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Localization of fluorescent targets in deep tissue
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Abstract—Imaging fluorescence through millimeters or
centimeters of tissue has important in vivo applications,
such as guiding surgery and studying the brain. Often, the
important information is the location of one of more optical
reporters, rather than the specifics of the local geometry,
motivating the need for a localization method that provides
this information. We present an optimization approach
based on a diffusion model for the fast localization of
fluorescent inhomogeneities in deep tissue with expanded
beam illumination that simplifies the experiment and the
reconstruction. We show that the position of a fluorescent
inhomogeneity can be estimated while assuming homo-
geneous tissue parameters and without having to model
the excitation profile, reducing the computational burden
and improving the utility of the method. We perform two
experiments as a demonstration. First, a tumor in a mouse
is localized using a near infrared folate-targeted fluores-
cent agent (OTL38). This result shows that localization can
quickly provide tumor depth information, which could re-
duce damage to healthy tissue during fluorescence-guided
surgery. Second, another near infrared fluorescent agent
(ATTO647N) is injected into the brain of a rat, and localized
through the intact skull and surface tissue. This result will
enable studies of protein aggregation and neuron signaling.

Index Terms— Fluorescence imaging, localization, tu-
mors, brain, turbid media, inverse problems.
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T
HERE is substantial interest in imaging fluorescence

in deep tissue because it enables studies of targeted

biochemical processes in natural environments and in vivo.

However, such imaging presents a major challenge because

the light becomes highly scattered, limiting the information

that can be extracted from measurements [1], [2]. Near the

tissue surface, microscopy methods such as optical coherence

tomography [3] and two-photon microscopy [4] allow imaging

at high resolution but with limited depth. Even with feedback

control of the amplitude and phase of the incident wavefront,

which enables focusing of light through tissue [5], the imaging

depth is limited to less than about one millimeter [6]. Imaging

at tissue depths beyond one millimeter is achievable with

diffuse optical imaging (DOI), where the light propagation is

approximated as a diffusion process [7]. In fluorescence diffuse

optical tomography (FDOT), a DOI method, computational

imaging allows formation of three dimensional (3D) images

of optical properties [8]–[10]. FDOT has proven useful for

in vivo studies in mice and rats, especially when combined

with another imaging modality such as CT or MRI to improve

spatial resolution [11], [12].

Previously, we have used FDOT and folate-targeted fluo-

rescent contrast agents to image the kidneys and liver in a

dead mouse [13] as well as tumors in a live mouse [14].

Our results demonstrated that FDOT is a useful tool for

fluorescence guided surgery, where tumor nodules are iden-

tified for a surgeon to remove [15]. However, the full volu-

metric reconstruction performed by FDOT requires extensive

computational time, making it ill-suited for an intraoperative

environment where real-time imaging is required over a period

of hours. Therefore, here we develop an alternative approach

using a fast localization method, where only the position of

an inhomogeneity is determined. This is accomplished by

treating the inhomogeneity as an equivalent point fluorescent

source. The position of the point fluorescent source is then

estimated through an optimization procedure. We expand upon

previous work on localization [16]–[20] by demonstrating that

the excitation profile does not need to be modeled and that

homogeneous tissue parameters can be assumed to achieve

acceptable precision. In this case, the tissue parameters are

treated as fitting parameters. We use a mouse model to show

that this method can find tumors in deep tissue, and can

provide depth information to assist in guided surgery. The near
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infrared (NIR) folate-targeted molecular contrast agent OTL38

is used in order to computationally localize a tumor in deep

tissue [21], [22].

Localization is also valuable for imaging in the brain, where

targeted fluorescent agents allow studies of, for example,

misfolding of protein aggregates [23] and neuron activa-

tion [24], [25]. Modulation of the fluorescence emission in

space, time, or wavelength may enable superresolution diffuse

optical imaging (SRDOI) through localization of individual

fluorescent emitters, providing images with higher resolution

than have previously been possible in deep tissue [19]. How-

ever, sufficient fluorescent signal must be present to overcome

the background tissue autofluorescence. For this reason, we

employ ATTO647N, another NIR dye, that is bright for its

wavelength and has a long fluorescence lifetime. We demon-

strate that localization of a fluorescent inhomogeneity in the

brain through the intact head (including the skull) of a rat is

possible.

We describe a diffusion model for a point fluorescent source

within a highly scattering medium in Section II. This model

is used to develop a localization framework to estimate the

position of a fluorescent inhomogeneity in Section III, where

we make use of the fact that the excitation source does not

need to be modeled. We describe the experimental setup in

Section IV. The localization of a tumor in a mouse is described

in Section V, and the localization of fluorescence in a rat

brain is presented in Section VI. We consider applications in

Section VII, and conclude in Section VIII.

