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ABSTRACT
Expanding abbreviations in source code to their full meanings is
very useful for software maintainers to comprehend the source
code. The existing approaches, however, focus on expanding an
abbreviation to a single word, i.e., unigram. They do not perform
well when dealing with abbreviations of phrases that consist of
multiple unigrams. This paper proposes a bigram-based approach
for retrieving abbreviated phrases automatically. Key to this ap-
proach is a bigram-based inference model for choosing the best
phrase from all candidates. It utilizes the statistical properties of
unigrams and bigrams as prior knowledge and a bigram language
model for estimating the likelihood of each candidate phrase of a
given abbreviation. We have applied the bigram-based approach
to 100 phrase abbreviations, randomly selected from eight open
source projects. The experiment results show that it has correctly
retrieved 78% of the abbreviations by using the unigram and bigram
properties of a source code repository. This is 9% more accurate
than the unigram-based approach and much better than other ex-
isting approaches. The bigram-based approach is also less biased
towards specific phrase sizes than the unigram-based approach.

CCS CONCEPTS
• Software and its engineering → Software maintenance tools.
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1 INTRODUCTION
Many software applications are written in high-level programming
languages, such as Java, C++, and Python. During the implementa-
tion phase of these applications, developers have to choose names
for identifying programming entities, such as classes, methods, and
variables. It is a common practice to use abbreviations to name iden-
tifiers for various reasons, such as naming conventions, personal
preferences, and laziness of human programmers. For example, the
abbreviation “str” may be used to denote “string” and the character
“b” to represent the commonly used word “buffer”. Such abbrevi-
ations often confuse other software developers and maintainers
during the maintenance phase because of their ambiguities – an
abbreviation can be interpreted differently by different people. For
example, “str” may represent “string” or “struct”, and “b” may refer
to “buffer” or “button”. Misinterpretations of abbreviated identifiers
not only decrease the productivity of software maintainers but also
increase the likelihood of introducing defects. In a mission critical
system, they can lead to a code malfunction that causes serious
injury, death, or environmental damage [1][2].

Several approaches have been proposed to automatically expand
abbreviations to their full meanings that reflect the developer’s
original intent, including AMAP[3], LINSEN [4], and the unigram-
based approach [5][6]. AMAP retrieves the original word for an
abbreviation from the contextual information of source code using
a list of abbreviating patterns. LINSEN uses an approximate string
matching algorithm [7]. The unigram-based approach utilizes the
Bayesian probabilistic model and the unigram language model to
find the word of the most evidence from a list of candidates. AMAP
and LINSEN only focus on expanding an abbreviation to a single
word, i.e., unigram. They do not perform well when dealing with
abbreviations named after phrases that are composed of multiple
unigrams. For example, they have failed to expand “etoa”, which
stands for a phrase with four unigrams: “estimated”, “time”, “of”,
and “arrival”. The unigram-based approach overlooks the relation-
ships between unigrams in phrases, which may result in incorrect
expansion.

This paper presents comprehensive empirical studies for retriev-
ing abbreviated phrases automatically based on the position pa-
per[8]. The empirical studies focus on investigating the difference
between natural and program languages in terms of language com-
prehension. The studies answer two research questions: (1) How
significant is the difference between using a source code reposi-
tory and using a natural language repository in the bigram-based
inference model? (2) Does the bigram-based approach have a bias
towards a specific phrase size? The overall approach exploits a
bigram-based inference model to choose the best phrase from all

https://doi.org/10.1145/3383219.3383221
https://doi.org/10.1145/3383219.3383221
https://doi.org/10.1145/3383219.3383221


EASE 2020, April 15–17, 2020, Trondheim, Norway Alatawi et al.

possible candidates for a given abbreviation. It utilizes the statisti-
cal properties of unigram and bigrams as prior knowledge and a
bigram language model to estimate the likelihood of each candidate
phrase. Unigram and bigram originate from the N-gram concept in
the field of natural language processing [9]. An N-gram refers to a
contiguous sequence of words where N is the number of words. An
N-gram is a unigram if N=1 or bigram if N=2. The bigram language
model treats a sentence or phrase as a sequence of bigrams and
computes the probability distribution over the bigrams.

In principle, the bigram-based inference model has advantages
over the unigram-based approach because it takes three pieces of
evidence into consideration when evaluating a phrase candidate:
(1) the properties of each unigram in the phrase, (2) the condi-
tional probability between any two contiguous unigrams in the
phrase, and (3) the prior distribution of the abbreviation. To evalu-
ate the bigram-based approach, we have applied it to 100 phrase
abbreviations randomly selected from eight open source projects.
The experiment results show that it has correctly retrieved 78%
of the abbreviations by using the unigram and bigram properties
of a source code repository that is obtained from 0.7 million open
source software projects hosted on GitHub [6]. This is 9% more
accurate than the unigram-based approach and much better than
AMAP and LINSEN. The bigram-based approach is also less biased
towards specific phrase sizes.

The rest of the paper is organized as follows: Section II presents
an overview of the proposed bigram-based approach. Section III
describes the bigram-based inference model. Section IV presents
our empirical study. Section V reviews the related work. Section VI
concludes this paper.

2 THE BIGRAM-BASED APPROACH
2.1 Overview
In this paper, an abbreviation is defined as a sequence of string
segments that implies an abbreviated phrase in source code. It
contains two or more unigrams that represent the programmer’s
original intent or domain knowledge about the programming task.
For example, the method name “pAFL” in the following code snippet
(line 3) is a sequence of four string segments “p”, “a”, “f”, and “l”. It
indicates what the developer intended to do, i.e., “print applications
forms list”. We refer to this phrase as an abbreviated phrase of
“pAFL”. Similarly, themethod parameter “afl” consists of three string
segments “a”, “f”, and “l”, which implies what the programmer
intended to represent, i.e., an “applications forms list”. We will use
“afl” together with the source code as a running example throughout
the paper.

