SEMINORMALIZATION PACKAGE FOR MACAULAY?2

KARL SCHWEDE AND BERNARD SERBINOWSKI

ABSTRACT. This note describes a package for computing seminormalization of rings within Macaulay?2.

1. INTRODUCTION

Given a reduced excellent Noetherian ring R, between R and its normalization RY, there is
the seminormalization RSN. In this paper we discuss an implementation of a seminormalization
algorithm within Macaulay2. The ring R is called seminormal if every finite birational extension
R C S that induces a bijection on primes and induces isomorphisms, on the residue fields, is in fact
an isomorphism, see for instance [Tra70, GT80, LV81]. In particular, a cusp is not seminormal,
since its normalization map is a bijection on points and induces isomorphisms of residue fields.

Let us delve a little deeper into non-normal rings, in a way that will help explain the algorithm.
Suppose that R is as above with normalization RN. The conductor ¢ C R C RN is defined to be
Anng(RN/R). Tt is an ideal in both R and RN which defines the locus where R is not normal. In
this situation, R is always the pullback of the following diagram:

(1) RN/c<—2R/c
T A
RN < R

Or in other words
Rg{(x>y+c)GRNXR/C|.’L‘—|—C:y+c}

Since the pullback of this diagram dualizes to the pushout when taking Spec, we can interpret Spec R
as a quotient of Spec RN where certain points are identified (or have their residue fields shrunk) and
certain tangent spaces are glued or otherwise annihilated (the latter owing to the scheme structure
of RN/c). For additional discussion, see for instance [Sch]. In view of this construction, a ring is
seminormal if its non-normality is due only to gluing of points. In other words, a seminormal ring
is one where there is no undue identification of tangent spaces.

This idea leads us to our algorithm for seminormalizing, which is the topic of the next section.

Acknowledgements. The authors thank Neil Epstein and Claudiu Raicu for stimulating discus-
sions and in particular to Claudiu Raicu for writing and then improving the PushForward package
[Rai] in ways that helped the development of this package. We also thank the referees for numerous
valuable comments and suggestions, both on the paper and on the package.

Date: October 14, 2019.
2010 Mathematics Subject Classification. 13F45, 14MO05, 13B22.
Key words and phrases. Seminormalization, Normalization, Macaulay2.
The first named author was supported in part by NSF CAREER Grant DMS #1252860/1501102 and NSF grant
#1801849.
The second named author was supported in part by NSF CAREER Grant DMS #1252860/1501102.
1

2. STRUCTURE OF THE ALGORITHM

The idea of the algorithm is to perform the pullback from (2). However, instead of just forming
R/c and RN /¢, we want to remove unnecessary tangent space identification. A simple option would
be to form the pullback S of the diagram:

(2) RN/V¢RN <—OR/V(R
A

T

RN < S

but this is not the seminormalization of R since R/+v/cR could itself have undue gluing of tangent
spaces. An easy way to get around this is to seminormalize R/ VR (which has lower dimension than
R, and so a recursive algorithm can apply), but the seminormalization (R/v/cR)SN does not neces-
sarily map to RN/ VRN (since that is not necessarily seminormal). We could also seminormalize
RN/ V¢RN, but this led to implementation difficulties and so we instead form the intersection:

D = (R/V¢R)* N (RN /V¢RN)

where the intersection takes place in the total ring of fractions of RN /v/¢RN. Then we pullback the
diagram

RN/vV¢RN <—OD
T A
RN < C

Theorem 2.1. The ring C in the above diagram is the seminormalization of R.

Proof. We first notice that there is a diagram:

(RN VRN <R/ VeR)™
A

T 5
RN ~ RSN

coming from the functoriality of seminormalization. Since the image of RSN maps into (RN /v/¢RN),
we see that 8 (RSN) C D. Hence by the universal property of pullback, there is a map RSN — C.
On the other hand, it follows from [Fer03] (¢f. [Sch05]), that the map RSN — C'is induces bijection
on points of Spec and induces an isomorphism of residue fields. Indeed recall that the pullback of
a diagram {A — A/I < B} replaces the closed subscheme V' (I) C Spec A with Spec B, residue
fields and all. Since C' < RN, we have that RSN — (' is also birational and so RSN — C' is an
isomorphism since RSN is seminormal by definition. This completes the proof. O

3. IMPLEMENTATION OF THE ALGORITHM

We describe the main algorithm first and then describe the strategy of some of the component
functions individually.

3.1. The main seminormalization algorithm. As the algorithm is recursive, the first thing we
do is check whether we are finished. If the Krull dimension of the ring is 0 or if the ring is normal
we return the ring unchanged as it has already been seminormalized (note we assume that the ring
the function is given is reduced). This ensures that the process will end since at each step of the
induction, the dimension will drop.

