwise measures (see [10]). Our formulation is taken from [14, Propo-
sition 8.5 and Corollary 8.8].

LEMMA 3.9
Fix some a 2 A. Let H D T � U , where U < W �

G .a/ and T < ZG.a/. Then there
exists a conull subset X 0 � X with the following properties.
(1) For every x 2 X 0 and h 2 H such that hx 2 X 0, we have �T

x / .�T
hx

/t , where
h D ut D tu0 for t 2 T and u;u0 2 U .

(2) For every x 2 X 0, we have �H
x / ��.�T

x � �U
x /, where �.t; u/ D tu is the

product map.
(3) Assume further that T centralizes U . Then for all x 2 X 0 and t 2 T so that

tx 2 X 0, we have �U
x / �U

tx .

By induction, as in [14, Section 8], this lemma implies a product structure for the
conditional measures �‰

x .

PROPOSITION 3.10 ([10, Theorem 8.4])
Let ‰ � kˆ.A;G/ be a positively closed subset of Lyapunov exponents. Let Œ˛1�; Œ˛2�;

: : : ; Œ˛k� be any ordering of the course Lyapunov weights contained in ‰. Then for
�-a.e. x 2 X ,

�‰
x / ��.�Œ˛1�

x � � � � � �Œ˛k �
x /:

(For the proof, see, e.g., [10] or [14, Section 8].)

LEMMA 3.11
Suppose that � is an A-invariant, ergodic probability measure. Let ‰ � kˆ.A;G/ be
a positively closed subset, and assume that ˛;ˇ 2 ‰ are linearly independent roots.
Let ‰0 � ‰ be those elements of ‰ that can be expressed as a linear combination of
˛ and ˇ with strictly positive coefficients. Then ‰0 is also closed, and for �-a.e. x we
have

ŒS Œ˛�
x ;S Œˇ�

x � � I‰
x and ŒS Œ˛�

x ;S Œˇ�
x � � I‰0

x :

Proof
By [2, Section 2.5], for example, both ‰0 and ‰0 [¹˛;ˇº are positively closed subsets
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of kˆ.A;G/. Let Œ�1�; : : : ; Œ�`� be an enumeration of all course Lyapunovs in ‰ n

.‰0 [ ¹˛;ˇº/. Then by Proposition 3.10,

�‰
x / ��.�Œ˛�

x � �Œˇ�
x � �‰0

x � �Œ�1�
x � � � � � �Œ�`�

x /

/ ��.�Œˇ�
x � �Œ˛�

x � �‰0

x � �Œ�1�
x � � � � � �Œ�`�

x /; (3.13)

where � is the product map. Now let f 2 Cc.V ‰/. Then (3.13) and Fubini’s theorem
imply thatZ

f .g/d�W
x

D �

Z
f .v˛vˇ v‰0v�1

� � � v�`
/d�

VŒ˛�
x d�

VŒˇ�
x d�‰0

x d�
VŒ�1�

x � � � d�
VŒ�`�

x

D �0

Z
f .vˇ v˛v‰0v�1

� � �v�`
/d�

VŒ˛�
x d�

VŒˇ�
x d�‰0

x d�
VŒ�1�

x � � � d�
VŒ�`�

x

D �0

Z
f

�
v˛vˇ Œvˇ ; v˛�v‰0v�1

� � �v�`

�
d�

VŒ˛�
x d�

VŒˇ�
x d�‰0

x d�
VŒ�1�

x � � � d�
VŒ�`�

x

for �, �0 independent of f . From this we get for �
Œ˛�
x -a.e. v˛ 2 VŒ˛� and �

Œˇ�
x -a.e.

vˇ 2 VŒˇ�,

�‰0

x / Œvˇ ; v˛��‰0

x I

hence, applying Lemma 3.6, we deduce that Œvˇ ; v˛��‰0

x D �‰0

x . Applying Proposi-
tion 3.10 again, we conclude that also Œvˇ ; v˛��‰

x D �‰
x . Since I‰

x is a (Hausdorff)
closed subgroup of V ‰ , it follows that, almost surely,

ŒS Œ˛�
x ;S Œˇ�

x � � I‰
x : (3.14)

LEMMA 3.12 ([10, Section 8])
Let � be an A-invariant probability measure on X . There is a conull subset X 0 � X

with the following property. Let ‰ � kˆ.A;G/ be a positively closed subset such that
V‰ � W �

G .a/ for some a. Then for all x 2 X 0, if v D
Q

v˛ 2 I‰
x , with v˛ 2 VŒ˛� for

all Œ˛� � ‰, then v˛ 2 I
Œ˛�
x for all Œ˛�.

Proof
We say that a root ˛ 2 ‰ is exposed (see [14]) if there exists an element b 2 A so that
˛.b/ D 1 and jˇ.b/j < 1 for all ˇ 2 ‰ n Œ˛�. If ‰ is as above, then clearly it has at
least one exposed Lyapunov weight ˛, and that ‰0 D ‰ n Œ˛� is also positively closed.
Moreover, for any v˛ 2 VŒ˛� and v0 2 V‰0 , it holds that Œv˛; v0� 2 V‰0 . Suppose that
v˛v0 2 I‰

x with v˛ 2 VŒ˛� and v0 2 V‰0 . Then
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f .g/d�‰

x D �

Z
f .g˛g0/d�

VŒ˛�
x d�‰0

x

D

Z
f .v˛v0g/d�‰

x

D �

Z
f .v˛v0g˛g0/d�

VŒ˛�
x d�‰0

x

D �

Z
f

�
v˛g˛v0Œv0; g˛�g0

�
d�

VŒ˛�
x d�‰0

x

for some � independent of f .
It follows by uniqueness of decomposition that for �

VŒ˛�
x -a.e. g˛ ,

v0Œv0; g˛��‰0

x / �‰0

x I

hence, by Lemma 3.6 we have that v0Œv0; g˛� 2 I‰0

x . It follows that v˛�
VŒ˛�
x D �

VŒ˛�
x

and v˛ 2 I
Œ˛�
x . Moreover, as for x a.e., the identity is in support of �

VŒ˛�
x by

Lemma 3.7(3), we have that v0 2 I‰0

x . The lemma now easily follows by induc-
tion on the cardinality of ‰.

For any W ˙
G .a/, we fix some increasing sequence of compact open subgroups

Kn with W ˙
G .a/ D

S
n Kn and some decreasing sequence of compact open subgroups

On � K1 with ¹eº D
T

n On. Then any closed subgroup I < W ˙
G .a/ is determined by

the finite subgroups I \Kn=On < Kn=On, which allows us to speak of measurability
of a subgroup depending on x 2 X .

LEMMA 3.13

Let a 2 A. Then I
W ˙

G
.a/

x is Pa-measurable.

Proof
We prove this for W �

G .a/; the proof in the other case is similar. There is a full measure
set X 0 � X so that, whenever x;wx 2 X 0, for some w 2 W �

G .a/, then we have

�
W �

G
.a/

x / �
W �

G
.a/

wx w:

This implies that I
W �

G
.a/

x D I
W �

G
.a/

wx . The lemma now follows from Proposition 3.4.

LEMMA 3.14
Let ˛ 2 kˆ.A;G/ be such that VŒ˛� < W �

G .a/. Then the subgroup I
Œ˛�
x is Pa-

measurable.
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Proof
In view of Proposition 3.4, it suffices to show that x 7! I

Œ˛�
x is constant along W �

G .a/-
leaves almost surely, which is an immediate corollary of Lemmas 3.13 and 3.12.

4. High entropy part of Theorem 1.1
We now start the proof of Theorem 1.1. Recall that A is the full diagonal subgroup of
G D SL.d; k/. Throughout Sections 4–6, � denotes an ergodic A-invariant measure
on G=� .

For any ˛ 2 ˆ, there exists a k-embedding '˛ W SL2 ! SLd so that U˛ D

'˛.U C/ and U�˛ D '˛.U �/, where U ˙ denote the upper and lower triangular
unipotent subgroups of SL2. We let H˛W D Im.'˛/. Let T denote the diagonal sub-
group of SL2. Let t˛ D

�
� 0
0 ��1

�
2 T be an element so that ˛.'˛.t˛// D �2 and

ˇ.'˛.t˛// D �" with " 2 ¹�1; 0; 1º for all ˇ 2 ˆ n ¹˙˛º, where � is as in Section 2.1.
Put

a˛ WD '˛.t˛/:

Then U˛ � W C
G .a˛/.

Given a root ˛ 2 ˆ, we define

ˆC
˛ WD

®
ˇ 2 ˆ W Uˇ � W C.a˛/

¯
;

and put ˆ�
˛ D �ˆC

˛ .

LEMMA 4.1
Let ˛ 2 ˆ, and let ˇ 2 ˆ�

˛ n ¹�˛º. The following hold:
(1) ˇ C ˛ 2 ˆC

˛ ,
(2) if ˇ C n˛ 2 ˆ for some integer n � 1, then n D 1,
(3) ˛ 2 ˆ�

ˇ
.

Proof
Assertions (1) and (3) are general facts, which follow from the definitions and hold
for any root system. Part (2) is a special feature of root systems of type A, which is
the case we are concerned with here.

A well-known theorem by Ledrappier and Young [24] relates the entropy, the
dimension of conditional measures along invariant foliations, and Lyapunov expo-
nents, for a general C 2 map on a compact manifold, and [27, Section 9] provides an
adaptation of the general results to flows on locally homogeneous spaces.

The following is taken from [9, Lemma 6.2] (see also [11, Proposition 3.1] and
[14]). For any root ˛ 2 ˆ, there exists s˛.�/ 2 Œ0; 1� so that, for any a 2 A with
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j˛.a/j � 1, we have

h�.a;U˛/ D s˛.�/ log
ˇ̌
˛.a/

ˇ̌
;

where h�.a;U˛/ denotes the entropy contribution of U˛ . Indeed, s˛.�/ is defined as
the local dimension of the leafwise measure along ˛ as we now recall. Define

D�.a˛;U˛/.x/ D lim
jnj!1

log.�
U˛
x .an

˛U˛Œ1�a�n
˛ //

n
;

where the limit exists by [10, Lemma 9.1], and define h�.a˛;U˛/ D
R

D�.a˛;

U˛/d�, the entropy contribution of U˛ . Since D�.a˛;U˛/.x/ is A-invariant and �

is A-ergodic, we have

h�.a˛;U˛/ D D�.a;U /.x/ for �-a.e. x:

Therefore, s˛.�/ D 1
2
D�.a;U /.x/ for �-a.e. x. Moreover, the following properties

hold:
(s˛-1) s˛.�/ D 0 if and only if �˛

x is the delta mass at the identity,
(s˛-2) s˛.�/ D 1 if and only �˛

x is the Haar measure on U˛ ,
(s˛-3) for any a 2 A we have

h�.a/ D
X

s˛.�/ logC
ˇ̌
˛.a/

ˇ̌
;

where logC.`/ D max¹0; log`º.
The following is the main result of this section.

PROPOSITION 4.2 ([15, Theorem 5.1])
Let ˛ 2 ˆ be so that �˛

x is nontrivial for �-a.e. x. Then at least one of the following
holds.
(1) We have �

ˇ
x D ıid for all ˇ 2 ˆ�

˛ n ¹�˛º and �-a.e. x.
(2) I˙˛

x are nondiscrete subgroups of U˙˛ for �-a.e. x.

