

MRS Advances © 2018 Materials Research Society DOI: 10.1557/adv.2018.22

Intlp compounds for Underwater Solar Energy Harvesting

Ahmed Zayan, Thomas E. Vandervelde*Renewable Energy and Applied Photonics Laboratory, Electrical and Computer Engineering Department Tufts University

Medford, Massachusetts 02155, USA *tvanderv@ece.tufts.edu

ABSTRACT

With the rising interest in oceanic monitoring, climate awareness and surveillance, the scientific community need for developing autonomous, self-sustaining Unmanned Underwater Vehicles (UUVs) increased as well. Limitations on the size, maneuverability, power consumption, and available on-site maintenance of these UUVs make a number of proposed technologies to power them harder to implement than others; solar energy harvesting stands as one of the more promising candidates to address the need for a long-term energy supply for UUVs due to its relatively small size and ease of deployment. Studies show research groups focusing on the use of Si cells (amorphous and crystalline), InGaP, and more recently Organic Photovoltaics to convert the attenuated solar spectrum under shallow depths (no deeper than 9.1 m) into electrical energy used or stored by the UUV's power management system (P. P. Jenkins et al. 2014; Walters et al. 2015). In our study, we consider the ternary compound In_{1-x}Tl_xP that allows for varying the quantum efficiency of the cell, and by extension the overall harvesting efficiency of the system by altering the Tl content (x) in the compound. In_{1-x}Tl_xP on InP is a low strain system since the compound exhibits very little change in its lattice constant with changing Tl content due to the comparable atomic size and forces of In and Tl allowing for relatively easy growth on InP substrates. The study focuses on studying the spectral response and comparing the performance of an optimized single junction $In_{l-x}Tl_xP$ cells to $In_{l-y}Ga_yP$ cells while accounting for the optical losses of the solar irradiance underwater for various depths.

Introduction

Water submersion of photovoltaics was first explored in the late 1970s when the US Navy expressed its interest in investigating the performance of underwater photovoltaic cells. Under the supervision and execution of Stachiw, the study was inconclusive due to uncertainties in the form of water turbidity, salinity and marine life in the locales he chose [1]. A little over 20 years after that, research in underwater photovoltaic cells rekindled after Rosa Clot et al., cited possible efficiency improvements

to amorphous silicon cells under water due in large to improved thermal drift from the cells and the absence of dust collection on the surface of the panels [2-6]. Due to silicon's low absorption coefficient, Clot restricted their studies to depths not exceeding 30 cm below the water level.

In addition to going deeper underwater, this paper also studies the feasibility of using a ternary Tl-based compound to substitute amorphous silicon or more recently, InGaP cells to harvest solar energy underwater [7].

Parameters

In(1-x)TlxP was first proposed by van Schilfgaarde et al. as an infrared photodetector due to its theorized semimetal properties, allowing for its bandgap to vary as a function of the concentration of Tl incorporated [8]. The change in bandgap came with a relatively small change in the lattice parameter of the compound allowing for monolithic growth of In(1-x)TlxP compounds with very little lattice mismatch. In our work, we further expand on their calculations to extract the electronic properties of In₍₁₋₎ _{x)}Tl_xP for submerged solar energy harvesting.

Using the commercial package WIEN2k developed by Blaha et. al., we calculate the electronic properties of the semiconductor In_(1-x)Tl_xP varying x-content [9]. WIEN2k uses the Density Functional Theory (DFT) to calculate the electronic structure of materials, where the exchange-correlation potential can be approximated using Linear Density Approximation (LDA) or the Generalized Gradient Approximation (GGA). To avoid the overbinding that could result from using LDA, we employ the Wu-Cohen GGA method for the ab-initio calculations in our work [10], [11].