II. MODELS

A. Coupled Diffusion Equations

The diffusion model for describing light transport in highly

scattering media is briefly reviewed. In the presence of flu-

orescence, two coupled diffusion equations are required to

model the propagation of photons at the fluorophore excitation

wavelength, λx, and the fluorophore emission wavelength,

λm. For exp(jwt) time variation, where ω is the angular

modulation frequency, the coupled diffusion equations are [9],

[26], [27]

∇ · [Dx(r)∇φx(r, ω)]− [µax
(r) + jω/c]φx(r, ω)

= −Sx(r;ω)
(1)

∇ · [Dm(r)∇φm(r, ω)]− [µam
(r) + jω/c]φm(r, ω)

= −φx(r, ω)Sf (r;ω),
(2)

where r denotes the position, φ (W/mm2) is the photon flux

density, D = 1/[3(µ′
s + µa)] is the diffusion coefficient, with

µa the absorption coefficient (mm−1) and µ′
s the reduced

scattering coefficient (mm−1), c is the speed of light in the

medium, the subscripts x and m denote parameters at λx

and λm, Sx is the excitation source term, and Sf is the

fluorescence source term. Equations (1) and (2) are coupled

through the φx(r, ω) term on the right hand side of (2). In

an infinite homogeneous space, the diffusion equation Green’s

function is

g(r′, r) =
e−jk|r−r

′|

4π|r− r′|
, (3)

Fig. 1: Model geometry for a single tissue boundary, where

r = (x, y, z) and the y-axis is going into the page. The tissue

thickness d is assumed large. An excitation source (X) at rs
and a fluorescence emission detector (O) at ri are placed one

scattering length l∗ = 3D away from the tissue boundary, as

shown. A fluorescence inhomogeneity ( ) is at the unknown

position rf . A zero flux (φ = 0) boundary condition is

assumed at a distance ls = 5.03D above the physical boundary

to simulate a semi-infinite planar geometry [16], [19].

where r′ is the position of a point source and k2 = −µa/D−
jω/(Dc), and µa and D are determined at λx or λm for use

in (1) and (2), respectively.

B. Forward Model for Localization

Equations (1) and (2) can be solved on an unstructured finite

element method (FEM) mesh [28], [29], useful for general

imaging of inhomogeneous media. However, the FEM solution

requires extensive computational time, limiting its application

in situations where it is important to obtain image information

quickly, such as during surgery. For this reason, we adopt a

closed-form analytic solution proposed by Milstein et al. [16]

that assumes an infinite homogeneous domain, enabling fast

computation. The geometry is shown in Fig. 1. We assume a

general excitation source, Sx(rs, ω), is located at rs such that

the photon flux density that excites a fluorescent inhomogene-

ity located at rf is

φx(rf , ω) =

∫

gx(rs, rf )Sx(rs, ω)drs, (4)

where gx(rs, rf ) represents the diffusion equation Green’s

function for (1) at λx. We further assume that N point

detectors at λm are located at positions ri, where i is an index

from 1 to N . Finally, we consider a single fluorescence point

source is located at rf , such that Sf(r, ω) = ηfµaf
δ(r− rf ),

where ηf and µaf
are the quantum yield and absorption of

the fluorophore, respectively, and δ is the Dirac delta function

(with units of mm−3). Estimating rf constitutes localization.

The ith forward model solution f̃i of the fluorescence emission

measured at ri, is then

f̃i(rf ) = w [gm(rf , ri)φx(rf , ω)] (5)

≡ wfi(rf ), (6)

where w is a multiplicative constant that incorporates the

quantum efficiency, digital to analog conversion, and solid

angle of the detector, the efficiency of light coupling out

of the medium (assumed constant for each detector), and ηf
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and µaf
. gm(rf , ri) is the diffusion equation Green’s function

for (2) at λm. The Green’s functions are derived for a semi-

infinite medium with a single physical boundary. We set ω = 0
to correspond to continuous wave (not pulsed or modulated)

light. The detectors are modeled as effective isotropic point

detectors, and the source and detectors are placed one transport

length (l∗ = 3D) below the physical boundary, as shown

in Fig. 1 [16], [19]. An extrapolated zero flux boundary

condition is enforced at a distance ls = 5.03D above the

physical boundary using image sources [26], and analytic

expressions for gx(rs, rf ) and gm(rf , ri) are found using

(3) and subtracting the contributions of the image sources.