Proof
Recall that, for SL.d/, the roots ˛ can be identified with ordered tuples of indices
.i; j / 2 ¹1; : : : ; dº satisfying i ¤ j . We use the local dimensions s˛ D s.i;j / to define
a relation on ¹1; : : : ; dº. In fact, we write i � j if i D j or s.i;j / > 0, and we write
i � j if i � j � i . Lemma 3.11 implies that � is transitive; that is, if i � j � k, then
also i � k for i; j; k 2 ¹1; : : : ; dº.

It follows that � is an equivalence relation on ¹1; : : : ; dº and that � descends to
a partial order on the quotient by �. Let us write Œi � for the equivalence classes with
respect to �. To simplify matters, we may assume (by applying a suitable element of
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the Weyl group) that, for every i , the equivalence class Œi � D ¹m;mC1;mC2; : : : ; nº

consists of consecutive indices for some m � i and n � i . Moreover, we may assume
that i � j for two indices implies that either i � j or i � j .

We now prove that i � j implies that i � j . Otherwise, we claim that we can
choose a diagonal matrix a with two different eigenvalues (equal to powers of � ;
see Section 2.1) such that the leafwise measures of the stable horospherical sub-
group W �

G .a/ are nontrivial and such that the leafwise measures of the unstable
horospherical subgroup W C

G .a/ are trivial almost surely. More precisely, assuming
Œi � D ¹m;m C 1;m C 2; : : : ; nº (so that by the indirect assumption, j > n), we define
a to be the diagonal matrix with the first m eigenvalues equal to � .d�m/ and the
last d � m eigenvalues equal to ��m. By assumption, s.i;j / > 0, which implies that
h�.a/ > 0 by (s˛-3), the choice of a, and since i � n < j . However, for all k � n < `

we have s`;k D 0 (by our ordering of the indices) and hence h�.a�1/ D 0 also by
(s˛-3). This contradiction proves the claim that i � j implies that i � j .

Given a root ˛ D .i; j / with s˛ > 0, there are now two options: either Œi � D ¹i; j º

or the cardinality of Œi � is at least 3. In the first case, we have s.i;`/ D s.j;`/ D s.`;i/ D

s.`;j / D 0 for all ` … ¹i; j º, and translating this to the language of roots, we obtain (1).
In the second case, let ` 2 Œi � n ¹i; j º and apply Lemma 3.11 for the roots .i; `/, .`; j /

to see that I
.i;j /
x (and similarly also I

.j;i/
x ) is a nondiscrete group almost surely.

5. Low entropy part of Theorem 1.1
We use the notation introduced in Section 4. In view of Proposition 4.2, the following
is the standing assumption for the rest of this section. There is a root ˛ 2 ˆ so that

s˛ D s�˛ > 0 and sˇ D 0 (5.1)

for any ˇ 2 ˆ˙
˛ n ¹˛;�˛º. Let us put

Z˛ WD ZG.U˛/ \ ZG.U�˛/ D ZG.H˛/:

We have the following.

LEMMA 5.1 ([11, Lemma 4.4(1)])
There is a null set N so that, for all x 2 X n N , we have

W C
G .a˛/x \ .X n N / � U˛x:

In particular, for all x 2 X n N if u 2 W C
G .a˛/ is so that ux 2 W C

G .a˛/x \ .X n N /

and �˛
x D �˛

ux , then u 2 I˛
x .

Proof
In view of Lemma 3.9, there is a null set N1 so that, for all x 2 X n N1, we have that
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�
W

C
G

.a˛/
x is a product of the leafwise measures �

ˇ
x for all Uˇ � W C

G .a˛/. By (5.1), it
follows that

supp.�
W

C
G

.a˛/
x / D supp.�˛

x/ for all x 2 X n N1: (5.2)

Recall also that there is a null set N2 so that if x;ux 2 X n N2 for some u 2 W C
G .a˛/,

then

�
W

C
G

.a˛/
x / �

W
C
G

.a˛/
ux u: (5.3)

Let x 2 X n .N1 [ N2/. Then, by (5.2), we have supp.�
W

C
G

.a˛/
x / � U˛ . Therefore,

by (5.3), we get u 2 U˛ . This finishes the proof of the first claim if we require that
N � N1 [ N2.

To see the last assertion, let N3 � X be a null subset so that �˛
uxu / �˛

x for all
x … N3. Set N D N1 [ N2 [ N3. Let x 2 X n N , and let u be as in the statement. In
view of the first part in the lemma, we have u 2 U˛ . Our assumption and the fact that
U˛ is a commutative group give

u�˛
x D �˛

uxu / �˛
x :

Now one argues as in the proof Lemma 3.11 and gets u 2 I˛
x .

We also recall the following definition from [13].

Definition 5.2
Let H;Z � G be closed subgroups of G. We say that the leafwise measures �H

x are
locally Z-aligned modulo � if, for every " > 0 and neighborhood BZ

id � Z of the
identity, there exists a compact set Q with �.Q/ > 1 � " and some ı > 0 so that for
every x 2 Q we have

¹y 2 Q W �H
x D �H

y º \Bx.ı/ � BZ
idx:

The following is a direct corollary of the main result of [13], proved there explic-
itly also for the positive-characteristic case.

THEOREM 5.3 ([13, Theorem 1.4])
Under the assumption (5.1), one of the following holds.
(LE-1) We have that �˛

x is locally Z˛-aligned modulo �.
(LE-2) There exists an a˛-invariant subset Xinv.˛/ � X with �.Xinv.˛// > 0 so that

for all x 2 Xinv.˛/ there is an unbounded sequence ¹ux;mº � W C
G .a˛/ such

that �˛
x D �˛

ux;mx .
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6. Proof of Theorem 1.1
Recall the notation in Section 2.1 and in particular, k D Kv , where K is a global func-
tion field and v is a place of K and we work with the maximal torus A. Throughout
our discussion, � � SL.d; k/ is a lattice of inner type (see Section 2.4).

Put GL.n;o/m D ker.GL.n;o/ ! GL.n;o=��mo//.

LEMMA 6.1 ([11, Lemma 5.3])
For any positive integer n there exists some m D m.n/ � 1 with the following prop-
erty. Let a D diag.a1; : : : ; an/ withˇ̌

v.ai / � v.aj /
ˇ̌
> m for all i ¤ j:

Then ga is diagonalizable over k, for all g 2 GL.n;o/m. Moreover, if a0
1; : : : ; a0

n are
the eigenvalues of ga, then it is possible to order them so that v.ai / D v.a0

i / for all i .

Proof
Let Qkn be the composite of all field extensions of k of degree at most nŠ. Then the
characteristic polynomial of any element in GL.n; k/ splits over Qkn. Moreover, Qkn is
a local field; that is, Qkn=k is a finite extension. We let v denote the unique extension
of v to Qkn.

We begin with the following observation. There is some mn � 1 so that every
g 2 GL.n;o/mn

can be decomposed as g D g�g0gC with g˙ 2 W ˙ \ GL.n;o/1

and g0 2 A \ GL.n;o/1, where W C (resp., W �) is the group of upper (resp., lower)
triangular unipotent matrices. Indeed, in view of (3.8), the product map is a diffeo-
morphism from�

W � \GL.n;o/1

�
�

�
A \GL.n;o/1

�
�

�
W C \ GL.n;o/1

�
onto its image. Therefore the claim follows from the inverse function theorem.

We show that the lemma holds with m D mn. First, note that after conjugating by
a permutation matrix, we can assume that v.a1/ > � � � > v.an/. Let g 2 GL.n;o/m,
and let b1; : : : ; bn be the eigenvalues of ga listed with multiplicity and ordered so that
v.b1/ � � � � � v.bn/. Note that bi 2 Qkn for all 1 � i � n. Let k k be the max norm
on the i th exterior power ^i Qkn

n with respect to the standard basis ¹ej1
^ � � � ^ eji

º.
Denote by k k the operator norm of the action of GL.n; Qkn/ on ^i Qkn

n for 1 � i � n.
Choosing a basis of Qkn

n consisting of the generalized eigenvectors for ga, we get

lim
`

��^i .ga/`
��1=`

D jb1 � � �bi j for all i : (6.1)

We now claim that��^i .ga/`
�� D k ^i a`k D ja1 � � � ai j

` for all `: (6.2)
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The second equality in the claim is immediate. To see the first equality, note that if
g1; g2 2 GL.n;o/m, then

g1ag�
2 g0

2gC
2 a D g1.ag�

2 a�1/a2g0
2.a�1gC

2 a/:

Moreover, since g˙ 2 GL.n;o/1 and v.ai / � v.aiC1/ > m for all i , we have that
ag�

2 a�1 and g0
2a�1gC

2 a belong to GL.n;o/m. Using this, we get

.ga/` D g`a`a0
`g0

`;

where g`; g0
`

2 GL.n;o/m and a0
`

2 GL.n;o/1 for all `. This implies (6.2).
Now (6.1) and (6.2) imply that v.ai / D v.bi / for all 1 � i � n, in particular,

v.bi / ¤ v.bj / whenever i ¤ j . This implies that the bi ’s are distinct and hence ga

is a semisimple element. We now show that bi 2 k for all i . Recall that b1; : : : ; bn are
roots of the characteristic polynomial of ga which is a polynomial with coefficients
in k. For every 1 � i � n, let Gal.bi / D ¹bj W bj is a Galois conjugate of biº. Then
¹b1; : : : ; bnº is a disjoint union of

Fr
j D1 Gal.bij / for some ¹i1; : : : ; irº � ¹1; : : : ; nº.

Since v.bi / ¤ v.bj / whenever i ¤ j and Galois automorphisms preserve the val-
uation, we get that Gal.bi / D ¹biº for all i . This establishes the final claim in the
lemma.

PROPOSITION 6.2
Recall that � is an inner type lattice. Then �˛

x is not locally Z˛-aligned modulo �.
In particular, under the assumption (5.1), we have that (LE-2) in Theorem 5.3 holds.

Proof
We recall the argument from the proof of Theorem 5.1 in [11]. Let m be large enough
so that the conclusion of Lemma 6.1 holds with n D d �2. Without loss of generality,
we may assume that ˛.diag.a1; : : : ; ad // D a1a�1

2 . Define

QBD

8<:
0@r 0 0

0 r 0

0 0 C

1A W r 2 1 C ��2
o;C 2 GL.d � 2;o/m

9=;� GL.d;o/:

Put B WD QB \ Z˛ ; we note that B is a compact open subgroup of Z˛ . Let a D

diag.a2; a2; a3; : : : ; ad / 2 A \ Z˛ with v.a2/ ¤ 0, and jv.ai / � v.aj /j > m for all
i > j � 2. In particular, we have ˛.a/ D 1.

Suppose that (LE-1) holds. Then, by Poincaré recurrence for �-a.e. g� 2 G=� ,
there exists a sequence `i ! 1 so that

a`i g� 2 Bg� for all i .
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Hence, for all i there exist some �i 2 � and some hi 2 B so that hi a
`i D g�ig

�1.
Now Lemma 6.1 implies the following. If `i is large enough and we write

g�ig
�1 D hia

`i D

0@ri 0 0

0 ri 0

0 0 Di

1A ; (6.3)

then Di is diagonalizable whose eigenvalues have the same valuation as a
`i

j for all
3 � j � d . Dropping the few first terms if necessary, we assume that (6.3) holds for
all i .

