
Greyfish: An Out-of-the-Box, Reusable, Portable Cloud Storage
Service

Carlos Redondo
carlos.red@utexas.edu

The University of Texas at Austin
Austin, Texas

Ritu Arora
rauta@tacc.utexas.edu

Texas Advanced Computing Center, The University of
Texas at Austin
Austin, Texas

ABSTRACT
A scalable storage system is an integral requirement for supporting
large-scale cloud computing jobs. The raw space on storage systems
is made usable with the help of a software layer which is typically
called a filesystem (e.g., Google’s Cloud Filestore). In this paper, we
present the design and implementation of an open-source and free
cloud-based filesystem named as “Greyfish” that can be installed on
the Virtual Machines (VMs) hosted on different cloud computing
systems, such as Jetstream and Chameleon. Greyfish helps in: (1)
storing files and directories for different user-accounts in a shared
space on the cloud, (2) managing file-access permissions, and (3)
purging files when needed. It is currently being used in the im-
plementation of the Gateway-In-A-Box (GIB) project. A simplified
version of Greyfish, known as Reef, is already in production in
the BOINC@TACC project. Science gateway developers will find
Greyfish useful for creating local filesystems that can be mounted
in containers. By doing so, they can independently do quick instal-
lations of self-contained software solutions in development and
test environments while mounting the filesystems on large-scale
storage platforms in the production environments only.

KEYWORDS
cloud storage, containerization, file storage, filesystem
ACM Reference format:
Carlos Redondo and RituArora. 2019. Greyfish: AnOut-of-the-Box, Reusable,
Portable Cloud Storage Service. In Proceedings of Practice and Experience
in Advanced Research Computing, Chicago, IL, USA, July 28-August 1, 2019
(PEARC ’19), 6 pages.
https://doi.org/10.1145/3332186.3333055

1 INTRODUCTION
Cloud computing systems are capable of providing scalable storage
to their users. However, a software layer is required for manag-
ing the raw storage space (e.g., Google’s Cloud Filestore [1]). In
this paper, we will present the design and implementation of an
open-source and free cloud-based file-storage service named as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-7227-5/19/07. . . $15.00
https://doi.org/10.1145/3332186.3333055

“Greyfish” that can work on different cloud computing platforms.
The Greyfish file-storage service helps in storing files and directo-
ries, managing access permissions, and purging data when needed.
It can be mounted as a volume [2] within a Docker [3] container and
used to provide data-persistence service for interactive, multi-user,
web applications that are built using containers. The data stored in
Greyfish can be accessed from within a web application through
Application Programming Interfaces (APIs). All Greyfish APIs are
made to operate using a Web Server Gateway Interface (WSGI) and
support multiple threads for multiple users.

The Greyfish service is already being used in the Gateway-In-a-
Box (GIB) [4] project. GIB provides a basic out-of-the-box solution
for creating small-scale science gateways that are equipped with
browser-based terminal access. A simplied version of Greyfish,
named Reef, is being used in the BOINC@TACC project [5]. The
process to install and reuse Greyfish is simple - it takes about two
minutes to complete the installation process, including base image
download and building time. Furthermore, a Grafana [6] interface
can be connected to Greyfish to visually monitor all the calls made
to it from the web applications.

In this paper, we provide an overview of the Greyfish system
design and its functionality in Section 2. The file storage model
adopted in this project is described in Section 3, and an overview
of the Greyfish installation process is presented in Section 4. An
overview of each supported API is provided in section 5. We report
the performance of file upload and download in Section 6. The
current users and the possible use cases of Greyfish are briefly
mentioned in Sections 7 and 8. The related work and future work
are described in Sections 9 and 10, respectively.