By gradually increasing the Tl content in $In_{(1-x)}Tl_xP$, we note the band structure, the corresponding optical bandgap and the lattice constant of the semi-conductor. By rearranging the Planck-Einstein relation, shown below, we can find the corresponding wavelength of the minimum energy of a photon required to promote electrons across the bandgap and accordingly choose the most appropriate Tl concentration in the ternary compound suited for our application. Figure 1 shows the change of bandgap and lattice constant as a function of increasing Tl content in In_(1-x)Tl_xP.

$$\lambda = \frac{hc}{E_g}$$

Where:

h: maximum wavelength of the required incident photon in nm, h: Planck's constant evaluated as 4.13566751×10⁻¹⁵ $eV \bullet s$,

 \mathcal{C} : Speed of light 2.99792x10¹⁷ nm/s, and

 E_{g} : Optical bandgap of the material in eV

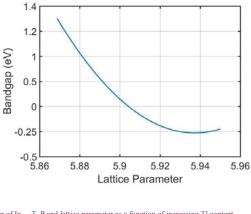


Figure 1: Optical bandgap of In_(1-x)T_{lx}P and lattice parameter as a function of increasing Tl content.

Using the provided information, we then proceed to calculate the required electronic properties of $In_{(1-x)}Tl_xP$ to simulate its performance under water following the process we have outlined previously [12][13]. For being able to harness most of the incident solar radiation at shallow depths, $In_{0.77}Tl_{0.23}P$ was used in our subsequent simulations with the following compound properties shown in Table 1.

Table 1: InTlP electronic properties calculated for our device simulations

Material	Electronic Bandgap	Effective Electron Mass	Electron Mobility	Lattice Parameter
InTlP	1.36 eV	0.08m ₀	5700 cm ² /Vs	5.8687 Å
In _{0.77} Tl _{0.23} P	1.00 eV	0.018m ₀	cm ² /Vs	5.8813 Å
TIP	-0.27 eV	0.007m ₀	3548.7 cm ² /Vs	5.96 Å

Device simulations

Using the commercial package, Sentaurus TCAD, we were able to measure the performance of an $In_{0.77}Tl_{0.23}P$ cell operating under water, built as a single junction cell illuminated by a standard AM1.5G spectrum while varying the depth of water. To further bolster the robustness of the model, water's optical properties were incorporated into the software to account for the attenuation of light with increasing depth. It should be of note however, that this only becomes a discernable factor in the overall cell efficiency at depths exceeding 25 cms. This is because of water's strong dispersion of light wavelengths over 700 nm. It also helps justify picking InTIP over silicon for underwater applications despite its lower spectral range [7], [14].

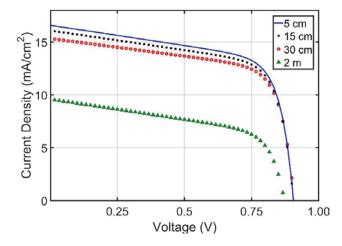


Figure 2: J-V curves of $In_{0.77}Tn_{0.23}P$ under various depths of water. For shallow depths, the deterioration in power is almost linear but exhibits a near logarithmic drop in power output as the depth increases beyond a few centimeters. The curve marked 2m shows the J-V curve of the same InTIP cell dropping by a little less than 10% when compared to when it is only 5 cm underwater.

Figure 2 compares the J-V curve for $In_{0.77}Tl_{0.23}P$ at various depths, illustrating how the performance drops at increasing depths. It should be noted that despite the efficiency falling below 10% for depths exceeding 2 meters, the efficiency is measured relative to the AM1.5G spectrum, the higher wavelengths of which are attenuated by water, thus leading to a lower rating than if wavelengths above 700 nm were not considered as part of the input to the cell. Table 2 summarizes the overall efficiency of the $In_{0.77}Tl_{0.23}P$ for increasing depths of water.

Table 2: Performance parameters of In₇₇Tl₂₃P under water.

Depth	Rated Efficiency	Relative Efficiency	J _{sc} mA/cm ²	V _{oc} V	Power Converted 2 W/m
0	14.42%	14.42 %	18.296	0.82	14.42
5 cm	12.99*%	14.14 %	16.476	0.82	12.99
15 cm	12.68%	14.05 %	16.082	0.82	12.68
30 cm	11.87%	13.81 %	15.063	0.82	11.87
200 cm (2 m)	7.10%	28.62 %	9.752	0.78	7.1
500 cm (5 m)	3.29%	31.07 %	5.44	0.75	3.29

Comparing our cell's performance to the InGaP cell proposed by Jenkins et al. shows a relative improvement of approximately 31.6% when the cells are submerged under 5 meters of water, with absolute power ratings being approximately 3.29 mW/cm² and 2.5 mW/cm² for In_{0.77}Tl_{0.23}P and InGaP respectively [7]. Additionally, our cell benefits from the low lattice mismatch it has with InP allowing for epitaxial growth on an InP substrate with minimal complications.