Since � is an inner-type lattice, there exists a central simple algebra B over K so
that � is commensurable with ƒB (see Section 2.4). There exists some i (which we
fix) and infinitely many j ’s so that O�j WD �j ��1

i 2 ƒB . We have

g O�j g�1 D hj a`j �`i h�1
i I

hence if `j � `i is large enough, we get from hj ; h�1
i 2 B� GL.n;o/1 that

g O�j g�1 D

0@r 0 0

0 r 0

0 0 D

1A ;

where D is diagonalizable and whose eigenvalues have the same valuation as a
`j �`i

j

for all 3 � j � d . Indeed, after conjugation by h�1
i , we may apply Lemma 6.1. Alto-

gether, (LE-1) in Theorem 5.3 implies that there exists an element � 2 ƒB with the
following properties:
� � is a semisimple element,
� no eigenvalue of � is a root of unity,
� all of the eigenvalues of � are simple except exactly one eigenvalue which has

multiplicity 2.
We now claim that none of the eigenvalues of � lies in K . To see this, assume

that � has an eigenvalue 
 2 K . Recall from the definition of ƒB in Section 2.4 that
ƒB is bounded in SL1;B.Kw/ for all w ¤ v. In particular, w.
/ D 0; otherwise, the
group generated by � in SL1;B.Kw/ would be unbounded. This in view of the product
formula implies that v.
/ D 0. Hence, 
 is a root of unity, which is a contradiction.

Since � 2 ƒB , by (2.3) we have that the coefficients of the characteristic poly-
nomial of � are in K . This and the fact that � is semisimple imply that there exists a
finite separable extension QK of K which contains the eigenvalues of � (see [1, Section
4.1(c)]). Thus, using the above claim, we get that the eigenvalue with multiplicity 2

is not in K and is separable over K . Since any Galois conjugate of this eigenvalue
is also an eigenvalue of � with the same multiplicity, we get a contradiction with the
fact that � has only one nonsimple eigenvalue.
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6.1. Pinsker components have nontrivial invariance
We begin with the following corollary of the results in Sections 4 and 5.

COROLLARY 6.3
Under the assumptions of Theorem 1.1, we have the following: there exists some ˛ 2

ˆ and a �-conull subset Xinv.˛/ � X so that I˙˛
x are nondiscrete for all x 2 Xinv.˛/.

Proof
Since h�.a/ > 0, for some a 2 A there exists some ˛ 2 ˆ with s˛ > 0. In view of
Proposition 4.2, the claim in the corollary holds true almost surely unless ˛ satisfies
(5.1).

However, in this case Theorem 5.3 and Proposition 6.2 imply that (LE-2) must
hold true. Put X 0 D ¹x 2 X W I˙˛

x is nontrivialº. By (LE-2) and Lemma 5.1, we get
that X 0 has positive measure. Moreover, X 0 is A-invariant in view of Lemma 3.7(4).
Since � is A-ergodic, we get that �.X 0/ D 1. Now choose ` 2 Z such that X 0

`
D

¹x 2 X 0 W I˙˛
x \ U˙˛Œ`� is nontrivialº satisfies �.X 0

`
/ > 0. Applying ergodicity and

the pointwise ergodic theorem, we see that x 2 X a.e. satisfies that there exist some
a 2 A and infinitely many n � 0 and infinitely many n � 0 such that an

˛ax 2 X 0
`
.

Using Lemma 3.7(4), this implies the corollary.

Throughout the rest of this section, we fix some root ˛ so that the conclusion of
Corollary 6.3 holds true, and we put Xinv WD Xinv.˛/. For any root ˇ, let Aˇ denote the
1-parameter diagonal subgroup which is the group of k-points of the Zariski closure
of the group generated by aˇ . For the sake of notational convenience, we will denote
Aˇ D ¹ Ľ.t/ W t 2 k�º, where aˇ D Ľ.�/. Recall that VŒ˛� is contained in W C

G .a˛/.
For the rest of this section, we denote the Pinsker 
 -algebra Pa˛

for a˛ simply by P .
We further take a decomposition

� D

Z
X

�P
x d�.x/; (6.4)

where �P
x denotes the P conditional measure for �-a.e. x 2 X .

Since � is A-invariant and A commutes with a˛ , the 
 -algebra P is A-invariant.
Hence, we get

a�P
x D �P

ax for �-a.e. x 2 X: (6.5)

Recall the definition of H˛ D '˛.SL.2; k// from the beginning of Section 4. For
every x 2 X , we put

Hx WD ¹g 2 H˛ W g�P
x D �P

x º: (6.6)
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It follows from (6.5) that

Hax D aHxa�1 (6.7)

for all a 2 A and �-a.e. x.

COROLLARY 6.4
We have that hI˛

x ;I�˛
x i is Zariski-dense in H˛ as a k-group for �-a.e. x 2 Xinv.

Moreover, hI˛
x ;I�˛

x i � Hx .

Proof
The first claim follows from Corollary 6.3. To see the second claim, note that by
Lemma 3.14, we know that I˙˛

x is measurable with respect to P . Equivalently, the
groups I˙˛

x are (almost surely) constant on the atoms of a countably generated 
 -
algebra P 0 that is equivalent to P . We now decompose � as in (6.4) into conditional
measures for the 
 -algebra P 0, and we take the leafwise measures of �P 0

x for the
subgroup U˛ .

However, Proposition 3.4 implies that we may assume that the atoms with respect
to P 0 are unions of U˛-orbits. This implies in turn for the leafwise measure that
.�P 0

x /
U˛
y D �˛

y for �P 0

x -a.e. y and �-a.e. x (see [18, Proposition 5.20] and [14,

Proposition 7.22] for a similar argument). Fixing one such x, we obtain that .�P 0

x /
U˛
y

is almost surely invariant under I˛
y D I˛

x . However, this implies by the relationship

between the measure and its leafwise measures that �P 0

x is invariant under I˛
x . Since

�P 0

x D �P
x almost surely, we may apply the same argument for I�˛

x . Therefore,
I˙˛

x � Hx for �-a.e. x.

6.2. Algebraic structure of Hx

Recall from the beginning of Section 4 that H˛ D '˛.SL2.k//. Put U˙˛.ov/ D

'˛.U˙.ov//, where UC (resp., U�) denotes the group of upper (resp., lower) trian-
gular unipotent matrices in SL2. Note that H˛ D hU˛;U�˛i. By Corollary 6.4, for
�-a.e. x we have hI˛

x ;I�˛
x i � Hx . Define

Qx WD
˝
Hx \ U˛.ov/;Hx \ U�˛.ov/

˛
: (6.8)

Put

XP WD ¹x 2 X W Qx is Zariski-dense in H˛ and Qx \ U˙˛ are infiniteº: (6.9)

Corollary 6.4 and the above definitions imply that XP \ Xinv is conull in Xinv. In
particular, Corollary 6.3 implies that �.XP / D 1.

Note that for all x 2 XP , the group Qx satisfies the conditions of Theorem A.1
in Section 3.1. For any x 2 XP , define
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k0
x WD the field generated by

®
tr

�

.g/

�
W g 2 Qx

¯
;

and put

kx WD

´
k0

x if char.k/ ¤ 2;

¹c W c2 2 k0
xº if char.k/ D 2:

(6.10)

Theorem A.1 then implies that there exist
(C-1) a unique (up to a unique isomorphism) k-isogeny 'x W SL2 �kx

k ! SL2

whose derivative vanishes nowhere, and
(C-2) some nonnegative integer mx

so that

'x

�
SL.2;ox/mx

�
� Qx � 'x

�
SL.2; kx/

�
; (6.11)

where ox is the ring of integers in kx and

SL.2;ox/m WD ker
�
SL.2;ox/ ! SL.2;ox=$m

x ox/
�
;

with $x a uniformizer in ox . Let us put

Ex WD 'x

�
SL.2; kx/

�
: (6.12)

We will use without further remark the following lemma, which is a consequence
of the implicit function theorem. The group generated by U˙.$m

x ox/ is an open
subgroup of SL.2;ox/m; for example, a direct computation yields that this group
contains SL.2;ox/2m.

LEMMA 6.5
Consider the Borel 
 -algebra arising from the Chabauty topology on closed sub-
groups of .k;C/ and SL.d; k/.
(1) The map x 7! kx is a Borel map on XP .
(2) The equation (6.12) defines a Borel map, x 7! Ex , on XP .

Proof
The map x 7! Qx is a Borel map from a conull subset of X into the set of closed
subgroups of H˛.ov/. This and (6.10) imply that x 7! kx is a Borel map on the conull
set XP , as we claimed in (1).

By part (1), the map x 7! kx is a Borel map. Also recall from Lemma 3.1(1)
that Ex D hEx \ U˛;Ex \ U�˛i. Therefore, part (2) follows if we show that the map
x 7! Ex \ U˙˛ is a Borel map. Note, however, that if we realize U˙˛ D ¹ur W r 2 kº
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as a kx-vectors space, then Ex \U˙˛ D ¹ur W r 2 kxº is a 1-dimensional kx-subspace
of U˙˛ , respectively. Hence,

Ex \ U˙˛ D ¹urr 0 W r 2 kx; ur 0 2 Qx \ U˙˛º;

which implies the claim.

LEMMA 6.6
We have the following.
(1) The map x 7! kx is essentially constant.
(2) The map x 7! Ex is an A-equivariant Borel map on a conull subset of X .

Proof
We claim that kx � kax for all a 2 A. First, let us note that, by symmetry, this also
implies that kax � kx . Therefore, it implies that the map x 7! kx is A-invariant; since
� is A-ergodic, we get part (1).

We now show the claim. Let mx be as in (C-2). Recall from (6.7) that there is
a full measure set X 0 � X so that, for all x 2 X 0 and all a 2 A, we have Hax D

aHxa�1. Now, for any a there exists some mx;a � mx so that if m � mx;a, then

a'x

�
SL.2;ox/m

�
a�1 � Qax : (6.13)

Define lx.m/ to be the field generated by ¹tr.
.g// W g 2 'x.SL.2;ox/m/º. Then

lx.m/ D kx for all m � mx : (6.14)

Indeed, this is true for the field generated by ¹tr.
.g// W g 2 SL.2;ox/mº. Since 'x

has nowhere vanishing derivative and there are no nonstandard isogenies for type A1

(see [29, Proposition 1.6]), we get 
1 D 
2 ı 'x , where 
1 and 
2 are the adjoint
representation on the source and the target of 'x . This implies (6.14). It follows from
(6.13) and (6.14) that kx � kax , as we claimed.

