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Abstract. Proxy re-encryption (PRE) and Proxy re-signature (PRS)
were introduced by Blaze, Bleumer and Strauss [Eurocrypt ’98]. Basi-
cally, PRE allows a semi-trusted proxy to transform a ciphertext
encrypted under one key into an encryption of the same plaintext under
another key, without revealing the underlying plaintext. Since then, many
interesting applications have been explored, and constructions in various
settings have been proposed. On the other hand, PRS allows a semi-
trusted proxy to transform Alice’s signature on a message into Bob’s
signature on the same message, but the proxy cannot produce new valid
signature on new messages for either Alice or Bob.

In this work, we first point out a subtle mistake in the security proof of
the work by Kirshanova (PKC ’14), who proposed a lattice-based CCA1
PRE. Thus, this reopens the direction of lattice-based CCA1-secure con-
structions, even in the single-hop setting. Then we construct a single-
hop PRE scheme that is proven secure in our new tag-based CCA-PRE
model. Next, we construct the first multi-hop PRE construction. Lastly,
we also construct the first PRS scheme from lattices that is proved secure
in our proposed unified security model.

1 Introduction

Proxy re-encryption (PRE) allows a (semi-trusted) proxy to transform an
encryption of m under Alice’s public key into another encryption of the same
message under Bob’s public key. The proxy, however, cannot learn the underly-
ing message m, and thus both parties’ privacy can be maintained. This primi-
tive (and its variants) have various applications ranging from encrypted email
forwarding [8], to securing distributed file systems [6]. In addition application-
driven purposes, various works have shown connections between re-encryption
(and its variants) with other cryptographic primitives, such as program obfus-
cation [13,14,23] and fully-homomorphic encryption [3,11]. Thus studies along
this line are both important and interesting for theory and practice.

Another primitive, called proxy re-signature (PRS), allows a semi-trusted
proxy to transform Alice’s signature σA on a message μ into Bob’s signature σB

on the same message μ, but the proxy cannot produce new valid signature on
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new messages for either Alice or Bob. PRS is employed in various applications,
such as providing a proof that a certain path in a graph is taken.

Both concepts of PRE and PRS were introduced by Blaze, Bleumer, and
Strauss [8], who also gave the first construction of a CPA (i.e. chosen-plaintext
attacks) secure bi-directional multi-hop PRE scheme under the Decisional Diffie-
Hellman assumption, and a restricted PRS construction. Later on, Ateniese and
Hohenberger [7] formalized security notions for PRS, and gave two PRS con-
structions (one is bi-directional, and the other one is uni-directional) based on
bilinear maps in the random oracle model. Ateniese et al. [6] constructed the first
CPA secure uni-directional scheme based on bilinear maps, yet their construc-
tion can only support a single-hop re-encryption. Hohenberger et al. [23] and
Chandran et al. [14] used an obfuscation-based approach and constructed CPA
secure uni-directional single-hop PRE scheme (and its variants). Chandran et al.
[13], using the obfuscation-based approach, constructed the first CPA secure uni-
directional multi-hop PRE scheme based on lattices assumptions.

For the PRE part, as argued that CPA security can be insufficient for some
useful scenarios, Canetti and Hohenberger [10] considered a natural stronger
security notion — chosen-ciphertext attacks (CCA) security where the adver-
sary has access to a decryption oracle. Intuitively, this security notion guaran-
tees that the underlying message of the challenge ciphertext remains hidden
even if the adversary can somehow obtain decryptions of other ciphertexts.
They give a meaningful security formulation of CCA secure PRE, and then
constructed the first CCA-secure bidirectional multi-hop PRE scheme. Later,
Shao et al. [33] constructed a CCA-secure uni-directional single-hop PRE, and
Chow et al. [16] proposed another CCA-secure uni-directional scheme in ran-
dom oracle model. Libert and Vergnaud [26] improved the result by construct-
ing a CCA uni-directional single-hop PRE without random oracles, and this
remains the state of the art of the current construction (for the setting of uni-
directional CCA-PRE under the definition of [10]). We note that it is unclear
how to extend security of the previous obfuscation-approach [13,14,23] (that are
only CPA-secure) to the CCA setting. One particular technical challenge is that
the re-encryption key output by the simulator might be distinguishable given
the CCA decryption oracle, and thus the previous security analyses cannot go
through. For CPA security, our understanding is quite well—we know how to
construct PRE schemes that are uni-directional and multi-hop in the standard
model. However, for CCA security, our understanding in the standard model
is much limited in the following sense. First, there is no known scheme that
achieves both uni-directional and multi-hop at the same time. Moreover, all cur-
rently known constructions [4,6,8,10,16,26,33] are based on Diffie-Hellman-style
assumptions. Then Kirshanova [24] proposed a single-hop construction based on
lattices, and argued that it is CCA1 secure1. However, after a careful examina-
tion of her security proof, we found a subtle mistake in the security proof. As the

1 CCA1 security is weaker in the sense that the attacker does not have the decryption
oracle after receiving the challenge ciphertext.
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mistake is not easily fixable, how to construct a lattice-based PRE that achieves
CCA1-security, (even for the single-hop case) remains open.

For the PRS part, Ateniese and Hohenberger [7] left some open problems such
as how to construct uni-directional PRS where the proxy can only translate
signatures in one direction. Can we avoid the random oracle analysis? Libert
and Vergnaud [25] answered these questions positively by constructing the first
multi-use unidirectional PRS in standard model relying on a new computational
assumption in bilinear group.

In this paper, we study lattice-based PRE and PRS constructions. In partic-
ular, we make contributions in the following four folds:

– First, we point out a subtle mistake in the security proof of the work [24] (the
CCA1 construction), and argue that this is not easy to fix. Briefly speaking,
the re-encryption key from the challenge user to another honest user generated
in the security proof is distinguishable from the real, and thus the analysis
breaks down. Therefore, the construction of [24] does not achieve the CCA1
notion considered in most prior work and this paper.

