
https://doi.org/10.1007/s00145-018-9306-z
J Cryptol (2020) 33:319–355

Locally Decodable and Updatable Non-malleable Codes
and Their Applications

Dana Dachman-Soled∗
University of Maryland, College Park, USA

danadach@ece.umd.edu

Feng-Hao Liu†
Florida Atlantic University, Boca Raton, USA

fenghao.liu@fau.edu

Elaine Shi‡
Cornell University, Ithaca, USA

runting@gmail.com

Hong-Sheng Zhou§
Virginia Commonwealth University, Richmond, USA

hszhou@vcu.edu

Communicated by Stefan Wolf.

Received 9 April 2017 / Revised 17 October 2018
Online publication 27 November 2018

Abstract. Non-malleable codes, introduced as a relaxation of error-correcting codes
by Dziembowski, Pietrzak, andWichs (ICS ’10), provide the security guarantee that the
message contained in a tampered codeword is either the same as the original message
or is set to an unrelated value. Various applications of non-malleable codes have been
discovered, and one of the most significant applications among these is the connection
with tamper-resilient cryptography. There is a large body of work considering security
against various classes of tampering functions, as well as non-malleable codes with
enhanced features such as leakage resilience. In this work, we propose combining the
concepts of non-malleability, leakage resilience, and locality in a coding scheme. The
contribution of this work is threefold:

∗Supported in part by NSF CAREER Award #CNS-1453045 and by a Ralph E. Powe Junior Faculty
Enhancement Award.

†Supported in part byNSF award #CNS-1657040. This workwas done, while the authorwas a postdoctoral
researcher at the University of Maryland.

‡Supported in part by NSF award #CNS-1601879, a Packard Fellowship, and a DARPA Safeware Grant
(subcontractor under IBM). This work was done, while the author was an assistant professor at the University
of Maryland.

§Supported in part by NSF award #CNS-1801470.

© International Association for Cryptologic Research 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-018-9306-z&domain=pdf

320 D. Dachman-Soled et al.

1. As a conceptual contribution, we define a new notion of locally decodable and updatable
non-malleable code that combines the above properties.

2. We present two simple and efficient constructions achieving our new notion with different
levels of security.

3. We present an important application of our new tool—securing RAM computation against
memory tampering and leakage attacks. This is analogous to the usage of traditional non-
malleable codes to secure implementations in the circuit model against memory tampering
and leakage attacks.

Keywords. Non-malleable codes, Leakage-resilient, Locally decodable.

1. Introduction

The notion of non-malleable codes was defined by Dziembowski et al. [29] as a relax-
ation of error-correcting codes. Informally, a coding scheme is non-malleable against
a tampering function if by tampering with the codeword, the function can either keep
the underlying message unchanged or change it to an unrelated message. Designing
non-malleable codes is not only an interesting mathematical task, but also has impor-
tant implications in cryptography; for example, Coretti et al. [19] showed an efficient
construction of a multi-bit CCA secure encryption scheme from a single-bit one via
non-malleable codes. Agrawal et al. [7] showed how to use non-malleable codes to
build non-malleable commitments. Most notably, the notion has a deep connection with
security against so-called physical attacks; indeed, using non-malleable codes to achieve
security against physical attacks was the original motivation of the work [29]. Due to
this important application, research on non-malleable codes has become an important
agenda and drawn much attention in both coding theory and cryptography.
Briefly speaking, physical attacks target implementations of cryptographic algorithms

beyond their input/output behavior. For example, researchers have demonstrated that
leaking/tampering with sensitive secrets such as cryptographic keys, through timing
channel, differential power analysis, and various other attacks, can be devastating [6,11,
12,39,47,48,53], and therefore the community has focused on developing new mech-
anisms to defend against such strong adversaries [20–26,28,33–35,37,38,41–43,46,
51,52,54]. Dziembowski et al. [29] showed a simple and elegant mechanism to secure
implementations against memory tampering attacks by using non-malleable codes—
instead of storing the secret (in the clear) on a device, one instead stores an encoding of
the secret. The security of the non-malleable code guarantees that the adversary cannot
learn more than what can be learnt via black box access to the device, even though the
adversary may tamper with memory.
In a subsequent work, Liu and Lysyanskaya [50] extended the notion to capture leak-

age resilience as well—in addition to non-malleability, the adversary cannot learn any-
thing about the underlyingmessage evenwhile obtaining partial leakage of the codeword.
By using the approach outlined above, one can achieve security guarantees against both
tampering and leakage attacks. In recent years, researchers have been studying various
flavors of non-malleable codes; for example some work has focused on constructions
against different classes of tampering functions, some has focused on different addi-
tional features (e.g., continual attacks, rates of the scheme), and some focused on other
applications [3,7,15–17,27,30,32].

Locally Decodable and Updatable Non-malleable Codes 321

In this paper, we focus on another important feature inspired from the field of coding
theory—locality.More concretely,we consider a coding scheme that is locally decodable
and updatable. As introduced by Katz and Trevisan [44], local decodability means that
in order to retrieve a portion of the underlying message, one does not need to read
through the whole codeword. Instead, one can just read a few locations at the codeword.
Similarly, local updatability means that in order to update some part of the underlying
messages, one only needs to update some parts of the codeword. Locally decodable
codes have many important applications in private information retrieval [18] and secure
multi-party computation [40], and have deep connections with complexity theory; see
[57]. Achieving local decodability and updatability simultaneously makes the task more
challenging.Recently,Chandran et al. [13] constructed a locally decodable and updatable
code in the setting of error-correcting codes. They also show an application to dynamic
proofs of retrievability. Motivated by the above results, we further ask the following
intriguing question:

Canwebuild a coding schemeenjoyingall threeproperties, i.e., non-malleability,
leakage resilience, and locality? If so, what are its implications in cryptog-
raphy?

Our Results In light of the above questions, our contribution is threefold:

– (Notions)We propose new notions that combine the concepts of non-malleability,
leakage resilience, and locality in codes. First, we formalize a new notion of locally
decodable and updatable non-malleable codes (against one-time attacks). Then,
we extend this new notion to capture leakage resilience under continual attacks.

– (Constructions) We present two simple constructions achieving our new notions.
The first construction is highly efficient—in order to decode (update) one block of
the encoded messages, only two blocks of the codeword must be read (written)—
but is only secure against one-time attacks. The second construction achieves se-
curity against continual attacks, while requiring log(n) number of reads (writes)
to perform one decode (update) operation, where n is the number of blocks of the
underlying message.

– (Application) We present an important application of our new notion—achieving
tamper and leakage resilience in the random accessmachine (RAM)model.We first
define a newmodel that captures tampering and leakage attacks in the RAMmodel,
and then give a generic compiler that uses our new notion as a main ingredient.
The compiled machine will be resilient to leakage and tampering on the random
access memory. This is analogous to the usage of traditional non-malleable codes
to secure implementations in the circuit model.

1.1. Techniques

In this section, we present a technical overview of our results.

Locally Decodable Non-malleable Codes Our first goal is to consider a combination
of concepts of non-malleability and local decodability. Recall that a coding scheme is
non-malleable with respect to a tampering function f if the decoding of the tampered
codeword remains the same or becomes some unrelated message. To capture this idea,

322 D. Dachman-Soled et al.

the definition in the work [29] requires that there exists a simulator (with respect to such
f) who outputs same∗ if the decoding of the tampered codeword remains the same as
the original one, or he outputs a decoded message, which is unrelated to the original
one. In the setting of local decodability, we consider encodings of blocks of messages
M = (m1,m2, . . . ,mn), and we are able to retrieve mi by running decenc(M)(i), where
the decoding algorithm gets oracle access to the codeword.
The combination faces a subtlety that we cannot directly use the previous definition:

suppose a tampering function f onlymodifies one block of the codeword, then it is likely
that dec remains unchanged for most places. (Recall a decwill only read a few blocks of
the codeword, so itmaynot detect themodification.) In this case, the (overall) decoding of
f (C) (i.e., (dec f (C)(1), . . . ,dec f (C)(n))) can be highly related to the original message,
which intuitively means it is highly malleable.
To handle this issue, we consider a more fine-grained experiment. Informally, we

require that for any tampering function f (within some class), there exists a simulator
that computes a vector of decodedmessages �m∗, a set of indices I ⊆ [n]. Here I denotes
the coordinates of the underlying messages that have been tampered with. If I = [n],
then the simulator thinks that the decoded messages are �m∗, which should be unrelated
to the original messages. On the other hand, if I � [n], the simulator thinks that all
the messages not in I remain unchanged, while those in I become ⊥. This intuitively
means the tampering function can do only one of the following cases:

1. It destroys a block (or blocks) of the underlying messages while keeping the other
blocks unchanged, or

2. If it modifies a block of the underlying messages to some unrelated string, then it
must havemodified all blocks of the underlyingmessages to encodings of unrelated
messages.

Our construction of locally decodable non-malleable code is simple—we use the idea
similar to the key encapsulationmechanism/data encapsulationmechanism (KEM/DEM)
framework. LetNMC be a regular non-malleable code, andE be a secure (symmetric key)
authenticated encryption. Then to encode blocks of messages M = (m1, . . . ,mn), we
first sample a secret key sk of E , and output (NMC.enc(sk), E .Encryptsk(m1, 1), . . . ,
E .Encryptsk(mn, n)). The intuition is clear: if the tampering function does not change
the first block, then by security of the authenticated encryption, any modification of the
rest will become ⊥. (Note that here we include a tag of positions to prevent permutation
attacks.) On the other hand, if the tampering function modified the first block, it must
be decoded to an unrelated secret key sk′. Then by semantic security of the encryption
scheme, the decoded values of the rest must be unrelated. The code can be updated
locally: in order to update mi to some m′

i , one just need to retrieve the 1st and (i + 1)st

blocks. Then he just computes a fresh encoding of NMC.enc(sk) and the ciphertext
E .Encryptsk(m

′
i), and writes back to the same positions.

Extensions to Leakage Resilience against Continual Attacks We further consider
a notion that captures leakage attacks in the continual model. First we observe that
suppose the underlying non-malleable code is also leakage resilient [50], the above
construction also achieves one-time leakage resilience. Using the same argument of Liu
and Lysyanskaya [50], if we can refresh the whole encoding, we can show that the

Locally Decodable and Updatable Non-malleable Codes 323

construction is secure against continual attacks. However, in our setting, refreshing the
whole codeword is not counted as a solution since this is in the opposite of the spirit of
our main theme—locality. The main challenge is how to refresh (update) the codeword
locally while maintaining tamper and leakage resilience.
To capture the local refreshing and continual attacks, we consider a new model where

there is an updater U who reads the whole underlying messages and decides how to
update the codeword (using the local update algorithm). The updater is going to interact
with the codeword in a continual manner, while the adversary can launch tampering and
leakage attacks between two updates. To define security we require that the adversary
cannot learn anything of the underlying messages via tampering and leakage attacks
from the interaction.
We note that if there is no update procedure at all, then no coding scheme can be

secure against continual leakage attacks if the adversary can learn the whole codeword
bit by bit. In our model, the updater and the adversary take turns interacting with the
codeword—the adversary tampers with and/or gets leakage of the codeword, and then
the updater locally updates the codeword, and the process repeats. See Sect. 2 for the
formal model.
Then we consider how to achieve this notion. First we observe that the construction

above is not secure under continual attacks: suppose by leakage the adversary can get a
full ciphertext E .Encryptsk(mi , i) at some point, and then the updater updates the under-
lyingmessage tom′

i . In the next round, the adversary can apply a rewind attack that mod-
ifies the codeword back with the old ciphertext. Under such attack, the underlying mes-
sages have been modified to some related messages. Thus the construction is not secure.
One way to handle this type of rewind attacks is to tie all the blocks of ciphertexts

together with a “time stamp” that prevents the adversary from replacing the codeword
with old ciphertexts obtained from leakage. A straightforward way is to hash all the
blocks of encryptions using a collision-resistant hash function and also encode this
value into the non-malleable code, i.e., C = (NMC.enc(sk, v), E .Encrypt(1,m1),

. . . , E .Encrypt(n,mn)), where v = h(E .Encrypt(1,m1), . . . , E .Encrypt(n,mn)). In-
tuitively, suppose the adversary replaces a block E .Encrypt(i,mi) by some old cipher-
texts, then it would be caught by the hash value v unless he tampered with the non-
malleable code as well. But if he tampers with the non-malleable code, the decoding
will be unrelated to sk, and thus the rest of ciphertexts become “un-decryptable.” This
approach prevents the rewind attacks, yet it does not preserve the local properties, i.e., to
decode a block, one needs to check the consistency of the hash value v, which needs to
read all the blocks of encryptions. To prevent the rewind attacks while maintaining local
decodability/updatability, we use the Merkle tree technique, which allows local checks
of consistency.
The final encoding outputs (NMC.enc(sk, v), E .Encrypt(1,m1), . . . , E .Encrypt

(n,mn), T), where T is the Merkle tree of (E .Encrypt(1,m1), . . . , E .Encrypt
(n,mn)), and v is its root. (It can also be viewed as a hash value.) To decode a po-
sition i , the algorithm reads the 1st, and the (i + 1)st blocks together with a path in the
tree. If the path is inconsistent with the root, then output⊥. To update, one only needs to
re-encode the first block with a new root, and update the (i + 1)st block and the tree. We
note that Merkle tree allows local updates: if there is only one single change at a leaf,
then one can compute the new root given only a path passing through the leaf and the

324 D. Dachman-Soled et al.

root. So the update of the codeword can be done locally by reading the 1st, the (i + 1)st

blocks and the path. We provide a detailed description and analysis in Sect. 3.3.

