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Localization of fluorescent targets in deep tissue
with expanded beam illumination for studies of
cancer and the brain
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Abstract—Imaging fluorescence through millimeters or
centimeters of tissue has important in vivo applications,
such as guiding surgery and studying the brain. Often, the
important information is the location of one of more optical
reporters, rather than the specifics of the local geometry,
motivating the need for a localization method that provides
this information. We present an optimization approach
based on a diffusion model for the fast localization of
fluorescent inhomogeneities in deep tissue with expanded
beam illumination that simplifies the experiment and the
reconstruction. We show that the position of a fluorescent
inhomogeneity can be estimated while assuming homo-
geneous tissue parameters and without having to model
the excitation profile, reducing the computational burden
and improving the utility of the method. We perform two
experiments as a demonstration. First, a tumor in a mouse
is localized using a near infrared folate-targeted fluores-
cent agent (OTL38). This result shows that localization can
quickly provide tumor depth information, which could re-
duce damage to healthy tissue during fluorescence-guided
surgery. Second, another near infrared fluorescent agent
(ATTO647N) is injected into the brain of a rat, and localized
through the intact skull and surface tissue. This result will
enable studies of protein aggregation and neuron signaling.

Index Terms—Fluorescence imaging, localization, tu-
mors, brain, turbid media, inverse problems.
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HERE is substantial interest in imaging fluorescence

in deep tissue because it enables studies of targeted
biochemical processes in natural environments and in vivo.
However, such imaging presents a major challenge because
the light becomes highly scattered, limiting the information
that can be extracted from measurements [1], [2]. Near the
tissue surface, microscopy methods such as optical coherence
tomography [3] and two-photon microscopy [4] allow imaging
at high resolution but with limited depth. Even with feedback
control of the amplitude and phase of the incident wavefront,
which enables focusing of light through tissue [5], the imaging
depth is limited to less than about one millimeter [6]. Imaging
at tissue depths beyond one millimeter is achievable with
diffuse optical imaging (DOI), where the light propagation is
approximated as a diffusion process [7]. In fluorescence diffuse
optical tomography (FDOT), a DOI method, computational
imaging allows formation of three dimensional (3D) images
of optical properties [8]-[10]. FDOT has proven useful for
in vivo studies in mice and rats, especially when combined
with another imaging modality such as CT or MRI to improve
spatial resolution [11], [12].

Previously, we have used FDOT and folate-targeted fluo-
rescent contrast agents to image the kidneys and liver in a
dead mouse [13] as well as tumors in a live mouse [14].
Our results demonstrated that FDOT is a useful tool for
fluorescence guided surgery, where tumor nodules are iden-
tified for a surgeon to remove [15]. However, the full volu-
metric reconstruction performed by FDOT requires extensive
computational time, making it ill-suited for an intraoperative
environment where real-time imaging is required over a period
of hours. Therefore, here we develop an alternative approach
using a fast localization method, where only the position of
an inhomogeneity is determined. This is accomplished by
treating the inhomogeneity as an equivalent point fluorescent
source. The position of the point fluorescent source is then
estimated through an optimization procedure. We expand upon
previous work on localization [16]-[20] by demonstrating that
the excitation profile does not need to be modeled and that
homogeneous tissue parameters can be assumed to achieve
acceptable precision. In this case, the tissue parameters are
treated as fitting parameters. We use a mouse model to show
that this method can find tumors in deep tissue, and can
provide depth information to assist in guided surgery. The near
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infrared (NIR) folate-targeted molecular contrast agent OTL38
is used in order to computationally localize a tumor in deep
tissue [21], [22].

Localization is also valuable for imaging in the brain, where
targeted fluorescent agents allow studies of, for example,
misfolding of protein aggregates [23] and neuron activa-
tion [24], [25]. Modulation of the fluorescence emission in
space, time, or wavelength may enable superresolution diffuse
optical imaging (SRDOI) through localization of individual
fluorescent emitters, providing images with higher resolution
than have previously been possible in deep tissue [19]. How-
ever, sufficient fluorescent signal must be present to overcome
the background tissue autofluorescence. For this reason, we
employ ATTO647N, another NIR dye, that is bright for its
wavelength and has a long fluorescence lifetime. We demon-
strate that localization of a fluorescent inhomogeneity in the
brain through the intact head (including the skull) of a rat is
possible.