Let us now prove part (2). By part (1), there is an A-invariant conull set X 0 and
a subfield k0 so that kx D k0 for all x 2 X 0. Let o0 denote the ring of integers in k0.
We note that the same proof as in the proof of Lemma 6.5(2) implies that Ex \ U˙˛

is the Zariski closure of C \ U˙ in Rk=k0.SLd / for any nontrivial open subgroup C

of Qx .
Now let a 2 A and x 2 X 0. Then by (6.13), we have

a'x

�
SL.2;o0/m

�
a�1 � Qax

for all m � mx;a. Since aHxa�1 D Hax and 'x.SL.2;o0/m/ is open in Qx by (6.11),
we thus get that a'x.SL.2;o0/m/a�1 is open in Qax for all m � mx;a. Since U˙˛ are
normalized by A, for all a 2 A and all m � mx;a we have
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a'x

�
SL.2;o0/m

�
a�1 \ U˙˛ D a

�
'x

�
SL.2;o0/m

�
\ U˙˛

�
a�1:

Taking the Zariski closure in Rk=k0.SLd /, we get that

a.Ex \ U˙˛/a�1 D Eax \ U˙˛:

This and Lemma 3.1(1) imply the claim.

PROPOSITION 6.7
For �-a.e. x 2 XP , we have Ex � Hx .

Proof
Let x 2 XP , and put A0

x WD Ex \ A. In view of Lemma 6.6(2), we have

A0
ax D Eax \ A D aExa�1 \ A D a.Ex \ A/a�1 D A0

x (6.15)

for �-a.e. x and all a 2 A. Since � is A-ergodic, we get that x 7! A0
x is essentially

constant. Let us denote by A0 this essential value.
Then by Lemma 3.1(2), we have that A0 is an unbounded subgroup of A˛ D

H˛ \ A. The group A˛ is a 1-dimensional, k-split, k-torus; therefore, A˛=A0 is com-
pact. For any s 2 k, we let L̨ .s/ 2 A˛ be the cocharacter associated to ˛ and evaluated
at s—that is, L̨ .s/ is the diagonal matrix with eigenvalues s, s�1 and 1 with multi-
plicity d � 2 so that ˛. L̨ .s// D s2. This implies that there exist some ` > 0 and some
r 2 o�

v , so that if we put s WD �`r , then L̨ .s/ 2 Ex . In particular, L̨ .s/ normalizes both
Ex \ U˛ and Ex \ U�˛ .

For every " > 0, there is subset XP ."/ � XP with �.XP ."// > 1 � " so that the
map

x 7! �P
x

is continuous on XP ."/. Now by Poincaré recurrence, for �-a.e. x 2 XP ."/ there is
a sequence nx;i ! 1 so that L̨ .snx;i / 2 XP ."/ for all i and L̨ .snx;i /x ! x. Then

lim
i!1

H L̨ .s
nx;i /x � Hx :

Recall from (6.11) that Qx \ U˛ contains an open compact subgroup of Ex \ U˛ .
Therefore, using (6.7) we get that

Ex \ U˛ � lim
i!1

L̨ .snx;i /.Qx \ U˛/ L̨ .s�nx;i / � lim
i

H L̨ .s
nx;i /x � Hx

for �-a.e. x 2 XP ."/. Choosing a sequence "n ! 0, we get that Ex \ U˛ � Hx for
�-a.e. x 2 XP . Similarly, we get Ex \ U�˛ � Hx for �-a.e. x 2 XP . Recall from
Lemma 3.1(1) that Ex is generated by Ex \ U˙˛ . Therefore, Ex � Hx for �-a.e.
x 2 XP .
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6.3. Applying the measure classification for semisimple groups
We now apply the measure classification theorem due to Golsefidy and the third
author (Theorem B from Section 3.2).

LEMMA 6.8
Let � be as in Theorem 1.1. Then there exist a closed infinite subfield l < k and a
smooth algebraic l -subgroup M < Rk=l.SLd / such that M.l/ \ � is Zariski-dense
inM over l , and a noncentral cocharacter � W Gm ! M over l so that the topological
group

L D M C.�/
�
M.l/ \ �

�
satisfies that L=.L \ �/ has finite volume. Moreover, for �-a.e. x, the Ex-ergodic
component of �P

x equals h�L for some h 2 SL.d; k/ so that x D h� , and �L is the
homogeneous measure on L=.L \ �/.

Proof
Let k0 denote the essential value of the map x 7! kx (see Lemma 6.6(1)). In view of
Proposition 6.7, for �-a.e. x the measure �P

x is invariant under Ex .
Since the 
 -algebra P is A-invariant, we have a�P

x D �P
ax for all a 2 A and �-

a.e. x. Moreover, by Lemma 6.6(2), we have Eax D aExa�1 for �-a.e. x. Therefore,
if we let

�P
x D

Z
�z d�P

x .z/ (6.16)

be the ergodic decomposition of �P
x with respect to Ex (where for �P

x -a.e. z we let
�z denote the Ex-ergodic components of �P

x ), then

�P
ax D

Z
a��z d�P

x .z/ (6.17)

is the ergodic decomposition of �P
ax with respect to Eax .

Applying Theorem B in Section 3.2, we conclude that for �P
x -a.e. z the measure

�z is described as follows. There exist
(B-1) lz D .k0/qz � k, where qz D pnz , p D char.k/ and nz � 1,
(B-2) a connected lz-subgroup Mz of Rk=lz

.SLd / so that Mz.lz/ \ � is Zariski-
dense in Mz ,

(B-3) an element gz 2 G,
such that �z is the gzLzg�1

z -invariant probability Haar measure on the closed orbit
gzLz�=� with

Lz D M C
z .�z/

�
Mz.lz/ \ �

�
;
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where
� the closure is with respect to the Hausdorff topology, and
� �z W Gm ! Mz is a noncentral lz-homomorphism, M C

z .�z/ is defined in (3.9),
and Ex � M C

z .�z/.
Note thatMz in (B-2) is lz-smooth—indeed,Mz.lz/ is Zariski-dense inMz (see [35,
Lemma 11.2.4(ii)]).

For any z where �z is described as above, let .lz; ŒMz�; ŒM C
z .�z/�/ be the corre-

sponding triple where Œ	� denotes the � conjugacy class. This is well defined and we
will refer to it as the triple associated to z. Given a triple .l; ŒM�; ŒM C.�/�/, put

S
�
l; ŒM�;

�
M C.�/

��
D

®
z 2 X W

�
l; ŒM�;

�
M C.�/

��
is associated to z

¯
:

Note that there are only countably many such triples. Indeed, there are only countably
many closed subfields l � k0 as in Theorem B(1); also, there are only countably many
M’s as in Theorem B(2). For any such l andM, there are only countably many choices
of M C.�/ by Lemma 3.2(2). Therefore, there exists a triple .l; ŒM�; ŒM C.�/�/ such
that

�
�
S

�
l; ŒM�;

�
M C.�/

���
> 0:

Note, however, that in view of (6.17), S.l; ŒM�; ŒM C.�/�/ is A-invariant. This,
together with the fact that � is A-ergodic, implies that

�
�
S

�
l; ŒM�;

�
M C.�/

���
D 1:

This finishes the proof of the lemma.

We let l , M, and L WD M C.�/.M.l/ \ �/ be as in Lemma 6.8. Define

N WD the Zariski closure of NG0

�
M.l/

�
\ � in G0; (6.18)

where G0 WD Rk=l.SLd / and G0 WD G0.l/ D SL.d; k/. Therefore, N is a smooth
group defined over l (see, e.g., [35, Lemma 11.2.4(ii)]). In view of (B-2) above, we
have

M � Nı and N � NG0.M/; (6.19)

where Nı denotes the connected component of the identity in N.

LEMMA 6.9
We let A

sp
l
be the group of l -points of the maximal, l -split, torus subgroup of Rk=lA.

Then there exists some g0 2 SL.d; k/ so that A
sp
l

� g0N.l/g�1
0 and Ag0�=� D

supp.�/.
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Proof
Recall that L� is a closed subset of G and that, for �-a.e. x and �P

x -a.e. z, we have

supp.�z/ D gL�=� (6.20)

for some g 2 G. We note that, while the element g is not well defined, the set gL�

is well defined. This, in view of (B-2), determines the set gM.l/� as the smallest set
of the form R.l/� , where R is an l -subvariety so that �z.R.l/�=�/ > 0 (see [28,
Theorem 6.9]; see also the original [27, Proposition 3.2]). Now let g;g0 2 G be such
that gM.l/� D g0M.l/� . Then

M.l/ �
[
�

g�1g0M.l/�:

Hence, by Baire’s category theorem, there is some �0 so thatM.l/ \ g�1g0M.l/�0 is
open inM.l/. SinceM is Zariski-connected, any open (in Hausdorff topology) subset
ofM.l/ is Zariski-dense inM (see [26, Chapter 1, Proposition 2.5.3]). This and equal-
ity of the dimensions imply that M.l/ D g�1g0M.l/�0. Therefore, g�1g0m0�0 D 1

for some m0 2 M.l/ and we get

M.l/ D g�1g0M.l/�0 D ��1
0 M.l/�0:

That is, �0 2 NG.M.l// \ � and

g�1g0 D ��1
0 m�1

0 2
�
NG

�
M.l/

�
\ �

�
M.l/:

Hence, by (6.18) and (6.19), we have

g�1g0 2
�
NG

�
M.l/

�
\ �

�
M.l/ � N.l/: (6.21)

Let N D N.l/ and G0 D G0.l/ D SL.d; k/. Then, by (6.21), we get a Borel measur-
able map f fromS.l;M;M C.�// to G0=N D SL.d; k/=N defined by f .x/ D gxN .

The preceding discussion, in view of (6.17), implies that f is an A-equivariant
Borel map, where the action of A on SL.d; k/=N is induced from the natural action
of Rk=l .A/ on G0=N.

Now by Lemma 3.3 there exists some

g0N 2 FixA
sp
l

�
SL.d; k/=N

�
so that f�� is the A-invariant measure on the compact orbit Ag0N . Using the
Birkhoff ergodic theorem for the action of A on X and the compactness of the orbit
Ag0N , we can choose the representative g0 2 SL.d; k/ so that Ag0�=� D supp.�/.
Let us recall that FixA

sp
l

.SL.d; k/=N / D ¹gN W g�1A
sp
l

g � N º. In particular, g0

satisfies
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g�1
0 A

sp
l

g0 � N; (6.22)

as we claimed.

6.4. The algebraic K-groups F and H
While the groups M <N are still somewhat mysterious at this stage, we can describe
their k-Zariski closure quite precisely. Recall that � � SL.d; k/ is a lattice of inner
type. Hence, there exists a central simple algebra B over K so that � is commensu-
rable with ƒB (see Section 2.4). We define the shorthand �B WD � \ ƒB .

LEMMA 6.10
With notation as in Theorem 1.1, let F be a connected, noncommutative algebraic
subgroup of SLd so that F.k/ \ � is Zariski-dense in F and A0 D A \ g0F.k/g�1

0 is
cocompact in A for some g0 2 SL.d; k/. Then F is defined over K and we have the
following:
(1) g�1

0 Ag0 � F;
(2) F has no QK-rational character for any purely inseparable algebraic field

extension QK of K;
(3) F is a reductive K-group;
(4) F.k/ \ � is a lattice in F.k/;
(5) the commutator group ŒF;F� is nontrivial, simply connected, and almost K-

simple;
(6) moreover, ŒF;F�.k/ Š

Qn
iD1 SL.d0; k/ with d D nd0; in fact, apart from the

order of the indices, the group g0ŒF;F�g�1
0 equals the subgroup consisting of

n block matrices along the diagonal.