1 //Print list of affiliated faculty members

2 // forms from applications forms list

3 void pAFL(ArraryList <Member > afl){

4 for(Member mem : afl){

5 println(mem)

6 }

7 }

The bigram-based approach mainly consists of three steps as
shown in Figure 1:

(1) Segmenting abbreviation. It partitions a given abbreviation
into a set of segment sequences. Each segment sequence is

a sequence of string segments. For example, Column 3 of
Table 1 lists all segment sequences of “afl”.

(2) Generating abbreviated phrase candidates for each segment
sequence. For example, for a given segment sequence <“a”,
“f”, “l”> of size three, there are a number of possible abbrevi-
ated phrases, such as “applications forms list” and “affiliated
“faculty list”. We use “angle brackets” < > to represent a
sequence, where segments are separated by commas.

(3) Choosing the best phrase from the abbreviated phrase can-
didates. It is based on the bigram-based inference model
for estimating the likelihood of each candidate phrase. The
phrase with the maximum likelihood is considered to be the
one that best reflects the developer’s original intent.

2.2 Segmenting the abbreviation
Usually, abbreviations are given in a compact form without any
dividers. We cannot simply define the size of an abbreviated phrase
as the number of characters in the abbreviation. For example, “afl”
could represent phrases with different sizes, such as “affiliated”
with a size of one, “affiliated list” with a size of two, and “applications
forms list” with a size of three. In this paper, abbreviation seg-
mentation is to partition a given abbreviation into a sequence of
substrings, i.e., segments. Each segment is an abbreviation that
represents a unigram. For example, the 3-SS <“a”, “f”,“l”> consists of
three segments; each is an abbreviation of a single word. We refer
to the size of an abbreviated phrase as the number of segments in a
segment sequence.

The algorithm for generating the set of segment sequences for a
given abbreviation is described below. It is similar to that for finding
the power set of a given set.

(1) Place a binary bit between each pair of adjacent characters
in the abbreviation, where each bit can be either “0” and “1”.
For example, we have “a[bit 1]f [bit 2]l” for “afl”.

(2) Generate a string set with all possible bit states. The first
column in Table 1 shows the bit states for “afl”.

(3) Remove “0” and replace “1” with a marker, i.e., comma, in the
abbreviation to split the abbreviation. The third column in
Table 1 lists the segment sequences for “afl”: {<“afl”>, <“af”,
“l”> , <“a”, “fl”> , <“a”, “f”, “l”>}.

Table 1: Generation of Segment Sequences of “afl”

a[bit 1]f [bit 2]l Method Segment
Sequence

Type

“a[0]f [0]l” No
partitioning <“afl”> 1-SS

“a[0]f [1]l”
Partition at
the second

bit
<“af”,“l”> 2-SS

“a[1]f [0]l” Partition at
the first bit <“a”,“fl”> 2-SS

“a[1]f [1]l” Partition at
all bits <“a”,“f”,“l”> 3-SS

For example, the segmentation of “afl” results in the following
four segment sequences:
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AbbreviationAbbreviation Segmenting 
Abbreviation
Segmenting 
Abbreviation

“afl”

Segments 
Sequences
Segments 
Sequences

Source 
Code

Source 
Code

Unigram 
Statistical Data

Unigram 
Statistical Data

Choosing 
the best 
abbreviated 
phrase 

Choosing 
the best 
abbreviated 
phrase 

Correct ExpansionCorrect Expansion

Bigram 
Repository

Bigram 
Repository

<“applications”, “forms”, “lis t”>
CandidatesCandidates

Generating 
Abbreviated 
Phrase 
Candidates

Generating 
Abbreviated 
Phrase 
Candidates

Segmenting abbreviations:
(Partitioning positions, Abbreviation) →  (Segments Sequence (SS)) → A Type:
(00, “afl”) → <“afl”> → Single Segment Sequence (1-SS)
(01, “afl”) → <“af”, “l”> → A phrase or two Segments Sequence (2-SS)
(10, “afl”) → <“a”, “fl”> → A phrase or two Segments Sequence (2-SS)
(11, “afl”) → <“a”, “f”, “l”> → A phrase or three Segments Sequence  (3-SS)

Generating abbreviated phrase candidates:
<“a”, “f”, “l”> → <"affiliated", "faculty", "list">
<“a”, “f”, “l”> → <"affiliated", "forms", "l ist">
<“a”, “f”, “l”> → <"applications", "faculty", "list">
<“a”, “f”, “l”> → <"applications", "forms", "list">

Figure 1: The main steps of the bigram-based approach

(1) A One-Segment Sequence (1-SS): <“afl”>. It represents can-
didate phrases with a size of one, e.g., <“affiliated”>,

(2) Two Two-Segment Sequences (2-SS): <“af”,“l”> and <“a”,“fl”>.
They represent candidate phrases with a size of two, e.g.,
<“affiliated”, “faculty”> and <“applications”, “faculty”>.

(3) A three-Segment Sequences (3-SS): <“a”,“f”,“l”>. It represents
phrase candidates with a size of three, e.g., <“applications”,
“forms”, “list”>.

2.3 Generating the abbreviated phrase
candidates

As mentioned before, each segment in a segment sequence rep-
resents the abbreviation of a unigram. Thus, for each segment
sequence, we generate the set of its abbreviated phrase candidates
as follows: (a) find all unigram candidates of each segment as in
the unigram-based approach [5], and (b) transform the segment
sequence into the set of all possible phrases, where each phrase
is obtained by replacing each segment in the sequence with one
unigram candidate.

We apply the search technique in the unigram-based approach
[5] to find candidates of single words in the source code. This
technique is based on the following statistical patterns between
abbreviation segments and abbreviated unigrams:

(1) The position of the first letter of the abbreviation segment
and the first letter of a given unigram.

(2) The order of the characters in an abbreviation segment and
a given unigram.

(3) The distance between the abbreviation segment and a given
unigram in the source code.

Table 2 shows the unigram candidates for all abbreviation seg-
ments of “afl”. The segment “f”, for instance, has two unigram
candidates {“faculty”, “forms”}.

Generating the abbreviated phrase candidates for a segment
sequence is the process of permutating the unigram candidates of
all segments. Table 3 shows the four phrase candidates for the 3-SS
<”a”, “f”,“l”>. The number of phrase candidates is the product of the
numbers of unigram candidates of all segments.