2 DESIGN OVERVIEW
Greyfish [7] is built as a container-based file-storage (or filesys-
tem) service for cloud computing platforms. It is composed of the
following containers:

• Main Container: Contains the user files and the necessary
APIs. Each new user is assigned a personal directory on
the shared space. Nested sub-directories are also allowed.
All user directories are a part of the docker-volume. This
allows to restart the service and avoid data loss in case of
upgrades, thereby, allowing Greyfish to be built in servers
already hosting other web applications. It is built using the
python3.6 alpine Docker image due to its small size.
All user communication for file upload and/or download is
done via the python APIs. These APIs are not the primary
container processes, and as such, they can be stopped for
updates without killing the main container. This process can

https://doi.org/10.1145/3332186.3333055
https://doi.org/10.1145/3332186.3333055

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Carlos Redondo and Ritu Arora

be repeated as many times as needed. All APIs are written
in python3 and using gunicorn [8] as a Web Server Gateway
Interface (WSGI) server that allows multiple thread calls.
Four threads are used by default. The API will record the
login status of a user, whether it is successful or not, and
will log all failed login attempts.
Greyfish supports administrative purge APIs, designed to
eliminate all files older than an arbitrary number of seconds.

• Redis Container: Redis [9] is an in-memory database used
only for temporary tokens and caches. Temporary tokens can
be granted for single actions for any user and/or system not
entrusted with the main Greyfish credentials. They can be
created by any system with Redis access, complete Greyfish
access is therefore not required.
A Temporary token is always assigned to one user, and is
immediately deleted after first use. Tokens are therefore im-
plemented as keys, and can be set as permanent (only being
deleted after used) or only existing for a certain time-window.
Note that Greyfish itself does not provide any specific APIs
to create these tokens. Instead, this Redis container, that is
open by default to outside connections, can be accessed with
a password for automatically creating tokens for users.

• InfluxDB Container: InfluxDB [10] is a time-series data-
base used for logs. All Greyfish actions are recorded and can
be accessed at a later point in time. Each successful database
transaction records the action, caller ID, caller IP, and spe-
cific information depending upon the action itself. All failed
logins are registered as well, such as, client IP, reason for fail-
ure, and the account name. All actions are associated with a
time-stamp, which is assigned when the action is completed.

The entire Greyfish ecosystem can be built from source using
Docker Compose [11], with its only prerequisites being the avail-
ability of Docker and Docker Compose tools.

Greyfish user data and the InfluxDB logs are stored in Docker
volumes, so that they persist even if a container stops, or is under
maintenance.

Nonetheless, it is also possible to simply run Greyfish without
temporary tokens and/or recording logs, using it only as a cloud
storage functionality - this reduces the service to only the main
container.

Although not required, a Grafana instance can also be con-
nected to the InfluxDB database for data visualization. A complete
overview of the Greyfish architecture is shown in Figure 1.

Greyfish supports multiple users, each being allowed a nested
directory structure where each directory can contain files and/or
other directories. This structure is supported directly by the APIs.
Using the APIs, a file can be uploaded directly into a selected direc-
tory location. The directory locations are automatically created if
they do not already exist at the time of file upload. Similarly, a user
may download a file from any location within his main directory.
The directory downloads are recursive and help in downloading all
subdirectories within a directory that is selected for download.

The Greyfish APIs can then be called from any system having
access to either the main Greyfish key or a single-use token.

Figure 1: Overview of the Greyfish architecture

When a new user is added, Greyfish will automatically assign a
new directory. All user files will be located within it. All uploaded
files have their usernames ’sanitized’ before storing themwithin the
system, in order to avoid hidden commands within the file-names.

All InfluxDB calls within Greyfish itself are done via the official
Python client. Greyfish does not execute any queries directly, and
relies instead on the appropriate write and read client operations
in order to avoid injections. Note that, if added, a Grafana instance
will require more precautions for security when executing queries
through it.

Furthermore, Greyfish also allows the purging of all the files
older than a given time in seconds. All empty directories will be
deleted as well after the purge is complete. For any of these purges,
however, the main user directory will not be deleted. Additionally,
deleting a user directory, as well as all its files, is also possible.