Proof
Since �B is finite index in � and F is connected, we have that F.k/ \ �B is Zariski-
dense in F. This and the fact that �B � ƒB imply that F is defined over K (see [35,
Lemma 11.2.4(ii)]). Since A=A0 is compact and since A is Zariski-connected and
k-split, we also have that A0 is Zariski-dense in A. Since also g�1

0 A0g0 � F.k/, we
obtain g�1

0 Ag0 � F as k-groups. Let QK be a finite purely inseparable extension of K .
For every place w of k, there exists a unique extension Qw of w to QK . Recall that
k D Kv for a fixed place v of K . Let (see (2.4))

QƒB D
®
� 2 SL1;B. QK/ W � 2 SL1;B.o Qw/ for all Qw ¤ Qv

¯
:

Let QO be the ring of Qv-integers in QK . Suppose that � is an arbitrary QK-rational
character of F. Then there exists some D 2 QO, depending on �, so that

B WD �.�B \ F/ � �
�

QƒB \ F. QK/
�

�
1

D
QO:
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In particular, there exists some `0 2 Z so that, for any place Qw ¤ Qv in QK and any
r 2 B, we have Qw.r/ � `0. Note further that B is a multiplicative group; hence,
Qw.B/ is a subgroup of .Z;C/. In consequence, we have Qw.r/ D 0 for any place
Qw ¤ Qv in QK and any r 2 B. By the product formula, we also get that Qv.r/ D 0 for all

r 2 B. Therefore, B is a finite group consisting of roots of unity. This implies that
there is a finite index subgroup � 0 � �B \ F so that �.� 0/ D 1. Since F is connected
and �B \F is Zariski-dense in F, the group � 0 is also Zariski-dense in F. This implies
that � is trivial on F, as claimed in (2).

We note that part (2) and [5, Theorem 1.3.6] imply part (4) directly. Below we
give an argument using (3) which avoids the full force of [5, Theorem 1.3.6]. In par-
ticular, the classification of pseudoreductive groups in [6] which is used to resolve the
main difficulties in [5] is not used in our proof of (4).

We now prove part (3). Let QK be a finite, purely inseparable extension of K so
that Ru.F/ is defined and splits over QK (see [1, Corollaries 15.5, 18.4]). Restricting
the adjoint representation of F to the Lie algebra of Ru.F/ and taking the determinant,
we obtain a QK-character. We claim that if Ru.F/ is nontrivial, then this character is
also nontrivial. In view of this claim, (3) follows from (2).

We now show the claim. Recall that Ru.F/ is a QK-split, unipotent subgroup.
Since SLd is simply connected, we get from [20] (see also [3]) that there exists a
QK-parabolic subgroup P of SLd so that Ru.F/ � Ru.P/ and NSLd

.Ru.F// � P. The
claim now follows; indeed, g�1

0 Ag0 � F � NSLd
.Ru.F// and g�1

0 Ag0 is a maximal
torus which is k-split and hence also QKQv-split. Part (4) follows from (2), (3), and
[22]. Note that the absence of a unipotent radical (defined over k or not) makes the
necessary arguments in our case much simpler. For the rest of the argument, we fix a
maximal K-torus T in F which is k-split (see [6, Corollary A.2.6]). Note that by [6,
Theorem C.2.3], there is some g 2 F.k/ so that

gTg�1 D g�1
0 Ag0:

We now establish part (5). First, note that F is not commutative, so ŒF;F� is non-
trivial. Let K 0 be a separable field extension of K such that T splits over K 0. There-
fore, there exists some g1 2 SLd .K 0/ so that g1Tg�1

1 is the full diagonal subgroup of
SLd . Moreover, let T0 � T be the central torus of F. Then

g1ŒF;F�g�1
1 � g1

�
ZSLd

.T0/;ZSLd
.T0/

�
g�1

1 D
Y

i

SLdi

for some integers d1; d2; : : : (that depend on the subgroup g1T0g�1
1 ). Since T � F

has absolute rank d � 1, the rank of ŒF;F� equals d � 1 � dim.T0/. Moreover, the
torus T0 is central in ZSLd

.T0/; hence, we have

d � 1 � dim.T0/ � rank
��
ZSLd

.T0/;ZSLd
.T0/

��
D

X
i

.di � 1/:
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Together with the above inclusion, we thus get that d � 1 � dim.T0/ D
P

i .di � 1/.
Since ŒF;F� is semisimple and

Q
i SLdi

has no proper semisimple subgroup of the
same rank, we get g1ŒF;F�g�1

1 D
Q

i SLdi
. Let W1; : : : be the various irreducible

subspaces for the action of ŒF;F� on the d -dimensional vector space that are defined
over K 0 and correspond to the various blocks of g1ŒF;F�g�1

1 . As F is nonabelian,
at least one of the subspace (say, W1) has dimension at least 2. Let W be the sum
of W1 and all its Galois images. Then W is invariant under F and is defined over
K—recall that K 0=K is separable. Since F has no K-rational characters, we see that
W has full dimension. Otherwise, the determinant of the restriction of F to W gives
a K-character which is nontrivial since T is a maximal torus—indeed, over K 0 we
can conjugate T to A the diagonal subgroup. Now any subspace of the standard d -
dimensional representation of SLd that is invariant under A and whose weights sum
to zero is trivial. This implies that ŒF;F� is semisimple and almost K-simple. In par-
ticular, we obtain di D dj for all i , j , which gives part (6).

Define

OF WD the Zariski closure of N.l/ \ � in SLd : (6.23)

In particular, OF is a smooth group defined over k (see [35, Lemma 11.2.4(ii)]). Put
F D OFı, the connected component of the identity in OF. Since Œ� W �B � < 1, we have
that F coincides with the connected component of the identity in OFB WD the Zariski
closure of N.l/ \ �B in SLd . Now OFB is a smooth group defined over K; therefore,
F is also a smooth group defined over K and hence over k.

LEMMA 6.11
(1) N.l/ � OF.k/ and hence N.l/ is Zariski-dense in OF.
(2) F satisfies the conditions in Lemma 6.10.

Proof
For part (1), we note first that the definition (6.23) implies that

N.l/ \ � � OF.k/ D Rk=l. OF/.l/ � G0.l/:

Therefore, by (6.18) we have N � Rk=l . OF/. Taking l -points, we get part (1).
We now show that part (1) implies (2). To see this, we first note that F is con-

nected by definition. Next recall that by (6.19) we have Ex � M.l/ � N.l/ for �-
a.e. x. In view of the definition of Ex (see (6.12)) and the fact that F is finite index
in OF, we get that F is noncommutative. Moreover, note that F is Zariski-open and
closed in OF. By the definition of OF in (6.23), we have that OF.k/ \ � is Zariski-
dense in OF. Together, it follows that F.k/ \ � is Zariski-dense in F. Finally, by (6.22)
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we have g�1
0 A

sp
l

g0 � N.l/ � OF.k/. Since A
sp
l
is cocompact in A, we obtain the last

assumption—namely, that A \ g0F.k/g�1
0 is cocompact in A.

Put

OH WD the Zariski closure ofM.l/ \ �B in SLd : (6.24)

Note that OH is a smooth group defined over K and hence over k. Put H WD OHı, the
connected component of the identity in OH; thenH is also a smooth group defined over
K and hence over k.

LEMMA 6.12
(1) M.l/ � H.k/, and hence M.l/ is Zariski-dense in H.
(2) ŒF;F� D H.
(3) H is almost K-simple.
(4) H.k/ Š

Q
SL.d0; k/ where d D nd0.

Proof
Recall from (B-2) that M � Rk=l.SLd / is connected and that M.l/ \ � is Zariski-
dense in M. Since M is connected and Œ� W �B � < 1, we get that

M.l/ \ �B is Zariski-dense inM: (6.25)

Therefore, as in the proof of Lemma 6.11(1), we have

M.l/ \ �B � OH.k/ D Rk=l. OH/.l/ � G0.l/:

This in view of our preceding discussion implies that M � Rk=l. OH/. Since M is
connected and Rk=l.H/ is a finite index subgroup of Rk=l . OH/,1 we get that M �

Rk=l .H/. Taking l -points, part (1) follows.
By (6.19), we have gM.l/g�1 D M.l/ for all g 2 N.l/. Hence, by part (1) and

Lemma 6.11(1), we obtain that H � F is a normal subgroup of OF and hence of F.
Moreover, since Ex � M.l/ for �-a.e. x, we have that H is noncommutative. As was
mentioned above,H is a K-subgroup of F. Hence, Lemmas 6.11(2) and 6.10(5) imply
that

ŒF;F� � H: (6.26)

We now show the other inclusion. In view of Lemmas 6.10 and 6.11, we have
that g0R.k/�=� is a closed orbit with finite g0R.k/g�1

0 -invariant measure for R D

F; ŒF;F�. Moreover, by the choice of g0 in Lemmas 6.9 and 6.10(1), we have that

1Indeed, in view of the smoothness of H, it follows from [6, Proposition A.5.9] that Rk=l .H/ is connected.
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� is supported on Ag0�=� � g0F.k/�=�: (6.27)

Since Ex � ŒF;F� and since any Ex-ergodic component of � is supported on a homo-
geneous space g0gŒF;F�.k/�=� , for some g 2 F.k/ we get that M.l/ � ŒF;F�.k/.
This completes the proof of part (2) thanks to part (1) and (6.26). The fact that H
satisfies parts (3) and (4) now follow from part (2) and Lemmas 6.11 and 6.10.

Let us put AH D A \ g0H.k/g�1
0 . In view of Lemmas 6.11 and 6.12, we see that

g0H.k/g�1
0 has a block structure. Put CH D g0Z.F.k//g�1

0 . Then A00 WD AHCH is a
cocompact subgroup of A. We have the following.

LEMMA 6.13
We can decompose the measure as

� D

Z
A=Stab.�/

a��da;

where da is the Haar measure on the compact group A=Stab.�/, and � is an AH-
ergodic component of � which is supported on g0H.k/�=� . Moreover, we have

� D

Z
�z d�.z/:

Proof
Recall from (6.27) that � is supported on the closed orbit g0F.k/�=� . Hence, CH \

g0�g�1
0 acts trivially on supp.�/. Moreover, by Lemmas 6.11 and 6.10(4), we have

that Z.F.k//�=� is compact. This and the fact that A=A00 is compact implies that

A=AH.CH \ g0�g�1
0 / (6.28)

is a compact group. Therefore, the AH.CH \ g0�g�1
0 /-ergodic decomposition of �

can be written as Z
A=AH.CH\g0	g�1

0
/

a��da;

where � is an AH.CH \g0�g�1
0 /-invariant measure on g0H.k/�=� . This implies the

decomposition of � as in the lemma.
For the final claim, we note that the above discussion also shows that BAH � P ,

where BAH is the 
 -algebra of AH-invariant sets. Hence, the conditional measures
�P

x for the Pinsker 
 -algebra can be obtained by double conditioning—that is,

�P
y D .�BAH

x /P
y
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for �-a.e. x and �BAH
x -a.e. y. Again because of the compactness of (6.28) and the

equivariance properties of the conditional measures, it suffices to consider one of
the conditional measure � D �BAH

x . For the Pinsker conditional measure �P
y , we

have considered in (6.16) a decomposition into ergodic components for the group
Ey . These ergodic components have been completely described in Lemma 6.8. The
lemma follows by integration over �.