Table 2: Unigram candidates for each segment of “afl”
Abbreviation Segments Unigram Candidates

“afl” {“affiliated”}
“a” {“affiliated”, “applications”}
“f” {“faculty”, “forms”}
“l” {“list”}
“af” {“affiliated”}
“fl” {“faculty”}

Table 3: Phrase Candidates for sequence <“a”, “f”,“l”>
# Abbreviated Phrase Candidates
1 <“affiliated”, “faculty”, “list”>
2 <“affiliated”, “forms”, “list”>
3 <“applications”, “faculty”, “list”>
4 <“applications”, “forms”, “list”>

2.4 Choosing the best phrase
The goal is to choose a phrase from the list of candidates that best
reflects the programmer’s intent of the abbreviation. It is formulated
by Equation 1:

max
1≤x ≤n

[
P(cx |A)

]
(1)

where:
• A is an abbreviation
• C is a set of phrase candidates that could be represented by
the abbreviation

• n is the size of C , i.e., the number of phrases in the set C
• cx ∈ C

Equation 1 indicates that (a) for every candidate phrase in the set
C for a given abbreviationA, we calculate its likelihood of matching
the programmer’s intent, and (b) the candidate phrase with the
maximum likelihood is considered to be the best one. Therefore, to
calculate Equation 1, there are two main problems:

(1) How to find the best phrase from the set of all phrase can-
didates for each segment sequence?

(2) How to find the best phrase from the set of the best phrases
of all segment sequences of the given abbreviation?
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Section III describes our solutions to the above problems.

3 THE BIGRAM-BASED INFERENCE MODEL
Abbreviations are often invented by developers based on their own
rules or preferences of naming abbreviations. It can be the first
time that other developers or maintainers have ever seen these
abbreviations. In this case, it is a challenge for other developers
or maintainers to guess the best abbreviated phrase without prior
knowledge about how the original programmer created the abbre-
viations. The proposed bigram-based inference model measures
prior knowledge with unigram and bigram properties. It also uses
a bigram language model for estimating the likelihood of each
candidate phrase.

3.1 Finding the best phrase for a segment
sequence

The problem of finding the best phrase for a given segment sequence
is formalized by Equation 2:

m(Cy ,S ) = max
1≤x ≤n

[
P(cx |S)

]
(2)

where:
• S is the given segment sequence
• C is a set of phrase candidates generated from S
• n is the size of S , i.e., the number of segments in S
• cx ∈ C
• m(Cy ,S ) is the likelihood of cy , which has the maximum like-
lihood among all candidates for the given segment sequence
S , and cy is the best candidate, where 1 ≤ y ≤ n

The main task is to determine the conditional probability of c for
a given S . To do so, we use a Bayesian inference model expressed
by Equation 3. Note that we have dropped the subscript x from
Equation 2 as we are evaluating each candidate.

Pbi (c |S) =
P(S |c) × P(c)

P(S)
(3)

where:
• P(c) is the probability of the phrase candidate
• P(S) is the probability of the segments sequence
• P(S |c) is prior knowledge of how likely the developer chooses
S for given phrase c

• Pbi indicates the use of a bigram-based approach
Equation 3 can be transformed into a bigram-based inference

model shown in Equation 4. It is a variation of the Bayesian infer-
ence model with additional evidence for better estimation: (a) it
builds on the prior knowledge (i.e., term 1○ in Equation 4), and (b)
it utilizes a bigram language model (i.e., term 2○ in Equation 4).

Pbi (< w1,w2, ...,wm > | < s1, s2, ..., sm >) =

P(< s1, s2, ..., sm > | < w1,w2, ...,wm >) 1

×P(< w1,w2, ...,wm ) 2

×
1

P(< s1, s2, ..., sm >)
3

(4)

where:
• c =< w1,w2, ...,wm > andwi is a unigram of the abbreviated
phrase candidate c

• S =< s1, s2, ..., sm > and si is a segment in the segment
sequence c

• There are existing relationships betweenwi and si such that
wi is a unigram candidate of segment si

3.2 Prior knowledge measurement
The prior knowledge, i.e., term 1○ in Equation 4, refers to the prob-
ability that a developer uses the abbreviation <s1, s2, ..., sm> to
represent <w1,w2, ...,wm> (e.g., how likely a developer uses <“a”,
“f”,“l”> for <“affiliate”, “faculty”, “list”>). It is determined by Equa-
tion 5, which is called the abbreviation representation model for
phrases.

P(< s1, s2, .., sm > | < w1,w2, ...,wm >) =

m∏
j=1

P(sj |w j )
(5)

Let us first prove that Equation 5 holds whenm = 2, i.e., for a
phrase with two unigrams. In this case, it reduces to Equation (6):

P(< si , sj > | < wi ,w j >) = P(si |wi ) × P(sj |w j )

where i, j ∈< 1...n > and j = i + 1 (6)

Proof:

P(< si , sj > | < wi ,w j >) =
P(si ∩ sj ∩wi ∩w j )

P(wi ∩w j )

=
P(si ∩ sj ) × P(wi ∩w j )

P(wi ) × P(w j )
[The conditional probability]

=
P(si ∩wi )

P(wi )
×
P(sj ∩w j )

P(w j )
[Chain rule]

= P(si |wi ) × P(sj |w j ) [Reverse Kolmogorov definition]

Similarly, we can prove Equation 5 by induction based on Equation
6. For example, we can measure how likely a developer uses “afl”
to represent the phrase “affiliated faculty list” as follows:
P(<“a”, “f”,“l”>|<“affiliated”, “faculty”, “list”>)
= P(“a”|“affiliated”)× P(“f”|“faculty”)×P(“l”|“list”)

It is not difficult to see that the abbreviation representationmodel
for phrases is essentially a product of P(s |w) for each pair (s,w) in
a given segment sequence and its corresponding phrase. P(s |w) can
be estimated using the probabilities of three properties described
in [6]. These properties describe developers’ abbreviation naming
strategies using the statistical distribution between the pair (s,w)
extracted from 0.7 million open source projects. In the following,
we briefly describe these strategies.