Concrete Instantiations In our construction above, we rely on an underlying non-
malleable code NMC against some class of tampering functions F and leakage resilient
against some class of leakage functions G. The resulting encoding scheme is a locally
decodable and updatable coding scheme which is continual non-malleable against some
class F of tampering functions and leakage resilient against some class G of leakage
functions, where the class F is determined by F and the class G is determined by G.
In order to understand the relationship between these classes, it is helpful to recall the
structure of the output of the final encoding scheme. The final encoding scheme will
output 2n + 1 blocks x1, . . . , x2n+1 such that the first block x1 is encoded using the
underlying non-malleable code NMC. As a first attempt, we can define F to consist of
tampering functions f (x1, . . . , x2n+1) = (f1(x1), f2(x2, . . . , x2n+1)), where f1 ∈ F
and f2 is any polynomial-sized circuit. However, it turns out that we are resilient against
an even larger class of tampering functions! This is because the tampering function f1
can actually depend on all the values x2, . . . , x2n+1 of blocks 2, . . . , (2n+1). Similarly,
for the class of leakage functions, as a first attempt, we can define G to consist of
leakage functions g(x1, . . . , x2n+1) = (g1(x1), g2(x2, . . . , x2n+1)), where g1 ∈ G and
g2 is any polynomial-sized circuit. However, again we can achieve even more because
the tampering function g1 can actually depend on all the values x2, . . . , x2n+1. For a
formal definition of the classes of tampering and leakage functions that we handle, see
Theorem 3.10.
Finally, we give a concrete example of what the resulting classes look like using the

NMC construction of Liu and Lysyanskaya [50] as the building block. Recall that their
construction achieves both tamper and leakage resilience for split-state functions. Thus,
the overall tampering function f restricted in the first block (i.e., f1) can be any (poly-
sized) split-state function. On the other hand f restricted in the rest (i.e., f2) can be any
poly-sized function. The overall leakage function g restricted in the first block (i.e., g1)
can be a (poly-sized) length-bounded split-state function; g, on the other hand, can leak
all the other parts. See Sect. 3.4 for more details.

Application toTamperandLeakage-ResilientRAMModel ofComputationWhereas
regular non-malleable codes yield secure implementations against memory tampering in
the circuit model, our new tool yields secure implementations againstmemory tampering
(and leakage) in the RAM model.
In our RAM model, the data and program to be executed are stored in the random

access memory. Through a CPU with a small number of (non-persistent) registers,1

execution proceeds in clock cycles: in each clock-cycle memory addresses are read
and stored in registers, a computation is performed, and the contents of the registers are
written back tomemory. In our attackmodel,we assume that theCPUcircuitry (including
the non-persistent registers) is secure—the computation itself is not subject to physical

1These non-persistent registers are viewed as part of the circuitry that stores some transient states, while
the CPU is computing at each cycle. The number of these registers is small, and the CPU needs to erase the
data in order to reuse them, so they cannot be used to store a secret key that is needed for a long term of
computation.

Locally Decodable and Updatable Non-malleable Codes 325

attacks. On the other hand, the random access memory and the memory addresses are
prone to leakage and tampering attacks. We remark that if the CPU has secure persistent
registers that store a secret key, then the problem becomes straightforward: security can
be achieved using encryption and authentication together with oblivious RAM [36]. We
emphasize that in our model, persistent states of the CPU are stored in the memory,
which are prone to leakage and tampering attacks. As our model allows the adversary
to learn the access patterns the CPU made to the memory, together with the leakage
and tampering power on the memory, the adversary can somewhat learn the messages
transmitted over the bus or tamper with them (depending on the attack classes allowed
on the memory). For simplicity of presentation, we do not define attacks on the bus, but
just remark that these attacks can be implicitly captured by learning the access patterns
and attacking the memory.2

In our formal modeling, we consider a next instruction function �, a database D
(stored in the random access memory), and an internal state (using the non-persistent
registers). The CPU will interact (i.e., read/write) with the memory based on �, while
the adversary can launch tamper and leakage attacks during the interaction.
Our compiler is very simple, given theORAMtechnique and our newcodes as building

blocks. Informally speaking, given any next instruction function � and database D, we
first use ORAM technique to transform them into a next instruction function ˜� and a
database ˜D. Next, we use our local non-malleable code (enc,dec,update) to encode ˜D
into ̂D; the compiled next instruction function ̂� does the following: run ˜� to compute
the next “virtual” read/write instruction, and then run the local decoding or update
algorithms to perform the physical memory access.
Intuitively, the inner ORAM protects leakage of the address patterns, and the outer

local non-malleable codes prevent an attacker frommodifying the contents of memory to
some different but related value. Since at each cycle the CPU can only read and write at
a small number of locations of the memory, using regular non-malleable codes does not
work. Our new notion of locally decodable and updatable non-malleable codes exactly
solves these issues!

1.2. Related Work

Different flavors of non-malleable codes were studied [2,3,7,8,15–17,27,29,30,32,50].
We can use these constructions to secure implementations against memory attacks in
the circuit model and also as our building block for the locally decodable/updatable
non-malleable codes. See also Sect. 3.4 for further exposition.

Securing circuits or CPUs against physical attacks is an important task, but out of
the scope of this paper. Some partial results can be found in previous work [20,21,23–
26,28,33,34,37,38,41–43,46,49,51,52,54–56].

In an independent and concurrentwork, Faust et al. [31] also considered securingRAM
computation against tampering and leakage attacks. We note that both their model and
techniques differ considerably from ours. In the following, we highlight some of these
differences. The main focus of [31] is constructing RAM compilers for keyed functions,

2There are some technical subtleties to simulate all leakage/tampering attacks on the values passing the
bus using memory attacks (and addresses). We defer the rigorous treatment to future work.

326 D. Dachman-Soled et al.

denotedGK, to allow secure RAMemulation of these functions in the presence of leakage
and tampering. In contrast, our work focuses on constructing compilers that transform
any dynamic RAMmachine into a RAMmachine secure against leakage and tampering.
Due to this different perspective, our compiler explicitly utilizes an underlying ORAM
compiler, while they assume that the memory access pattern of input function G is
independent of the secret state K (e.g., think of G as the circuit representation of the
function). In addition to the split-state tampering and leakage attacks considered by both
papers, [31] do not assume that memory can be overwritten or erased, but require the
storage of a tamper-proof program counter.With regard to techniques, they use a stronger
version of non-malleable codes in the split-state setting (called continual non-malleable
codes [30]) for their construction. Finally, in their construction, each memory location is
encoded using an expensive non-malleable encoding scheme, while in our construction,
non-malleable codes are used only for a small portion of the memory, while highly
efficient symmetric key authenticated encryption is used for the remainder.

1.3. Subsequent Work

Subsequent to the publication of our work, a significant progress has been made on con-
structions of improved (split-state) non-malleable codes (cf. [1,4,5]) and these construc-
tions can then be plugged into our construction which generically constructs locally de-
codable and updatable non-malleable codes from an underlying (regular) non-malleable
codes.
Finally, Chandran et al. [14] presented constructions of information-theoretic locally

decodable and updatable non-malleable codes, which do not require computational as-
sumptions. Their constructions, however, do not extend to the continual leakage setting
and so should be compared with our one-time construction (see Sect. 3.2). In this set-
ting, their constructions require non-constant locality, whereas our constructions achieve
constant locality.

2. Locally Decodable and Updatable Non-malleable Codes

In this section, we first review the concepts of non-malleable (leakage resilient) codes.
Then we present our new notion that combines non-malleability, leakage resilience, and
locality.

2.1. Preliminary

Definition 2.1. (Coding Scheme) Let �, �̂ be sets of strings, and κ, κ̂ ∈ N be some
parameters. A coding scheme consists of two algorithms (enc,dec) with the following
syntax:

– The encoding algorithm (perhaps randomized) takes input a block of message in
� and outputs a codeword in �̂.

– The decoding algorithm takes input a codeword in �̂ and outputs a block ofmessage
in �.

Locally Decodable and Updatable Non-malleable Codes 327

We require that for any message m ∈ �, Pr[dec(enc(m)) = m] = 1, where the
probability is taken over the choice of the encoding algorithm. In binary settings, we
often set � = {0, 1}κ and �̂ = {0, 1}κ̂ .

Definition 2.2. (Non-malleability [29]) Let k be the security parameter, and F be
some family of functions. For each function f ∈ F , and m ∈ �, define the tampering
experiment:

Tamper f
m

def=
{

c ← enc(m), c̃ := f (c), m̃ := dec(c̃).
Output : m̃.

}

,

where the randomness of the experiment comes from the encoding algorithm. We say a
coding scheme (enc,dec) is non-malleable with respect to F if for each f ∈ F , there
exists a ppt simulator S such that for any message m ∈ �, we have

Tamper f
m ≈ IdealS,m

def=
{

m̃ ∪ {same∗} ← S f (·).
Output : m if that is same∗; otherwise m̃.

}

Here the indistinguishability can be either computational or statistical.

We can extend the notion of non-malleability to leakage resilience (simultaneously)
as the work of Liu and Lysyanskaya [50].

Definition 2.3. (Non-malleability and Leakage Resilience [50]) Let k be the security
parameter, F , G be some families of functions. For each function f ∈ F , g ∈ G, and
m ∈ �, define the tamper-leak experiment:

TamperLeak f,g
m

def=
{

c ← enc(m), c̃ := f (c), m̃ := dec(c̃).
Output : (m̃, g(c)).

}

,

where the randomness of the experiment comes from the encoding algorithm. We say
a coding scheme (enc,dec) is non-malleable and leakage resilience with respect to F
and G if for any f ∈ F , g ∈ G, there exists a ppt simulator S such that for any message
m ∈ �, we have

TamperLeak f,g
m ≈ IdealS,m

def=
{

(m̃ ∪ {same∗}, �) ← S f (·),g(·).
Output : (m, �) if that is same∗; otherwise (m̃, �).

}

Here the indistinguishability can be either computational or statistical.

2.2. New Definitions: Codes with Local Properties

In this section, we consider coding schemes with extra local properties—decodability
and updatability. Intuitively, this gives a way to encode blocks of messages, such that

328 D. Dachman-Soled et al.

in order to decode (retrieve) a single block of the messages, one only needs to read a
small number of blocks of the codeword; similarly, in order to update a single block of
the messages, one only needs to update a few blocks of the codeword.

Definition 2.4. (Locally Decodable and Updatable Code) Let �, �̂ be sets of strings,
and n, n̂, p, q be some parameters. An (n, n̂, p, q) locally decodable and updatable cod-
ing scheme consists of three algorithms (enc,dec,update) with the following syntax:

– The encoding algorithm enc (perhaps randomized) takes input an n-block (in �)
message and outputs an n̂-block (in �̂) codeword.

– The (local) decoding algorithm dec takes input an index in [n], reads at most p
blocks of the codeword, and outputs a block of message in�. The overall decoding
algorithm simply outputs (dec(1),dec(2), . . . ,dec(n)).

– The (local) updating algorithmupdate (perhaps randomized) takes inputs an index
in [n] and a string in � ∪ {ε} and reads/writes at most q blocks of the codeword.
Here the string ε denotes the procedure of refreshing without changing anything.

Let C ∈ �̂n̂ be a codeword. For convenience, we denote decC ,updateC as the
processes of reading/writing individual block of the codeword, i.e., the codeword oracle
returns or modifies individual block upon a query. Here we view C as a random access
memory where the algorithms can read/write to the memory C at individual different
locations.

Remark 2.5. Throughout this paper, we only consider non-adaptive decoding and up-
dating, which means the algorithms dec and update compute all their queries at the
same time before seeing the answers, and the computation only depends on the input
i (the location). In contrast, an adaptive algorithm can compute a query based on the
answer from previous queries. After learning the answer to such query, then it can make
another query. We leave it as an interesting open question to construct more efficient
schemes using adaptive queries.

Then we define the requirements of the coding scheme.

Definition 2.6. (Correctness) An (n, n̂, p, q) locally decodable and updatable coding
scheme (with respect to �, �̂) satisfies the following properties. For any message M =
(m1,m2, . . . ,mn) ∈ �n , let C = (c1, c2, . . . , cn̂) ← enc(M) be a codeword output by
the encoding algorithm. Then we have:

– for any index i ∈ [n], Pr[decC (i) = mi] = 1, where the probability is over the
randomness of the encoding algorithm.

– for any update procedure with input (j,m′) ∈ [n]×� ∪ {ε}, let C ′ be the resulting
codeword by running updateC (j,m′). Then we have Pr[decC ′

(j) = m′] = 1,
where the probability is over the encoding and update procedures. Moreover, the
decodings of the other positions remain unchanged.

Remark 2.7. The correctness definition can be directly extended to handle any sequence
of updates.