Greyfish does not provide a web-interface to access user data
nor does it have an administrative one. Therefore, all API and
system updates must be executed within the container over an SSH
connection. However, Greyfish allows to scan all the user content
within a directory (please see the File Storage Model in Section 3 for
more information). This could allow an external web-interface to
obtain the data from Greyfish. Nonetheless, for this to be possible,
it would require access to the main Greyfish key or to the Redis
container in order to assign itself tokens.

3 FILE STORAGE MODEL
As mentioned above, each Greyfish user is assigned a personal
directory upon signing up for the application that uses Greyfish.
Each personal directory is then recorded as DIR_USERNAME. That
is, for the username "joe", the personal directory will be "DIR_joe".
This signup can be done by any system with access to the main
Greyfish key or with a temporary token, provided to a user already
signed up. As a result, Greyfish signup should be done automatically
from another system, and the main key should not be shared with
the users directly.

Greyfish: An Out-of-the-Box, Reusable, Portable Cloud Storage Service PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

All the inter-process communication for file uploads and down-
loads is done using the Python APIs. The path for upload/download
is encoded directly into the URL, using "++" to specify "/" in the
path, starting at the user’s personal directory. Currently, there are
no limitations on either the number of files and directories or the
overall space occupied by a particular user by default.

Both text and binary file storage is possible. It is also possible to
upload a directory in the form of a compressed tar file (.tar.gz, .tgz
file endings), which is then uncompressed on the server, and the
compressed tar file is deleted. All uploaded directories retain their
original structure in the tar file.

As mentioned above, Greyfish supports a nested directory struc-
ture. Therefore, a file or directory can be uploaded directly to its
target subdirectory, which is the path that is created recursively if
it does not exist already. Greyfish does not support version control
or multiple versions of the same file/directory. Therefore, if a path
collision occurs, the previous version will be overwritten. Grey-
fish also does not optimize the internal data storage more than the
default Alpine container already does.

Similar to the upload process, files can be downloaded from
any subdirectory path. Directories can also be downloaded as com-
pressed tar (.tar.gz file ending) files.

Furthermore, it is possible to download all data for a certain user
at once in the form of a compressed tar file. It is also possible to
replace all current user data in the same way. This system is ideal
for transferring large datasets from other services for a certain user
or project.

Greyfish APIs also support a scan functionality, which returns a
JSON string containing all of the users’ files and subdirectories in a
nested format.

Finally, if a user account is deleted, the entire directory associated
with the user’s account will also be deleted. Greyfish does not pose
any constraints on reusing the deleted user-ids when creating a
new account.

All directories on Greyfish are stored within a docker volume as
well. This volume is mapped to a host directory. Therefore, users’
data can be accessed directly from the main server. Docker also al-
lows other Docker containers to access the aforementioned volume
if needed. However, all file changes and accesses that are made di-
rectly, either through the host machine or other containers, without
using the Greyfish APIs are not recorded in the logs.

4 INSTALLATION
As mentioned above, a Greyfish system can be easily setup on
any system with Git, Docker and Docker Compose installed. Then,
the complete download and installation process - including the
Docker build - can be completed in less than two minutes. However,
this process can be longer for systems with low RAM and/or a
poor network connection, due to the time-taken in Docker image
downloads.

All the necessary passwords for Redis, InfluxDB, and Greyfish
itself are setup as environmental variables in the startup scripts. If
none are provided, default values are assigned.

By default, the Redis and InfluxDB containers are setup as password-
protected, but with their ports being publicly available. This is done

Table 1: Measuring Upload and Download Performance

File size (MB) Upload time (s) Download time (s)
1 0.327 0.078
50 2.573 0.082
100 4.704 0.093
150 6.995 0.093
200 8.459 0.093
250 10.697 0.096
300 12.605 0.100
350 14.594 0.102
400 17.825 0.106
450 18.611 0.109
500 20.828 0.111

so that other systems can communicate with them. For example,
an external Grafana instance will require that the InfluxDB ports
are available.