– Second, we propose a new model called tag-based CCA that lies in between
the CCA1 and CCA2 model. Our tag-based CCA allows the attacker to query
the decryption oracle before and after the challenge ciphertext, and the hon-
est re-encryption oracle who only re-encrypts honestly generated ciphertexts.
This is a combination of CCA and a new notion – honest re-encryption (HRA)
attacks proposed recently by Cohen [17].
We then construct a lattice-based PRE scheme that achieves our tag-based
CCA notion. We also describe a generic transformation from the relaxed func-
tionality to the full-fledged one using know techniques (i.e., zero-knowledge
proofs). Using a recent work that constructs NIZK from circularly secure
FHE [12], we are able to achieve the full-fledged CCA-security if we further
assume the required circular security on LWE.

– Third we define a selective notion of tag-based CCA security for multi-hop
PRE where the attacker needs to commit to a tree structure for the chal-
lenging ciphertext at the beginning. Then we prove that our basic single-hop
construction, with a slight modification, can be extended to the multi-hop
setting and achieve such a security notion. This is, to our knowledge, the first
construction of multi-hop PRE that achieves a relaxed yet meaningful notion
of CCA security.

– Lastly, we propose a simpler and unified security model for PRS which cap-
tures more dynamic settings. We show that the idea of our multi-hop PRE
model and the construction can be extended to construct PRS that achieves
the security notion. This is the first (to our knowledge) multi-hop unidirec-
tional PRS from lattices.

1.1 Technique Highlights

In the following, we highlight our technical ideas for the four contributions as
described above.
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Part I: The Subtle Mistake in the Work [24]. The subtle mistake comes in
the security proof where the work [24] constructs two adjacent hybrids that are
distinguishable. For clarification of exposition, we first briefly present the main
idea of the construction [24]. Then we will point out where the subtlety is and
explain why the problem cannot be easily fixed.

Basically, the PRE construction can be regarded as an extension of CCA-
secure public key encryption scheme in [28]. For concreteness, we consider two
users: User 1 has public key pk1 = (A0,A1,A2,H), and User 2 has public
key pk2 = (A′

0,A
′
1,A

′
2,H

′), where each public key consists of four matrices.
The secret key of User 1 consists of low-norm matrices R1,R2 satisfying A1 =
−A0R1,A2 = −A0R2, and it is similar for the case of User 2. We note that the
readers here do not need to worry about the dimensions. To encrypt under pk1,
we consider an encryption matrix Au = [A0|A1 +HG|A2 +HuG], where Hu is
a random invertible matrix (as a tag to the ciphertext), then encrypt messages
using the dual-Regev style encryption [22], i.e. ct = sTAu + e + encode(m).
Similarly, we can encrypt under pk2 with the same structure.

To generate a re-encryption key from User 1 to User 2, the work [24] considers
a short matrix X satisfying the following relation:

[A0|A1 + HG|A2 + HuG]

⎡
⎣
X00 X01 X02

X10 X11 X12

0 0 I

⎤
⎦ = [A′

0|A′
1 + H′G|A′

2 + HuG].

In particular, for the last column of the re-encryption key matrix, it holds that

[A0|A1 + HG]
[
X02

X12

]
= A′

2 − A2. (1)

It is not hard to see that ct · X = sT · A′
u + ẽ + encode(m), a ciphertext of m

under pk2, so the correctness property is guaranteed.
To prove security, the work [24] uses a standard reduction argument based

on the LWE assumption: suppose there exists an adversary that can break the
PRE scheme, then there exists a reduction, with oracle access to the adversary,
who can break the underlying LWE assumption. For this type of proofs, typically
the reduction needs to embed the hard instance (LWE instance for this case),
then simulates a scheme (PRE) to the adversary, and finally the reduction can
use the adversary to break the underlying hardness assumption. It is crucially
important that the simulated scheme cannot be distinguished by the adversary;
otherwise, the adversary can always output ⊥ if he detects the scheme is different
from the real scheme, and such adversary is useless to the reduction. The security
proof in the work [24] missed this point. At a high level, her reduction simulated
a PRE scheme that can be distinguishable by the adversary easily, so the whole
argument breaks down. Below we further elaborate on the details.

For simplicity we consider a simple case where there are only two honest users,
Users 1 and 2 and the adversary only gets one re-encryption key from User 1 to
User 2. The challenge ciphertext comes from an encryption of User 1, i.e. pk1.
For such case, the reduction of the work [24] pre-selects a tag matrix Hu∗ (for
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the challenge ciphertext), matrices R∗
1,R

∗
2, and then embeds an LWE instance

A∗ in the encryption matrix: A∗
u = [A∗| − A∗R∗

1| − A∗R∗
2 + (Hu − Hu∗)G].

In this case, the reduction sets pk1 = (A0,A1,A2,H) to be (A∗,−A∗R∗
1 −

H∗G,−A∗R∗
2 − Hu∗G,H∗) for some random invertible H∗.

To generate re-encryption key from the challenge user 1 to User 2, the reduc-
tion first pre-samples small matrices X00,X01,R′

1,R
′
2, and a random invertible

matrix H′. Then it computes:

A′
0 = [A∗| − A∗R∗

1]
[
X00

X10

]
, A′

i = [A∗| − A∗R∗
1]

[
X00

X10

]
· R′

i,∀i = 1, 2

The reduction sets

pk2 = (A′
0,A

′
1,A

′
2,H

′), rk1→2 =
[(

X00
X10

)(
X00
X10

)
R′

1

(
X00
X10

)
R′

2

0 0 I

]

generated as above. Then obviously the matrices A′
1,A

′
2 can be expressed as

A′
1 = A′

0R
′
1,A

′
2 = A′

0R
′
2, where R′

1,R
′
2 are small matrices and still act as

secret key for User 2. Therefore, the reduction can still use the same algorithm
in the real scheme to answer decryption queries for User 2.

However, if A′
2 is generated in this way, then it is easy to check and compare

with Eq. (1):

[A0|A1 + HG]
[
X02

X12

]
= [A∗| − A∗R∗

1]
[
X00

X10

]
· R′

2 �= A′
2 − A2. (2)

This means adversary, given the simulated pk1, pk2, rk1→2, can easily tell
whether they are from the real scheme or the simulated scheme. Thus, the secu-
rity proof in this way [24] is not correct.