Locally Decodable and Updatable Non-malleable Codes 329

Next, we define several flavors of security about non-malleability and leakage re-
silience.
One-time Non-malleability First we consider one-time non-malleability of locally de-
codable codes, i.e., the adversary only tampers with the codeword once. This extends
the idea of the non-malleable codes (as in Definition 2.2). As discussed in introduction,
we present the following definition to capture the idea that the tampering function can
only do either of the following cases:

– It destroys a block (or blocks) of the underlying messages while keeping the other
blocks unchanged, or

– If it modifies a block of the underlying messages to some unrelated string, then it
must have modified all blocks of the underlying messages to encodings of unrelated
messages.

Definition 2.8. (Non-malleability of LocallyDecodableCodes)An (n, n̂, p, q)-locally
decodable coding scheme with respect to �, �̂ is non-malleable against the tampering
function class F if for all f ∈ F , there exists some simulator S such that for any M =
(m1, . . . ,mn) ∈ �n , the experiment Tamper f

M is (computationally) indistinguishable
to the following ideal experiment IdealS,M :

– (I, �m∗) ← S(1k), where I ⊆ [n], �m′ ∈ �n . (Intuitively I means the coordinates
of the underlying message that have been tampered with.)

– If I = [n], define �m = �m∗; otherwise set �m|I = ⊥, �m|Ī = M |Ī , where �x |I
denotes the coordinates �x[v] where v ∈ I, and the bar denotes the complement of
a set.

– The experiment outputs �m.

Remark 2.9. Here we make two remarks about the definition:

1. In the one-time security definition, we do not consider the update procedure. In
the next paragraph when we define continual attacks, we will handle the update
procedure explicitly.

2. One-time leakage resilience of locally decodable codes can be defined in the same
way as Definition 2.3.

Security Against Continual Attacks In the following, we extend the security to handle
continual attacks. Here we consider a third party called updater, who can read the
underlying messages and decide how to update the codeword. Our model allows the
adversary to learn the location that the updater updated the messages, so we also allow
the simulator to learn this information. This is without loss of generality if the leakage
class G allows it, i.e., the adversary can query some g ∈ G to figure out what location
was modified. On the other hand, the updater does not tell the adversary what content
was encoded of the updated messages, so the simulator needs to simulate the view
without such information. We can think of the updater as an honest user interacting with
the codeword (read/write). The security intuitively means that even if the adversary can
launch tampering and leakage attacks when the updater is interacting with the codeword,
the adversary cannot learn anything about the underlying encoded messages (or the
updated messages during the interaction).

330 D. Dachman-Soled et al.

Our continual experiment consists of rounds: in each round the adversary can tamper
with the codeword and get partial information. At the end of each round, the updater
will run update, and the codeword will be somewhat updated and refreshed. We note
that if there is no refreshing procedure, then no coding scheme can be secure against
continual leakage attack even for one-bit leakage at a time,3 so this property is necessary.
Our concept of “continuity” is different from that of Faust et al. [30], who considered
continual attacks on the same original codeword. (The tampering functions can be chosen
adaptively.) Our model does not allow this type of “resetting attacks.” Once a codeword
has been modified to f (C), the next tampering function will be applied on f (C).
We remark that the one-time security can be easily extended to the continual case

(using a standard hybrid argument) if the update procedure re-encodes the whole un-
derlying messages (c.f. see the results in the work [50]). However, in the setting above,
we emphasize on the local property, so this approach does not work. How to do a lo-
cal update while maintaining tamper and leakage resilience makes the continual case
challenging!

Definition 2.10. (Continual Tampering and Leakage Experiment) Let k be the se-
curity parameter, F ,G be some families of functions. Let (enc,dec,update) be an
(n, n̂, p, q)-locally decodable and updatable coding scheme with respect to �, �̂. Let
U be an updater that takes input a message M ∈ �n and outputs an index i ∈ [n]
and m ∈ �. Then for any blocks of messages M = (m1,m2, . . . ,mn) ∈ �n , and any
(non-uniform) adversary A, any updater U , define the following continual experiment
CTamperLeakA,U ,M :

– The challenger first computes an initial encoding C (1) ← enc(M).
– Then the following procedure repeats, at each round j , let C (j) be the current
codeword and M (j) be the underlying message:

• A sends either a tampering function f ∈ F and/or a leakage function g ∈ G to
the challenger.

• The challenger replaces the codeword with f (C (j)) or sends back a leakage
�(j) = g(C (j)).

• We define �m(j) def=
(

dec f (C(j))(1), . . . ,dec f (C(j))(n)
)

.

• Then the updater computes (i (j),m) ← U(�m(j)) for the challenger.
• Then the challenger runs update f (C(j))(i (j),m) and sends the index i (j) toA.
• A may terminate the procedure at any point.

– Let t be the total number of rounds above. At the end, the experiment outputs

(

�(1), �(2), . . . , �(t), �m(1), . . . , �m(t), i (1), . . . , i (t)
)

.

Definition 2.11. (Non-malleability and Leakage Resilience against Continual Attacks)
An (n, n̂, p, q)-locally decodable and updatable coding scheme with respect to �, �̂ is
continual non-malleable against F and leakage resilient against G if for all ppt (non-

3If there is no refreshing procedure, then the adversary can eventually learn the whole codeword bit by bit
by leakage. Thus he can learn the underlying message.

Locally Decodable and Updatable Non-malleable Codes 331

uniform) adversaries A, and ppt updaters U , there exists some ppt (non-uniform) sim-
ulator S such that for any M = (m1, . . . ,mn) ∈ �n , CTamperLeakA,U ,M is (compu-
tationally) indistinguishable to the following ideal experiment IdealS,U ,M :

– The experiment proceeds in rounds. Let M (1) = M be the initial message.
– At each round j , the experiment runs the following procedure:

• At the beginning of each round, S outputs (�(j), I(j), �w(j)), where I(j) ⊆ [n].
• Define

�m(j) =
{ �w(j) if I(j) = [n]

�m(j)|I(j) := ⊥, �m(j)|Ī(j) := M (j)|Ī(j) otherwise,

where �x |I denotes the coordinates �x[v] where v ∈ I, and the bar denotes the
complement of a set.

• The updater runs (i (j),m) ← U(�m(j)) and sends the index i (j) to the simulator.
Then the experiment updates M (j+1) as follows: set M (j+1) := M (j) for all
coordinates except i (j), and set M (j+1)[i (j)] := m.

– Let t be the total number of rounds above. At the end, the experiment outputs

(

�(1), �(2), . . . , �(t), �m(1), . . . , �m(t), i (1), . . . , i (t)
)

.

2.3. Strong Non-malleability

Herewefirst recall the strongnon-malleability notionoriginally definedbyDziembowski
et al. [29]. Then we define strong non-malleability against one-time and continual at-
tacks, respectively. We remark that our constructions in Sect. 3 can achieve the stronger
notion of non-malleability if the underlying non-malleable code is the stronger one (see
Remark 3.15).

Definition 2.12. (Strong Non-malleability [29]) Let k be the security parameter, F be
some family of functions. For each function f ∈ F , and m ∈ �, define the tampering
experiment

StrongNM f
m

def=
{

c ← enc(m), c̃ := f (c), m̃ := dec(c̃)
Output : same∗ if c̃ = c, and m̃ otherwise.

}

The randomness of this experiment comes from the randomness of the encoding
algorithm.We say that a coding scheme (enc,dec) is strong non-malleable with respect
to the function family F if for any m,m′ ∈ � and for each f ∈ F , we have:

{StrongNM f
m}k∈N ≈ {StrongNM f

m′ }k∈N
where ≈ can refer to statistical or computational indistinguishability.

One-time security Strong Non-malleability against one-time physical attacks is defined
as follows.

332 D. Dachman-Soled et al.

Definition 2.13. (Strong Non-malleability of Locally Decodable Codes) Let k be the
security parameter, F be some family of functions. For each function f ∈ F , and
M = (m1,m2, . . . ,mn) ∈ �n , define the tampering experiment

StrongNM f
M

def=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C ← enc(M), C̃ = f (C), m̃i = decC̃ (i) for i ∈ [n].
If ∃ i such that m̃i �= ⊥ & C̃ and C are not identical for all queries by dec(i),

then output: (m̃1, m̃2, . . . , m̃n).

Else, set m′
i = same∗ if C and C̃ are identical for all queries of dec(i);

otherwise m′
i = ⊥. Then output: (m′

1,m
′
2, . . . ,m

′
n).

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

The randomness of this experiment comes from the randomness of the encoding and
decoding algorithms.
We say that a locally decodable coding scheme (enc,dec,update) is strong non-

malleable against the function class F if for any M, M ′ ∈ �n and for any f ∈ F , we
have:

{StrongNM f
M }k∈N ≈ {StrongNM f

M ′ }k∈N

where ≈ can refer to statistical or computational indistinguishability.

Continual securityStrongNon-malleability against continual physical attacks is defined
as follows.

Definition 2.14. (Strong Continual Tampering and Leakage Experiment) Let k be the
security parameter, F ,G be some families of functions. Let (enc,dec,update) be an
(n, n̂, p, q)-locally decodable and updatable coding scheme with respect to �, �̂. Let
U be an updater that takes input a message M and outputs an index i ∈ [n] and m ∈ �.
Then for any blocks of messages M = (m1,m2, . . . ,mn) ∈ �n , and any (non-uniform)
adversary A, any updater U , define the following experiment StrongTLA,U ,M :

• The challenger first computes an initial encoding C (1) ← enc(M).
• Then the following procedure repeats, at each round j , let C (j) be the current
codeword and M (j) be the underlying message:

– A sends either a tampering function f ∈ F and/or a leakage function g ∈ G
to the challenger.

– The challenger replaces the codeword with f (C (j)) or sends back a leakage
�(j) = g(C (j)).

– Then we define �m(j) for the following two conditions:

• If there exists i such that dec f (C(j))(i) �= ⊥ and C (j) and f (C (j)) are
not identical for all queries from dec(i), then set �m(j) = (dec f (C(j))(1),
. . . ,dec f (C(j))(n)).

• Else, for i ∈ [n], let m′
i = same∗ if f (C (j)) and C (j) are identical for all

queries of dec(i), otherwise m′
i = ⊥. Then set �m(j) = (m′

1,m
′
2, . . . ,m

′
n).

Locally Decodable and Updatable Non-malleable Codes 333

– Then the updater sends (i (j),m) ← U(M (j)) to the challenger, and the chal-
lenger runs update f (C(j))(i (j),m) and sends the index i (j) to A.

– A may terminate the procedure at any point.

• Let t be the total number of rounds above. At the end, the experiment outputs

(

�(1), �(2), . . . , �(t), �m(1), . . . , �m(t), i (1), . . . , i (t)
)

.

Definition 2.15. (Strong Non-malleability and Leakage Resilience against Continual
Attacks) An (n, n̂, p, q)-locally decodable and updatable coding scheme with respect to
�, �̂ is strong continual non-malleable against F and leakage resilient against G if for
all ppt (non-uniform) adversaries A, any ppt updater U , any messages M, M ′ ∈ �n ,
the experiments StrongTLA,U ,M and StrongTLA,U ,M ′ are (computationally) indistin-
guishable.

3. Our Constructions

In this section, we present two constructions. As a warm-up, we first present a construc-
tion that is one-time secure to demonstrate the idea of achieving non-malleability, local
decodability, and updatability simultaneously. Then in the next section, we show how
to make the construction secure against continual attacks.

3.1. Preliminary: Symmetric Encryption

Asymmetric encryption schemeconsists of three ppt algorithms (Gen,Encrypt,Decrypt)
such that:

– The key generation algorithm Gen takes as input a security parameter 1k returns a
key sk.

– The encryption algorithm Encrypt takes as input a key sk, and a message m. It
returns a ciphertext c ← Encryptsk(m).

– The decryption algorithm Decrypt takes as input a secret key sk, and a ciphertext
c. It returns a message m or a distinguished symbol ⊥. We write this as m =
Decryptsk(c)

We require that for any m in the message space, it should hold that

Pr[sk ← Gen(1k); Decryptsk(Encryptsk(m)) = m] = 1.

We next define semantical security and then the authenticity. In the following, we
define a left-or-right encryption oracle LRsk,b(·, ·) with b ∈ {0, 1} and |m0| = |m1| as
follows:

LRsk,b(m0,m1)
def= Encryptsk(mb).

334 D. Dachman-Soled et al.

Definition 3.1. (Semantical Security) A symmetric encryption scheme E = (Gen,

Encrypt,Decrypt) is semantically secure if for any non-uniform ppt adversary A, it
holds that |2 · AdvprivE (A) − 1| = negl(k) where

AdvprivE (A) = Pr
[

sk ← Gen(1k); b ← {0, 1} : ALRsk,b(·,·)(1k) = b
]

.

Definition 3.2. (Authenticity [9,10,45]) A symmetric encryption scheme
E = (Gen,Encrypt,Decrypt) has the property of authenticity if for any non-uniform
ppt adversary A, it holds that AdvauthE (A) = negl(k) where

AdvauthE (A) = Pr[sk ← Gen(1k), c∗ ← AEncryptsk(·) : c∗ �∈ Q ∧ Decryptsk(c
∗) �∈⊥]

where Q is the query history A made to the encryption oracle.

3.2. A First Attempt: One-Time Security

Construction Let E = (Gen,Encrypt,Decrypt) be a symmetric encryption scheme,
NMC = (enc,dec)be a coding scheme.Thenwe consider the following coding scheme:

– enc(M): on input M = (m1,m2, . . . ,mn), the algorithm first generates the en-
cryption key sk ← E .Gen(1k). Then it computes c ← NMC.enc(sk), ei ←
E .Encryptsk(mi , i) for i ∈ [n]. The algorithm finally outputs a codeword C =
(c, e1, e2, . . . , en).