A snippet of the steps for installing a complete Greyfish server
are provided in Listing 1 to demonstrate that the setup process is
easy to follow.

5 SUPPORTED APIS AND FUNCTIONS
Greyfish is composed of the following APIs:

• Upload and Download: This is the main API. It supports
the download and upload of files and directories. It creates
the necessary paths if not present already.

• Bulk Download: This API supports downloading all user
files and directories as a .tar.gz file.

• Bulk Upload: Uploads new contents to a user directory,
deleting all its current contents in the process.

• New User Creation and Deletion: This API helps in cre-
ating new user accounts and deleting existing accounts on
the filesystem.

• Administrative features: Supports getting a list of all users
and file purges.

As mentioned above, all the API calls and actions are automati-
cally logged in the InfluxDB database.

6 PERFORMANCE
Greyfish provides a set of Python files to test download and upload
speeds, making use of the python module requests. These tests are
measured from a client perspective, rather than the server.

A complete test, checking for both upload and download speeds,
was done on a Greyfish systemmounted on a Jetstream [12] [13] VM
with 30 GB of RAM and 60 GB disk, with a similar virtual machine as
the client. All files used for it were created using random strings of a
fixed length in MBs. The results are graphically presented in Figure
2. Table 1 includes some of the data-points from this performance
test to improve the readability.

The graphs shown in Figure 2 indicate that the file-upload time
for a Greyfish system is mostly linear with respect to the file size.
Nonetheless, the download time is much smaller as compared to the

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Carlos Redondo and Ritu Arora

Listing 1: Complete setup of a Greyfish server

g i t c l one h t t p s : / / g i t hub . com / noderod / g r e y f i s h
cd g r e y f i s h
Change t h e i n f l u x d b l o g c r e d e n t i a l s
v i c r e d e n t i a l s . yml
S e t t h e a p p r o p r i a t e pa s swo r d s and ba s e URL (w i t h ou t / and h t t p (s) : / /
D e f i n e t h e number o f t h r e a d s u s i n g " g r e y f i s h _ t h r e a d s " , d e f a u l t i s s e t t o 4
REDIS_AUTH= " examplepass " URL_BASE=example . com g r ey f i s h _k ey = " examplegrey " docker −compose up −d

A c t i v a t e t h e n e c e s s a r y API s
E n t e r c o n t a i n e r
docker exec − i t g r e y f i s h _ g r e y f i s h _ 1 bash
cd / grey
S t a r t t h e ne ed ed d a t a b a s e s and a s s i g n p e rm i s s i o n (AP I s w i l l n o t be s t a r t e d)
/ grey / s e tup . sh
A c t i v a t e (change t h e number o f t h r e a d s i f needed , s t a n d a r d i s 4)
. / API_Daemon . sh −up

Figure 2: Linear and Y-logarithmic plots for upload and
download time for a Greyfish service.

upload time and is almost constant for different file sizes considered
in this experiment. Of course, with much larger file sizes, there will
be a significant variation in download time.

7 CURRENT USERS
The GIB framework uses Greyfish for creating a shared, multi-user
filesystem. The BOINC@TACC project is using a basic version of
Greyfish - called Reef - which does not provide logs and subdirec-
tories. Reef saves the files submitted by the researchers using the

job-specifications. These files can then be accessed by volunteer
devices executing jobs. Similarly, all output files are stored in Reef
and are accessible via hyperlinks after the job is completed.

8 POSSIBLE USE CASES
Greyfish has been developed specifically to act as a cloud filesystem
for GIB and other similar science gateways. Like any other cloud
storage service, it can be used for storing any type of data. It can also
be setup as an out-of-the-box, standalone storage application for
development and testing environments, where a complete control
over the filesystem is desired.

Additionally, Greyfish can be used for data backups - both binary
(such as, database backups), and textual files can be backed up.
For storing confidential or restricted data, Greyfish can be located
within a private network, while retaining all its features.