AbbreviationTypeChoosing (ATC) strategy.There aremainly
two abbreviation types when programmers decide to choose ab-
breviations: Consecutive Characters Abbreviation (CCA) and Non-
consecutive Characters Abbreviation (NCA). CCA uses the first
n consecutive characters as the abbreviation for a given English
phrase whereas NCA uses n nonconsecutive characters as the ab-
breviation. Equation 7 shows the likelihood of choosing a segment
s for a given unigramw .
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PATC (s |w) =

{
i f (w 7−→ s) = CCA, 83.93%.
i f (w 7−→ s) = NCA, 16.09%.

(7)

Typing Effort Saving (TES) strategy. TES measures the bal-
ance between the “laziness” of developers and the code readability
when creating abbreviations. Formally, the TES for a given pair
(s,w) is defined by equation 8:

TES = 1 −
lenдth(sj )

lenдth(c j )
(8)

For example, TES(int, integer)=57.14%, and TES(i, integer)=85.71%.
The range of TES is (0, 1), excluding 0 and 1. Zero means that no
abbreviation is used. We use the frequency distribution of TES, i.e.,
PT ES (TES(s,w)), to measure such balance. A study shows that 21%
programmers choose the abbreviation “i” for the unigram integer
and only 13% choose “int”. The probability of PT ES is found from
the TES distribution in figure 2.
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Figure 2: Distribution of Typing Effort Saving Ratio [6]

Context Sensitiveness (CS) strategy. It measures how devel-
opers choose abbreviations based on its context. It makes more
sense for programmers to choose abbreviations based on the words
that appear in its context in the source code. It is uncommon to
name an abbreviation that comes from nowhere in the source code.
The following formula shows the likelihood of finding the corre-
sponding abbreviation for a given unigram in terms of distance
(i.e., line number). A study shows that the probability of Context
Sensitiveness for a segment s of a unigramw is given by equation
9:

PCS (s |w) = (0.83)e(−2.53×|s−w |) (9)
We use the above strategies to measure prior knowledge. The

probability of a segment s of a unigramw is shown in Equation 10.

P(s |w) = PATC (s |w) × PT ES (s |w) × PCS (s |w) (10)

Using the abbreviation representation model for phrases, i.e.,
Equation 5, we can measure how likely developers use the abbrevi-
ation “afl” to represent the phrase “affiliated faculty list”.

3.3 Bigram language model
The bigram-based inference model takes advantage of a bigram
language model to provide additional evidence. Specifically, term
2○ in Equation 4 is the probability of a phrase calculated by using a
bigram language model. Unlike the unigram language model used

by [6][5], the probability of each word only depends on that word’s
own probability in the document. The bigram language model
considers the probability of observing the current word in the
context history of the preceding word. In principle, it will produce
a better estimation result. Equation 11 calculates the probability of
a phrase represented by a sequence of words < w1,w2, ..,wn >.

P(< w1,w2, ..,wn >) =

n∏
i=1

P(wi |wi−1) (11)

For example, the probability of the phrase “affiliated faculty list”
is calculated as follows: P(“affiliated faculty list”= P(“affiliated”) ×
P(“faculty”|“affiliated”) × P(“list”|“faculty”).

3.4 Abbreviation frequency
Term 3○ in Equation 4 needs to use the frequency of abbreviations,
i.e., P(< s1, s2, ..., sm >). The frequency of each abbreviation is
usually pre-calculated for a given repository. There is no direct way
to compute the frequency of all abbreviations named after phrases
because we do not know whether or not an abbreviation is named
after a unigram or a phrase. We propose the following alternative
approach to calculate the frequency:

(1) Select a natural language repository or a source code reposi-
tory.

(2) Count all abbreviations, denoted as abb_all . An abbreviation
is defined as a string if it is not found in the repository.

(3) Count all abbreviations named after unigrams, denoted as
abb_uniдram, based on the unigram naming patterns [6].

(4) The number of abbreviations named after phrases isabb_biдram =
abb_all − abb_uniдram.

Note that we use the Laplace add-one smoothingmethod [10][11]
to increase the zero probability of an abbreviation to a small positive
number. This prevents the denominator of term 3○ in Equation 4
from being a zero by counting an abbreviation once if it is the
First-Time-Seen (FTS) abbreviation during the phrase retrieving
process.

3.5 Normalization
Equation 2 chooses the phrase cy with the maximum likelihood of
matching developer’s intent from all phrasesC generated from one
segment sequence S , such as <“a”, “f”, “l”>. We use the notation
m(y,S ) to denote the likelihood of such cy , and y is the index of the
phrase in the set C . Note that an abbreviation can be partitioned
into multiple segment sequences with different sizes (e.g., Table 3),
and these segment sequences produce a set of the best abbreviation
phrases. Equation 12 shows how to pick the best phrase from such
a set of best abbreviation phrases. We normalizem(y,S ) so that long
phrases have a better chance to be chosen as the best phrase.

max
S ∈SS

[m(y,S )]
1
|S | (12)

where:
• SS is a set of segment sequences generated from a given
abbreviation

• |S | is the size of S, i.e., the number of segment in S

Table 4 shows the likelihood of each phrase candidate for a
segment sequence <“a”,“f”,“l”> ranked from high to low. The best
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phrase is “applications forms list”. P(S) is omitted as they are the
same for the same segment sequence. Also, PATC , PT ES , and PCS
are the same for each pair (s,w) for a given phrase candidate.

4 EMPIRICAL STUDY
The empirical study aims at answering the following research ques-
tions:

RQ1: Does the bigram-based approach outperform the exist-
ing approaches, including AMAP[3], LINSEN[4], and the unigram-
based approach[5]?

RQ2: How significant is the difference between using a source
code repository and using a natural language repository in the
bigram-based inference model?

RQ3: Does the bigram-based approach have a bias towards a
specific phrase size?

We use retrieving accuracy as the main performance indicator.
It is defined as the percentage of the total number of correctly
retrieved phrases over the total number of abbreviations.