Considering the coordinate system in Fig. 1 and letting ri =
(xi, yi, zi) and rf = (xf , yf , zf), we find

gm(rf , ri) =
1

4π

[

e−jkra

ra
−

e−jkrb

rb

]

, (7)

where ra = [(xi − xf )
2 + (yi − yf )

2 + (zi − zf )
2]1/2 is

the distance from the fluorescent source to the detector and

rb = [(xi −xf)
2+(yi− yf)

2+(−zi+ zf − 6D− 2ls)
2]1/2 is

the distance from the image fluorescent source to the detector.

III. LOCALIZATION WITH EXPANDED BEAM ILLUMINATION

If a fluorescent inhomogeneity is present, its position can be

estimated by finding the value of rf that minimizes the cost

function [16]

c(rf ) = min
w

||y − wf(rf )||
2

Υ−1 , (8)

where y is a vector of N measurements, f(rf ) is a vec-

tor of N forward calculations fi(rf ) from (6), Υ =
αdiag[|y1|, . . . , |yN |] is the noise covariance matrix, for which

we assume a shot noise model characterized by α [30], and,

for an arbitrary vector v, ||v||2
Υ−1 = vHΥ−1v, where H

denotes the Hermitian transpose. We consider the case where

a single excitation source is present at position rs. Therefore,

the measurements will have a linear dependence on φx(rf , ω),
allowing (8) to be written

c(rf ) = min
w

||y − wφx(rf , ω)h(rf )||
2

Υ−1 , (9)

where hi(rf ) = gm(rf , ri) is the ith component of h(rf ). In

general, calculating φx(rf , ω) is important for simulating the

correct fluorescence emission distribution within the medium.

However, because of the linear dependence, φx(rf , ω) can be

incorporated into a new multiplicative constant, ws, as

c(rf ) = min
ws

||y − wsh(rf )||
2

Υ−1 . (10)

If the measurement is not linear in φx(rf , ω), as would be

the case when multiple fluorescent sources are present and in

FDOT, φx(rf , ω) cannot be incorporated into ws.

For localization, our goal now is to find the rf that min-

imizes (10), and we note that the inverse problem is linear

in ws and nonlinear in rf . Equation (10) can be minimized

using a two step procedure [16]. First, we set the derivative
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Fig. 2: Simulation demonstrating the localization of a flu-

orescent inhomogeneity. (a) Simulation geometry, where 25

detectors (blue) and 1 excitation source (red) are placed at

the z = 10 mm plane. A fluorescent point source (green) is

located at rf = (xf , yf , zf ) = (5.0, 5.0, 5.0) mm. The tissue

boundary is the gray shaded region, and the simulated source

and detectors are l∗ below the surface. The tissue optical

parameters are µ′
s = 2.0 mm−1, µa = 0.025 mm−1, and the

refractive index is 1.33. Fluorescence emission data measured

at the detectors is used to localize the inhomogeneity. (b)

Cost functions calculated as a function of position, x, for

xf = 2, 5, and 8 mm, as indicated by the legend, and fixed

yf = 5.0 mm and zf = 5.0 mm. The circular markers signify

cost calculations using (8), and the solid lines signify cost

calculations using (12). The excitation source in (a) is used to

calculate (8) but not (12). For each value of xf , (8) and (12)

are matched and minimized at the true value. In 3D, the cost

is calculated at each x, y, and z coordinate position within the

region of interest.

of ||y − wsh(rf )||
2

Υ−1 with respect to ws equal to zero and

solve for ws, resulting in

w̃s(rf ) =
hT (rf )Υ

−1y

hT (rf )Υ−1h(rf )
, (11)

c(rf ) = ||y − w̃s(rf )h(rf )||
2

Υ−1 . (12)

Second, we calculate (12) at a set of positions rf within

a region of interest that encompasses the true location. The

maximum likelihood estimates are then

r̂f = argmin
rf

c(rf ), (13)

ŵs = w̃s(r̂f ). (14)

An important step in our derivation that differentiates it

from the method developed by Milstein et al. [16] is the

incorporation of φx(rf , ω) into ws. This step implies that

the inverse problem can be solved without consideration or

modeling of the excitation source because φx(rf , ω) does

not need to be computed. This is of great utility because

complicated illumination patterns (such as an expanded beam)

do not need to be modeled.

We demonstrate localization of a fluorescent inhomogeneity

numerically in Fig. 2, and show that minimizing (12) without

modeling the excitation source is equivalent to minimizing

(8) and modeling the excitation source. Figure 2(a) shows the

simulation geometry, where 25 point detectors (blue) and 1

point excitation source (red) are placed at the z = 10 mm
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Fig. 3: Experimental setup for the localization of a fluorescent

inhomogeneity (green point). The laser source is tuned to λx,

and the beam is expanded by a lens to illuminate the sample.