The following proposition describes the algebraic structure of the group L in
Lemma 6.8. It turns out to be more convenient for us to explicate the structure of the
finite index subgroup

LB WD M C.�/
�
M.l/ \ �B

�
of L. Note that L�=� D LB�=� .

PROPOSITION 6.14
Let n be as in Lemma 6.12(4). Then there exist
(1) a collection .li W 1 � i � n/ of closed (not necessarily distinct) subfields of k,
(2) for every 1 � i � n, a connected, simply connected, absolutely almost simple

li -group Hi and an isomorphism 'i W Hi �li
k ! SLd0

(where SLd0
is con-

sidered as the i th block subgroup corresponding to the indices .i � 1/d0 C

1; : : : ; id0)
so that LB D

Qn
iD1 'i .Hi .li // � H.k/.

Proof
In view of (6.25) and parts (3) and (4) of Lemma 6.12, the groupsM andH satisfy the
conditions in [28, Section 7] for the lattice �B . Therefore, [28, Theorem 7.1], which
in turn relies heavily on [6], [29], and [23], implies the following. There exist
(a) a collection .li W 1 � i � r/ of closed subfields of k,
(b) for every 1 � j � n, some 1 � i.j / � r and a continuous field embedding

	j W li.j / ! k,
(c) for every 1 � i � r , a connected, simply connected, absolutely almost simple

li -group Hi (which is a form of SLd0
),

(d) for every i 2 ¹1; : : : ; rº, some j 2 ¹1; : : : ; nº with i.j / D i ,
(e) an isomorphism ' W

`r
iD1 Hi ��.

Lr
iD1 li /

Ln
iD1 k !

`
SLd0

, with 	 D

.	1; : : : ; 	n/

so that LB D '.
Qr

iD1 Hi .li // � H.k/.
We now claim that

r D n: (6.29)
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Assuming (6.29), and after possibly renumbering and replacing li by 	i .li / for 1 �

i � r D n, we get the proposition.
We now turn to the proof of (6.29). Put � WD H.k/ \ � , and recall the notation

AH D A \ g0H.k/g�1
0 . In view of Lemma 6.13, we can reduce the study of the mea-

sure � to the study of the measure �, which is an AH-ergodic invariant measure on
g0H.k/=�. Put

H0 WD RLn
j D1 k=�.

Lr
iD1 li /

� na
j D1

SLd0

�
:

Then H0 is a smooth
Lr

iD1 li -group and H0.
Lr

iD1 li / D H.k/ (see [6, Proposi-
tion A.5.2]). Moreover, LB D '.

Qr
iD1 Hi .li // is the group of

Lr
iD1 li -points of aLr

iD1 li -subgroup of H0 (see [6, Proposition A.5.7]). Define

R WD the Zariski closure of NH.k/.LB/ \ � in H0: (6.30)

Put

R D R
� rM

iD1

li

�
� H.k/:

Then R � NH.k/.LB/.
In view of (6.20) and Lemma 6.13, we have the following. For �-a.e. x 2 H.k/=�

and �P
x -a.e. z, we have

supp.�z/ D g0gL�=� D g0gLB�=�

for some g 2 H.k/. Therefore, arguing for each i separately, as in the proof of
Lemma 6.9 we get the following. There is a cocompact subgroup A0

H � AH and some
g1 2 H.k/ so that

g�1
1 g�1

0 A0
Hg0g1 � RI

moreover, AHg0g1� D supp.�/.
In particular, we have that A0

H normalizes the group g0g1LBg�1
1 g�1

0 . Recall now
that AH is a maximal torus in the block diagonal group g0H.k/g�1

0 . These and the
fact that A0

H is cocompact in AH imply that the block structure of LB and H agree
with each other; that is, r D n. To see this, assume that i.j / D 1 for j D 1; 2. Let a be
an element in A0

H which equals the identity in all the blocks j D 2; : : : ; n, and in the
first block it is a diagonal element which generates an unbounded group. Then since
a normalizes g0g1LBg�1

1 g�1
0 , we get a contradiction.
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COROLLARY 6.15
We have that NH.k/.LB/=Z.H.k//LB is a torsion abelian group.

Proof
In view of Proposition 6.14, it suffices to argue in each SLd0

-block separately. Hence,
we fix some i 2 ¹1; : : : ; nº. First, note that Hi is an li -form of SLd0

. Suppose now
that g 2 SL.d0; k/ normalizes Hi .li /. Since Hi .li / is Zariski-dense in the li -group
Hi (see, e.g., [26, Chapter 1, Proposition 2.5.3], we thus get that g induces an li -
automorphism ofHi . Extending the scalars from li to k, we see that the automorphism
is inner; that is, this automorphism 
i .g/ belongs to Had

i .k/. Together it follows that

i .g/ 2 Had

i .li /. This automorphism is, moreover, nontrivial if and only if g is not
central in SLd0

. Hence, we get a monomorphism g 7! 
.g/ from

NSL.d0;k/

�
LB \ SL.d0; k/

�
=Z

�
SL.d0; k/

�
into Had

i .li /. This map sends Hi .li / to ŒHad
i .li /;Had

i .li /� by [26, Chapter 1, Theo-
rem 2.3.1], and the claims hold true by [26, Chapter 1, Theorem 2.3.1].

Let us now complete the proof of Theorem 1.1.

Proof of Theorem 1.1
In view of Lemma 6.13, we may and will restrict our attention to the measure �

appearing in the statement of that lemma. Similar to the proof of (6.29), put � WD

H.k/ \ � . Define

H0 WD RLn
j D1 k=

Ln
iD1 li

� na
iD1

SLd0

�
:

Then H0 is a smooth
Ln

iD1 li -group and H0.
Ln

iD1 li / D H.k/ (see [6, Proposi-
tion A.5.2]). Moreover, LB D

Qn
iD1 Hi .li / is the group of

Ln
iD1 li -points of aLn

iD1 li -subgroup of H0 (see [6, Proposition A.5.7]). Since H0.
Lr

iD1 li / D H.k/, we
may view Z.H.k// as a finite subgroup of H0.

Lr
iD1 li /. Define

R WD Z
�
H.k/

� �
the Zariski closure of NH.k/.LB/ \ � in H0

�
:

Put R D R.
Ln

iD1 li / � H.k/. Since H.k/ D H0.˚.li //, we have Z.H.k// � R.
Moreover, R � NH.k/.LB/, and by Corollary 6.15, we have

ŒR;R� � Z
�
H.k/

�
LB : (6.31)

In view of (6.20) and Lemma 6.13, for �-a.e. x 2 g0H.k/=�, we have
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supp.�x/ D g0gL�=� D g0gLB�=� (6.32)

for some g 2 H.k/ depending on x.
Therefore, arguing as in the proof of Lemma 6.9, we get the following. There is a

cocompact subgroup A0
H � AH containing Z.H.k// and there is some g1 2 H.k/ so

that g�1
1 g�1

0 A0
Hg0g1 � R. We may furthermore require that AHg0g1�=� D supp.�/.

This gives the decomposition

� D

Z
AH=A0

H

a��0 da; (6.33)

where
� da is the Haar measure on the compact group AH=A0

H,
� �0 is an A0

H-invariant and ergodic probability measure on g0
0R=�0, where

�0 WD R \ � and g0
0 D g0g1.

Note that we have implicitly identified here g0
0R=�0 with g0

0R�=� (which in
turn itself has already been implicitly identified with g0

0R�=�).
We now further investigate the measure �0. In view of (6.32), we can write

�0 D

Z
g0

0
R=�0

�x d�0.x/; (6.34)

where �x is the g0
0gLBg�1g0

0
�1-invariant measure on g0

0gLB�0=�0, where we write
x as x D g0

0g�0=�0 for g 2 R.
Since LB is normal in R, we get that �0 is g0

0LBg0
0

�1-invariant. Moreover, since
Z.H.k// � A0

H, we also have that �0 is Z.H.k//-invariant. Finally, since LB�=� is
closed in H.k/=�, we have that Z.H.k//LB�0 is a closed subgroup of R. Let L0

B D

Z.H.k//LB . We define �0
1 as the pushforward of �0 under the canonical quotient map

from g0
0R=�0 into g0

0R=LB�0, and similarly �0
2 as the pushforward to g0

0R=L0
B�0.

With this we obtain from (6.34) that, for �LB
D �LB �0=�0 ,

�0 D

Z
g0

0
R=LB �0

g��LB
d�0

1.gLB�0/

D

Z
g0

0
R=L0

B
�0

g�

�Z
Z.H.k//

h��LB
dh

�
d�0

2.gL0
B�0/

D .g0
0/�

Z
R=L0

B
�0

g�

�Z
Z.H.k//

h��LB
dh

�
d�P .gL0

B�0/; (6.35)

for a .g0
0/�1A0

Hg0
0-invariant and ergodic probability measure �P on P D R=L0

B�0.
We note that the measure defined by the inner integral in (6.35) is actually homo-
geneous. Furthermore, by Corollary 6.15 we know that P D R=L0

B�0 is a torsion
abelian group.
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We claim that

the image of .g0
0/�1A0

Hg0
0 in P is compact and in particular closed: (6.36)

Assuming (6.36), let us finish the proof. Indeed, (6.36) implies that �P equals the
Haar measure on a coset of �

.g0
0/�1A0

Hg0
0

�
L0

B�0=L0
B�0:

This together with (6.33) finishes the proof.
We now prove (6.36). Let ¹s1; : : : ; srº � .g0

0/�1A0
Hg0

0 be a subset which generates
a cocompact subgroup of .g0

0/�1A0
Hg0

0. By Corollary 6.15, there exists some m 2 N

so that sm
i 2 Z.H.k//LB D L0

B for all 1 � i � r . Let D be the group generated by
¹sm

1 ; : : : ; sm
r º. Then D is cocompact in .g0

0/�1A0
Hg0

0 and the natural orbit map from
.g0

0/�1A0
Hg0

0 to P factors through the natural map from .g0
0/�1A0

Hg0
0=D to P . These

maps are continuous and .g0
0/�1A0

Hg0
0=D is compact; thus, (6.36) follows.

7. Joining classification

7.1. On the group generated by certain commutators
A key to the classification of joinings is the following simple general fact about a
rank-2 k-torus. LetG denote a connected, simply connected, absolutely almost simple
group defined over a local field k with char.k/ > 3. Let � W G2

m ! G be an algebraic
monomorphism defined over k; letA D �.G2

m/. Fix a maximal, k-split, k-torus S � G
so that A � S. Further, let T 
 S be a maximal torus of G which is defined over k.
Put ˆ WD ˆ.T;G/, kˆ WD kˆ.S;G/, and ˆ WD kˆ.A;G/. For ‰ � ˆ, set

#.‰/ WD
®
˛ 2 ˆ.T;G/ W ˛jA 2 ‰

¯
: (7.1)

PROPOSITION 7.1
The group G is generated by the commutators ŒVŒ˛�;VŒˇ��, where ˛, ˇ run over all
linearly independent pairs in ˆ.

We need the following lemma from [12, Lemma 4.2] (see also [10, Lemma 9.6]).