4.1 Subjects
The subjects for the empirical study consist of 100 phrase abbrevia-
tions from eight open source projects at GitHub [12]. As shown in
Table 5, these projects have varying sizes (in terms of KLOC) and
different levels of maturity. They are implemented by varying num-
bers of developers who may use different abbreviation methods.
The same set of projects, as well as the same data pre-processing
frameworks and techniques, are used in [5][6] for the unigram ex-
traction and analysis. These unigram properties build a foundation
for the bigram-based analysis. The 100 abbreviations are randomly
chosen from these projects for evaluating the bigram-based ap-
proach. Table 6 shows three examples from the abbreviation set.
Each abbreviation has several attributes, including the length of
the abbreviation, the location of the abbreviation (i.e., project, class,
line number), the manually retrieved phase (i.e., ground truth), and
the size of the retrieved phrase. For example, the abbreviation “wc”
is located at the third line of classUtils.java file in the project Open-
Proj. The manually retrieved phrase from the class file is “working
calendar”.

4.2 RQ1: Does the bigram-based approach
outperform the existing approaches?

We compare the bigram-based approach to three existing approaches,
AMAP, LINSEN, and Unigram-based, by using two types of repos-
itories when applicable: (a) Natural Language Repository (NLR),
which is a collection of one Terabyte of web corpus, such as text-
books and news archives [13], and (b) Source Code Repository
(SCR), which is obtained from 0.7 million open source software
projects hosted on GitHub [6]. When NLR is used, the existing
approaches all rely on the Unigram Properties extracted from NLR
(denoted as UP-NLR), whereas the proposed bigram-based approach
exploits the Bigram Properties extracted from NLR (denoted as BP-
NLR). In addition, both the unigram-based and the bigram-based
approaches may use SCR. As such, we have conducted four experi-
ments with the same subject abbreviation list: unigram using the
unigram properties of NLR, unigram using SCR, bigram using the
bigram properties of NLR, and bigram using SCR.

The experiment results are presented in Table 7, where AC
and CW stand for Acronym and Combination Word, respectively.
Acronyms refer to well-known abbreviations such as “GPS”=“global
positioning system”. Combination words use either CCA or NCA
abbreviations with an acronym, such as “oid”==“object identifier”.
For comparison, Table 7 also includes the performance of AMAP
and LINSEN from the literature, which was based on 72 abbrevi-
ations and their corresponding phrases. It is worth noting that
although AMAP and LINSEN contain 250 abbreviations in their em-
pirical study, only 72 of these abbreviations are named after phases,
which fall into two categories: acronym (AC) and combination
word (CW). We are only interested in comparing the effectiveness
of each algorithm that retrieves these abbreviated phases. The main
observations related to RQ1 are as follows:

• Both the bigram-based approach and the unigram-based ap-
proach are much better than AMAP and LINSEN. This is
because neither AMAP nor LINSEN was designed for re-
trieving phrases. The bigram-based approach achieved the
best overall accuracy (78%) when SCR is used. For example,
the abbreviation “fa” number 68 (in Table 8) is a 2-segment
sequence abbreviationwith two candidates “formatter array”
and “final array”. The abbreviation is correctly expanded to
the first candidate using SCR because the bigram “formatter
array” is commonly used (i.e., has a higher frequency) in
the source code but less common in the natural language.
The second best approach is the unigram-based approach
using SCR. The overall accuracy is 69%. The bigram-based
approach using SCR outperformed it by 9%.

• Acronyms are easier to be recognized than combination
words. The bigram-based approach has achieved 82.26% in
AC and 71.05% in CW. The AC type is much easier to be
retrieved than the CW type because the bigram-based ap-
proach takes the frequencies of all bigrams in each phrase
candidate into consideration, whereas the bigram frequen-
cies in the AC type phrases often have higher frequencies
than the CW type. For example, the abbreviation “mem”
number 87 (in Table 8) can represent two abbreviated phrase
candidates, the acronym“motion eventmouse” and the com-
bined words “mouse event mask”. When the bigram-based
approach wants to determine which phrase to pick, it will
consider the frequency of the bigrams “motion event” and
“eventmouse” for the phrase “motion eventmouse” as well
as the frequency of the bigrams “mouse event” and “event
mask” for the phrase “mouse event mask”. The approach
is more likely to pick an acronym because its bigrams have
higher frequencies.

4.3 RQ2: How significant is the difference
between using a source code repository and
using a natural language repository in the
bigram-based inference model?

The N-gram property is a dimension of prior knowledge related
to a specific language. Therefore, our hypothesis is that using SCR
will result in a better performance than using NLR in the bigram-
based approach. The results in Table 7 show that this hypothesis is
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Table 4: Best phrase candidate for the sequence <“a”,“f”,“l”> is ranked at the top
# Abbreviated Phrase Candidates, c P(S |C) P(C) P(S) PBi (C |S)

1 <applications|forms|list> 0.01558 5.659e-07 0.002523 0.01518
2 <affiliated|faculty|list> 0.006705 6.019e-07 0.002523 0.01169
3 <applications|forms|list> 0.006705 5.659e-07 0.002523 0.01146
4 <affiliated|faculty|list> 0.002885 6.019e-07 0.002523 0.008829

Table 5: Subject Programs
Program KLOC Ver. #Developers Description

Hibernate 936 5.5 252 Object/Relational
Mapper Tool

HSQLDB 338 2.3.4 6 Relational
Database Tool

Ant 269 1.9 27 Java Code Testing
Tool

Google
Guava 220 5 99 Google’s Core

Library

OpenProj 215 2009 15 Project
Management

Junit 40 4.12 133 Java Code Testing
Tool

Checkstyle 38 7.2 9 Eclipse Check
Style Plugin

Libsdl-
Android 22 1.3 10 Android SDL

Library

Table 6: Sample Abbreviations from the Empirical Study
Abbreviation wc lce mmcr

Project OpenProj Checkstyle Libsdl-
android

Line
Number 63 169 341

Class Name ClassUtils
Annotation-
UseStyle-
Check

Main-
Activity

Manually
Retrieved
Phrase

working
calendar

loading
collection
entry

min max
category
renderer

Size of
Phrase 2 3 4

valid. The bigram-based approach using SCR has achieved an overall
accuracy of 78%, whereas the bigram-based approach using NLR has
an overall accuracy of 69%. The improvement is 9%. Additionally, the
hypothesis is also valid for the unigram-based approach. Using SCR
has an overall accuracy of 69%, whereas using NLR has an overall
accuracy of 68%. For example, the abbreviation “tinum” number
96 (in Table 8) can represent two abbreviated phrase candidates,
“task id number” and “title id number”. When the bigram-based
approach wants to determine which phrase to pick, it will consider
the frequency of the bigrams in the utilized repository. The bigram