– decC (i): on input i ∈ [n], the algorithm reads the first block and the (i + 1)-st
block of the codeword to retrieve (c, ei). Then it runs sk := NMC.dec(c). If the
decoding algorithm outputs ⊥, then it outputs ⊥ and terminates. Else, it computes
(mi , i∗) = E .Decryptsk(ei). If i

∗ �= i , or the decryption fails, the algorithmoutputs
⊥. If all the above verifications pass, the algorithm outputs mi .

– update(i,m′): on inputs an index i ∈ [n], a block ofmessagem′ ∈ �, the algorithm
runs decC (i) to retrieve (c, ei) and (sk,mi , i). If the decoding algorithm returns
⊥, the algorithm writes ⊥ to the first block and the (i + 1)-st block. Otherwise,
it computes a fresh encoding c′ ← NMC.enc(sk), and a fresh ciphertext e′

i ←
E .Encryptsk(m

′, i). Then it writes back the first block and the (i +1)-st block with
(c′, e′

i).

To analyze the coding scheme, we make the following assumptions of the parameters in
the underlying scheme for convenience:

1. The size of the encryption key is k (security parameter), i.e., |sk| = k.
2. Let� be a set, and the encryption scheme supports messages of length |�|+ log n.

The ciphertexts are in the space �̂.
3. The length of |NMC.enc(sk)| is less than |�̂|.
Then clearly, the above coding scheme is an (n, n + 1, 2, 2)-locally updatable and

decodable code with respect to �, �̂. The correctness of the scheme is obvious by
inspection. The rate (ratio of the length of messages to that of codewords) of the coding
scheme is 1 − o(1).

Locally Decodable and Updatable Non-malleable Codes 335

Theorem 3.3. Assume E is a symmetric authenticated encryption scheme, andNMC is
a non-malleable code against the tampering function class F . Then the coding scheme
presented above is one-time non-malleable against the tampering class

F̄ def=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f : �̂n+1 → �̂n+1 and | f | ≤ poly(k), such that :
f = (f1, f2), f1 : �̂n+1 → �̂, f2 : �̂n → �̂n,

∀(x2, . . . , xn+1) ∈ �̂n, f1(·, x2, . . . , xn+1) ∈ F
f (x1, x2, . . . , xn+1) = (f1(x1, x2, . . . , xn+1), f2(x2, . . . , xn+1)) .

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

We have presented the intuition in introduction. Before giving the detailed proof, we
make the following remark.

Remark 3.4. The function class F̄ may look complex, yet the intuition is simple. The
tampering function restricted in the first block (the underlying non-malleable code) falls
into the class F—this is captured by f1 ∈ F ; on the other hand, we just require the
function restricted in the rest of the blocks to be polynomial-sized—this is captured by
| f2| ≤ | f | ≤ poly(k).
For our construction, it is inherent that the function f2 cannot depend on x1 arbitrarily.

Suppose this is not the case, then f2 can first decode the non-malleable code, encrypt the
decoded value, andwrite the ciphertext into x2, which breaks non-malleability. However,
if the underlying coding scheme is non-malleable and also leakage resilient to G, then
we can allow f2 to get additional information g(x1) for any g ∈ G. Moreover, the above
construction is one-time leakage resilient.
We present the above simpler version for clarity of exposition and give this remark that

our construction actually achieves security against a broader class of tampering attacks.

Proof of Theorem 3.3. To show the theorem, for any function f ∈ F̄ , we need to
construct a ppt simulator S such that for any message blocks M = (m1, . . . ,mn), we

have Tamper f
M

c≈ IdealS,M as Definition 2.8. We describe the simulator as follows;
here the ppt simulator S has oracle access to f = (f1, f2) ∈ F̄ .

– S f (·) first runs sk ← E .Gen(1k) and computes n encryptions of 0, i.e., ei ←
E .Encryptsk(0) for i ∈ [n].

– Let f ′
1(·) def= f1(·, e1, e2, . . . , en), and let S ′ be the underlying simulator of the

non-malleable code NMC with respect to the tampering function f ′
1. Then S f (·)

simulates S ′ f ′
1(·) internally; here S uses the external oracle access to f to compute

the responses for the queries made by S ′. At some point, S ′ returns an output
m′ ∈ � ∪ {same∗}.

– If m′ = same∗ ∪ {sk}, then S computes (e′
1, e

′
2, . . . , e

′
n) ← f2(e1, e2, . . . , en).

Let I be set of the indices where e′ is not equal to e, i.e., I = {i : e′
i �= ei }. Then

S outputs (I, �ε), where �ε denotes the empty vector.
– Else (i.e., m′ �= same∗ ∩ m′ �= sk), S sets sk′ := m′, and computes

(e′
1, e

′
2, . . . , e

′
n) ← f2(e1, e2, . . . , en), and sets �m∗ := (E .Decryptsk′(e′

1),

. . . , E .Decryptsk′(e′
n)). Then S outputs ([n], �m∗).

To show Tamper f
M ≈ IdealS,M , we consider the following hybrids.

336 D. Dachman-Soled et al.

Hybrid H0: This is exactly the experiment IdealS,M .
Hybrid H1: In this hybrid, we use a modified simulator, who is basically the same as
S, except in the first place the modified simulator generates ei ← E .Encryptsk(mi , i)
for i ∈ [n].
Hybrid H2: In this hybrid, we use another modified simulator, who is basically the
same as the previous simulator, except this modified simulator obtains m′ by running
the real tampering experiment f1(NMC.enc(sk), e1, e2, . . . , en) and outputs same∗ if
the outcome is the original sk.

In the following claims, we are going to show that IdealS,M = H0 ≈ H1 ≈ H2 ≈
Tamper f

M . Then the theorem follows directly from these claims.

Claim 3.5. Suppose the encryption scheme E is semantically secure, then H0 ≈ H1.

Proof. Suppose an adversary can distinguish H0 from H1, thenwe can build a reduction
to break semantic security of the encryption scheme as follows: the reduction gets input
ciphertexts e1, . . . , en that are either from E .Encryptsk(mi , i) or E .Encryptsk(0) for i ∈
[n]. Then the reduction simulates the rest of the experiments. (NoteS andS∗ are identical
expect for the ciphertexts.) Clearly, if the input ciphertexts come from E .Encryptsk(0),
then the reduction identically simulates the experiment H0, and otherwise H1. Thus, if
the adversary can distinguish the two experiments, then the reduction can break semantic
security of the encryption. �

Claim 3.6. Suppose NMC is a non-malleable code against F , then H1 ≈ H2.

Proof. Since f ′
1 ∈ F , by the non-malleability of NMC, we have NMC.Tamper

f ′
1

sk ≈
NMC.IdealS ′,sk. We note that the experiments H2 and H1 can be easily derived from

NMC.Tamper
f ′
1

sk andNMC.IdealS ′,sk, respectively, by settingm′ as the output of either
of the experiments (i.e., set m′ = NMC.Tamper

f ′
1

sk or m′ = NMC.IdealS ′,sk). By the

security of the coding schemeNMC,weknow thatNMC.Tamper
f ′
1

sk andNMC.IdealS ′,sk
are indistinguishable. Therefore, H1 and H2 are indistinguishable as well. �

Claim 3.7. Suppose the encryption scheme E has the property of authenticity, then
H2 ≈ Tamper fM .

Proof. We first notice that suppose f ′
1 modifies sk, then the two experiments execute

identically. The only way that they differ is when sk remains unmodified, but there f2
produces some “valid” e′

i which is not equal ei . In this case H2 would produce ⊥, but

Tamper fM will produce a meaningful message for that slot. We denote this as the event
E . From the argument, we know that the statistical difference of the two experiments is
bounded by Pr[E] as conditioned on ¬E , and these two experiments are identical.

Next we show that Pr[E] = negl(k): suppose not, then we are going to build a re-
duction that breaks the authenticity property of the encryption scheme. The reduction
queries the encryption oracle to obtain ciphertexts e1, . . . , en and runs (e′

1, . . . , e
′
n) ←

f2(e1, . . . , en). Then it randomly outputs an element in the set {e′
j : e′

j �= e j }. The

Locally Decodable and Updatable Non-malleable Codes 337

reduction succeeds as long as the event E happens, and it guesses a right modified ci-
phertext. This is with probability at least Pr[E]/n, which is non-negligible. This reaches
a contradiction.
Thus, we conclude that these two experiments are indistinguishable assuming the

authenticity property of the encryption scheme. �

The proof of the theorem follows directly from these claims. �

3.3. Achieving Security Against Continual Attacks

As discussed in introduction, the above construction is not secure if continual tampering
and leakage is allowed—the adversary can use a rewind attack to modify the underlying
message to some old/related messages. We handle this challenge using a technique
of Merkle tree, which preserves local properties of the above scheme. We present the
construction in the following:

Definition 3.8. (Merkle tree) Let h : X × X → X be a hash function that maps
two blocks of messages to one.4 A Merkle tree Treeh(M) takes input a message M =
(m1,m2, . . . ,mn) ∈ X n . Then it applies the hash on each pair (m2i−1,m2i), and result-
ing in n/2 blocks. Then again, it partitions the blocks into pairs and applies the hash on
the pairs, which results in n/4 blocks. This is repeated log n times, resulting a binary
tree with hash values, until one block remains. We call this value the root of Merkle tree
denoted Rooth(M), and the internal nodes (including the root) as Treeh(M). Here M
can be viewed as leaves.

Theorem 3.9. Assuming h is a collision-resistant hash function. Then for any message

M = (m1,m2, . . . ,mn) ∈ X n, any polynomial time adversary A, Pr
[

(m′
i , pi) ←

A(M, h) : m′
i �= mi , pi is a consistent path with Rooth(M)

]

≤ negl(k).

Moreover, given a path pi passing the leaf mi , and a new value m′
i , there is an algo-

rithm that computesRooth(M ′) in time poly(log n, k), where M ′ = (m1, . . . ,mi−1,m′
i ,

mi+1, . . . ,mn).

Construction Let E = (Gen,Encrypt,Decrypt) be a symmetric encryption scheme,
NMC = (enc,dec) be a non-malleable code, H is a family of collision resistance hash
functions. Then we consider the following coding scheme:

– enc(M): on input M = (m1,m2, . . . ,mn), the algorithm first generates encryp-
tion key sk ← E .Gen(1k) and h ← H . Then it computes ei ← E .Encryptsk(mi)

for i ∈ [n], and T = Treeh(e1, . . . , en), R = Rooth(e1, . . . , en). Then it com-
putes c ← NMC.enc(sk, R, h). The algorithm finally outputs a codeword C =
(c, e1, e2, . . . , en, T).

– decC (i): on input i ∈ [n], the algorithm reads the first block, the (i + 1)-st block,
and a path p in the tree (from the root to the leaf i), and it retrieves (c, ei , p).
Then it runs (sk, R, h) = NMC.dec(c). If the decoding algorithm outputs ⊥, or

4Here we assume |X | is greater than the security parameter.

338 D. Dachman-Soled et al.

the path is not consistent with the root R, then it outputs ⊥ and terminates. Else, it
computes mi = E .Decryptsk(ei). If the decryption fails, output ⊥. If all the above
verifications pass, the algorithm outputs mi .

– update(i,m′): on inputs an index i ∈ [n], a block of message m′ ∈ �, the algo-
rithm runsdecC (i) to retrieve (c, ei , p). Then the algorithm can derive (sk, R, h) =
NMC.dec(c). If the decoding algorithm returns ⊥, the update writes ⊥ to the
first block, which denotes failure. Otherwise, it computes a fresh ciphertext e′

i ←
E .Encryptsk(m

′), a new path p′ (that replaces ei by e′
i) and a new root R′, which

is consistent with the new leaf value e′
i . (Note that this can be done given only

the old path p as Theorem 3.9.) Finally, it computes a fresh encoding c′ ←
NMC.enc(sk, R′, h). Then it writes back the first block, the (i + 1)-st block, and
the new path blocks with (c′, e′

i , p
′).

To analyze the coding scheme, we make the following assumptions of the parameters in
the underlying scheme for convenience:

1. The size of the encryption key is k (security parameter), i.e., |sk| = k, and the
length of the output of the hash function is k.

2. Let � be a set, and the encryption scheme supports messages of length |�|. The
ciphertexts are in the space �̂.

3. The length of |NMC.enc(sk, v)| is less than |�̂|, where |v| = k.

Clearly, the above coding scheme is an (n, 2n+1, O(log n), O(log n))-locally updat-
able and decodable code with respect to �, �̂. The correctness of the scheme is obvious
by inspection. The rate (ratio of the length of messages to that of codewords) of the
coding scheme is 1/2 − o(1).

Theorem 3.10. Assume E is a semantically secure symmetric encryption scheme, and
NMC is a non-malleable code against the tampering function class F , and leakage
resilient against the function class G. Then the coding scheme presented above is non-
malleable against continual attacks of the tampering class

F̄ def=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f : �̂2n+1 → �̂2n+1 and | f | ≤ poly(k), such that :
f = (f1, f2), f1 : �̂2n+1 → �̂, f2 : �̂2n → �̂2n,

∀(x2, . . . , x2n+1) ∈ �̂n, f1(· , x2, . . . , x2n+1) ∈ F ,

f (x1, x2, . . . , x2n+1) = (f1(x1, x2, . . . , x2n+1), f2(x2, . . . , x2n+1)) .

