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ABSTRACT  

Thermophotovoltaics (TPVs) are a potential technology for waste-heat recovery applications and utilize IR sensitive 
photovoltaic diodes to convert long wavelength photons (>800nm) into electrical energy.  The most common conversion 
regions utilize Gallium Antimonide (GaSb) as the standard semiconductor system for TPV diodes due to its high internal 
quantum efficiencies (close to 90%) for infrared radiation (~1700nm).  However, parasitic losses prevent high 
conversion efficiencies from being achieved in the final device.  One possible avenue to improve the conversion 
efficiency of these devices is to incorporate metallic photonic crystals (MPhCs) onto the front surface of the diode.  In 
this work, we study the effect of MPhCs on GaSb TPV diodes.  Simulations are presented which characterize a specific 
MPhC design for use with GaSb.  E-field intensity vs. wavelength and depth are investigated as well as the effect of the 
thickness of the PhC on the interaction time between the e-field and semiconductor. It is shown that the thickness of 
MPhC has little effect on width of the enhancement band, and the depth the ideal p-i-n junction is between 0.6 m and 
2.1 m. Additionally, simulated results demonstrate an increase of E-field/semiconductor interaction time of 
approximately 40% and 46% for a MPhC thickness of 350nm and 450nm respectively.     
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1. INTRODUCTION  
Thermophotovoltaics (TPV) is a subset of traditional photovoltaics where light is converted directly into electricity using 
the photovoltaic effect in semiconductor diodes, however TPV is focused on the infrared (IR) wavelengths.  The 
conversion of IR radiation to electricity has applications in waste-heat harvesting, such as in metal or glass processing 
facilities, or as a part of nuclear power systems in submarines and space probes.  Because of the small bandgap of the 
TPV diode materials, parasitic losses due to device heating and the absorption of wavelengths below and far above the 
bandgap are particularly harmful to the device efficiency.  This work seeks to investigate the performance and 
characteristics of a two-dimensional metallic photonic crystal (MPhC) for use in thermophotovoltaic systems to mitigate 
these losses.  Previous work has shown that MPhCs have the potential to improve the conversion efficiency of a TPV 
diode and by extension the whole of a TPV system1–3.  These MPhCs were monolithically integrated into the aperture of 
gallium antimonide TPV diodes serving as both a front-surface enhancement as well as a topside contact1.  This 
investigation builds upon the previous work in the field which has demonstrated that photonic crystal enhancements can 
be used to improve the efficiency of thermophotovoltaic diodes1.  Specifically, this work explores the dependence 
between the increased e-field interaction time and the thickness of the MPhC in order to achieve optimum TPV diode 
junction depth and thickness. 

Traditional TPV devices are focused on the harvesting of infrared radiation and use various forms of spectral control 
such as thermal emitters and filters to decouple an energy source from the diode, as depicted in Figure 1.  Due to these 
additional components, TPV can be used in a wider array of application beyond just solar harvesting; one such 
application being waste heat recovery.  The TPV filter stage enables higher system efficiencies by only allowing an 
efficiently convertible portion of the spectrum to be incident on the diode. This work hopes to further improve upon the 
TPV filter stage by exploring a MPhC as a combination filter and front-side electrical contact. 
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