Table 7: Comparison of Accuracy

Total Correctly
Retrieved

Retrieving
Accuracy

Overall
Retrieving
Accuracy

AC CW AC CW AC CW
AMAP SCR 49 23 23 4 46.9% 17.4% 37.5%
LINSEN SCR 49 23 18 15 36.7% 65.2% 45.8%

Unigram
Approach

NLR 62 38 45 23 72.58% 60.53% 68.0%
SCR 62 38 46 23 74.19% 60.53% 69.0%

Bigram
Approach

NLR 62 38 46 23 74.19% 60.53% 69.0%
SCR 62 38 51 27 82.26% 71.05% 78.0%

AC: Acronym, CW: Combination Word

“task id” is common bigram in SCR whereas the bigram “title id”
is common in NLR, therefore, the bigram-based model pick the
phrase with higher frequency as best expansion according to the
repository.

4.4 RQ3: Does the bigram-based approach have
a bias towards a specific phrase size?

The bias towards a specific phrase size, called “retrieving size bias”,
means that a retrieving algorithm has unbalanced favors to choose
phrases with a particular size given all possible sizes of segment
sequences. If an algorithm has no bias, its accuracy rates for all sizes
of segment sequences should be similar. A less biased algorithm
often shows more consistency and therefore is more reliable when
choosing the best phrase from a candidate set. For example, the
abbreviation “afl” can be partitioned into segment sequences with
a size of two and three. We expect that the retrieving accuracy will
be about the same (i.e., 50% for phrases with sizes of two and three)
in different source code contexts.

We analyze the issue of size bias as follows:

(1) Apply the unigram and bigram-based approaches to the
100 abbreviations using both NLR and SCR. Thus we have
four method groups: UP-NLR (the unigram-based approach
with NLR), UP-SCR (the unigram-based approach with SCR),
BP-NLR (the bigram-based approach with NLR), and BP-
SCR (the bigram-based approach with SCR). The results of
abbreviation expansions are shown in Table 8.

(2) Divide each of the four groups into three subgroups in terms
of phrase sizes: 2, 3, and 4. Phrase size refers to the size of
the segment sequence from which the phrase is extracted.

(3) Calculate the retrieving accuracy for each size subgroup in
each method.
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(4) Determine the bias, which is the standard deviation of accu-
racy rates of the three size subgroups in each method.

Figure 3 shows the retrieving accuracy rates of UP-NLR, UP-SCR,
BP-NLR, and BP-SCR with respect to phrase sizes. For example,
the accuracy rates of BP-SCR are 89.71%, 57.14%, and 45.45% for
phrase sizes 2, 3, and 4, respectively. The biases of UP-NLR, UP-
SCR, BP-NLR, and BP-SCR are 25.49%, 26.58%, 21.24%, and 22.93%,
respectively. This indicates that (a) the bigram-based approach is
less biased than the unigram-based approach. It is not surprising
because the retrieving accuracy is improved from 27.27% to 45.45%
for given 4-segment-sequences due to the normalization shown in
Equation 12. The normalization improves the chance of picking
phrases with more words rather than penalizing them. For exam-
ple the abbreviation “mem” (the 87th abbreviation in Table 8) is
expanded correctly to the phrase “motion eventmouse” using SCR
rather than “mouse mask”, and (b) Using BP-NLR is 1% less bi-
ased than using BP-SCR, however, the difference is not statistically
significant.
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Figure 3: Accuracy rates with respect to phrase sizes

4.5 Threats to Validity
Threats to internal validity concern anything that could influence
our study results. In our subject data, it is possible that some of
the expanded phrases of the 100 abbreviations used as the ground
truth could be incorrect because they were manually collected and
identified. To limit this threat, we hired two computer science stu-
dents to verify the correctness of the expanded phrases. In addition,
the 100 abbreviations used by the unigram-based and bigram-based
approaches are different from the 72 abbreviations used by AMAP
and LINSEN. This is because the bigram-based approach relies on
the context of abbreviations in the source code as important evi-
dence for guessing the intent of source code in order to find the
abbreviated phrases, whereas AMAP and LINSEN do not rely on
such context information. Thus, the abbreviation subjects used for
evaluating AMAP and LINSEN do not have context information.

Threats to external validity concern the possibility of general-
izing our results. First, our evaluation dataset contains multigram
abbreviations whose sizes range from two to seven alphabetic char-
acters. Therefore, our result may not be generalized to abbreviations
that are longer than seven alphabetic characters. Second, the im-
plementation of our approach has excluded a set of reserved words

used in programming languages (e.g., “null”, “if”, and “for”), and
conjunction words (e.g., “and”, “or”, and “since”). More reserved
words need to be added when other programming languages are
included in SCR. As a consequence, the bigram-based approach
does not apply to particular abbreviations with the above excluded
words.

Threats to conclusion validity concern the relations between the
approach and the results. The proposed approach uses N-gram
properties as domain knowledge. However, N-gram has its own
pitfalls [14]. It is beyond the scope of this paper to address these
pitfalls, though.

5 RELATEDWORK
Expanding abbreviations to their full words has been investigated
by several research groups. In this section, we focus on reviewing
and comparing the most relevant approaches, including Lawrie et
al. [15], Hill et al. [3], Corazza et al. [4], and Alatawi et al. [5].

Lawrie et al. presented a two-step approach: identifier splitting
and abbreviation expanding [15]. The identifiers are split according
to word boundaries using such known techniques as CamelCas-
ing or underscore in ‘sponge_Bob”. For abbreviation expansion, the
potential expansions are extracted from the source code, and then
the best expansion is determined by using a phrase finder [16] or
Krovetz stemming [17]. The evaluation using a set of 64 abbrevi-
ations shows that the above approach only achieves an accuracy
rate of 20%.