Detection is by a CCD camera with a bandpass emission filter

centered at λm.

plane, and a fluorescent point source (green) is located at

rf = (5.0, 5.0, 5.0) mm. Simulated measurement data y was

generated using (6) (which included modeling of a point

excitation source through calculation of gx(rs, rf )) and adding

shot noise with an assumed 30 dB SNR [30]. The 10 mm ×
10 mm × 10 mm volume below the detectors was defined

as the region of interest and discretized into a Cartesian

grid. Equations (12) and (8) were then calculated at each

grid point, and the grid point with the minimum cost is

r̂f , according to (13). Figure 2(b) plots the normalized cost

function calculated as a function of position, x, for xf = 2,

5, and 8 mm, as indicated by the legend, and fixed yf =
5.0 mm and zf = 5.0 mm. The circular markers signify

cost calculations using (8), and the solid lines signify cost

calculations using (12). We see that both cost functions are the

same after being normalized to their maximum, demonstrating

that gx(rs, rf ) can be incorporated into ws and does not need

to be calculated for the inversion. Both cost functions have a

single minimum at the same value of x = 4.52 mm.

IV. EXPERIMENTS

We present two applications of localizing fluorescent in-

homogeneities. The first is finding folate-targeted fluorescent

agents to assist in guided surgery, and the second is local-

ization of an inhomogeneity in the brain. Both applications

use the same experimental setup, which is described in this

section.

A. Experimental Setup

The experimental setup is similar to what we have used

previously for FDOT [31], and a schematic is shown in

Fig. 3. Laser excitation light at λx is reflected through a beam

expander onto the surface of the subject (shown in Fig. 3 as

a mouse). We used a microscope objective with a short focal

length as the beam expander. The output of a pulsed super-

continuum source (EXR-20 NKT Photonics, 5 ps seed pulse

width, 20 MHz repetition rate) is filtered by a VARIA tunable

filter to generate excitation light at a desired wavelength and

bandwidth. With a typical 10 nm bandwidth, the average power

is about 15 mW. Light at λm is emitted from fluorophores in

deep tissue (green circle), reflected from a mirror, and detected

by a CCD camera (PIMAX, 512 x 512 pixels) through an

emission bandpass filter centered at λm. A f/2.8 camera lens

(AF micro Nikkor, Nikon) was focused to the surface of the

subject. All measurements were pseudo-CW, where the CCD

camera integration time was much longer than the inverse of

the pulsed laser repetition rate (50 ns). A 3D topography laser

line scanner (not shown in Fig. 3) was employed to obtain

the 3D profile of the subject [13]. The 3D profile was used to

determine the detector positions by projecting the CCD camera

pixels to the subject’s surface [32]. The 3D topography scanner

was controlled using a 150 mm motorized linear stage (Zaber

T-LSM150A-KT04U). From Fig. 1, the simulated detectors are

each placed ∆z = −3D below the boundary. Considering (7),

the simulated fluorescence image source is placed along the z
dimension and above the physical boundary. We have therefore

assumed that the z direction is approximately normal to the

tissue surface, removing the need to calculate surface normal

vectors. This forward model solution is calculated for each

simulated detector position ri = (xi, yi, zi). Then, for each

detector, a different zero-flux boundary condition is satisfied

at approximately ∆z = ls above the local tissue surface.

V. TUMOR LOCALIZATION

Over forty percent of human cancer cells over-express folate

receptors, enabling the cells to be identified using folate-

targeted fluorescence imaging [33], [34]. In a typical study,

a fluorophore is attached to the targeting agent (folate) and

injected into the blood stream of an animal. The fluorescent

agent is then distributed to the extracellular extravascular

space, where it is either captured by a folate receptor and

retained in the receptor-expressing (cancer) tissue or is rapidly

cleared from receptor-negative (healthy) tissues and excreted

from the body [35]. Roughly 30 minutes after injection, the

fluorescent agent is mostly cleared from the blood, and is

concentrated in the kidneys, the liver, and any tumors that are

present (the fluorescent agent is present in the kidneys and liver

because these organs constitute the major routes of excretion

of the fluorescent dye). This process introduces a contrast

in fluorescence throughout the tissue, enabling fluorescence-

guided surgery. In a previous study, it was shown that a

surgeon can detect 5 times more malignant masses with the aid

of fluorescence than with the naked eye [34]. However, once

a tumor has been identified, additional information about its

location, such as its depth, could be used to minimize damage

to the surrounding healthy tissue. Here, we use a mouse model

to demonstrate that the location of a tumor can be estimated

using our localization method. Expanded beams are commonly

used for illumination in fluorescence-guided surgery, further

motivating the development of our approach.