A straightforward fix would be to set A′
2 = [A∗|−A∗R∗

1]
[
X00

X10

]
·R′

2 +A2 =

A′
0 · R′

2 + A2 so that Eqs. (1) and (2) match. But in this way it is not clear
how to express A2 as A′

0R for some small matrix R, because it is not clear
how to express A2 as A′

0R̃ for some small R̃. Note that R serves as the secret
key of pk2 to simulate decryption queries. Consequently, it is not clear how the
reduction can answer decryption queries as the previous approach. It seems that
this construction/proof is facing a dilemma: either the reduction can answer
the decryption queries but the re-encryption key can be distinguished, or the
reduction can generate an indistinguishable re-encryption key but cannot answer
the decryption queries.

Part II: Our New Construction for Single-Hop PRE. To overcome the
dilemma, we consider a new matrix structure: the setup algorithm outputs a
public matrix A, and each user extends the previous matrix structure to be
Au = [A|A1 + HG|A2 + HuG], where A1 = −AR1,A2 = −AR2 and the
matrices R1,R2 are the corresponding secret key. The shared matrix A offers
a significant advantage for the simulation: the reduction can embed the LWE
instance A∗ as the public shared matrix, and then sets

A′
2 = [A∗| − A∗R∗

1]
[
X00

X10

]
· R′

2 − A∗R∗
2.
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This allows the reduction to express A′
2 as A∗R for some small and known

matrix R. Then the reduction can use this to simulate the decryption queries,
while the Eq. (1) will match for the real scheme and the simulated scheme. Our
modified construction achieves a relaxed re-encryption functionality in compar-
ison to the construction proposed in [26], i.e. the re-encryption key can only
transform well-formed ciphertexts into indistinguishable re-encrypted cipher-
texts, but transformation of maliciously chosen cihpertexts can be distinguished
if the adversary has the secret key of the target user. In Sect. 3, we present more
detailed discussions and a simple transformation from the relaxed functionality
to the “full-fledged” functionality using zero-knowledge proofs2.

Part III: Extension to Multi-hop PRE. We further observe that the matrix
structure in our construction can be extended to the multi-hop case with a slight
modification. Interestingly, our scheme itself can support general network struc-
tures (for functionalities), yet our security proof (for CCA security), however,
requires the structure of tree-structured networks (i.e. the adversary can only
query re-encryption keys that form a tree among the users). If the adversary’s
queries form a general graph, then security of our scheme becomes unclear: we
are not able to prove security under the current techniques, but there is no known
attack, either. We leave it as an interesting open problem to determine whether
our construction is secure under general network structures.

A technical reason for this phenomenon comes from the order of sampling
for the simulation. We give a simple example for illustration: let there be three
parties in the network, Users one, two, and three. It is easy for the reduction
to simulate in the following order pk1, rk1→2, pk2, rk2→3, and then pk3 without
knowing a trapdoor of the LWE instance A∗. The reduction, however, would
get stuck if he needs to further generate rk1→3, which should be consistent with
the already sampled pk1 and pk3. We recall that the reduction is able to check
whether rk1→3 is consistent with pk1 and pk3 in both the real scheme and the sim-
ulated scheme (as Eq. (1)). Thus, the reduction must simulate such consistency
as the real scheme. Even though there are techniques from the Ring-LWE [21,27]
that allows sampling in the reverse order of pk3, rk2→3, pk2, rk1→2, pk1, it does
not help to solve the problem because the reduction still does not know how to
generate rk1→3 after pk1 and pk3 are sampled, without a trapdoor of A∗.

Part IV: Unified Model and Construction for Multi-hop PRS. An inter-
esting observation from our multi-hop CCA-PRE construction is that it is also
compatible with the lattice signature structure in the work of Boyen [9]. In par-
ticular, in that work, the signature scheme has the following structure: [A|Bμ],
where is an encoded matrix for message μ. This message-dependent matrix can
be extended to a similar structure similar to that in multi-hop PRE construc-
tion. Recall that prior PRS work [7,25] consider four scenarios for the security
requirement. In each scenario, the adversary has access to a subset of oracles
(signing, re-signing, re-key generation), and security requires that the adversary

2 Under current techniques, zero knowledge proof systems based on pure lattices
assumptions either require interactions or random oracles.
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cannot forge a signature on behalf of honest users (whose secret keys are not
at the adversary’s hand). Our unified security model is based on the approach
of multi-hop PRE model with necessary modifications to fit into the signature
framework.

1.2 Related Works

Proxy Re-Encryption. As mentioned above, in recent years, there has been
multiple PRE constructions achieving different security notions from different
assumptions. In addition to the bi-directional PRE-CPA constructions [8,10],
there is also some work [6,23] about building uni-directional PRE-CPA from
various assumptions. For CCA-PRE construction, we only know how to con-
struct single-hop scheme from bilinear group assumption as shown in work [26],
and single-hop scheme from LWE assumption in the random oracle model as
shown in [4]. Besides the above mentioned work, recently Nuñez et al. [31] pro-
posed a nice framework capturing more fine-grained CCA-security of PRE, cor-
responding to the adversary’s ability in the security experiment. Our multi-hop
tag-based CCA-secure PRE construction described in the full version [19] can be
categorized as CCA1,2 model in their paper regarding a special structure (trees).

Proxy Re-Signature. Bi-directional PRS was considered in the literature [7,
15]. The generation of re-key algorithm needs to take inputs both users’ secret
key. The more fine-grained notion, uni-directional PRS scheme was proposed
in [25]. Shao et al. [34] cooked up a bilinear group based scheme (in random
oracle model) that is insecure but proven secure in prior PRS model [7,25], but
their result cannot be extended to the lattice setting.