LEMMA 7.2
Let ı 2 ˆ and ı0 2 #.Œı�/. Then there exist some ˇ 2 ˆ and some ˇ0 2 #.Œˇ�/ with the
following properties:
(1) ¹ˇ; ıº is a linearly independent subset of ˆ,
(2) ı0 � ˇ0 2 ˆ.
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Proof
Let Nk be the algebraic closure of k. Let

‡ D
®
˛ 2 R˝ X�.T/ W ˛jA 2 Rı

¯
;

where X�.T/ denotes the group of characters of T.
Let g0 be the Nk-span of ¹g˛0 ; Œg˛0 ;gˇ 0 � W ˛0; ˇ0 2 ˆ n ‡º. It follows easily from the

Jacobi identity (see the proof of [12, Lemma 4.2] for details) that g0 is an ideal of g.
Recall that A D �.G2

m/. Therefore, ˆ has at least two linearly independent roots, and
g0 is not central. Since g has no proper noncentral ideals, we have g0 D g.

In particular, we get that

gı0 �
X

˛02ˆ1n‡

g˛0 C
X

˛0;ˇ 02ˆn‡

Œg˛0 ;gˇ 0 �:

Since ı0 2 ‡ , the above implies that gı0 �
P

˛0;ˇ 02ˆn‡ Œg˛0 ;gˇ 0 �. But for every ˛0,
ˇ0, we have Œg˛0 ;gˇ 0 � � g˛0Cˇ 0 and hence ı0 D ˛0 C ˇ0 for some ˛0; ˇ0 2 ˆ n ‡ . In
particular, since ˇ0 … ‡ , it holds that ˇ WD ˇ0jA is linearly independent from ı.

Proof of Proposition 7.1
Since the statement of the proposition is on the level of algebraic groups, the validity
of the statement over the algebraic closure Nk of k implies that of the statement when
the groups are considered as algebraic groups over k. Over Nk, we can write for every
˛ 2 ˆ,

VŒ˛� D
Y

ı02#.Œ˛�/

Uı0

with each Uı0 a 1-parameter unipotent group over Nk.
Since the group G is absolutely almost simple, and in particular semisimple, the

root groups Uı0 for ı0 2 ˆ generate. Therefore, to prove the proposition, it is enough
to show that for every ı0 2 ˆ, one can find ˛ and ˇ in ˆ, linearly independent, so that

Uı0 � ŒVŒ˛�;VŒˇ��: (7.2)

Let ˇ, ˇ0 be as in Lemma 7.2 applied to ı WD ı0jA1
and ı0, and let ˛0 D ı0 � ˇ0 and

˛ D ˛0jA. In particular, ˛ and ˇ are linearly independent.
Recall that char.k/ ¤ 2; 3. Hence, by [4, Section 4.3], irregular commutation

relations do not occur. This means in particular (see also [2, Section 2.5]) that

ŒU˛0 ;Uˇ 0 � D U˛0Cˇ 0 :

But U˛0 � VŒ˛�, Uˇ 0 � VŒˇ�, and by definition ˛0 C ˇ0 D ı0. Thus (7.2) is proved, and
hence the proposition follows.
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7.2. The main entropy inequality and the invariance group of the leafwise measures
From now on, we use notation from Theorem 1.2. In particular, for i D 1; 2, Gi

denotes a connected, simply connected, absolutely almost simple group defined
over k. We put Gi D Gi .k/ and G D G1 � G2. Recall also that char.k/ > 3. Suppose
that there are fixed two algebraic monomorphisms �i W G2

m ! Gi defined over k; let
Ai D �i .G2

m/ and Ai D Ai .k/. For i D 1; 2, fix a maximal, k-split, k-torus Si � Gi

so that Ai � Si , and set kˆi WD kˆ.Si ;Gi / and ˆi WD kˆ.Ai ;Gi /. Define A to be
the smooth k-group so that

A.R/ WD
®�

�1.r/; �2.r/
�

W r 2 Gm.R/2
¯

for any algebra R=k; let A WD A.k/.
Let

ˆ D kˆ.A;G1 �G2/:

Using the natural homomorphisms fromA toAi , for i D 1; 2 we can view kˆ.Ai ;Gi /

as subsets of ˆ; moreover, we have

ˆ D kˆ.A1;G1/ [ kˆ.A2;G2/:

For each ˛ 2 ˆ, we can write the coarse Lyapunov group VŒ˛� � G1 �G2 as a product
V 1

Œ˛�
� V 2

Œ˛�
with V i

Œ˛�
� Gi ; by convention, if ˛ … ˆ, then V i

Œ˛�
D ¹1º. For i D 1; 2, fix

a maximal, compact, open subgroup Gi � Gi and put G WD G1 � G2. Recall that �

denotes an ergodic joining for the action of Ai on .Xi ;mi / for i D 1; 2.

PROPOSITION C ([12, Section 3])
Let a D .a1; a2/ 2 A, and let ‰ � ˆ be a positively closed subset. Put

W D V‰ � W �
G1�G2

.a/:

Then W D W1 � W2, where Wi � Gi for i D 1; 2 and

h�.a;W / � hm1
.a1;W1/ C h�

�
a; ¹idº � W2

�
: (7.3)

Furthermore, the following hold.
(1) If the equality holds in (7.3), then W1 is the smallest algebraic subgroup of W1

which contains �1.supp.�W
x / \G/.

(2) The equality holds for W D W �
G1�G2

.a/.

(3) For every ˛ 2 ˆ, the equality holds for W D VŒ˛�.

Proof
The main inequality follows from [12, Proposition 3.1].2 Parts (2) and (3) follow from

2The arguments in [12] generalize to the setting at hand without a change.
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[12, Proposition 3.3, Corollary 3.4]. To see part (1), note first that by [13, Proposi-
tion 6.2], we have that

�1

�
supp.�W

x / \G
z�

is a (Zariski-closed) subgroup which is normalized by a and contains �1.supp.�W
x //.

Part (1) now follows from [12, Proposition 3.2].

COROLLARY 7.3
For any ˛ 2 ˆ, we have that �i .S

Œ˛�
x \G/ is Zariski-dense in �i .VŒ˛�/ for i D 1; 2.

Proof
In view of Proposition C(3), this is a direct consequence of Proposition C(1) and the

definition of S
Œ˛�
x .

Fix an element a D .a1; a2/ 2 A that is regular with respect to ˆ (i.e., ˛.a/ ¤ 1

for any ˛ 2 ˆ). We denote the Pinsker 
 -algebra, Pa, simply by P . Disintegrate � as

� D

Z
X

�P
x d�.x/; (7.4)

where �P
x denotes the P -conditional measure for �-a.e. x 2 X . Similar to (6.6),

define

Hx WD ¹g 2 G1 � G2 W g�P
x D �P

x º:

We have aHxa�1 D Hax for all a 2 A and �-a.e. x (see (6.7)).

LEMMA 7.4
For �-a.e. x and any linearly independent ˛;ˇ 2 ˆ, the measure �P

x is almost surely
invariant under ŒS

Œ˛�
x ;S

Œˇ�
x �—that is, ŒS

Œ˛�
x ;S

Œˇ�
x � � Hx .

Proof
By Lemma 3.14, for every ˛ 2 ˆ and �-a.e. x, we have that �P

x is invariant under

I
Œ˛�
x , and hence, by Lemma 3.12, is invariant under I ‰

x for any positively closed ‰ �

ˆ. By Lemma 3.11, we have therefore that, for any linearly independent ˛;ˇ 2 ˆ,
the measure �P

x is almost surely invariant under ŒS
Œ˛�
x ;S

Œˇ�
x �.

Recall that G D G1 �G2 is a compact, open subgroup of G D G1 � G2. Define

Qx WD
˝
¹g 2 Hx \G W g is unipotentº

˛
:
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COROLLARY 7.5
For �-a.e. x, �i .Qx/ is Zariski-dense in Gi and �i .Hx/ is unbounded for i D 1; 2.

Proof
For any x, let Li;x denote the Zariski closure of �i .Qx/ in Gi . Let ˛;ˇ 2 ˆ be two
linearly independent roots. By Corollary 7.3, almost surely �i .S

Œ˛�
x \ G/ is Zariski-

dense in �i .VŒ˛�/ and similarly for ˇ, for i D 1; 2. By Lemma 7.4, ŒS
Œ˛�
x \ G;S

Œˇ�
x \

G� � Qx . It follows that

�i

�
ŒVŒ˛�;VŒˇ��

�
� Li;x

for any two linearly independent ˛;ˇ 2 ˆ. The first part of the claim follows using
Proposition 7.1.

For the second, by Lemmas 7.4 and 3.12 there is an ˛ 2 ˆ such that I
Œ˛�
x is non-

trivial. If I
Œ˛�
x were to be bounded on a set of positive measure, then its diameter would

be a monotone, increasing, measurable function under an appropriate subsemigroup
of A, in contradiction to Poincaré recurrence.

7.3. Proof of Theorem 1.2
Let X 0 � X be a conull subset so that the conclusions of Lemma 3.5 and Corollary 7.5
hold true on X 0. By Corollary 7.5, for all x 2 X 0 the group Qx satisfies the conditions
of Theorem A.2 in Section 3.1. Therefore, there are two possibilities to consider.

Case 1. There is a subset X 00 � X 0 with �.X 00/ > 0 so that for all x 2 X 00 and i D 1; 2,
the following conditions hold. There are
� subfields ki;x � k,
� ki;x-groups Hi;x ,
� k-isomorphism 'i;x W Hi;x �ki;x

k ! Gi , and
� open, compact subgroups Qi;x � 'i;x.Hi;x.ki;x//

so that Q1;x � Q2;x � Qx .

LEMMA 7.6
For every x 2 X 00 and every h 2 Q1;x , define

Fx.h/ WD
®
v.h; 1/v�1 W v 2 Hx

¯
:

(1) For every h 2 Q1;x , we have Fx.h/ � Hx .
(2) There exists an element h 2 Q1;x such that F ˛

x .h/ is unbounded.

Proof
Part (1) is immediate since Qx;1 � ¹1º � Qx .
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We now prove part (2). Let ¹vnº � Hx be a sequence so that �1.vn/ ! 1 (see
Corollary 7.5). Let

vn D .vn;1; vn;2/ D .r 0
n;1sn;1rn;1; r 0

n;2sn;2rn;2/

be the Cartan decomposition of vn. Then sn;1 ! 1. Passing to a subsequence if
necessary, we assume that
� ¹rn;iº and ¹r 0

n;iº converge for i D 1; 2, and moreover,
� P WD ¹g 2 G1 W ¹s�1

n;1gsn;1º is boundedº is a proper parabolic k-subgroup of
G1.

Since Q1;x is Zariski-dense in the k-group G1, there exists some h 2 Q1;x which
does not lie in r�1Pr where rn;1 ! r . The claim in part (2) holds for this h.

Proof of Theorem 1.2: Case 1
Let x 2 X 00, and let h and Fx.h/ be as in Lemma 7.6(2). Suppose that ¹.gn; 1/º �

Fx.h/ is an unbounded sequence. By part (1) of that lemma, we have

.gn; 1/ 2 Hx for all n: (7.5)

Recall from Lemma 3.5 that

�i�.�P
x / D mi for i D 1; 2: (7.6)

Since G1 is connected, simply connected, and absolutely almost simple, it fol-
lows from the generalized Mautner phenomenon (see [26, Chapter 1, Theorem 2.3.1],
[26, Chapter 2, Theorem 7.2]) that .X1;m1/ is ergodic for the action of the unbounded
group h¹gnºi. This, together with (7.5) and (7.6), implies that �P

x D m1 � m2 (see,
e.g., the argument in Case 1 of the proof of [17, Proposition 4.3]). Since �.X 00/ > 0

and � is A-ergodic, we get that � D m1 � m2.