Female nu/nu mice purchased from NCI Charles River

Laboratories were maintained on folate deficient rodent chow

for 3 weeks prior to experimental study and kept on a standard

12 hour light-dark cycle. The animal procedure was carried

out with the approval of the Purdue Animal Care and Use

Committee in accordance with NIH guidelines. Tumor cells

(106 of L1210A) were injected intravenously into the tail

vein of a six-week-old female nu/nu mouse. The cancer cells

were allowed to grow for 30 days, at which point 10 nmol
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of a folate-targeted fluorescent agent (OTL38) dissolved in

saline was injected intravenously via the tail vein. The OTL38

attached itself to the folate-receptors present in the tumors,

allowing for fluorescent imaging [21], [22]. Two hours after

injection of OTL38, the mouse was euthanized through CO2

asphyxiation. The mouse was then placed on its side in the

experimental setup shown in Fig. 3.

OTL38 is a tumor-targeted near infrared fluorescent dye

comprised of folic acid linked to an indocyanine fluorophore.

The peak excitation of the OTL38 is 770 nm and the peak

emission is 790 nm. The lower absorption and scattering

of light in tissue at these wavelengths relative to shorter

wavelengths enables deep tissue imaging. An OD4 emission

bandpass filter with a center wavelength of 780 nm and a

10 nm bandwidth (Andover - 780FS10-50) was placed in

front of the CCD camera in order to measure the fluorescence

emission. The wavelength of the expanded-beam excitation

light from the EXR-20 was tuned by the VARIA until peak

emission and low filter bleed through were observed. This

procedure resulted in an excitation wavelength of 740 nm with

a 10 nm bandwidth.

The 3D topography of the mouse was captured using

the laser line scanner. Laser light was focused through a

cylindrical lens to form a line, which was scanned along the

length of the mouse to 92 positions. At each position, a CCD

camera image was captured. Figure 4(a) shows one of these

92 images. The line scans were combined and calibrated using

the corresponding scans of a half-cylinder [13] in order to

form the 3D mouse topography shown in Fig. 4(b). This 3D

topography was used to determine the positions of CCD pixels

on the surface of the mouse, giving ri. Figure 4(c) shows a

fluorescence image of a portion of the mouse captured by the

CCD camera through the bandpass filter. Strong fluorescence

(in red) from a tumor is clearly visible, as well as fluorescence

from the kidney (yellow) and some tissue autofluorescence

(cyan). Overlaid on Fig. 4(c) are 144 detectors (red points)

that were chosen in the region above a tumor, as well as the

line scans used to determine the positions of the detectors

(green lines). The values shown by the colorbar (AU) at these

144 detectors form the data vector y.
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Fig. 4: Data captured for localization. (a) CCD images for a single laser line scan. The line was moved along the y direction,

and 92 CCD images were captured and used to generate the 3D profile shown in (b). This profile defines the geometry of

the problem. The head of the mouse is at y < 0 mm. (c) The fluorescence CCD image captured through the band pass filter.

Peaks in fluorescence due to a tumor and a kidney are visible. The colorbar shows fluorescence intensity. The 144 detectors

are plotted as red points, and the 3D laser line scans used to determine the position in mm of these detectors are plotted in

green.
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Fig. 5: Localization of a fluorescent mouse tumor using the data from Fig. 4. The 3D profile was discretized into 62,574 nodes,

and the cost was calculated at each node position. (a) Cost image slice at y = 17 mm. (b) Cost image slice at z = 9 mm.

The position that minimized the cost, or the estimated position of the tumor, was (11.1, 17.0, 9.0) mm, and is the point with

minimum cost in (a) and (b). There is less contrast in the cost with depth, as seen in (a), because the detectors are only on the

top surface. (c) Plot of the boundary nodes in green, the simulated detector positions in blue, and the estimated tumor position

in red. (d) Comparison of the measured data (y) and the forward model (estimated y) using the estimated optical properties

and tumor position. Since the surface is slowly varying, and only one inhomogeneity dominates the contribution to the data at

the detectors, the model fits the data well. The discrepancy could be due to autofluorescence or fluorescence from the kidney.
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A. Tumor Localization Results

Localization of the tumor requires that the µ′
s and µa of

the tissue are known so that gm(rf , ri) can be calculated

using (3) subject to the boundary condition. The µ′
s and

µa can be determined from the literature [36], or they can

be estimated by incorporating them into the optimization

problem. We chose to estimate µa in order to improve the

accuracy of the localization. This was accomplished by fixing

µ′
s = 1.6 mm−1 [13], and, for each rf within the region of

interest, calculating the cost in (12) for values of µa between 0

and 0.05 mm−1 separated by increments of 0.005 mm−1. The

position of the fluorescent inhomogeneity was then estimated

as the position rf that minimized the cost in (12). Because

the tissue is inhomogeneous and our model assumes that it is

homogeneous, estimated values of µa and µ′
s represent effec-

tive values obtained from a fitting procedure. For localization,

we are only interested in the position of the inhomogeneity.