Hill et al. proposed “AMAP”, which is a continuation of the
aforementioned approach. While abbreviations are treated in a
similar fashion, AMAP searches for potential expansions by us-
ing the closest scope (e.g., names, statements, method, comments,
program) and five regular expression patterns in order (acronym,
prefix, dropped letter, and combination word). AMAP uses a Most
Frequent Expansion (MFE) technique to deal with multiple expan-
sions. The evaluation with 250 abbreviations shows that AMAP has
an accuracy rate of 58.8%.

“LINSEN" uses a graph representation where each node repre-
sents a character in the abbreviation, and each edge represents the
approximate matching dictionary word. The edge cost is based on a
tolerance function in Baeza Yates and Perlberg (BYP) algorithm [7].
“LINSEN” also uses an abb-deletions on the expanded forms delet-
ing final, vowels, or consonants. In addition, “LINSEN” expands
abbreviations according to word frequencies. The evaluation shows
that “LINSEN” has an accuracy rate is 59.1%, which is only slightly
better than AMAP.

Alatawi et al. used a probabilistic model to expand abbreviations
based on Bayesian inference. They first extract a list of potential
candidates from the source code of the abbreviation, and estimate
the likelihood of each candidate being the correct expansion. They
used a unigram-based inference model with two components: (1)
prior knowledge based on statistical patterns of abbreviations ex-
tracted from 0.7 million projects [6], and (2) unigram frequencies
extracted from NLR and SCR for expanding all types of abbrevia-
tions (single words and phrases). In comparison, in our paper, we
focus on expanding abbreviated phrases using bigram language
model definition.
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In addition to expansion of abbreviations in the area of soft-
ware engineering, Zhang et al. [18] used Support Vector Machine
(SVM)[19] to expand abbreviations for text-to-speech synthesis.
They collected potential abbreviation/full-word pairs by looking
for terms that could be abbreviations of full words that occur in
the same context. For instance, the pairs in svc/service center, heat-
ing clng/cooling system, and dry clng/cleaning system provide
evidence that svc is an abbreviation of service. This SVM-based
approach, as a supervised learning technique, requires manual la-
beling of the abbreviation/full word pairs. Abbreviation expansion
also has been studied in the field of health science. Liu et al. [20]
exploited task-oriented resources to learn word embedding for clin-
ical abbreviation expansion. Word embedding is a feature learning
technique in natural language processing where words from the
vocabulary are mapped to vectors of real numbers [21]. For a given
abbreviation and its context, the word-embedding approach uses
Wikipedia and publications in health science as the training data
and theword-embeddingmethod [22] to guess the best abbreviation.
Like other approaches mentioned before, the above two approaches
focus on retrieving unigrams rather than phrases.