9 RELATED WORK
There are multiple cloud storage services available, such as AWS S3
[14], Dropbox [15], and Google drive [16]. However, most of these
services rely on either a web interface (in the case of Google drive)
or a GUI (Dropbox). With the exception of AWS S3 and Google’s
Cloud Filestore, these services are mostly designed to meet the
storage needs of the end-users who can access their data directly.

AWS S3 and Cloud Filestore are designed for server access. How-
ever, they can only be set-up on specific cloud computing platforms
(AWS and Google Cloud respectively). Access to these services is
also limited as they often require specific clients.

Therefore, it is not possible to setup any of the above services
for creating science gateways or filesystems on cloud computing
systems like Jetstream and Chameleon. Furthermore, all the above
services are expensive. However, one advantage that some of these
services have is the feature of file encryption, which is not available
in Greyfish.

Table 2 shows a side-by-side comparison of Greyfish with other
available file-storage services in the cloud. All the services were

Greyfish: An Out-of-the-Box, Reusable, Portable Cloud Storage Service PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

exhaustively researched at the time of writing this paper and can
change in the future.

10 FUTUREWORK
Greyfish and its simplified version Reef are currently part of the
Gateway-In-A-Box and BOINC@TACC projects. As a result, they
will continue to evolve depending upon the storage needs of these
projects.

Greyfish will provide the option of using percent-encoding in-
stead of the current, custom "++" separator for selecting paths to
files and directories. For example, currently, the pathDIR/dir2/file.txt
becomes "DIR_joe++dir2++ file.txt". However, when percent-encoding
will be used, it will become DIR_joe%2Fdir2%2Ffile.txt.

This encoding will allow users to provide files and directories
using characters that cannot be used in URLs (such as "?", ">", etc.) as
well as improve Unicode support for systems that do not support it
in the command-line mode. Although it is already possible, specific
configuration options will be added for users who do not need
an attached volume. More options will be provided for temporary
tokens, such as specifying restricted services for users holding a
particular token. The tokens will also be implemented as Redis
lists to both allow multiple uses per token and to avoid a possible
race-condition (check, delete) if a malevolent user wishes to use a
token multiple times in rapid succession.

Future Greyfish versions will guarantee scalability in supporting
a large number of files and users. Distributed versions of Greyfish
that split the filesystem data across multiple containers will also be
supported. Checksums and possibly data encryption for some files
may also be supported in the future.

Although a web-interface may not be a part of Greyfish, future
APIs would provide a flexible rule-set so that external servers using
Greyfish for storage can provide users with a direct view of their
files without granting access to the entire system.

11 CONCLUSION
Greyfish provides a simple, out-of-the-box cloud storage system
that can be installed in the cloud and can be made accessible to the
applications through public APIs and HTTP requests. Therefore,
it helps in providing alternatives to commercially available file-
storage services.

Any science gateway project that requires out-of-the-box, per-
sistent cloud-based file-storage service can leverage Greyfish and
reduce their time-to-development. Greyfish can be especially useful
for development and testing environments in which the developers
want to have full-control of mounting/unmounting filesystems.

12 ACKNOWLEDGEMENT
All current Greyfish servers used for testing are setup using the
Jetstream and Chameleon [17] systems. We are grateful to XSEDE
for providing the allocation required for implementing this project.
This project is generously supported through the National Science
Foundation (NSF) award #1664022.

REFERENCES
[1] Cloud Filestore documentation | Cloud Filestore Documentation | Google Cloud.

Retrieved on 2019-04-15 from https://cloud.google.com/filestore/docs/.
[2] Use Volumes | Docker Documentation. Retrieved on 2019-04-15 from

https://docs.docker.com/storage/volumes/.
[3] What is a Container? | Docker. Retrieved on 2019-04-15 from

https://www.docker.com/resources/what-container.
[4] Gateway-In-A-Box. Retrieved on 2019-04-15 from https://github.com/ritua2/gib.
[5] Ritu Arora, Carlos Redondo, and Gerald Joshua. Scalable Software Infrastructure

for Integrating Supercomputing with Volunteer Computing and Cloud Com-
puting. In Majumdar A. and Arora R., editors, Software Challenges to Exascale
Computing. SCEC 2018. Communications in Computer and Information Science,
volume 964. Springer, Singapore, 2019.