The results of this localization procedure using data from

Fig. 4 are presented in Fig. 5. The region of interest was de-

fined as a Cartesian grid confined by the mouse 3D topography

of Fig. 4(b). The position that minimized (12), or the estimated

position of the tumor, was (11.1, 17.0, 9.0) mm, a reasonable

result given the location of the fluorescence intensity at the

tissue surface in Fig. 4(c). Figures 5(a) and (b) show flat field

images of the cost function for 2D slices at y = 17 mm and

z = 9 mm, respectively. Figure 5(c) shows a plot of the node

boundary in green obtained using the 3D topography laser

line scan, the simulated detector positions in blue, and the

estimated tumor location in red. The depth of the tumor was

estimated to be about 6.4 mm. In Fig. 5(d), the measured

data vector y from Fig. 4(c) is plotted with the estimated

y, or ŷ = ŵsh(r̂f ). Since the surface is slowly varying,

and only one inhomogeneity dominates the contribution to

the data at the detectors, the model fits the data well. The

discrepancy could be due to autofluorescence, fluorescence

from the kidney, errors in the 3D topography, or assumptions

made in the forward model derivation.

The localization method was implemented in MATLAB

and run on a 12 core computer with 3.47 GHz Intel X5690

processors and 96 GB RAM. In order to improve the compu-

tational time, the MATLAB parallel computing toolbox [37]

was used to distribute computation of the cost function across

multiple processors. Subsets of the set of nodes within the

region of interest were assigned to each processor so that the

cost could be calculated at each node position. Without parallel

processing, the computational time for the results in Fig. 5 was

30.9 minutes. With parallel processing, the computational time

was reduced to 3.3 minutes, which is much more manageable

for applications in surgery, but insufficient for live interven-

tion. The computational time could be further reduced, for

example, by decreasing the number of nodes within the region

of interest or reducing the number of detectors. The number of

nodes could be reduced significantly using the multiresolution

method that we have described previously, potentially offering

at least a factor of 10 reduction in computational time [19],

[20].

VI. BRAIN LOCALIZATION

Essential to in vivo studies of the brain is the ability to

detect fluorescence from deep in the tissue. This is a difficult

task because the fluorescent signal is highly attenuated on its

way to the surface by the high µa and µ′
s of brain tissue [36].

However, here we demonstrate that with a sufficient concen-

tration of NIR dye, fluorescent signals can be detected from

deep within the brain, opening the door for important optical

imaging studies.

We chose to use the dye ATTO647N because its optical

properties are amenable to in vivo imaging. Namely, its peak

excitation and emission wavelengths are 646 nm and 664 nm,

respectively. Thus, there is expected to be far less interference

from biomolecules with absorbing properties at shorter wave-

lengths. An OD6 emission bandpass filter centered at 676 nm

with a 29 nm bandwidth (Edmund Optics - 86-996) was used

to measure the fluorescence emission. The dye was excited by

the expanded light from the EXR-20 filtered to 633 nm with

a 10 nm bandwidth. The dye is bright for its wavelength, with

a quantum yield of 0.65 and a fluorescence lifetime of 3.5 ns.

A 10 mM stock solution of 1 mg maleimide ATTO647N

(868 g/mol) and 115 µL of PBS was prepared. The stock

solution was used to form 50 µL aliquots at concentrations

of 10 mM, 1 mM, and 0.1 mM, as shown in Fig. 6(a). We

found significant quenching at high concentration, as seen in

Fig. 6(b) [38]. For this reason, 2 µL of the 1 mM solution

was used for stereotaxic injections, as shown in Fig. 6(c).