2 Preliminaries

Notations. Let ppt denote probabilistic polynomial time. We use bold upper-
case letters to denote matrices, and bold lowercase letters for vectors. We let λ
be the security parameter and [n] denote the set {1, ..., n}. We use [·|·] to denote
the concatenation of vectors or matrices, and use �∞ norm for the norms of all
vectors and matrices used in our paper. We say a function f(n) is negligible if
it is O(n−c) for all c > 0, and we negl(n) to denote a negligible function of n.
Let X and Y be two random variables taking values in Ω. Define the statistical
distance, denoted as Δ(X,Y ) as

Δ(X,Y ) :=
1
2

∑
s∈Ω

|Pr[X = s] − Pr[Y = s]|

Let X(λ) and Y (λ) be ensembles of random variables. We say that X and Y are
statistically close if d(λ) := Δ(X(λ), Y (λ)) is a negligible function of λ. We say
two ensembles X(λ) and Y (λ) are computationally indistinguishable (denoted
as X(λ) ≈ Y (λ)) if for every ppt distinguisher D, it holds that

|Pr[D(X(λ)) = 1] − Pr[D(Y (λ)) = 1]| = negl(λ)
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Lemma 2.1 ([1]). Regarding the norm defined above, we have the following
bounds:

– Let R ∈ {−1, 1}m×m be chosen at random, then Pr[||R|| > 12
√

2m] < e−2m.
– Let R be sampled from DZm×m,σ, then we have Pr[||R|| > σ

√
m] < e−2m.

Randomness Extraction. We will use the following lemma to argue the indis-
tinguishability of two different distributions, which is a generalization of the
leftover hash lemma proposed by Dodis et al. [18].

Lemma 2.2 ([1]). Suppose that m > (n + 1) log q + w(log n). Let R ∈
{−1, 1}m×k be chosen uniformly at random for some polynomial k = k(n). Let
A,B be matrix chosen randomly from Z

n×m
q ,Zn×k

q respectively. Then, for all
vectors w ∈ Z

m, the distribution (A,AR,RTw) is statistically close to distri-
bution (A,B,RTw).

Learning with Errors. The LWE problem was introduced by Regev [32], who
showed that solving it on the average is as hard as (quantumly) solving sev-
eral standard lattice problems in the worst case, when the error distribution is
instantiated as discrete Gaussian distribution with proper parameters.

Definition 2.3 (LWE). For an integer q = q(n) ≥ 2, and an error distribution
χ = χ(n) over Zq, the learning with errors problem LWEn,m,q,χ is to distinguish

between the distribution {A,ATs + x} from distribution {A,u}, where A $←
Z

n×m
q , s $← Z

n
q , u $← Z

m
q , and x ← χm.

Small Integer Solution. The SIS problem was first suggested to be hard on
average by Ajtai [2] and then formalized by Micciancio and Regev [30]. It is
known to be as hard as certain worst-case problems (e.g., SIVP) in standard
lattices [2,22,29,30].

Definition 2.4 (SIS). For any n ∈ Z, and any functions m = m(n), q =
q(n), β = β(n), the average-case Small Integer Solution problem (SISq,n,m,β)
is: Given an integer q, a matrix A ∈ Z

n×m
q chosen uniformly at random and

a real β ∈ R, find a non-zero integer vector z ∈ Z
m − {0}, such that Az = 0

mod q and ||z|| ≤ β.

G-Trapdoors and Sampling Algorithms. We briefly describe the main
results in [28]: the definition of G-trapdoor and the algorithms InvertO and
SampleO. Roughly speaking, a G-trapdoor is a transformation, represented by a
matrix R from a public matrix A to a special matrix G. The formal definition
is as follows:

Definition 2.5 ([28]). Let A ∈ Z
n×m
q and G ∈ Z

n×w
q be matrices with m ≥

w ≥ n. A G-trapdoor for A is a matrix R ∈ Z
m−w × w such that A

[
R
I

]
= HG

for some invertible matrix H ∈ Z
n×n
q . We refer to H as the tag or label of the

trapdoor. The quality of the trapdoor is measured by its largest singular value
s1(R).
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In order to embed matrix G into a uniformly looking matrix A together with
a transformation R, we should start with a uniform matrix A0 and a matrix R,
and construct A = [A0| − A0R + HG]. For an appropriate chosen dimensions
(A,AR) is negligible from uniformly random distribution by the Lattice-based
Leftover Hash Lemma.

Following the work of Micciancio and Peikert [28], our scheme uses a special
collection of elements defined over ring R = Zq[x]/(f(x)), where f(x) = xn +
fn−1x

n−1 + · · · + f0 is a irreducible modulo every p dividing q. Since R is a
free Zq-module of rank n, thus elements of R can be represented as vectors in
Zq relative to standard basis of monomials 1, x, ..., xn−1. Multiplication by any
fixed element of R then acts as a linear transformation on Z

n
q according to the

rule
x · (a0, ..., an−1)T = (0, a0, ..., an−2)T − an−1(f0, f1, ..., fn−1)T

and so can be represented by an matrix in Z
n×n
q relative to the standard basis.

In other words, there is an injective ring homomorphism h : R → Z
n×n
q that

maps any a ∈ R to matrix H = h(a) representing multiplication by a. As
introduced in [28], we need a very large set U = {u1, ..., ul} with the “unit
differences” property: for any i �= j, the difference ui − uj ∈ R∗, and hence
h(ui − uj) = h(ui) − h(uj) ∈ Z

n×n
q is invertible.

Lemma 2.6 ([28]). There is an efficient algorithm SampleO(R,A′,H,u, s),
where R is a G-trapdoor for matrix A with invertible tag H, a vector u ∈ Z

n

and an oracle O for Gaussian sampling over a desired coset Λv
q (G). It will out-

put a vector drawn from a distribution within negligible statistical distance of
DΛu (A),s, where A = [A′| − A′R + HG].

In the following, we provide two extensions of the LWE inversion algorithms
proposed by Micciancio and Peikert [28], which would be used in the security
proof and scheme respectively.

– InvertO(R1,R2,A, b): On input a vector b = sTA+eT, a matrix A = [A0| −
A0R1 + H1G| − A0R2 + H2G] and its corresponding G-trapdoor R1,R2

with invertible tag H1,H2, the algorithm first computes b′ = bT
[R1+R2

I
I

]
,

and then run the oracle O(b′) to get (s′,e′). The algorithm outputs s =
(H1 + H2)−1s′ and e = b − sTA.