2

Assuming the ring is not already seminormal, then we create a map from the input ring to its
normalization:
¢: R — RN.

Note, we do not use the core normalization function integralClosure as that does not work cor-
rectly on non-domains (even if the ring is reduced). Instead we call a function betterNormalizationMap
(which eventually calls integralClosure on various quotient rings of R), see Section 3.2.

We then compute the conductor of this map, which we continue to call ¢. We then take the
radical of this ideal in both R and RN and now we can form the following diagram.

RN/V(RN < R/V/R

d

RN

At this point, we make our recursive call and seminormalize R/v/cR (constructing a map = :
R/V<R — R/V R in the process). Finally, we need to construct the ring we called D above,
D = (R/VcR)SN N RN /V¢RN. This is a bit tricky, and is the subject of Section 3.3 below. In the

meantime, once we have constructed D (and the map ¢ : D — RN /V¢RN), we can pullback the
diagram

RN/VeRN <Y oD
A

/|
RN < C

to obtain C', which we have already verified is the seminormalization in Theorem 2.1. Note we
perform this pullback by using the package Pullback [ES], which requires the map ¢ above to be
surjective.

3.2. Normalization of reduced rings. As mentioned above, this package includes a function
betterNormalizationMap which computes the normalization of reduced rings. The strategy is as
follows.

Step 1: Compute the minimal primes {q;} of R.

Step 2: Compute the normalizations of the R/q;. Note the function betterNormalizationMap
has an option Strategy which is passed to the integralClosure calls at this step.

Step 3: Construct the product of the normalized rings RN = [],(R/q;)".

Step 4: Construct the map from R to RN.

Step 3, constructing the product of normalized rings, is achieved by calling a function ringProduct
which computes a product of a list of rings defined over the same base ring (i.e., defined over QQ).
This returns the product of rings as well as the list of orthogonal idempotents defining each ring.
It also returns a list of lists showing what variables from our original rings become in the product.
We hope that this functionality of taking products of rings may be useful in other contexts besides
computing normalizations.

Step 4 is the most involved. We first construct various maps (R/q;)N — RN. Notice, this is not
a real ring map which we want to study; we are using it to keep track of where variables of the
rings (R/q;)N go. We then compose with R — (R/q;)" to obtain various different maps R — RN.
Finally, we sum these maps (multiplying by our orthogonal idempotents as appropriate) to obtain
our normalization map R — RN.

3

3.3. Intersecting the seminormalization and another ring extension. At a key point in our
algorithm, we have two extensions of A = R/v/cR, first the seminormalization ASN = (R/v/cR)SN
and second, the finite extension to B = RY /vV/¢cRY. We need to form an intersection of these two
extensions. We do this by using the function intersectSeminormalizationAndExtension which
computes exactly this intersection (and a ring map from our base ring to the intersection).

To do this, first we find a reduced ring O containing both of these extensions whose minimal
primes are in bijection with the minimal primes of the ring we called B. This is done via the
function findOverring which essentially tensors the two extension rings together and then drops
any unnecessary minimal primes. Note we do not have to worry about how the seminormalization
embeds into this overring by uniqueness properties of elements of the seminormalization [Swa80].
Once we have the overring O, we form the exact sequence (making liberal use of the PushFwd
package)

AN g g WP7eh 5 g
and computing the kernel K. At this point, K is the desired intersection ring, but Macaulay2 only
understands it as a module. However, we can take the module generators of K, map them into B,
and consider the ring they generate. This is our desired ring.

3.4. Variable naming conventions. One issue we ran into when calling a recursive function
that produces new rings is that there can be numerous collisions of variable names which makes
debugging very difficult. Because of this, internally, there is a complicated scheme for naming
variables.

However, none of this is visible in the outputted ring, as by default all the variables of the output
ring will have been renamed as Yy, where N varies. If you do not want to use Yy, you may instead
supply your own variable name via the Variable =- X option when calling Seminormalize. Here
X must be a valid symbol. It is important to note that you cannot use a symbol that overlaps with
an existing variable as this will cause errors. The output does include a map from the original ring
to the seminormalization.