[6] Using InfluxDB in Grafana | Grafana Documentation. Retrieved on 2019-04-15
from https://docs.grafana.org/features/datasources/influxdb/.

[7] Greyfish, Portable Cloud Storage. Retrieved on 2019-04-15 from
https://github.com/noderod/greyfish.

[8] Gunicorn - WSGI server – Gunicorn 19.9.0 documentation. Retrieved on 2019-
04-15 from https://docs.gunicorn.org/en/stable/.

[9] Redis. Retrieved on 2019-04-15 from https://redis.io/documentation.
[10] InfluxDB 1.7 documentation | InfluxData Documentation. Retrieved on 2019-04-

15 from https://docs.influxdata.com/influxdb/v1.7/.
[11] Overview of Docker Compose | Docker Documentation. Retrieved on 2019-04-15

from https://docs.docker.com/compose/overview/.
[12] C.A. Stewart, T.M. Cockerill, I. Foster, D. Hancock, N. Merchant, E. Skidmore,

D. Stanzione, J. Taylor, S. Tuecke, G. Turner, M. Vaughn, and N.I. Gaffney.
Jetstream: a self-provisioned, scalable science and engineering cloud environ-
ment. In Proceedings of the 2015 XSEDE Conference: Scientific Advance-
ments Enabled by Enhanced Cyberinfrastructure, 2015. ACM: 2792774. p. 1-8.
http://dx.doi.org/10.1145/2792745.2792774.

[13] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson,
Ralph Roskies, J. Ray Scott, and Nancy Wilkins-Diehr. XSEDE: Accelerating
Scientific Discovery. Computing in Science Engineering, 16(5):62–74, 2014.

[14] What is Amazon S3? - Amazon Simple Storage Service. Retrieved on 2019-04-15
from https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html.

[15] Dropbox. Retrieved on 2019-04-15 from https://www.dropbox.com.
[16] Using Google Drive-New Features, Benefits & Advantages of Google Cloud

Storage. Retrieved on 2019-04-15 from https://www.google.com/drive/using-
drive/.

[17] Kate Keahey, Pierre Riteau, Dan Stanzione, Tim Cockerill, Joe Mambretti, Paul
Rad, and Paul Ruth. Chameleon: a Scalable Production Testbed for Computer
Science Research. In Jeffrey Vetter, editor, Contemporary High Performance
Computing: From Petascale toward Exascale, volume 3 of Chapman Hall/CRC
Computational Science, chapter 5. CRC Press, Boca Raton, FL, 1 edition, 2018.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Carlos Redondo and Ritu Arora

Table 2: Comparison between Greyfish and other cloud storage services

Greyfish Amazon S3 Dropbox Google Cloud Filestore Google Drive
Propietary No Yes Yes Yes Yes

Main emphasis Scientific applications None Personal None Personal,
team sharing

Terminal access Yes Yes Yes Yes Yes
Specific client required Yes Yes Yes Yes Yes
Accessible through
a web interface No Yes Yes No Yes

Available for custom setup Yes No No No No

Pricing Free 0.023 $/GB
(< 50 GB)

Yes (16.58 $/mo,
Professional)

Yes
(0.000274 $/GB/hr/VM)

Yes (12 $/user/mo,
Business,

< 1 TB per user)

	Abstract
	1 Introduction
	2 Design Overview
	3 File Storage Model
	4 Installation
	5 Supported APIs and Functions
	6 Performance
	7 Current Users
	8 Possible Use Cases
	9 Related Work
	10 Future Work
	11 Conclusion
	12 Acknowledgement
	References