– Invert′O(R1,R2,A, b): On input a vector b = sTA + eT, a matrix A =
[A0|−A0R1|−A0R2+H2G] and its corresponding G-trapdoor R1,R2 with
invertible tag H1,H2, the algorithm first computes b′ = bT

[R1+R2
I
I

]
, and then

run the oracle O(b′) to get (s′,e′). The algorithm outputs s = H−1
2 s′ and

e = b − sTA.

3 Proxy Re-Encryption: Syntax and Security Definitions

In this section, we first recall the syntax of single-hop PRE [26], and then we
define a new variant of CCA-PRE security, i.e. tag-based CCA-PRE security that
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captures constructions associated with tags. However, for lattice-based construc-
tions, our current technique cannot achieve the full-fledged PRE construction in
that the re-encryption algorithm does not provide the full-fledged functional-
ity in that it does not fully implement the regular re-encryption oracle which
decrypts first, outputs ⊥ if the decrypted value is invalid, and outputs a fresh
ciphertext of the same message, otherwise. Our re-encryption algorithm guar-
antees the functionality when the input ciphertexts are well-formed, but if the
input ciphertexts are not well-formed, the re-encryption algorithm is not able
output ⊥, yet it can only output re-encrypted ciphertexts that will be decrypted
to ⊥. This security notion is also known as security against honest re-encryption
attacks (HRA), where the re-encryption oracle only re-encrypts honestly gener-
ated ciphertexts. The HRA model was defined in a recent work by Cohen [17],
and it also identified many interesting scenarios captured by the HRA secu-
rity. The work by Cohen [17] achieves the CPA + HRA security, and this work
achieves a stronger notion – CCA + HRA security.

In fact, our relaxed functionality is not far from the full-fledged functionality
if the input-ciphertext provider is required to prove the validity of the cipher-
texts. We note that there exists an efficient lattice-based Σ protocol [5] with
interaction, and we can further use the Fiat-Shamir transform [20] to achieve a
NIZK proof system if a random oracle is assumed. Very recently, the work [12]
constructed NIZK from FHE with circular security, which can be based on LWE
with a certain circular security. Using this lattice-based NIZK, we can upgrade
our security to the full-fledge CCA-PRE security. Therefore, if we further assume
the required circular security on LWE, we are able to achieve the full-fledge
CCA-PRE. We leave it as an interesting open problem to determine whether
the circular security is inherent in achieving the full-fledge CCA-PRE.

The relaxed PRE security notion has already provided meaningful security
guarantees and allowed a modular design to achieve the full-fledged functional-
ity, e.g., the proxy additionally requests a proof of well-formness of the input
ciphertexts. We believe that this notion deserves attention for the community.

3.1 Single-Hop PRE Syntax

We recall the syntax of uni-directional PRE, which can be regarded as a natural
extension of bi-directional case defined in [10] and later studied in uni-directional
scenario by Libert and Vergnaud [26]. The PRE scheme consists a tuple of ppt
algorithms (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc), which can be defined as
follows:

– pp ← Setup(1λ) generates the public parameters pp.
– (pk, sk) ← KeyGen(pp) generates (pk, sk) for each user.
– ct ← Enc(pk, μ, i) encrypts a message μ at level i ∈ {1, 2}. The re-encryption

can only operate on ciphertexts that are at level 1.
– μ′ = Dec(sk, (ct, i)) decrypts a ciphertext ct.
– rki→j ← ReKeyGen(pki, ski, pkj) computes the re-encryption key rki→j .
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– (ct′, 2) ← ReEnc(rki→j , (ct, 1)) computes the re-encrypted ciphertext ct′. If
the well-formedness of ciphertext ct is publicly verifiable, the algorithm should
output “invalid” when ct is ill-formed.

Correctness. For correctness, we consider two cases for the PRE scheme: one
for “fresh” ciphertexts generated by encryption algorithm, and the other for re-
encryption ciphertexts generated by the re-encryption algorithm. We say that a
single-hop PRE scheme is correct if the following holds.

– For any pp ← Setup(1λ), any (pk, sk) ← KeyGen(pp), any message μ and level
i ∈ {1, 2}, it holds that

Pr[Dec(sk,Enc(pk, μ, i)) = μ] = 1 − negl(λ)

– For any pp ← Setup(1λ), any (pki, ski), (pkj , skj) ← KeyGen(pp), any message
μ, it holds that

Pr[Dec(skj ,ReEnc(rki→j , ct)) = μ] = 1 − negl(λ)

where ct ← Enc(pki, μ, 1), rki→j ← ReKeyGen(pki, ski, pkj).

3.2 Single-Hop PRE Security Definitions

In the security part, we first present the CCA-PRE definition proposed in [26]
with minor modifications – in particular the definition of derivative in security
model. Next, we describe a weaker security model considered in [24], whose
restriction is: the re-encryption queries submitted by the adversary are only
allowed between honest users. Then we propose an intermediate model, where
the capability of re-encryption oracle is slightly weaker than its counterpart
in [26]. Intuitively, we say a ciphertext is well-formed if it is an encryption of
a message under the claimed public key. In the re-encryption oracle in [26],
the well-formedness of ciphertext is public verifiable, i.e the verification only
needs public keys. However, in our intermediate model, the verification needs
the assistance of secret keys. Let A denote any ppt adversary, and Π be a PRE
scheme. We define the notion of CCA-secure PRE in the uni-directional setting
using the following experiment ExptCCA-PREA (1λ), which describes the interaction
between several oracles and an adversary A. As we discussed before, we include
public parameters pp in each user’s public key pk and secret key sk, so we will
omit pp in the description for simplicity. The experiment ExptsingleA (1λ) consists
of an execution of A with the following oracles with detail as follows:

– The challenger runs setup algorithm pp ← Setup(1λ) and initializes two empty
sets H = ∅, C = ∅. Then he sends pp to adversary A.