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

and is leakage resilient against the class

Ḡ def=
⎧

⎨

⎩

g : �̂2n+1 → Y and |g| ≤ poly(k), such that :
g = (g1, g2), g1 : �̂2n+1 → Y ′, g2 : �̂2n → �̂2n,

∀ (x2, . . . , x2n+1) ∈ �̂n, g1(· , x2, . . . , x2n+1) ∈ G.

⎫

⎬

⎭

.

The intuition of this construction can be found in introduction. Before giving the
detailed proof, we make a remark.

Remark 3.11. Actually our construction is secure against a broader class of tampering
functions. The f2 part can depend on g′(x1) as long as the function g′(·) together with

Locally Decodable and Updatable Non-malleable Codes 339

the leakage function g1(·, x2, . . . , x2n+1) belongs to G. That is, the tampering function
f = (f1, f2, g′) and the leakage function g = (g1, g2) satisfy the constraint g′(·) ◦
g1(·, x2, . . . , x2n+1) ∈ G. (Here we use ◦ to denote concatenation.) For presentation
clarity, we choose to describe the simpler but slightly smaller class of functions.

Proof of Theorem 3.10. To prove the theorem, for any adversary A, we need to con-
struct a simulatorS, such that for initialmessageM ∈ �n , any updaterU , the experiment
of continual attacks TamperLeakA,U ,M is indistinguishable from the ideal experiment
IdealS,U ,M .
The simulatorS first samples randomcoins for the updaterU , so its output just depends

on its input given the random coins. Then S works as follows:

– Initially S samples sk ← E .Gen(1k), h ← H , and then generates n encryptions
of 0, i.e., �e(1) := (e1, e2, . . . , en) where ei ← E .Encryptsk(0) for i ∈ [n]. Then S
computes T (1) := Treeh(e1, . . . , en). Here let R(1) be the root of the tree. S keeps
global variables: sk, h, a flag flag = 0, and a string C = ε (empty string).

– At each round j , let g(j) ∈ Ḡ, f (j) = (f (j)
1 , f (j)

2) ∈ F̄ be some leakage/tampering
functions specified by the adversary. If the flag is 0, i.e., flag = 0, then S does the
following:

• First, S sets (e1, e2, . . . , en) := �e(j), T := T (j), and R := R(j). Then S defines

f ′
1(·) def= f (j)

1 (·, e1, e2, . . . , en, T), and g′(·) def= g(j)(·, e1, e2, . . . , en, T). Let
S ′ be the simulator of the underlying leakage-resilient non-malleable codeNMC
with respect to the tampering and leakage functions f ′

1(·) and g′(·).
• Then S computes (m′, �′) ← S ′ f ′

1(·),g′(·), and sets �(j) := �′,
and (e′

1, e
′
2, . . . , e

′
n, T

′) := f (j)
2 (e1, e2, . . . , en, T).

• If m′ = same∗, S sets I(j) = {u : e′
u �= eu}, i.e., the indices where e′ is not

equal to e, and set �w(j) := �ε, the empty vector. S outputs {�(j), I(j), �w(j)} for
this round.
Then upon receiving an index i (j) ∈ [n] from the updater, thenS checkswhether
the path passing the leaf e′

i (j)
in the Merkle tree T ′ is consistent with the root

R, and does the following:

– If the check fails, he sets flag := 1, C := (⊥, e′
1, . . . , e

′
n, T

′), and then
exits the loop of this round.

– Otherwise, he sets �e(j+1) := (e′
1, e

′
2, . . . , e

′
n) for all indices except i

(j). He
creates a fresh ciphertext e ← E .Encryptsk(0) and sets �e(j+1)[i (j)] := e
(simulating the update). He updates the path passing through the i (j)-th
leaf in T ′ and the root R, and set T (j+1) := T ′, R(j+1) := R (the updated
ones).

• Else if m′ �= same∗, then S sets I(j) := [n], and sets the flag to be 1, i.e.,
flag := 1. He parsesm′ = (sk′, h′, R′), and uses the key sk′ to compute �w(j) =
(E .Decryptsk′(e′

1), . . . , E .Decryptsk′(e′
n)). Then he outputs {�(j), I(j), �w(j)}

for this round.
Then S computes (i (j),m) ← U(�w(j)) on his own. Let C ′
= (NMC.enc(sk′, h′, R′), e′

1, . . . , e
′
n, T

′)be a codeword, andS runsupdateC
′

340 D. Dachman-Soled et al.

(i (j),m). Let C∗ be the resulting codeword, and S updates the global variable
C := C∗.

– Else if flag = 1, S simulates the real experiment faithfully:

• S outputs �(j) = g(j)(C), and computes C ′ = f (j)(C).
• Set �w(j)[v] := dec(C ′)(v), i.e., running the real decoding algorithm. Then S
outputs {�(j), I(j) = [n], �w(j)} for this round.

• Then S computes (i (j),m) ← U(�w(j)) on his own and runs updateC
′
(i (j),m).

Let C∗ be the resulting codeword after the update, and S updates the variable
C := C∗.

To show CTamperLeakA,U ,M ≈ IdealS,U ,M , we consider several intermediate hy-
brids.

Hybrid H0: This is exactly the experiment IdealS,U ,M .
Hybrid H1: This experiment is the same as H0 except the simulator does not generate
sk of the encryption scheme. Whenever he needs to produce a ciphertext (only in the
case when flag = 0), the hybrid provides oracle access to the encryption algorithm
E .Encryptsk(·), where the experiment samples sk privately.
It is not hard to see that the experiment H0 is identical to H1. Then we define another

hybrid:
Hybrid H2: This experiment is the same as H1 except; the encryption oracle does not
give E .Encryptsk(0) to the simulator; instead, it gives encryptions of the real messages
(in the first place, and in the update when flag = 0), as in the real experiment.

Then we can establish the following claim.

Claim 3.12. Suppose the encryption scheme is semantically secure, then H1 is com-
putationally indistinguishable from H2.

Proof. The proof is basically identical to the proof of Claim 3.5. Since the only differ-
ence between H1 and H2 is the encryption oracle’s outputs (either E .Encryptsk(0) or
E .Encryptsk(m) upon an input query m), if there is an adversary who can distinguish
the two hybrids, then we can build a simple reduction that breaks the encryption scheme
by a standard security proof argument. �

Next we consider the following hybrid.

Hybrid H3: This experiment is the same as H2 except, the simulator does not use the
underlying S ′ of the non-malleable code to produce (m′, �′) (in the case when flag = 0).
Let R be the current root of the Merkle tree, h be the hash function, sk be the secret
key of the encryption oracle. In this experiment, the simulator generates an encoding of
NMC.enc(sk, h, R) and then applies the tampering and leakage function faithfully as the
real experiment TamperLeak f,g . If the outcome is still (sk, h, R), then the simulator
treats this as same∗. Otherwise, it uses the decoded value to proceed. Then the rest
follows exactly as H2.
Then we can establish the following claim:

Locally Decodable and Updatable Non-malleable Codes 341

Claim 3.13. Suppose the underlying coding scheme NMC is non-malleable and leak-
age resilience against F and G, then H2 is computationally indistinguishable from H3.

Proof. We can show this by considering the following sub-hybrids: H2, j : in the first
j rounds, the simulator generates (m′, �′) according to the experiment TamperLeak
and in the rest S ′. By the property of the coding scheme, we can show each adjacent
sub-hybrid is computationally indistinguishable. Note that the simulator refreshes the
encoding of (sk, h, R) at each round, so we can apply the hybrid argument. From the
description, we have H2 = H2,0 and H2,t = H3, where t is the total number of rounds.
More formally, suppose H2, j and H2, j+1 are distinguishable for some j ∈ [t − 1],

then we construct a reduction that distinguishes the experiment TamperLeak f,g
m from

IdealS ′,m for some functions f ∈ F , g ∈ G and somemessagem. This is a contradiction
to the security property of the underlying coding scheme. The message m can be set
to (sk, h, R), and f, g be the functions in the j-th round output by the adversary. The
reduction first simulates the experiment up to the j-th round. At this moment, H2, j and
H2, j+1 are identical. Then the reduction receives an input (m′, �′) from either of the
two experiments. The reduction uses these values for the round j + 1. Note that it is
sufficient for the reduction to finish the round j + 1 by knowing (m′, �′). Finally the
reduction continues simulating the rest of the experiment. It is clear that if (m′, �′) is from
TamperLeak f,g

m , then the reduction simulates H2, j+1, yet otherwise H2, j . Thus, if the
two adjacent hybrids are distinguishable, the reduction can break the leakage-resilient
non-malleable code of the underlying scheme. The completes the proof of the claim. �

Finally we want to show the following claim:

Claim 3.14. Suppose the hash function comes from a collision-resilient hash family,
then H3 is computationally indistinguishable from CTamperLeakA,U ,M.

Proof. We observe that the only difference between H3 and CTamperLeakA,U ,M

is the generation of �m(j) at each round (when the flag is 0). In the experiment
CTamperLeakA,U ,M , �m(j) is generated by honestly decoding the codeword at each

position, i.e.,
(

dec f (C(j))(1), . . . ,dec f (C(j))(n)
)

. In H3, �m(j) is generated by first com-

puting (m′, e′
1, . . . , e

′
n, T

′) := f (C (j)). In the case where m′ �= same∗, the two
experiments are identical. In the case where m′ = same∗, H3 sets �m(j)[v] = ⊥
if e′

v �= ev . The only situation that these two hybrids deviate is when e′
v �= ev , but

there is another consistent path in T ′ with the root R. For this situation, dec(v) �= ⊥
in CTamperLeak, but H3 will set �m[v] := ⊥. However, we claim this event can
happen with a negligible probability, or otherwise we can break the security of the
Merkle tree (Theorem 3.9) by simulating the hybrid H3. This completes the proof of the
claim. �

Putting everything together, we show that CTamperLeakA,U ,M ≈ IdealS,U ,M . �

Remark 3.15. Our one-time and continual constructions in Sects. 3.2 and 3.3, respec-
tively, achieve the notion of strong non-malleability if the underlying non-malleable

342 D. Dachman-Soled et al.

code is itself a strong non-malleable code. In the continual construction (see Sect. 3.3),
in order to prove strong non-malleability wemust show that the adversary’s view is indis-
tinguishable when it receives codewordC = (c, e1, e2, . . . , en, T), where e1, . . . , en are
encryptions of m1, . . . ,mn and when it receives codeword C ′ = (c, e′

1, e
′
2, . . . , e

′
n, T),

where e′
1, . . . , e

′
n are encryptions of m′

1, . . . ,m
′
n . This can be shown using a sequence

of hybrids, similar to the one used in Sect. 3.3. The main difference is that in the first
hybrid, we explicitly set c ← NMC.enc(0, 0, 0) (i.e., generate a non-malleable code-
word encoding message (0, 0, 0) as opposed to (sk, R, h) in the real construction) and
use strong non-malleability of the underlying code to argue indistinguishability. The
remaining hybrids follow similarly to those of Sect. 3.3.

3.4. Instantiations

In this section, we describe several constructions of non-malleable codes against differ-
ent classes of tampering/leakage functions. To our knowledge, we can use the explicit
constructions (of the non-malleable codes) in the works [1,3–5,7,17,29,30,32,50].
First we overview different classes of tampering/leakage function allowed for these

results: the constructions of Dziembowski et al. [29] work for bit-wise tampering func-
tions and split-state functions in the random oracle model. The construction of Choi
et al. [17] works for small block tampering functions. The construction of Liu and
Lysyanskaya [50] achieves both tamper and leakage resilience against split-state func-
tions in the common reference string (CRS) model. The construction of Dziembowski et
al. [27] achieves information-theoretic security against split-state tampering functions,
but their scheme can only support encoding for bits, so it cannot be used in our construc-
tion. The subsequent construction by Aggarwal et al. [3] achieves information-theoretic
security against split-state tampering without CRS. Recently, Aggarwal et al. [4] pre-
sented information-theoretic non-malleable codes that achieve both tamper and leakage
resilience against split-state functions and do not require a common reference string.
Subsequently, Aggarwal et al. [1] achieved optimal leakage rate, but only in the compu-
tational setting, and Aggarwal et al. [5] further strengthened these results by extending
to the continual setting. The construction by Faust et al. [32] is non-malleable against
small-sized tampering functions. Another construction by Faust et al. [30] achieves both
tamper and leakage resilience in the split-state model with CRS. The construction of
Aggarwal et al. [7] is non-malleable against permutation functions.