In order to study the signal level, CCD fluorescence im-

ages of a rat were captured before and after injection of

ATTO647N. The rat was euthanized (before injection) and

handled in accordance with the Purdue animal care and use

committee (PACUC) guidelines. It was shaved in order to

reduce autofluorescence and scattering. First, the top of the

rat was imaged, as shown in Figs. 7(a) and (b). Next, the

2 µL solution of ATTO647N was stereotaxically injected into

the substantia nigra (8 mm below the surface of the skull) at

a rate of 2 nL/sec. After injection the needle was kept in place

for 10 minutes before being slowly removed. The tissue was

sutured and washed, and the top of the rat was imaged again,

as shown in Figs. 7(c) and (d). A strong fluorescence signal is

visible above the injection site. The same signal was observed

after pinching the skin and shifting it, ensuring that the signal

emanated from deep within the brain and not from near the

tissue surface. This result demonstrates that it is possible to

detect fluorescent inhomogeneities within the brain for in vivo

studies of, for example, the rat substantia nigra.

A. Brain Localization Results

The injected ATTO647N was localized with the same

method that was used to find the tumor in Section V-A.

The assumption of an infinite homogeneous medium and

the use of parallel computing enabled fast computation. The

3D topography of the rat shown in Fig. 8(a) was used to

define a region of interest and place 104 detectors in the

region above the injection site. The scatter was fixed at

µ′
s = 2.0 mm−1 [36], and µa was ranged from 0.02 mm−1 to
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0.05 mm−1 in increments of 0.005 mm−1. As in Section V-

A, the cost was calculated for each µa within the range at

all nodes within the region of interest. The results of the

localization are presented in Fig. 8(b)-(e). The position that

minimized the cost was (19.8, 16.6, 24.0) mm (with µa =
0.025 mm−1), giving an estimated depth of about 8.3 mm

below the tissue surface, which is close to the injection depth

(8 mm below the skull). Figures 8(b) and (c) show flat field

images of the cost function for 2D slices at y = 17 mm and

z = 24 mm, respectively. Figure 8(d) shows a plot of the node

boundary in green obtained using the 3D topography laser

line scan and the estimated fluorescent source location in red.

In Fig. 8(e), the measured data vector y is plotted with the

estimated ŷ = ŵsh(r̂f ). The surface is not as slowly varying

as that of Fig 4, and there is significant autofluorescence,

causing errors in the fit. However, it was still possible to

estimate the correct depth of the ATTO647N.

VII. DISCUSSION

We have developed an approach for the localization of a

fluorescent source in deep tissue. The primary innovation of

the method is the incorporation of the excitation flux into a

linear constant, and by optimizing for this quantity, removing

the need to model the excitation profile. In principle, this

allows an arbitrary illumination profile to be used as long as

a single equivalent fluorescent point source is excited, which

simplifies the experimental setup. The method’s computational

time can be short because few detectors are required, the

forward model is a closed-form analytical equation, and the

calculation of the cost can be distributed between multiple

processors. The computational time could be further improved

through implementation of multiresolution methods [19], [20],

[39] or potentially through iterative inversion.

We have demonstrated that simple homogeneous analytic

solutions to the diffusion equation can be sufficient to localize

fluorescent sources in tissue. This could be because the point

fluorescent source assumption sufficiently constrains the solu-

tion space of the inverse problem such that perturbations due to

heterogeneous tissues have a minimal effect on the estimated

position. In this case, the estimated tissue parameters are not

quantitative and are treated as fitting parameters. However, a

FEM or Monte Carlo (MC) solution would provide a better

model of the light propagation [40], likely improving the

localization accuracy, especially with the incorporation of prior

information from another imaging modality [41]. The FEM or

MC solution could be used with the same cost function, (10),
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Fig. 6: Preparation of ATTO647N and stereotaxic injection through the skull into a dead rat. (a) CCD image of 10, 1, and

0.1 mM solutions of ATTO647N in DMSO that were prepared from a stock solution. (b) CCD fluorescence image of the

ATTO647N from (a). A strong quenching of the ATTO647N at high concentration is apparent, limiting the concentration

that should be injected for maximum signal. (c) 2 µL of the 1 mM solution of ATTO647N in PBS was injected into the

rat substantia nigra. The injection coordinates were 5 mm anterior-posterior, 2 mm left-right from the Bregma, and 8 mm

dorsal-ventral from the skull surface.