The rest of this section is devoted to the analysis of the following case.

Case 2. Replacing X 0 by a conull subset, which we continue to denote by X 0, we have
the following. For every x 2 X 0, there are
� a subfield kx � k and a continuous embedding 	x W kx ! k,
� a kx-group Hx ,
� a .k ˚ k/-isomorphism 'x W Hx ���x .kx/ .k ˚ k/ ! G1

`
G2 where as in

(3.4), ��x
.kx/ D ¹.c; 	x.c// W c 2 kxº,

so that Qx is an open subset of the image under 'x of Hx.kx/ with the latter consid-
ered as a subset of the .k ˚ k/-points of Hx ���x .kx/ .k ˚ k/ using the injection of
rings ��x

W kx ! k ˚ k. Moreover, ��x
.kx/ is unique, and Hx and 'x are unique up

to unique isomorphisms. Let us further recall that
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kx D the field of quotients of the ring generated by
®
tr

�

.g/

�
W g 2 Qx

¯
; (7.7)

where 
 denotes the nonconstant irreducible representation occurring as subquotient
of the adjoint representation of Gad

1 .
Put Ex WD 'x.Hx.kx// � G1 � G2.

PROPOSITION 7.7
(1) There is a subfield k0 � k and an embedding 	 W k0 ! k so that ��x

.kx/ D

�� .k0/ on a conull subset of X .
(2) The map x 7! Ex is an A-equivariant Borel map on a conull subset of X .

Proof
In view of (7.7) and the fact that x 7! Qx is a Borel map, we get that x 7! ��x

.kx/

is a Borel map (see the proof of Lemma 6.5(1)). To see the other claims in part (1),
first recall that aHxa�1 D Hax for all a 2 A and �-a.e. x 2 X . Hence, for any a 2 A

there exists some finite index subgroup Qx.a/ � Qx so that

aQx.a/a�1 � Qax : (7.8)

Therefore, the same arguments as in the proof of Lemma 6.6(1) apply here and finish
the proof of part (1) (see (6.13) and (6.14)).

We now turn to the proof of part (2). Put

G0 WD Rk˚k=�� .k0/

�
G1

a
G2

�
:

This is a �� .k0/-group.
Now, part (1), the fact that 'x is an isomorphism, and the universal property of

the restriction of scalars functor (see [6, Section A.5]) imply that

Ex D
�
Rk˚k=�� .k0/.'x/.Hx/

��
�� .k0/

�
:

Hence, using [26, Chapter 1, Proposition 2.5.3], we get that Ex is identified with the
�� .k0/-points of the Zariski closure of Qx in the �� .k0/-group G0. Since the map
x 7! Qx is Borel, we thus get that x 7! Ex is a Borel map.

To see the A-equivariance, first recall from (7.8) that aQx.a/a�1 is an open sub-
group of Qax . Thus, using [26, Chapter 1, Proposition 2.5.3], we get that Eax is the
Zariski closure of aQx.a/a�1 in G0.�� .k0//. On the other hand, this Zariski closure
equals aExa�1; the claim follows.

LEMMA 7.8
For �-a.e. x 2 X , we have Ex � Hx , and Ex is not compact.
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Proof
We first recall from [31, Theorem T] that since Hx is connected, simply connected,
and absolutely almost simple, any open and unbounded subgroup of Ex equals Ex .
Thus, since Qx � Hx is an open subgroup of Ex , both assertions in the lemma will
follow if we show that Hx \ Ex is unbounded for �-a.e. x 2 X .

However, the proof of Corollary 7.5 shows that for some ˛ 2 ˆ, we have that
Qx \ I

Œ˛�
x is nontrivial. Since x 7! Ex is an A-equivariant map, using Poincaré recur-

rence as in Corollary 7.5 it follows that Hx \ Ex is unbounded.

Proof of Theorem 1.2: Case 2
The argument is similar to the proof of Theorem 1.1.

Step 1. Let

�P
x D

Z
X

�z d�P
x .z/ (7.9)

be the ergodic decomposition of �P
x with respect to Ex .

As before, k ˚ k is a �� .k0/-algebra. Put

G0 WD Rk˚k=�� .k0/

�
G1

a
G2

�
:

This is a connected group defined over �� .k0/ (see [6, Section A5]). Moreover, �1 �

�2 is a lattice in G0.�� .k0// D G1.k/ �G2.k/ D G1 � G2 D G.
Applying Theorem B in Section 3.2, we conclude that for �P

x -a.e. z the measure
�z is described as follows. There exist
(1) lz D .k0/qz where qz D pnz , p D char.k/, and nz � 1,
(2) a connected �� .lz/-subgroup Mz of R�� .k0/=�� .lz/.G0/ so that

Mz

�
�� .lz/

�
\ .�1 � �2/

is Zariski-dense in Mz , and
(3) an element gz 2 G1 � G2,
such that �z is the gzLzg�1

z -invariant probability Haar measure on the closed orbit
gzLz.�1 � �2/=.�1 � �2/ with

Lz D M C
z .�z/

�
Mz

�
�� .lz/

�
\ .�1 � �2/

�
;

where
� the closure is with respect to the Hausdorff topology, and
� �z W Gm ! Mz is a noncentral �� .lz/-homomorphism, M C

z .�z/ is defined in
(3.9), and Ex � M C

z .�z/.



170 EINSIEDLER, LINDENSTRAUSS, and MOHAMMADI

Arguing as in the proof of Lemma 6.8, there exists a triple .l0; ŒM0�; ŒM C
0 .�0/�/ so

that �
lz ; ŒMz�;

�
M C

z .�z/
��

D
�
l0; ŒM0�;

�
M C

0 .�0/
��

for �-a.e. x and �P
x -a.e. z:

Put L0 WD M C
0 .�0/.M0.�� .l0// \ .�1 � �2//.

Step 2. One of the following holds:
(a) L0 D G1 � G2, or
(b) �i .L0/ D Gi and ker.�i jL0

/ � C.G1 � G2/ for i D 1; 2.
To see this, first note that, by Lemma 3.5, we have �i��P

x D mi for �-a.e. x 2 X

and i D 1; 2. This, together with (7.9), implies that

mi D �i��P
x D

Z
X

�i��z d�P
x .z/ for �-a.e. x:

Since �z is invariant under Ex , the projection �i�.�z/ is invariant under �i .Ex/.
By Lemma 7.8, the group �i .Ex/ is an unbounded subgroup of Gi for i D 1; 2. Since
Gi is simply connected, mi is �i .Ex/-ergodic (see [26, Chapter 1, Theorem 2.3.1],
[26, Chapter 2, Theorem 7.2]). Therefore,

�i��z D mi for �P
x -a.e. z:

In particular, we get that �i .gzL0g�1
z / D Gi for �P

x -a.e. z and i D 1; 2.
Since Gi is absolutely almost simple, any proper normal subgroup of Gi , as an

abstract group, is central (see [26, Chapter 1, Theorem 1.5.6]). This implies that one
of the following holds:
� L0 D G1 � G2, or
� �i .L0/ D Gi and ker.�i jL0

/ � C.G1 � G2/ for i D 1; 2,
as we claimed. If L0 D G � G, then we are done with the proof. Hence, our standing
assumption for the rest of the argument is that (b) above holds.

Step 3. The assertion in (b) also holds for M0 and M C
0 .�0/ in place of L0. Let

us first show this for M0. Since L0 � M0, we have

�i .M0/ D Gi for i D 1; 2:

Therefore, as above, either M0 D G1 �G2 or (b) holds for M0. Assume to the contrary
that M0 D G1 �G2. Recall that �0 W Gm ! M0 is a noncentral homomorphism. Since
Gi is connected, simply connected, and absolutely almost simple for i D 1; 2, using
[26, Chapter 1, Proposition 1.5.4, Theorem 2.3.1], we have that either
� M C

0 .�0/ D G1 � G2, or
� M C

0 .�0/ � Gi for some i D 1; 2.
However, since M C

0 .�0/ � L0, the above contradict our assumption that (b) holds.
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We now turn to the proof of the claim for M C
0 .�0/. Since M0 ¤ G1 � G2 and

M C
0 .�0/ � M0, the claim follows if we show that

�i

�
M C

0 .�0/
�

D Gi for i D 1; 2: (7.10)

To see this, note that �0.l�
0 / � M0.�0/. Since (b) holds for M0, we have that

�i .�0.l�
0 // is unbounded for i D 1; 2. Therefore, (7.10) follows from [26, Chapter 1,

Proposition 1.5.4, Theorem 2.3.1].
Let us record the following corollaries of the above discussion for later use. Since

(b) holds for M C
0 .�0/, L0, and M0, we have

NG1�G2
.M0/ � CM0; (7.11)

where C WD Z.G1 � G2/. We also have that

M C
0 .�0/ is a finite index subgroup of L0 and of M0: (7.12)

Step 4. Both

M C
0 .�0/.�1 � �2/=.�1 � �2/ and M0.�1 � �2/=.�1 � �2/

are closed orbits with probability-invariant Haar measures. In particular, �x is the
Haar measure on the closed orbit

gxM C
0 .�0/.�1 � �2/=.�1 � �2/:

Indeed, let ƒ WD M0 \ .�1 � �2/. Then by (7.12) and Step 1, ƒ is a lattice in M0, as
was claimed for M0.

Using (7.12) once more, we have that ƒ \ M C
0 .�0/ has finite index in ƒ. This

implies that ƒ \ M C
0 .�0/ is a lattice in M C

0 .�0/; hence, the claim for M C.�0/.

Step 5.We are now in a position to finish the proof. In view of (7.11), (7.12), and
Step 4, we can argue as in the proof of Lemma 6.9 (see, in particular, (6.21)) and get
the following. Let C 0 WD C \ .�1 � �2/. The decomposition

� D

Z
�x d�

yields the Borel map f .x/ D gxC 0M0 from a conull subset of X to G1 � G2=C 0M0.
Moreover, f is an A-equivariant map. Hence, it follows from Lemma 3.3 that there
exists some

g0 2 FixA
sp
l0

.G1 � G2=C 0M0/

so that f�� is the A-invariant measure on the compact orbit Ag0.
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By Lemma 3.2 and (7.12), we have that M C
0 .�0/ is a normal and finite index

subgroup of M0; furthermore, C 0 is a finite group. Therefore, arguing as we did to
complete the proof of Theorem 1.1 after (6.34), we get that there is some g1 2 M0 so
that

� D

Z
A=A\g0g1M

C
0

.
0/g�1
1

g�1
0

a�� da;

where da is the probability Haar measure on the compact group

A=A \ g0g1M C
0 .�0/g�1

1 g�1
0 ;

and � is the probability Haar measure on the closed orbit

g0g1M C
0 .�0/.�1 � �2/=.�1 � �2/:

Hence, Theorem 1.2(2) holds with † D g0g1M C
0 .�0/g�1

1 g�1
0 .
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