We also remark that there are other non-explicit constructions: Cheraghchi and Gu-
ruswami [16] showed the relation non-malleable codes and non-malleable two-source
extractors (but constructing a non-malleable two-source extractor is still open), and
in another work Cheraghchi and Guruswami [15] showed the existence of high rate
non-malleable codes in the split-state model but did not give an explicit (efficient) con-
struction.
Finally,we give a concrete example ofwhat the resulting class looks like using the con-

struction of Liu and Lysyanskaya [50] as the building block—recall that their construc-
tion achieves both tamper and leakage resilience for split-state functions (essentially the
same class of leakage/tampering would be achieved by plugging in any of the split-state
constructions). Our construction has the form (NMC.enc(sk, h, T),Encrypt(m1), . . . ,

Encrypt(mn), T). So the overall leakage function g restricted in the first block (i.e., g1)

Locally Decodable and Updatable Non-malleable Codes 343

can be a (poly-sized) length-bounded split-state function; g, on the other hand, can leak
all the other parts. For the tampering, the overall tampering function f restricted in the
first block (i.e., f1) can be any (poly-sized) split-state function. On the other hand f
restricted in the rest (i.e., f2) can be just any poly-sized function. We also remark that
f2 can depend on a split-state leakage on the first part, say g1, as we discussed in the
previous remark above.

4. Tamper and Leakage-Resilient RAM

In this section, we first introduce the notations of the random access machine (RAM)
model of computation in the presence of tampering and leakage attacks in Sect. 4.1.
Then we define the security of tamper and leakage-resilient RAMmodel of computation
in Sect. 4.2, recall the building block oblivious RAM (ORAM) in Sect. 4.3, and then
give a construction in Sect. 4.4 and the security analysis in Sect. 4.5.

4.1. Random Access Machines

We consider RAM programs to be interactive stateful systems 〈�, state, D〉, where �

denotes a next instruction function, state the current state stored in registers, and D
the content of memory. Upon state and an input value d, the next instruction function
outputs the next instruction I and an updated state state′. The initial state of the RAM
machine, state, is set to (start, ∗). For simplicity we often denote RAM program as
〈�, D〉. We consider four ways of interacting with the system:

– Execute(x): A user can provide the system with Execute(x) queries, for x ∈
{0, 1}u , where u is the input length.Upon receiving such query, the system computes
(y, t, D′) ← 〈�, D〉(x), updates the state of the system to D := D′ and outputs
(y, t), where y denotes the output of the computation and t denotes the time (or
number of executed instructions). By Execute1(x) we denote the first coordinate
of the output of Execute(x).

– doNext(x): A user can provide the systemwith doNext(x) queries, for x ∈ {0, 1}u .
Upon receiving such query, if state = (start, ∗), set state := (start, x), and
d := 0r ; here ρ = |state| and r = |d|. The system does the following until
termination:

1. Compute (I, state′) = �(state, d). Set state := state′.
2. If I = (wait), then set state := 0ρ , d := 0r and terminate.
3. If I = (stop, z), then set state := (start, ∗), d := 0r and terminate with

output z.
4. If I = (write, v, d ′), then set D[v] := d ′.
5. If I = (read, v,⊥), then set d := D[v].

Let I1, . . . , I� be the instructions executed by doNext(x). All memory ad-
dresses of executed instructions are returned to the user. Specifically, for in-
structions I j of the form (read, v,⊥) or (write, v, d ′), v is returned.

344 D. Dachman-Soled et al.

– Tamper(f): We also consider tampering attacks against the system, modeled by
Tamper(f) commands, for functions f . Upon receiving such command, the system
sets D := f (D).

– Leak(g): We finally consider leakage attacks against the system, modeled by
Leak(g) commands, for functions g. Upon receiving such command, the value
of g(D) is returned to the user.

Remark 4.1. A doNext(x) instruction groups together instructions performed by the
CPU in a single clock cycle. Intuitively, a (wait) instruction indicates that a clock cycle
has ended and the CPU waits for the adversary to increment the clock. In contrast, a
(stop, z) instruction indicates that the entire execution has concluded with output z. In
this case, the internal state is set back to the start state.
We require that each doNext(x) operation performs exactly � = �(k) = poly(k)

instructions I1, . . . , I� where the final instruction is of the form I� = (stop, ·) or I� =
(wait). For fixed �1 = �1(k), �2 = �2(k) such that �1 + �2 = � − 1, we have that the
first �1 instructions are of the form I� = (read, ·,⊥) and the next �2 instructions are of
the form I� = (write, v, d ′). We assume that �, �1, �2 are implementation-specific and
public. The limitations on space are meant to model the fact that the CPU has a limited
number of registers and that no persistent state is kept by the CPU between clock cycles.

Remark 4.2. We note that Execute(x) instructions are used by the ideal world
adversary—who learns only the input-output behavior of the RAMmachine and the run
time—as well as by the real-world adversary. The real-world adversary may also use the
more fine-grained doNext(x) instruction. We note that given access to the doNext(x)
instruction, the behavior of the Execute(x) instruction may be simulated.

4.1.1. Dealing with Leakage and Tampering on Instructions I

We note that our model does not explicitly allow for leakage and tampering on instruc-
tions I . E.g., when an instruction I = (write, v, d ′) is executed, we do not directly allow
tampering with the values v, d ′ or leakage on d ′. (Note that v is entirely leaked to the
adversary.) Nevertheless, as discussed in introduction, since we allow full leakage on the
addresses, the adversary can in some instances use the tampering and leakage attacks
on the memory to simulate attacks on the instructions. We elaborate in the following:

Leakage on an instruction I Since (write, v) or (read, v) is entirely leaked to the
adversary, we need only deal with leakage on d ′. In this case, an adversary leaking
on d ′ can be simulated in our model by an adversary who leaks the contents of
memory location v in the following round.

Tampering with d ′ in an instruction I of the form I = (read, v, d ′) In this case,
adversarial tampering will have no effect.

Tampering with d ′ in an instruction I of the form I = (write, v, d ′) In this case,
adversarial tampering with d ′ can be simulated in our model by an adversary who
tampers with the contents of memory location v in the following round.

Tampering with v in an instruction I of the form I = (read, v, d ′) Such tampering
is not straightforwardly captured by our model. We can change our model so that
each round has two stages: in the first stage, the adversary is given all instructions

Locally Decodable and Updatable Non-malleable Codes 345

I1, . . . , I� and then the adversary may pre-emptively leak and tamper before the
instructions are completed. Security of our construction still holds in this slightly
modified setting. To simulate tampering on v, an adversary can now leak the
contents of memory location v, apply a tampering function which will copy the
contents of the tampered location ṽ to location v, allow the system to read the
memory location, and then write back the old contents of memory to v in the next
round.

Tampering with d ′ in an instruction I of the form I = (write, v, d ′) Such tampering
is not straightforwardly captured by our model. We can change our model so that
each round has two stages: in the first stage, the adversary is given all instructions
I1, . . . , I� and then the adversary may pre-emptively leak and tamper before the
instructions are completed. Security of our construction still holds in this slightly
modified setting. To simulate tampering on v, an adversary can now leak the
contents of memory location v, apply a tampering function which will place d ′
in the tampered location ṽ, allow the system to write to memory location v, and
then write back the old contents of memory to v in the next round.

Tampering with read or write in an instruction I Our model does not handle this type
of tampering.

4.2. Tamper and Leakage-Resilient (TLR) RAM

A tamper and leakage-resilient (TLR) RAM compiler consists of two algorithms
(CompMem,CompNext), which transform a RAM program 〈�, D〉 into another pro-
gram 〈̂�, ̂D〉 as follows: on input database D, CompMem initializes the memory and
internal state of the compiled machine and generates the transformed database ̂D; on
input next instruction function �, CompNext generates the next instruction function of
the compiled machine.

Definition 4.3. A TLR compiler (CompMem,CompNext) is tamper and leakage
simulatable w.r.t. function families F ,G, if for every RAM next instruction function �,
and for any ppt (non-uniform) adversary A there exists a ppt (non-uniform) simulator
S such that for any initial database D ∈ {0, 1}poly(k) we have

TamperExec(A,F ,G, 〈CompNext(�),CompMem(D)〉) ≈ IdealExec(S, 〈�, D〉)

where TamperExec and IdealExec are defined as follows:

– TamperExec(A,F ,G, 〈CompNext(�),CompMem(D)〉): The adversary A in-
teracts with the system 〈CompNext(�),CompMem(D)〉 for arbitrarily many
rounds of interactions where in each round:

1. The adversary can “tamper” by executing a Tamper(f) command against the
system, for some f ∈ F .

2. The adversary can “leak” by executing aLeak(g) command against the system,
and receiving g(D) in return.

3. The adversary requests a doNext(x) command to be executed by the system.
Let I1, . . . , I� be the instructions executed by doNext(x). If I� is of the form

346 D. Dachman-Soled et al.

(stop, z), then output z is returned to the adversary. Moreover, all memory ad-
dresses corresponding to instructions I1, . . . , I�−1 are returned to the adversary.

The output of the game consists of the output of the adversary A at the end of the
interaction, along with (1) all input–output pairs (x1, y1), (x2, y2), . . ., (2) all re-
sponses to leakagequeries�1, �2, . . ., (3) all outputs ofdoNext(x1),doNext(x2),

– IdealExec(S, 〈�, D〉): The simulator interacts with the system 〈�, D〉 for arbitrar-
ily many rounds of interaction where, in each round, it runs an Execute(x) query
for some x ∈ {0, 1}u and receives output (y, t). The output of the game consists
of the output of the simulator S at the end of the interaction, along with all of the
execute-query inputs and outputs.

For simplicity of exposition, we assume henceforth that the next instruction function
� to be compiled is the universal RAM next instruction function. In other words, we
assume that the program to be executed is stored in the initial database D.

4.3. Preliminary: Oblivious RAM (ORAM)

An ORAM compiler ORAM consists of two algorithms (oCompMem,oCompNext),
which transform a RAM program 〈�, D〉 into another program 〈˜�, ˜D〉 as follows: on
input database D, CompMem initializes the memory and internal state of the compiled
machine and generates the transformed database ˜D; on input next instruction function
�, CompNext generates the next instruction function of the compiled machine, ˜�.
CorrectnessWe require the following correctness property: for every choice of security
parameter k, every initial database D, and every sequence of inputs x1, . . . , xp, where
p = p(k) is polynomial in k, we have that with probability 1 − negl(k) over the coins
of oCompMem,

(

Execute1(x1), . . . ,Execute1(xp)
) =

(

˜Execute1(x1), . . . , ˜Execute1(xp)
)

,

where Execute1(x) denotes the first coordinate of the output of Execute(x) w.r.t.

〈�, D〉 and ˜Execute1(x) denotes the first coordinate of the output of Execute(x) w.r.t.
〈oCompNext(�),oCompMem(D)〉.
Security Let ORAM = (oCompMem,oCompNext) be an ORAM complier and con-
sider the following experiment:
Experiment ExptoramA (k, b):

1. The adversary A selects two initial databases D0, D1.
2. Set initial contents of memory of the RAM machine to ˜D := oCompMem(Db).

Set the initial state of the RAM machine to state := (start, ∗).
3. The adversary A and the challenger participate in the following procedure for an

arbitrary number of rounds:

• For x ∈ {0, 1}u , A submits a doNext(x) query.
• Execute the doNext(x) query w.r.t. 〈oCompNext(�), ˜D〉 and update the state
of the system. Let I1, . . . , I� be the instructions executed by the RAMmachine.

Locally Decodable and Updatable Non-malleable Codes 347

For each j ∈ [�], if I j is of the form (·, v j , ·), for some v j , output v j to A.
Otherwise, output v j = ⊥. Let v = v1, . . . , v� be the output obtained by A in
the current round.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment evaluates to 1
iff b′ = b.

Definition 4.4. An ORAM construction ORAM = (oCompMem,oCompNext) is
access-pattern hiding if for every ppt adversaryA, the following probability, taken over
the randomness of the experiment and b ∈ {0, 1}, is negligible:

∣

∣

∣

∣

Pr[ExptoramA (k, b) = 1] − 1

2

∣

∣

∣

∣

.

4.4. TLR-RAM Construction

Herewefirst give a high-level description of our construction.More detailed construction
and a theorem statement follow. The security proof will be given in the next section.

High-level Description of ConstructionLet D be the initial database, and letORAM =
(oCompMem,oCompNext) be an ORAM compiler. Let NMCode = (enc,dec,
update) be a locally decodable and updatable code. We present the following con-
struction TLR-RAM = (CompMem,CompNext) of a tamper and leakage-resilient
RAM compiler. In order to make our presentation more intuitive, instead of specifying
the nextmessage functionCompNext(�), we specify the pseudocode for thedoNext(x)
instruction of the compiled machine. We note that CompNext(�) is implicitly defined
by this description.
TLR-RAM takes as input an initial database D and a next instruction function � and

does the following:

– CompMem: On input security parameter k and initial database D, CompMem
does:

• Compute ˜D ← oCompMem(D), and output ̂D ← enc(˜D).
• Initialize the ORAM state stateORAM := (start, ∗) and dORAM := 0r , where
r = |dORAM|.

– doNext(x): On input x , do the following until termination:

1. If dORAM = ⊥ then abort.
2. Compute (I, state′

ORAM) ← oCompNext(�)(stateORAM, dORAM). Set
stateORAM := state′

ORAM.
3. If I = (wait) then set stateORAM := 0ρ and dORAM := 0r and terminate. Here

ρ = |stateORAM| and r = |dORAM|.
4. If I = (stop, z) then set stateORAM := (start, ∗), d := 0r and terminate with

output z.
5. If I = (write, v, d ′) then run updatêD(v, d ′).
6. If I = (read, v,⊥) then set dORAM := deĉD(v).