– Proceeding adaptively, adversary A has access to the following oracles:

Uncorrupted key generation oracle: Obtain a new key pair (pki, ski) ←
KeyGen(pp). Send pki back to adversary A, set the honest user set H = H∪{i}
and pass the the tuple (i, pki, ski) to re-encryption key generation oracle
OReKeyGen and decryption oracle ODec.
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Corrupted key generation oracle: Obtain a new key pair (pki, ski) ←
KeyGen(pp). Send the key pair (pki, ski) back to adversary A, set the cor-
rupted user set C = C ∪ {i} and pass the tuple (i, pki, ski) to re-encryption
key generation oracle OReKeyGen and decryption oracle ODec.

Re-encryption key generation oracle OReKeyGen: On input an index pair
(i, j) from the adversary, if the query (i, j) is made after accessing the chal-
lenge oracle, then output ⊥ if i = i∗ and j ∈ C. Otherwise, do the following:

• If the pair (i, j) is queried for the first time, the oracle returns a re-
encryption key rki→j ← ReKeyGen(pki, ski, pkj);

• else (the pair (i, j) has been queried before), the oracle returns the re-
encryption key rki→j .

Re-encryption oracle OReEnc: On input (i, j, (ct, k)), the oracle returns a spe-
cial symbol ⊥ if (ct, k) is not a well-formed first level ciphertext, or j ∈ C
and (i, ct) = (i∗, ct∗). Otherwise, it computes re-encrypted ciphertext ct′ ←
ReEnc(rki→j , ct) and sends back (ct′, 2).

Decryption oracle ODec: On input (i, ct), if i /∈ C ∪ H or ct is not a valid
ciphertext, then return a special symbol ⊥. It also outputs a special symbol
⊥ if (i, ct) is a Derivative (c.f. Definition 3.2) of the challenge pair (i∗, ct∗).
Otherwise, it returns Dec(ski, ct) to adversary A.

Challenge oracle: This oracle can be queried only once. On input (i∗, μ0, μ1),
where i∗ ∈ H and no re-encryption key from i∗ to corrupted users C has been
queried by adversary, the oracle chooses a bit b ∈ {0, 1} and returns ct∗ ←
Enc(pki∗ , μb, 1) as the challenge ciphertext, and passes i∗ to re-encryption key
generation oracle OReKeyGen, and (i∗, ct∗) to re-encryption oracle OReEnc.

Decision oracle: This oracle can be queried only once. On input b′ from adver-
sary A, the oracle outputs 1 if b′ = b, and 0 otherwise.

The advantage of an adversary in the above experiment ExptsingleA (1λ) is
defined as |Pr[b′ = b] − 1

2 |.

Definition 3.1 (CCA-PRE Model). A uni-directional PRE scheme is CCA-
PRE secure if all ppt adversaries have at most a negligible advantage in exper-
iment ExptsingleA (1λ).

In our PRE construction, every ciphertext is associated with a tag u chosen
randomly in the encryption algorithm, thus we call our security model tag-based
CCA security. In [26], a pair (i, ct) is called derivative of the challenge ciphertext
pair (i∗, ct∗) if Dec(ct, ski) ∈ {μ0, μ1}, where {μ0, μ1} are the challenge message
pair. We achieve a slightly stronger notion of derivative as defined in the following

Definition 3.2 (Derivative). A pair (i, (ct, u)) is called derivative of the chal-
lenge ciphertext pair (i∗, (ct∗, u∗)) if u = u∗.

Remark 3.3. It is obvious to see that tag-based CCA security is stronger than
CCA1 security (where the adversary cannot access the decryption oracle after the
challenge ciphertext), and is slightly weaker than CCA2 security. This relaxation



Proxy Re-Encryption and Re-Signatures from Lattices 375

is meaningful and can be nearly the best we can achieve if we further require the
property of unlinkability for re-encrypted ciphertexts. That is, if we want the re-
encrypted algorithm to produce statistically indistinguishable ciphertexts, i.e.
the re-encrypted ciphertexts are almost identically distributed as fresh ones,
then arguably it is not possible to achieve CCA2 security, because the decryp-
tion oracle cannot distinguish a re-encryption of challenge ciphertext from a
fresh ciphertext, so an adversary can easily break the security game by querying
the decryption oracle with a re-encrypted ciphertext of the challenge ciphertext.
For tag-based schemes, where the tag remains the same for re-encrypted cipher-
texts, we can ensure that the challenge ciphertext will not be decrypted by the
decryption oracle due to derivative definition (see Definition 3.2). The tag-based
CCA security guarantees the challenge ciphertext remains hidden, even if the
adversary can obtain decryptions of ciphertexts with other tags.

Remark 3.4. Our re-encryption oracle only re-encrypts well-form ciphertexts.
This is explicitly defined as honest re-encryption attacks (HRA) by Cohen [17].
The formulation of this work is slightly different from that of the work by
Cohen [17], but the two formulations have the same spirit.

The above security model only captures the CCA security of ciphertexts on
the first level. We also present the CCA security of ciphertexts on the second
level. Since the challenge ciphertext is on the second level, which means it cannot
be further re-encrypted to ciphertext under other public keys, so there is no
need to restrict the re-encryption queries regarding the challenge ciphertext. We
highlight the difference comparing to security model of first level ciphertexts in
the following definition.

Definition 3.5. (Second-Level Security). The difference of experiment
between second-level security and the security definition in Definition 3.1 are
below:

– In challenge oracle: the oracle returns ct∗ ← Enc(pki∗ , μb, 2) as the challenge
ciphertext.

– The re-encryption oracle OReEnc does not need to check whether the queried
tuple is the same as challenge ciphertext.

Definition 3.6. (PRE with Relaxed Functionality). A PRE scheme with
a relaxed functionality if the re-encryption algorithm outputs statistically close
to the distribution of fresh ciphertexts of the second level when the input
ciphertexts are well-formed. That is, if (ct, 1) is a well-formed ciphertext, then
ReEnc(rki→j , (ct, 1)) is statistically close to (ct′, 2) ← Enc(pkj ,Dec(ct, 1), 2). If
the input ciphertexts are not well-formed, then only Dec(skj , (ct′, 2)) = ⊥ is
guaranteed.