4. EXAMPLES

The function seminormalize returns a list of three things. First it returns the ring RSN, then
it returns the ring map R — RSN and finally it returns the ring map RSN — RN,
We begin by seminormalizing the cusp, in this case the seminormalization is the normalization.

il : loadPackage "Seminormalization"

ol = Seminormalization

ol : Package

i2 : R = QQlx,yl/ideal(y~2-x"3);

i3 : seminormalizedList = (seminormalize(R));
i4 : seminormalizedList#0

QQlyy , Yy , Yy]

04 : QuotientRing
i5 : prune seminormalizedList#0

o5 = QQLYy]field
2
05 : PolynomialRing
i6 : seminormalizedList#1

QQlYy , Yy , Yy]

T o o R, {Yy , Yy b

0 1 2
o6 : RingMap -----————---"—"""""""""——— - <--- R
2 2
Yy -Yy,YyYy -Yy, Yy - Yy Yy)
2 1 1 2 0 1 0 2
i7 : isSeminormal (R)
o7 = false

Next, we seminormalize the union of four lines through the origin in A%. This should produce
something isomorphic to the union of the 4 coordinate axes in A%, which it does.
i2 : R = QQ[x,yl/ideal (x*xy*(x"2-y~2));
i3 : seminormalizedList = seminormalize(R);
i4 : seminormalizedList#0

QQlyy , Yy , Yy , Yy I

(Yy Yy , Yy Yy , Yy Yy , Yy Yy , Yy Yy , Yy Yy)
2 3 1 3 0 3 1 2 0 2 0 1
04 : QuotientRing
The following example of Greco and Traverso is a seminormal ring whose prime spectrum has
an irreducible component that is not seminormal [GT80].

i2 : B = ZZ/11[x,y,u,v,e,f];

i3 : I = intersect(ideal(u,v,e-1,f),ideal(x,y,e,f-1));
i4 : A = B/I;

i5 : E = Z2Z/11[z1, z2, z3, z4, z5];

i6 : h = map(A, E, {x"3+u, x"2+v, y, u"2-v"3, x*y});
i7 : J = ker h;

i8 : D = E/J;

i9 : isSeminormal(D) --this should be seminormal

09 = true

i10 : JJ = preimage(h, ideal(sub(f,A)));

i1l : D2 = E/(trim(JJ + J));

i12 : isSeminormal(D2) --this should not be seminormal
012 = false

Finally, we verify the seminormality of a seminormal ring that is not weakly normal.
i2 : R = ZZ/2[t, x, yl/ideal(x"2 - txy~2);

i3 : isSeminormal (R)
5

03 = true

5. FUTURE WORK

There are a number of ways that this package could be improved in the future. We list some of
them here in the hope that they will inspire others, and remind us, to work on them.

(i)
(i)
(iii)

(iv)

(ES]
[Fer03]

[GT80]
[LV81]

[Rai]
[Sch]

[SchO05]

[Swag0]
[Tra70]

Implement this algorithm over more general coefficient rings.

Implement weak normalization, if possible.

Implement functorial seminormalization (in other words, given a map between two rings,
there is always a unique map between their seminormalizations).

Improve the speed of the computation where possible.

REFERENCES

D. ELLINGSON AND K. SCHWEDE: Pullback: pullback of rings. Version 1.03, A Macaulay2 package.

D. FERRAND: Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003), no. 4, 553-585.
MR2044495 (2005a:13016)

S. GRECO AND C. TRAVERSO: On seminormal schemes, Compositio Math. 40 (1980), no. 3, 325-365.
MR571055 (81j:14030)

J. V. LEAHY AND M. A. VITULLL: Seminormal rings and weakly normal varieties, Nagoya Math. J. 82
(1981), 27-56. 618807

C. RAIcu: PushForward: push forwards of finite ring maps. Version 0.1, A Macaulay2 package.

K. SCHWEDE: Is there a geometric intuition wunderlying the mnotion of normal wvarieties?,
URL:https://mathoverflow.net/q/109486 (version: 2017-04-13).

K. SCHWEDE: Gluing schemes and a scheme without closed points, Proceedings of the 2002 John H. Barrett
Memorial Lectures Conference on Algebraic and Arithmetic Geometry (P. T. Y. Kachi, S. Mulay, ed.),
Contemporary Mathematics, vol. 386, American Mathematical Society, Providence, RI, 2005, pp. 157-172.
R. G. SwaN: On seminormality, J. Algebra 67 (1980), no. 1, 210-229. MR595029 (82d:13006)

C. TRAVERSO: Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 585-595.
MRO277542 (43 #3275)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, 155 S 1400 E RooMm 233, SALT LAKE CiTy, UT, 84112
Email address: schwede@math.utah.edu

DEPARTMENT OF COMPUTER SCIENCE, VANDERBILT UNIVERSITY, PMB 351679, 2301 VANDERBILT PLACE,
NAsHVILLE, TN 37235, USA

Email address: bserbinowski@gmail.com

	1. Introduction
	Acknowledgements

	2. Structure of the algorithm
	3. Implementation of the algorithm
	3.1. The main seminormalization algorithm
	3.2. Normalization of reduced rings
	3.3. Intersecting the seminormalization and another ring extension
	3.4. Variable naming conventions

	4. Examples
	5. Future work
	References