348 D. Dachman-Soled et al.

Detailed Description of Construction LetORAM = (oCompMem,oCompNext) be
an ORAM compiler and let NMCode = (enc,dec,update) be a locally decodable
and updatable code. We view dec and update as RAM machines and denote by �dec,
�update the corresponding next message functions. We present the following tamper
and leakage-resilient RAM compiler TLR-RAM = (CompMem,CompNext). Here,
the parameters r = r(k), u = u(k), ρ = ρ(k) are polynomials in the security parameter
k that are implementation-dependent. The complier TLR-RAM takes as input an initial
database D and a next instruction function � and does the following:

CompMem: On input security parameter k and initial database D, CompMem
does the following:

• Run oCompMem to compute ˜D ← oCompMem(D),
and to initialize stateORAM := (start, ∗), and dORAM := 0r .

• Output ̂D ← enc(˜D).

• Initialize state def= stateORAM||statecode||mode := (start, ∗)||(start, ∗)||⊥
and d

def= dcode||dORAM := 0r ||0r .
CompNext: On input next instruction function �, let ˜� = oCompNext(�) be

the next instruction function of the ORAM compiled machine. CompNext(�)

is the next instruction function of the TLR-RAM compiled machine. It takes as
input (state, d) and does the following:

• Parse state = stateORAM||statecode||mode. Here mode ∈ {UP,DEC,⊥}
• If dORAM = ⊥ then abort.
• If statecode = (start, ∗): Compute (IORAM, state′

ORAM) := ˜�(stateORAM,

dORAM).

1. If IORAM is of the form IORAM = (wait) then set I := (wait).
Set state := state′

ORAM||statecode||mode.
Output (I, state).

2. If IORAM is of the form (stop, z) then set I := (stop, z).
Set state := state′

ORAM||statecode||mode.
Output (I, state).

3. If IORAM is of the form (write, v, d ′) then set statecode := (start, v, d ′).
Set I := (read, 0,⊥) where (read, 0,⊥) denotes a dummy read.
Set state := stateORAM||state′

code||UP.
Output (I, state).

4. If IORAM is of the form (read, v,⊥) then set statecode := (start, v).
Set I := (read, 0,⊥) where (read, 0,⊥) denotes a dummy read.
Set state := stateORAM||state′

code||DEC.
Output (I, state).

• Otherwise if statecode �= (start, ∗):
Ifmode = UP, compute (Icode, state′

code) := �update(statecode, dcode).
Ifmode = DEC, compute (Icode, state′

code) := �dec(statecode, dcode).

1. If Icode is of the form (stop, z) then set I := (read, 0,⊥), where (read,

0,⊥) denotes a dummy read.

Locally Decodable and Updatable Non-malleable Codes 349

Set dORAM := z, set state′
code := (start, ∗), set state := state′

ORAM||
state′

code||⊥.
Output (I, state).

2. If Icode is of the form (read, v̂,⊥), set I := Icode.
Set state := state′

ORAM||state′
code||DEC.

Output (I, state).
3. If Icode is of the form (write, v̂, d̂ ′), set I := Icode.

Set state := state′
ORAM||state′

code||UP.
Output (I, state).
Upon execution of I , dcode will be set to ̂D[v̂].

We are now ready to present the main theorem of this section:

Theorem 4.5. AssumeORAM = (oCompMem,oCompNext) is anORAMcompiler
which is access-pattern hiding and assumeNMCode = (enc,dec,update) is a locally
decodable and updatable code which is continual non-malleable againstF and leakage
resilient against G. Then TLR-RAM = (CompMem,CompNext) presented above is
tamper and leakage simulatable w.r.t. function families F ,G.

4.5. Security Analysis

In this section we prove Theorem 4.5. We begin by defining the simulator S. Let Scode
be the simulator guaranteed by the security of NMCode = (enc,dec,update).
For simplicity of exposition, we assume that for every x , given the runtime t of

Execute(x) with respect to 〈�, D〉, the runtime of Execute(x) with respect to
〈oCompNext(�),oCompMem(D)〉 is equal to p(t), p(·) is a fixed polynomial known
to the simulator. This is indeed the case for the instantiation of our compiler with known
underlying building blocks.

Simulator S
Setup: On input security parameter k, S does the following:

• Choose a dummy database D0, compute ˜D ← oCompMem(D0). Initialize
stateORAM := (start, ∗), dORAM = 0r .

• Instantiate the adversary A and the NMCode simulator Scode.
• Initialize output variable out = ⊥ and counter c = 0.

Adversarial query (g, f,doNext(x)): If stateORAM = (start, ∗), set stateORAM
= (start, x), submit query Execute(x) to oracle, and receive (z, t). Set out = z
and c = t .
Forward (g, f) to Scode. Upon receiving Scode’s output, (�, I, �w), forward � toA.

Case: I �= [n]. Execute a doNext(x) instruction w.r.t. 〈oCompNext(�), ˜D〉.
Let I1, . . . I˜� be the sequence of instructions executed bydoNext(x). Recall that
the first˜�1 instructions are reads, the next˜�2 instructions arewrites,˜�1+˜�2+1 =
˜� and that ˜�,˜�1,˜�2 are public.
Let �v = v1, . . . , v˜�−1 be the vector of read/write locations corresponding to
I1, . . . I˜�.
For 1 ≤ i ≤ ˜�1, do the following:

350 D. Dachman-Soled et al.

• If dORAM = ⊥ then abort.
• Output Sdecvi

to A, where Sdecvi
be the ordered set of memory access

locations corresponding to dec(vi). If vi ∈ I, set dORAM = ⊥.

For ˜�1 + 1 ≤ i ≤ ˜�1 + ˜�2, S does the following:

• If dORAM = ⊥ then abort.
• Output Supdatevi

to A, where Supdatevi
be the ordered set of memory ac-

cess locations corresponding to update(vi). Play the part of the updater
interacting with Scode and submit index v to Scode.

Set c := c − 1 − σ · (˜�1 + ˜�2), where σ is the number of instructions in a
dec,update. If c = 0, output out to A and set stateORAM = (start, ∗).
Case: I = [n]. Do the following until termination:

1. If dORAM = ⊥ then abort.
2. Compute (I, state′

ORAM) ← oCompNext(�)(stateORAM, dORAM). Set
stateORAM := state′

ORAM.
3. If I = (wait) then set stateORAM := 0ρ , dORAM := 0r and terminate.
4. If I = (stop, z) then set stateORAM = (start, ∗), d := 0r , output z to A

and terminate.
5. If I = (read, v,⊥) then set dORAM = �wv . Output Sdecv to A.
6. If I = (write, v, d ′) then do the following: output Supdatev to A. Play the

part of the updater interacting with Scode and submit index v to Scode.

Lemma 4.6. Assume ORAM = (oCompMem,oCompNext) and NMCode =
(enc,dec,update) are as in Theorem 4.5. Let� be the universal RAM next instruction
function. For any ppt adversary A, and any initial database D ∈ {0, 1}poly(k) we have

TamperExec(A,F ,G, 〈CompNext(�),CompMem(D)〉) ≈ IdealExec(S, 〈�, D〉)

To prove Lemma 4.6 we consider the sequence of hybrids H0, H1, H1.5, H2, defined
below.We denote byoutkA,Hi

, the output distribution of the adversaryA on input security
parameter k in Hybrid Hi , for i ∈ {0, 1, 1.5, 2}.
Hybrid H0: This is the simulated experiment IdealExec(S, 〈�, D〉).
Hybrid H1: This hybrid is the same as Hybrid H0 except for the following change is
made to the simulator’s algorithm: in the setup stage, the real database D is used to
compute ˜D ← oCompMem(D) (instead of ˜D ← oCompMem(D0)).

Claim 4.7.

{outkA,H0
}k∈N c≈ {outkA,H1

}k∈N.

This follows from the security of the ORAM scheme ORAM = (oCompMem,

oCompNext). Details follow.

Proof. Theonlydifferencebetween the twoHybrids is that inHybridH0 whendoNext(x)
is executed, the vector �v = v1, . . . , v˜�−1 is computed using the result of a doNext(x)

Locally Decodable and Updatable Non-malleable Codes 351

instruction w.r.t. 〈oCompNext(�), ˜D〉, where ˜D ← oCompMem(D0) (and D0 is the
dummy database). On the other hand, in Hybrid H1, the vector �v = v1, . . . , v˜�−1 is com-
puted using the result of a doNext(x) instruction w.r.t. 〈oCompNext(�), ˜D〉, where
˜D ← oCompMem(D) (and D is the real initial database). Thus, a distinguisher for Hy-
brids H0 and H1 immediately yields a distinguisher breaking the access-pattern hiding
property of ORAM = (oCompMem,oCompNext). �

Hybrid H1.5:We consider the following modification of the Hybrid H1 experiment:
Upon a doNext(x) query submitted by the adversary A. If I �= [n], execute the

following code: (otherwise, the experiment remains unchanged):
Do the following until termination:

1. If dORAM = ⊥ then abort.
2. Compute (I, state′

ORAM) ← oCompNext(�)(stateORAM, dORAM). Set
stateORAM := state′

ORAM.
3. If I = (wait) then set stateORAM := 0ρ , dORAM := 0r and terminate.
4. If I = (stop, z) then set stateORAM := (start, ∗), d := 0r and terminate with

output z.
5. If I = (read, v,⊥) then if v /∈ I, set dORAM = ˜D[v]. Otherwise, set dORAM = ⊥.

Let Sdecv be the ordered set of memory access locations corresponding to dec(v).
Output Sdecv to A.

6. If I = (write, v, d ′) then do the following: S plays the part of the updater inter-
acting with Scode and submits index v to Scode. Let Supdatev be the ordered set of
memory access locations corresponding to update(v). Output Supdatev to A.

Claim 4.8.

{outkA,H1
}k∈N ≡ {outkA,H1.5

}k∈N.

Proof. Intuitively, the difference between Hybrid H1 and H1.5 is that in H1 in each
doNext query, the memory locations �v = v1, . . . , v˜�−1 are pre-computed, whereas in
H1.5, the memory locations v1, . . . , v˜�−1 are computed on the fly. In particular, in H1,
the addresses �v are computed assuming that each instruction of the form (read, vi ,⊥)

sets dORAM to the correct value dORAM = ˜D[vi]. On the other hand, in H1.5, dORAM
may not be set to ˜D[vi]. However, since we are in the case where I �= [n], the only way
this can happen is if vi ∈ I, in which case dORAM is set to ⊥. But now, if vi ∈ I, then
dORAM is set to⊥ in both H1 and H1.5 when the corresponding instruction (read, vi ,⊥)

is simulated. Moreover, once dORAM is set to ⊥ then the execution immediately aborts
in both H1 and H1.5. Thus, the view of the adversary is identical in H1 and H1.5. �

Hybrid H2 : This is the real experiment TamperExec(A, F,G, 〈CompNext(�),

CompMem(D)〉).
Claim 4.9.

{outkA,H1
}k∈N c≈ {outkA,H2

}k∈N.

This follows from the security of the locally decodable andupdatable codeNMCode =
(enc,dec,update). Details follow.

352 D. Dachman-Soled et al.

Proof. We claim that Hybrid H1.5 can be perfectly simulated given the output of
IdealS,U ,M , while Hybrid H2 can be perfectly simulated given the output of
TamperLeakA′,U ,M , where A′ = A and S = S and U is the following updater:

The Updater U:
• U keeps persistent state stateORAM which is initialized to (start, ∗) and dORAM
which is initialized to 0r .

• On input ˜D, U does the following:
• If dORAM = ⊥, then U aborts.
• Otherwise, U computes (I, state′

ORAM) := oCompNext(�)(stateORAM, dORAM)

and sets stateORAM := state′
ORAM.

• If I is of the form (read, v,⊥), then U sets dORAM = ˜D[v] and outputs ⊥.
• If I is of the form (write, v, d), then U outputs (v, d).
• Otherwise, U outputs ⊥.

Thus, indistinguishability of hybrids H1.5 and H2 reduces to indistinguishability of
IdealS,U ,M and TamperLeakA′,U ,M . This concludes the proof of Claim 4.9. �

Acknowledgements

We thank Yevgeniy Dodis for helpful discussions.