Remark 3.7. As we argued above, the relaxed functionality does not com-
pletely implement the re-encryption oracle OReEnc as in the above definition.
The difference can be bridged by a crypto proof system, (either interactively or
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non-interactively) assuming the input ciphertext is associated with a proof. We
present the formal description of this idea in the full version of this paper.

In our construction, we do not allow querying the relaxed functionality
directly with arbitrary input ciphertexts re-encrypted to a corrupted party, e.g.,
invalid input ciphertexts chosen by the adversary to some corrupted Party j.
As the transformation can leak the re-encryption key, if the adversary corrupts
Party j and can obtain a re-encryption key rki→j , then he can easily break the
security of pki.

We note that the the CCA model of [24] is weaker than the model consid-
ered in this paper. In particular, the model [24] has the following restrictions:
the re-encryption key queries (or re-encryption queries) submit by adversary A
are restricted among honest users (we ignore the re-encryption queries within
corrupted users, since adversary can generate by himself).

4 Single-Hop Tag-Based CCA-Secure PRE Construction

In this section, we present our construction of single-hop PRE. The PRE sys-
tem has message space {0, 1}nk, which we map bijectively to the cosets of
Λ/2Λ for Λ = Λ(Gt) via some encoding function encode that is efficient to
evaluate and invert. In particular, letting S ∈ Z

nk×nk be any basis of Λ,
we can map µ ∈ {0, 1}nk to encode(µ) = Sµ ∈ Z

nk. The PRE scheme
(Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) can be described as follows:

– Setup(1λ, 1N ): The global setup algorithm set the lattice parameter (n, k, q, s).
Then it randomly selects a matrix A ∈ Z

n×nk
q , and outputs the public param-

eter pp = (A, n,m, q, s).
– KeyGen(pp): The key generation algorithm for i-th user chooses random

matrices Ri1,Ri2 ← DZnk×nk,s, letting Ai1 = ARi1 mod q and Ai2 =
ARi2 mod q. The public key is pki = Ai = [A| − Ai1| − Ai2], and the secret
key is ski = [Ri1|Ri2].

– Enc(pki,µ, �): The encryption algorithm does
• If � = 1, choose non-zero u ← U and let the message/level-dependent

matrix
Ai,u,l = [A| − Ai1 + h(�)G| − Ai2 + h(u)G]

Choose s ← Z
n
q ,e0,e1,e2 ← Dnk

Z,s. Let

bT = (b0, b1, b2) = 2(sTAi,u,� mod q) + eT + (0, 0, encode(µ)T) mod 2q

where e = (e0,e1,e2). Output the ciphertext ct = (u, b, 1).
• If � = 2, the algorithm uses the same procedure to encrypt the message,

except it chooses error e0,e1,e2 ← Dnk
Z,s′ , and outputs ct = (u, b, 2).



Proxy Re-Encryption and Re-Signatures from Lattices 377

– Dec(ski, ct): The decryption algorithm
1. If ct does not parse or u = 0, output ⊥. Otherwise, reconstruct the

message/level-dependent matrix Ai,u,�

Ai,u,l = [A| − Ai1 + h(�)G| − Ai2 + h(u)G]

Call InvertO([Ri1|Ri2],Au, b mod q) to get values z ∈ Z
n
q and e =

(e0,e1,e2) for which b = z + e mod q. If the algorithm Invert fail for
any reason, output ⊥.

2. Check the length of the obtained error vectors, namely if ||e0|| ≥ s′√m
or ||ei|| ≥ s′2m, for i = 1, 2, output ⊥.

3. Let v = b − e, and parse v = (v0,v1,v2). If v0 /∈ 2Λ(AT), output ⊥.
Finally, output

encode−1(vT

⎡
⎣
Ri1 Ri2

I 0
0 I

⎤
⎦ mod 2q) ∈ {0, 1}nk

if it exists, otherwise output ⊥.
– ReKeyGen(pki, ski, pkj): The re-encryption key generation algorithm does:

1. Use ski = [Ri1|Ri2] to run extended sampling algorithm SampleO to
sample X01,X02,X11,X12 ∈ Z

nk×nk such that

[A|−Ai1 + h(1)G|−Ai2 + B]

⎡
⎣
I X01 X02

0 X11 X12

0 0 I

⎤
⎦ = [A| −Aj1 + h(2)G| −Aj2 + B]

for any matrix B ∈ Z
n×nk.

2. Output the re-encryption key

rki→j = {X01,X02,X11,X12}
– ReEnc(rki→j , ct): First the re-encryption algorithm parses ct = (u, b, �) out-

puts a special symbol ⊥ if � = 2. Otherwise, it computes

bT · rki→j = sT[A| − Aj1 + h(1)G| − Aj2 + h(u)G] + e′T + ẽT + (0, 0, encode(μ)T)

where e′ = (e′
0,e

′
1,e

′
2), ẽ ← DZ3nk,s′ , and

e′
0 = e0, e′

1 = e0X01 + e1X11, e′
2 = e0X02 + e1X12 + e2 (3)

Then, it outputs ct′ = (u, b′, 2).

Parameter Setting. In this part, we set the lattice parameters used in our
construction. The correctness proof of our construction can be found in full
version [19]. G ∈ Z

n×nk
q is a gadget matrix for q = poly(n), n = poly(λ) and

k = O(log q) = O(log n). For matrix A ∈ Zn×m
q in the public parameters and

secret keys R ← D, we set m = O(nk) and D = Dm×nk
Z,w(

√
log n)

respectively. We
set the deviation s for discrete Gaussian distribution used in security proof to
be s = ω(

√
log n)

√
m, and parameter for level 2 error is s′ = s

√
m. For the error

rate α in the LWE assumption, we set sufficiently large 1/α = O(nk) ·w(
√

log n).
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5 Proxy Re-Signature with Selectively Chosen Tag

In this section, we present the syntax and our construction of PRS.

5.1 Syntax and Correctness Definition

We first recall the syntax and security definition of PRS in [7,25], then pro-
pose a simpler and unified security model that captures the security require-
ments. Our model adapts the same spirit of the prior security model of proxy re-
encryption [10,26], with necessary modifications to fit into the signature frame-
work. We also compare our new notion with the previous security model in
[7,25].