6 CONCLUSIONS
Through the effective expansion of abbreviations, the bigram-based
approach can help software maintainers better understand the in-
tent of abbreviations named by original programmers and thus
decrease the complicity of software. We have presented the bigram-
based approach for automatically expanding an abbreviation to
a phrase with multiple unigrams. The experiment results show
that the approach has correctly retrieved 78% of the 100 randomly
selected phrase abbreviations from eight open source projects. Es-
sentially, our bigram-based model is a knowledge-based model
which means we do not rely on predefined abbreviation naming
patterns as in existing approaches, therefore, our approach is able
to correctly expand the first-time-seen abbreviations invented by
programmers. Concerning the future work, we plan to investigate
(a) whether or not machine learning techniques can retrieve ab-
breviated phrases in a more accurate and efficient way, and (b)
how natural language processing principles and techniques can be
adapted and extended for the summarization of classes and methods
in object-oriented programs. The implementation of the bigram-
based approach including the 100 phrase abbreviations as well as a
web-application of our approach are publicly available1
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Table 8: Phrases Retrieved by Different Methods
# Abbreviation Manually Retrieved UP-NLR UP-SCR BP-NLR BP-SCR
01 ltr left|to|right left|to|right left|to|right left|to|right left|right
02 fc fixed|cost fixed|cost fixed|cost fixed|cost fixed|cost
03 wc working|calendar work|calendar work|calendar working|calendar work|calendar
04 dm display|metrics display|may display|metrics display|mode display|metrics
05 cp class|path class|path class|path class|path class|path
06 cpe class|path|entry create|project|entry create|project|entry create|project|entry create|project
07 jme java|model|exception java|model|exception java|model|exception java|model java|model
08 em entity|mode entity|mode entity|mode entity|metamodel entity|mode
09 lce loading|collection|entry load|collection|entry load|collection|entry loading|contexts|entry loading|collection
10 ce context|entry can|entry context|entry context|entry context|entry
11 ps prepared|statement prepared|statement prepared|statement prepared|statement prepared|statement
12 ck cache|key cache|key cache|key cache|key cache|key
13 uk unique|key unique|key unique|key unique|key unique|key
14 fk foreign|key foreign|key foreign|key foreign|key foreign|key
15 uk unique|key unique|key unique|key unique|key unique|key
16 ad annotation|descriptor add annotation|descriptor annotation|descriptor annotation|descriptor
17 uc unique|constraint unique|constraint unique|constraint unique|constraint unique|constraint
18 pkit primary|key|iterator primary|key|iterator primary|key|iterator primary|key|iterator primary|key|iterator
19 annd annotation|descriptor annotation|name|descriptor annotation|name|descriptor annotation|descriptor annotation|descriptor
20 cnfe class|name|found|exception class|name|found|exception class|name|found|exception class|name|found|exception class|name|found|exception
21 js joined|subclass joined|simple joined|subclass joined|subclass joined|subclass
22 fkc foreign|key|class foreign|key|class foreign|key|class foreign|key|class foreign|key|class
23 pc primary|column process|class process|class process|class process|class
24 it inheritance|table inheritance|table inheritance|table inheritance|table inheritance|table
25 jc join|column join|column join|column join|column join|column
26 sp second|pass second|pass second|pass second|pass second|pass
27 fk foreign|key final|key final|key foreign|key foreign|key
28 ee execution|exception execution|exception execution|exception execution|exception execution|exception
29 es entry|set entry|set entry|set entry|set entry|set
30 gc graphics|configuration graphics|create graphics|configuration graphics|configuration graphics|configuration
31 st scale|transform scale|transform scale|transform scale|transform scale|transform
32 zp zoom|point zoom|point zoom|point zoom|point zoom|point
33 pf page|format page|format page|format printer|format page|format
34 ret rectangle|type range|type range|type range|entities|type range|type
35 st scale|transform scale|transform scale|transform scaley|transform scale|transform
36 tt title|text title|text title|text title|to text|title
37 lt legend|title legend|title legend|title legend|title legend|title
38 psl paint|scale|legend paint|scale|legend paint|scale|legend paint|setbackground|legend paint|scale
39 ct composite|title composite|title composite|title composite|title composite|title
40 bc block|container block|container block|container block|container block|container
41 lb label|block label|block label|block label|block label|block
42 cp category|plot category|plot category|plot category|plot category|plot
43 cp combined|plot combined|plot combined|plot combined|plot combined|plot
44 sca subcategory|axis subcategory|axis subcategory|axis subcategory|axis subcategory|axis
45 br bar|renderer bar|renderer bar|renderer bar|renderer bar|renderer
46 sbr statistical|bar|renderer statistical|bar|renderer statistical|bar|renderer statistical|bar|renderer statistical|bar|renderer
47 mmcr max|min|category|renderer max|min|category|renderer max|min|category|renderer max|min|category|renderer max|min|category|renderer
48 br bar|renderer bar|renderer bar|renderer bar|renderer bar|renderer
49 ta text|annotation text|annotation text|annotation to|apply text|annotation
50 lg line|group line|group line|group line|group line|group
51 ti table|info table|info table|info table|info table|info
52 sbr string|buffer|row string|buffer string|buffer string|buffer size|buffer
53 bd binary|data binary|data binary|data binary|data binary|data
54 rs result|set result|set result result|set result|set
55 isol isolation|level isolation|level isolation|level isolation|level isolation|level
56 dbv database|version database|version database|version database|version database|version
57 vmn version|major|number version|major|number version|major|number version|major|number version|major|number
58 sb string|buffer string|buffer string|buffer string|buffer select|buffer
59 is instance|string instance|string instance|string instance|string instance|string
60 si select|inquiry select|inquiry string select|inquiry string|inquiry
61 sp system|properties system|property select|properties system|properties system|properties
62 ss schema|system system|select schema|select schema|system system|select
63 pd protection|domain project|domain project|domain project|domain protection|domain
64 ue unknown|element unknown|element unknown|element unknown|element unknown|element
65 sysp system|property system|property system|property system|property system|property
66 jt junit|test junit|test junit|test junit|test junit|test
67 fe formatter|element final|element final|element formatter|element formatter|element
68 fa formatter|array final|array final|array final|array formatter|array
69 cm case|message case|message case|message case|message case|message
70 as attribute|string attribute|set attribute|string attribute|setter attribute|string
71 ch class|helper class|helper class|helper class|helper class|helper
72 ih introspection|helper introspection|helper introspection|helper introspection|helper introspection|helper
73 as attribute|setter attribute|setter attribute|setter attribute|setter attribute|setter
74 iae illegal|access|exception illegal|access|exception illegal|access|exception illegal|exception illegal|access
75 ite invocation|target|exception invocation|target|exception invocation|target|exception invocation|exception invocation|target
76 nc nested|creator nested|creator name|creator nested|creator nested|creator
77 ne nested|element nested|element name|element nested|element nested|element
78 ue unknown|element unknown|element unknown|element unknown|element unknown|element
79 nt name|type name|types name|types nested|types name|type
80 at attribute|types attribute|types attribute attribute|types attribute|types
81 ea enumerated|attribute enumerated|attribute exception|attribute enumerated|attribute enumerated|attribute
82 ie invoke|exception invoke|exception invoke|exception instantiationexception|exception invoke|exception
83 dow day|of|week day|of|week day|of|week day|of|week day|of|week
84 iltr is|left|to|right instance|left|to|right instance|left|to|right instance|left|to|right instance|long|to|right
85 sfdd set|first|displayed|date set|first|date|displayed set|first|date|displayed set|first|date|displayed set|first|displayed|date
86 dfi date|format|instance date|format|instance date|format|instance date|format|instance date|format|instance
87 mem motion|event|mouse mouse|mask mouse|mask mouse|event|mask motion|event|mouse
88 sga sequence|generator|

annotations
sequence|generator|

annotation
sequence|generator|

attribute
sequence|generator sequence|generator

89 uisp user|interface|setting|
parameters

user|interface|set|
parameters

user|interface|set|
parameters

user|interface|setting|
parameters

user|interface|set|parameters

90 iltr is|left|to|right indicating|left|to|right indicating|left|to|right indicating|left|to|right indicating|left|to|right
91 coel component|orientation|

elements|list
component|elements|list component|elements|list component|elements component|list

92 dow day|of|week day|of|week day|of|week day|of|week day|of|week
93 fdow first|day|of|week first|day|of|week first|day|of|week first|day|of|week first|day|of|week
94 ncc number|calendar|columns number|calendar|columns number|calendar|columns number|columns|calendar number|calendar|columns
95 numcalr number|calendar|row number|calendar|row number|calendar|row number|calendar|row number|calendar|row
96 tinum task|id|number to|id|number to|id|number title|id|number task|id|number
97 csss config|smallest|screen|size config|screen|size|smallest config|screen|size|smallest config|smallest|screen|size config|smallest|screen|size
98 adidcl annotation|descriptor|

id|class
add|descriptor|defaults|

class|list
annotation|descriptor|defaults|

class|list
annotation|descriptor|defaults|

class|list
annotation|descriptor|defaults|

class|list
99 ada annotation|descriptor|access access|descriptor|annotation annotation|descriptor|access access|descriptor|annotation annotation|descriptor|access
100 drso dataset|result|set|order dataset|result|specified|order dataset|result|order dataset|result|set|of dataset|rendering|specified|order

Note: Incorrect expansions are marked with bold font.
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