References

[1] D. Aggarwal, S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran. Optimal computational
split-state non-malleable codes, in E. Kushilevitz, T. Malkin, editors, TCC 2016-A, Part II. LNCS, vol.
9563 (Springer, Heidelberg, 2016), pp. 393–417

[2] D. Aggarwal, Y. Dodis, T. Kazana, M. Obremski. Non-malleable reductions and applications, in R.A.
Servedio, R. Rubinfeld, editors, 47th ACM STOC (ACM Press, 2015), pp. 459–468

[3] D. Aggarwal, Y. Dodis, S. Lovett. Non-malleable codes from additive combinatorics, in D.B. Shmoys,
editor, 46th ACM STOC (ACM Press, 2014), pp. 774–783

[4] D. Aggarwal, S. Dziembowski, T. Kazana, M. Obremski. Leakage-resilient non-malleable codes, in
Y. Dodis, J.B. Nielsen, editors, TCC 2015, Part I. LNCS, vol. 9014 (Springer, Heidelberg, 2015), pp.
398–426

[5] D. Aggarwal, T. Kazana, M. Obremski. Inception makes non-malleable codes stronger. IACR Cryptol.
ePrint Arch. 2015, 1013 (2015)

[6] D. Agrawal, B. Archambeault, J.R. Rao, P. Rohatgi. The EM side-channel(s), in B.S. Kaliski Jr., Ç
Kaya Koç, C. Paar, editors, CHES 2002. LNCS, vol. 2523 (Springer, Heidelberg, 2003), pp. 29–45

[7] S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran. Explicit non-malleable codes against
bit-wise tampering and permutations, in R. Gennaro, and M.J.B. Robshaw, editors, CRYPTO 2015, Part
I. LNCS, vol. 9215 (Springer, Heidelberg, 2015), pp. 538–557

[8] S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran. A rate-optimizing compiler for non-
malleable codes against bit-wise tampering and permutations, in Y. Dodis, J.B. Nielsen, editors,
TCC 2015, Part I. LNCS, vol. 9014 (Springer, Heidelberg, 2015), pp. 375–397

[9] M. Bellare, C. Namprempre. Authenticated encryption: Relations among notions and analysis of the
generic composition paradigm, in T. Okamoto, editor, ASIACRYPT 2000. LNCS, vol. 1976. (Springer,
Heidelberg, 2000), pp. 531–545

Locally Decodable and Updatable Non-malleable Codes 353

[10] M.Bellare, P.Rogaway. Encode-then-encipher encryption:How to exploit nonces or redundancy in plain-
texts for efficient cryptography, in T. Okamoto, editor, ASIACRYPT 2000. LNCS, vol. 1976 (Springer,
Heidelberg, 2000), pp. 317–330

[11] E. Biham, A. Shamir. Differential fault analysis of secret key cryptosystems, in B.S. Kaliski Jr., editor,
CRYPTO’97. LNCS, vol. 1294 (Springer, Heidelberg, 1997), pp. 513–525

[12] D. Boneh, R.A. DeMillo, R.J. Lipton. On the importance of eliminating errors in cryptographic compu-
tations. J. Cryptol. 14(2), 101–119 (2001)

[13] N. Chandran, B. Kanukurthi, R. Ostrovsky. Locally updatable and locally decodable codes, in Y. Lindell,
editor, TCC 2014. LNCS, vol. 8349 (Springer, Heidelberg, 2014), pp. 489–514

[14] N. Chandran, B. Kanukurthi, S. Raghuraman. Information-theoretic local non-malleable codes and their
applications, in E. Kushilevitz, T. Malkin, editors, TCC 2016-A, Part II. LNCS, vol. 9563 (Springer,
Heidelberg, 2016), pp. 367–392

[15] M. Cheraghchi, V. Guruswami. Capacity of non-malleable codes, in M. Naor, editor, ITCS 2014 (ACM,
2014), pp. 155–168

[16] M. Cheraghchi, V. Guruswami. Non-malleable coding against bit-wise and split-state tampering, in Y.
Lindell, editor, TCC 2014. LNCS, vol. 8349 (Springer, Heidelberg, 2014), pp. 440–464

[17] S.G. Choi, A. Kiayias, T. Malkin. BiTR: built-in tamper resilience, in D.H. Lee, X. Wang, editors,
ASIACRYPT 2011. LNCS, vol. 7073 (Springer, Heidelberg, 2011), pp. 740–758

[18] B. Chor, E. Kushilevitz, O. Goldreich, M. Sudan. Private information retrieval. J. ACM 45(6), 965–981
(1998)

[19] S. Coretti, U. Maurer, B. Tackmann, D. Venturi. From single-bit to multi-bit public-key encryption via
non-malleable codes, in Y. Dodis, J.B. Nielsen, editors, TCC 2015, Part I. LNCS, vol. 9014 (Springer,
Heidelberg, 2015), pp. 532–560

[20] D. Dachman-Soled, Y.T. Kalai. Securing circuits against constant-rate tampering, in R. Safavi-Naini, R.
Canetti, editors, CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg, 2012), pp. 533–551

[21] D. Dachman-Soled, Y.T. Kalai. Securing circuits and protocols against 1/poly(k) tampering rate, in Y.
Lindell, editor, TCC 2014. LNCS, vol. 8349 (Springer, Heidelberg, 2014), pp. 540–565

[22] I. Damgård, S. Faust, P. Mukherjee, D. Venturi. Bounded tamper resilience: how to go beyond the
algebraic barrier, in K. Sako, P. Sarkar, editors, ASIACRYPT 2013, Part II. LNCS, vol. 8270 (Springer,
Heidelberg, 2013), pp. 140–160

[23] Y. Dodis, K. Pietrzak. Leakage-resilient pseudorandom functions and side-channel attacks on Feistel
networks, in T. Rabin, editor, CRYPTO 2010. LNCS, vol. 6223 (Springer, Heidelberg, 2010), pp. 21–40

[24] A. Duc, S. Dziembowski, S. Faust. Unifying leakage models: from probing attacks to noisy leakage, in
P.Q. Nguyen, E. Oswald, editors, EUROCRYPT 2014. LNCS, vol. 8441 (Springer, Heidelberg, 2014),
pp. 423–440

[25] S. Dziembowski, S. Faust. Leakage-resilient cryptography from the inner-product extractor, in D.H. Lee,
X. Wang, editors, ASIACRYPT 2011. LNCS, vol. 7073 (Springer, Heidelberg, 2011), pp. 702–721

[26] S. Dziembowski, S. Faust. Leakage-resilient circuits without computational assumptions, in R. Cramer,
editor, TCC 2012. LNCS, vol. 7194 (Springer, Heidelberg, 2012), pp. 230–247

[27] S. Dziembowski, T. Kazana, M. Obremski. Non-malleable codes from two-source extractors, in R.
Canetti, J.A. Garay, editors, CRYPTO 2013, Part II. LNCS, vol. 8043 (Springer, Heidelberg, 2013), pp.
239–257

[28] S. Dziembowski, K. Pietrzak. Leakage-resilient cryptography, in 49th FOCS (IEEE Computer Society
Press, 2008), pp. 293–302

[29] S. Dziembowski, K. Pietrzak, D. Wichs. Non-malleable codes, in A. Chi-Chih Yao, editor, ICS 2010
(Tsinghua University Press, 2010), pp. 434–452

[30] S. Faust, P. Mukherjee, J.B. Nielsen, D. Venturi. Continuous non-malleable codes, in Y. Lindell, editor,
TCC 2014. LNCS, vol. 8349 (Springer, Heidelberg, 2014), pp. 465–488

[31] S. Faust, P.Mukherjee, J.B.Nielsen,D.Venturi.A tamper and leakage resilient von neumann architecture,
in J. Katz, editor, PKC 2015. LNCS, vol. 9020 (Springer, Heidelberg, 2015), pp. 579–603

[32] S. Faust, P. Mukherjee, D. Venturi, D. Wichs. Efficient non-malleable codes and key-derivation for
poly-size tampering circuits, in P.Q. Nguyen, E. Oswald, editors, EUROCRYPT 2014. LNCS, vol. 8441
(Springer, Heidelberg, 2014), pp. 111–128

354 D. Dachman-Soled et al.

[33] S. Faust, K. Pietrzak, D. Venturi. Tamper-proof circuits: how to trade leakage for tamper-resilience, in
L. Aceto, M. Henzinger, J. Sgall, editors, ICALP 2011, Part I. LNCS, vol. 6755 (Springer, Heidelberg,
2011), pp. 391–402

[34] S. Faust, T. Rabin, L. Reyzin, E. Tromer, V. Vaikuntanathan. Protecting circuits from leakage: the
computationally-bounded and noisy cases, in H. Gilbert, editor, EUROCRYPT 2010. LNCS, vol. 6110
(Springer, Heidelberg, 2010), pp. 135–156

[35] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, T. Rabin. Algorithmic tamper-proof (ATP) security:
theoretical foundations for security against hardware tampering, in M. Naor, editor, TCC 2004. LNCS,
vol. 2951 (Springer, Heidelberg, 2004), pp. 258–277

[36] O. Goldreich, R. Ostrovsky. Software protection and simulation on oblivious rams. J. ACM 43(3), 431–
473 (1996)

[37] S. Goldwasser, G.N. Rothblum. Securing computation against continuous leakage, in T. Rabin, editor,
CRYPTO 2010. LNCS, vol. 6223 (Springer, Heidelberg, 2010), pp. 59–79

[38] S. Goldwasser, G.N. Rothblum. How to compute in the presence of leakage, in 53rd FOCS (IEEE
Computer Society Press, 2012), pp. 31–40

[39] J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino, A.J. Feldman, J.
Appelbaum, E.W. Felten. Lest we remember: cold boot attacks on encryption keys, in USENIX Security
Symposium (2008), pp. 45–60

[40] Y. Ishai, E. Kushilevitz. On the hardness of information-theoretic multiparty computation, in C. Cachin,
J. Camenisch, editors, EUROCRYPT 2004. LNCS, vol. 3027 (Springer, Heidelberg, 2004), pp. 439–455

[41] Y. Ishai, M. Prabhakaran, A. Sahai, D. Wagner. Private circuits II: keeping secrets in tamperable circuits,
in S. Vaudenay, editor, EUROCRYPT 2006. LNCS, vol. 4004 (Springer, Heidelberg, 2006), pp. 308–327

[42] Y. Ishai, A. Sahai, D. Wagner. Private circuits: securing hardware against probing attacks, in D. Boneh,
editor, CRYPTO 2003. LNCS, vol. 2729 (Springer, Heidelberg, 2003), pp. 463–481

[43] A. Juma, Y. Vahlis. Protecting cryptographic keys against continual leakage, in T. Rabin, editor,
CRYPTO 2010. LNCS, vol. 6223 (Springer, Heidelberg, 2010), pp. 41–58

[44] J. Katz, L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes, in 32nd
ACM STOC (ACM Press, 2000), pp. 80–86

[45] J. Katz, M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation, in B.
Schneier, editor, FSE 2000. LNCS, vol. 1978 (Springer, Heidelberg, 2001), pp. 284–299

[46] A. Kiayias, Y. Tselekounis. Tamper resilient circuits: the adversary at the gates, in K. Sako, P. Sarkar,
editors, ASIACRYPT 2013, Part II. LNCS, vol. 8270 (Springer, Heidelberg, 2013), pp. 161–180

[47] P.C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems, in
N. Koblitz, editor, CRYPTO’96. LNCS, vol. 1109 (Springer, Heidelberg, 1996), pp. 104–113

[48] P.C. Kocher, J. Jaffe, B. Jun. Differential power analysis, in M.J. Wiener, editor, CRYPTO’99. LNCS,
vol. 1666 (Springer, Heidelberg, 1999), pp. 388–397

[49] D. Lie, C.A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J.C. Mitchell, M. Horowitz. Architectural
support for copy and tamper resistant software, in ASPLOS (2000), pp. 168–177

[50] F.-H. Liu, A. Lysyanskaya. Tamper and leakage resilience in the split-state model, in R. Safavi-Naini,
R. Canetti, editors, CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg, 2012), pp. 517–532

[51] S. Micali, L. Reyzin. Physically observable cryptography (extended abstract), in M. Naor, editor,
TCC 2004. LNCS, vol. 2951 (Springer, Heidelberg, 2004), pp. 278–296

[52] K. Pietrzak. A leakage-resilient mode of operation, in A. Joux, editor, EUROCRYPT 2009. LNCS, vol.
5479 (Springer, Heidelberg, 2009), pp. 462–482

[53] T. Ristenpart, E. Tromer, H. Shacham, S. Savage. Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds, in E. Al-Shaer, S. Jha, A.D. Keromytis, editors, ACM CCS 09
(ACM Press, 2009), pp. 199–212

[54] G.N. Rothblum. How to compute under AC0 leakage without secure hardware, in R. Safavi-Naini, R.
Canetti, editors, CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg, 2012), pp. 552–569

[55] G.E. Suh, D.E. Clarke, B. Gassend, M. van Dijk, S. Devadas. AEGIS: architecture for tamper-evident
and tamper-resistant processing, in Proceedings of the 17th Annual International Conference on Super-
computing, ICS 2003 (2003), pp. 160–171

[56] A. Vasudevan, J.M. McCune, J. Newsome, A. Perrig, L. van Doorn. CARMA: a hardware tamper-
resistant isolated execution environment on commodity x86 platforms, in H. Youl Youm,Y.Won, editors,
ASIACCS 12 (ACM Press, 2012), pp. 48–49

Locally Decodable and Updatable Non-malleable Codes 355

[57] S. Yekhanin. Locally decodable codes. Found. Trends Theor. Comput. Sci. 6(3), 139–255 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Locally Decodable and Updatable Non-malleable Codes and Their Applications
	1. Introduction
	1.1. Techniques
	1.2. Related Work
	1.3. Subsequent Work

	2. Locally Decodable and Updatable Non-malleable Codes
	2.1. Preliminary
	2.2. New Definitions: Codes with Local Properties
	2.3. Strong Non-malleability

	3. Our Constructions
	3.1. Preliminary: Symmetric Encryption
	3.2. A First Attempt: One-Time Security
	3.3. Achieving Security Against Continual Attacks
	3.4. Instantiations

	4. Tamper and Leakage-Resilient RAM
	4.1. Random Access Machines
	4.1.1. Dealing with Leakage and Tampering on Instructions I

	4.2. Tamper and Leakage-Resilient (TLR) RAM
	4.3. Preliminary: Oblivious RAM (ORAM)
	4.4. TLR-RAM Construction
	4.5. Security Analysis

	Acknowledgements
	References