Conclusions

This analysis enclosed herewith shows that InTIP can be considered as a contending candidate for solar energy harvesting in submerged environments with moderate success, offering advantages in growth due to its low lattice mismatch with InP, versatility as a result of the compound being tunable with Tl concentration and improved power performance under water depths potentially exceeding 5 meters.

Acknowledgments

We would like to thank the National Science Foundation (NSF) (#ECCS-1055203). Any opinions, findings, and conclusions or recommendations expressed are those of the author(s) and do not necessarily reflect the views of the NSF.

REFERENCES

- [1]
- [2]
- [3]
- [4]
- J. D. Stachiw, "Performance of Photovoltaic Cells in Undersea Environment," *Journal of Engineering for Industry*, 102 (1), 51–59 (1980).

 M. Rosa-Clot, P. Rosa-Clot, G. M. Tina, and P. F. Scandura, "Submerged photovoltaic solar panel: SP2," *Renewable Energy*, 35(8), 1862–1865 (2010).

 M. R. Clot, P. Rosa-Clot, and G. M. Tina, "Submerged PV Solar Panel for Swimming Pools: SP3," *Energy Procedia*, 134 (Supplement C), 567–576 (2017).

 G. M. Tina, M. Rosa-Clot, P. Rosa-Clot, and P. F. Scandura, "Optical and thermal behavior of submerged photovoltaic solar panel: SP2," *Energy*, 39 (1), 17–26 (2012).

 R. Lanzafame, S. Nachtmann, M. Rosa-Clot, P. Rosa-Clot, P. F. Scandura, S. Taddei, and G. M. Tina, "Field Experience With Performances Evaluation of a Single-Crystalline Photovoltaic Panel in an Underwater Environment," *IEEE Transactions on Industrial Electronics*, 57 (7), 2492–2498 (2010).

 R. J. Walters, W. Yoon, D. Placencia, D. Scheiman, M. P. Lumb, A. Strang, P. N. Stavrinou, and P. P. Jenkins, "Multijunction organic photovoltaic cells for underwater solar power," in *2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) Proceedings*, New Orleans, L.A., 1–3 (2015).

 P. P. Jenkins, S. Messenger, K. M. Trautz, S. I. Maximenko, D. Goldstein, D. Scheiman, R. Hoheisel, and R. J. Walters, "High-Bandgap Solar Cells for Underwater Photovoltaic Applications," *IEEE Journal of Photovoltaics*, 4 (1), 202–207 (2014).

 M. van Schilfgaarde, A. Chen, S. Krishnamurthy, and A. Sher., "InTIP a proposed infrared detector material InTIP a proposed infrared detector material." *Applied Physics Letters*, 65 (21), 65–68 (1994).

 K. Schwarz, P. Blaha, and G. K. H. Madsen, "Electronic structure calculations of solids using the WIEN2k package for material sciences," *Computer Physics Communications* 147 (1-2), 71–76 (2002).

 K. Schwarz and P. Blaha, "Solid state calculations using WIEN2k" *Computational Materials Science*, 28 (2), 259–273 (2003).

 F. Tran, R. Laskowski, P. Blaha, and K. Schwarz, "Performance on molecules, surface [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]

- [12]
- [13]
- A. Zayan, M. Stevens, and T. E. Vandervelde, "GaAsBi alloys for photovoltaic and thermophotovoltaic applications," in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, 2839–2843 (2016).

 A. Zayan, C. Downs, and T. E. Vandervelde, "GaTIP A Novel Semiconductor for Thermophotovoltaic Applications," 29th Europrean Photovoltaic Solor Energy Conference (EUPVSEC) Proceedings, Amsterdam, Netherlands, 280–283 (2014).

 K. B. Joshi, J. H. Costello, and S. Priya, "Estimation of Solar Energy Harvested for Autonomous Jellyfish Vehicles (AJVs)," IEEE Journal of Oceanic Engineering, 36 (4), 539–551 (2011). [14]