(a)

1000

2000

3000

4000

5000

6000

(b) (c)

×104

0

0.5

1

1.5

2

2.5

(d)

Fig. 7: Rat fluorescence before and after stereotaxic injection of ATTO647N 8 mm below the skull surface. (a) CCD image

under room light before injection. (b) CCD fluorescence image through the bandpass filter before injection. There is strong

autofluorescence present. (c) CCD image under room light after injection. The surgical sutures are visible. (d) CCD fluorescence

image through the bandpass filter after injection. A signal from the region of the injection site is clearly visible, despite the

autofluorescent background.
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removing the need to model the excitation source if only

a single fluorescent source is present. The FEM or MC

solution requires substantial computational time compared to

the analytic solutions used here, but it could be precomputed

for medical applications. The experiment could be improved

by increasing the excitation laser power, which is possible

because the light is distributed over a wide area, causing

minimal tissue damage. In addition to extracting the location of

an inhomogeneity, the localization methods could be modified

to extract other parameters of interest, such as kinetic rates

or fluorescent lifetimes, which can characterize a model of

time-dependent fluorescence [14]. The localization methods

could also be used to localize absorption or scattering inho-

mogeneities [17], [18], provide prior information for FDOT

in order to improve reconstructions [16], or implemented

with photo-acoustic models [42]. In the case where multiple

fluorescent sources are present in the tissue, as long as a set

of detectors can be selected for each respective source that

measure emission from only that source, the method can be

applied sequentially to localize each source. In general, any

fluorophore could be used as long an appropriate an optical

filter and detector are available at the emission wavelength.

We presented two potential applications of localization.

The first was localization of tumors using folate-targeted

fluorescent indicators in order to assist with fluorescence-

guided surgery. Armed with knowledge of the location of a

tumor, a surgeon could perform minimally-invasive surgery in

order to remove it, reducing the damage to healthy tissue [43].

The experimental setup in Fig. 3 could be made into a portable

imaging device for the clinic and modified to use more sensi-

tive detectors, such as a fiber array. The 3D topography could

be measured with the laser line scan or related methods [44],

or the tissue surface could be approximated as planar at the

expense of reduced localization accuracy.

The second application that we presented was localization

of fluorescent indicators in the brain. Optical imaging through

the intact skull is a major challenge that requires bright

fluorophores, such as ATTO647N. However, the potential

applications are far-reaching. For example, in vivo imaging

of protein aggregation, a leading candidate for the basis and

onset of neurological diseases [45], could be pursued. Different

aggregation states can modulate fluorescence emission and

(a)

10 20 30
x (mm)

10

20

30

40

z 
(m

m
)

103

104

105

106

(b)

10 20 30
x (mm)

10

20

30
y 

(m
m

)

103

104

105

106

(c)

(d)

Data Index (n)
20 40 60 80 100

Va
lu

e

2000

4000

6000

8000
Y
estimated Y

(e)

Fig. 8: Localization of ATTO647N using data from Fig. 6. (a) 3D profile generated using the laser line scan of the rat.

Along the y-axis, the rat eyes are at about y = 0 mm, and the ears are between about y = 20 mm and y = 30 mm.

The 3D profile was discretized into 124,047 nodes, and the cost was calculated at each node position. (b) Cost image slice

at y = 16.6 mm. (c) Cost image slice at z = 24 mm. The position with minimum cost, or the estimated position of the

ATTO647N, is (19.8, 16.6, 24.0) mm. The estimated depth of the ATTO647N is about 8.3 mm below the tissue surface, in

excellent agreement with the injection site 8 mm below the skull surface. (d) Plot of the boundary nodes in green and the

estimated position. (e) Comparison of the measured data (y) and the forward model (estimated y) using the estimated tissue

parameters and the estimated position of the ATTO647N. The surface is not as slowly varying as that of Fig 4, and there

is significant autofluorescence, causing errors in the fit. However, it was still possible to estimate the correct position of the

ATTO647N.
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lifetime [46], [47], and this information could be combined

with the localization methods presented here [48] to track the

evolution of protein aggregation in a rat disease model [49].

Additionally, the prospect of imaging calcium sensitive dyes

to monitor activity of neurons in the brain is of particular inter-

est. Signaling between neurons is accompanied by an increase

in the local concentration of calcium, which can modulate

fluorescence emission [24], [25]. In principle, measurements

with a CCD camera or a fiber array with short integration times

could provide data from individual neurons such that each

could be localized, providing an image of a whole animal brain

in vivo. These images of the whole brain could be used to form

correlation maps, which are useful for studying neurological

diseases and developing treatments [50]. It is likely that an

expanded beam illumination profile and fast computation will

be required in order to localize many neurons. This type

of imaging could provide new information on chemical and

electrical neural activity because available in vivo methods,

such as fMRI [51], provide only indirect access to neurons by

measuring secondary parameters.

VIII. CONCLUSION

We have presented an approach for the localization of

fluorescent inhomogeneities in deep tissue that does not re-

quire modeling of the excitation profile. The method was

demonstrated using a single mouse and a single rat as a proof

of concept study. The uncertainty in the estimated position

has been shown to be tens of microns in a previous phantom

study [19], and future work will involve demonstrating this in

live mice and rats.
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