Let L = L(λ) denotes the maximum level the PRS system supports. The
scheme Σ = (Setup,KeyGen,Sign,Verify,ReKeyGen,ReSign) is described as fol-
lows:

– pp ← Setup(1λ, 1L) generates the public parameter pp for the whole system.
– (pk, sk) ← KeyGen(pp, i) generates (pki, ski) for user i.
– σ ← Sign(ski, μ, κ) computes a signature σ for μ at level κ.
– Verify(pki, σ, μ, κ) outputs 1 (accept) or 0 (reject).
– rkκ

i→j ← ReKeyGen(pki, pkj , skj , κ) computes a re-signing key from the i-th
user at level κ to the j-th user at level κ + 1.

– ReSign(rkκ
i→j , μ, σ, κ) computes a re-signature σ′ under pkj if Verify(pki, σ,

μ, κ) = 1, or ⊥ otherwise.

Correctness. For all security parameter λ, any pp ← Setup(1λ, 1L), all couples
of secret/public key pairs (ski, pki), (skj , pkj) generated by KeyGen(pp), for any
message μ and κ ∈ [L], it holds that

Verify(pki, μ, κ,Sign(ski, μ, κ)) = 1

Verify(pkj , κ + 1, μ, σ) = 1

where σ = ReSign(rkκ
i→j , μ, κ,Sign(ski, μ, κ)) and rkκ

i→j ← ReKeyGen(pki, pkj ,
skj , κ).

5.2 Our PRS Construction

Now we present our PRS construction and its security proof sketch. For simplic-
ity, we first present the scheme with security regarding a selective chosen tag,
where in the security experiment, the adversary needs to commit to the chal-
lenge tag before obtaining public parameters and public keys. In the full version,
we also describe how to modify our construction, slightly, to achieve security for
adaptively chosen tags. Let the message space be M = Zq, and the tag space be
T = Zq. The description is the following:

– Setup(1λ, 1L): The setup algorithm sets the lattice parameters (n, q,m, s),
then randomly chooses a matrix A ∈ Z

n×m
q and vectors b,v ∈ Z

n
q . Output

the public parameter pp = (A, b,v, q, n,m).
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– KeyGen(pp): The key generation algorithm computes (pki, ski) as follows:
1. Sample two small matrices Ri1,Ri2 from discrete Gaussian distribution

DZm×m,s.
2. Compute Ai = A · Ri1 mod q and A′

i = A · Ri2 mod q.
3. The public key pki and secret key ski for i-th user is

pki = (Ai,A′
i), ski = (Ri1,Ri2)

– Sign(pp, ski, μ, κ): The signing algorithm does:
1. Randomly select a non-zero tag t ∈ Z

∗
q , and define the signing matrix to

be
Ft,i,κ = [A|Ai + h(κ)G|A′

i + tG]

2. Sample a vector r1 ← DZm,s, then sample vector (r0, r2) ∈ Z
2m, using

(r0, r2) ← SampleO(A, tG,Ri2,TG, b + μv − (A′
i + h(κ)G)r1, s)

Therefore, it holds that Ft,i,κ · σ = b+ μv mod q, where σ = (r0, r1, r2).
3. Output the signature (σ, t, i, κ).

– Verify(pp, pki, μ, (σ, t, i, κ)): The verification algorithm dose:
1. Parse the signature tuple as σ = (r0, r1, r2), tag t, user index i and level

index κ, then first check the norm of |σ| = |(r0, r1, r2)|. Output 0 if
|σ| ≥ B.

2. Reconstruct the signing matrix

Ft,i,κ = [A|Ai + h(κ)G|A′
i + tG]

and output 1 if Ft,i,κ · σ = b + μv, otherwise output 0.
– ReKeyGen(pki, (skj , pkj), κ): The re-signing key generation:

1. Sample small matrices (X01,X11,X02,X12), using

(X01,X11) ← SampleO(A, h(κ + 1)G,Rj1,TG,Ai + h(κ)G, s),

(X02,X12) ← SampleO(A, h(κ + 1)G,Rj1,TG,A′
i − A′

j , s)

Therefore it holds that

[A|Aj + h(κ + 1)G|A′
j + tG]

⎡
⎣
I X01 X02

0 X11 X12

0 0 I

⎤
⎦ = [A|Ai + h(κ)G|A′

i + tG]

2. Output the re-signing key rkκ
i→j = (X01,X02,X11,X12).

– ReSign(rkκ
i→j , (σ, t, i, κ), μ, pki): The re-signing algorithm does:

1. First parse σ = (r0, r1, r2). Output ⊥ if Verify(pp, pki, μ, (σ, t, i, κ)) = 0.
2. Otherwise, output the re-signature tuple (σ′, t, j, κ + 1), where σ′ =

rkκ
j→j · σ.
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5.3 Parameter Setting

Let λ be the security parameter. For L = polylog(λ) maximum allowed re-signing,
we set the parameters of our scheme based on standard SIS assumption as q =
nO(L), n = poly(λ), L = polylog(λ),m = O(n log q). To ensure the SIS instance
has a worst-case lattice reduction as shown in [30], i.e. q ≥ βω(

√
n log n), we set

β = polylog(n). In order to achieve indistinguishability between real execution
and reduction, the Gaussian parameter is set to be s = ω(

√
log n). As a signature

produced by algorithm Sign has the size of O(s
√

m), and after each re-signing,
the size grows at the rate of O(sm), so we set parameter used in verification
to be B = ω(2L). Our PRS construction can support L = poly(λ)-hop using
subexponential SIS assumption.

6 Conclusion

In this work, we first point out a subtle error in work [24] and then showed how
to construct single-hop PRE that is secure in our new model, tag-based CCA
security. We then extend our security definition and construction to the multi-
hop scenario, as elaborated in the full version [19]. Lastly, we propose a simpler
and unified security model for PRS which captures more dynamic settings, then
give a construction based on SIS assumption. Due to the space constrain, the
security definition and proof of PRS are in the full version of this paper [19].
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