We describe a diffusion model for a point fluorescent source
within a highly scattering medium in Section II. This model
is used to develop a localization framework to estimate the
position of a fluorescent inhomogeneity in Section III, where
we make use of the fact that the excitation source does not
need to be modeled. We describe the experimental setup in
Section I'V. The localization of a tumor in a mouse is described
in Section V, and the localization of fluorescence in a rat
brain is presented in Section VI. We consider applications in
Section VII, and conclude in Section VIII.

[I. MODELS
A. Coupled Diffusion Equations

The diffusion model for describing light transport in highly
scattering media is briefly reviewed. In the presence of flu-
orescence, two coupled diffusion equations are required to
model the propagation of photons at the fluorophore excitation
wavelength, \,, and the fluorophore emission wavelength,
Am. For exp(jwt) time variation, where w is the angular
modulation frequency, the coupled diffusion equations are [9],
[26], [27]

V- [Da(r) Vs (r,w)] = [pta, (r) + jw/c|dz(r,w)
= =S, (r;w)
V- [Din(r) Vi (1, w)] = [tha,, (¥) + jw/cJm (T, w)
= —¢u(r,w)Sy(r;w),

where r denotes the position, ¢ (W/mm?) is the photon flux
density, D = 1/[3(ul, + uq)] is the diffusion coefficient, with
o the absorption coefficient (mm~') and i/ the reduced
scattering coefficient (mm™1'), ¢ is the speed of light in the
medium, the subscripts x and m denote parameters at A,
and \,,, S, is the excitation source term, and Sy is the
fluorescence source term. Equations (1) and (2) are coupled
through the ¢, (r,w) term on the right hand side of (2). In
an infinite homogeneous space, the diffusion equation Green’s
function is
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Fig. 1: Model geometry for a single tissue boundary, where
r = (z,y, z) and the y-axis is going into the page. The tissue
thickness d is assumed large. An excitation source (X) at r;
and a fluorescence emission detector (O) at r; are placed one
scattering length [* = 3D away from the tissue boundary, as
shown. A fluorescence inhomogeneity (@) is at the unknown
position ry. A zero flux (¢ = 0) boundary condition is
assumed at a distance [, = 5.03D above the physical boundary
to simulate a semi-infinite planar geometry [16], [19].

where 1’ is the position of a point source and k% = —pu, /D —
jw/(Dc), and p, and D are determined at A\, or A, for use
in (1) and (2), respectively.

B. Forward Model for Localization

Equations (1) and (2) can be solved on an unstructured finite
element method (FEM) mesh [28], [29], useful for general
imaging of inhomogeneous media. However, the FEM solution
requires extensive computational time, limiting its application
in situations where it is important to obtain image information
quickly, such as during surgery. For this reason, we adopt a
closed-form analytic solution proposed by Milstein et al. [16]
that assumes an infinite homogeneous domain, enabling fast
computation. The geometry is shown in Fig. 1. We assume a
general excitation source, S, (rs,w), is located at rq such that
the photon flux density that excites a fluorescent inhomogene-
ity located at ry is

Gu(rf,w) = /gm(rm r7)Sy(rs,w)drs, “)

where g¢,(rs,ry) represents the diffusion equation Green’s
function for (1) at \,. We further assume that N point
detectors at \,, are located at positions r;, where ¢ is an index
from 1 to N. Finally, we consider a single fluorescence point
source is located at ry, such that Sy (r,w) = nypa,0(r —ry),
where 7y and p,, are the quantum yield and absorption of
the fluorophore, respectively, and ¢ is the Dirac delta function
(with units of mm™3). Estimating r; constitutes localization.
The ith forward model solution fz of the fluorescence emission
measured at r;, is then

file) = w [gm (s, ri) s (rf,w)] (&)
=wfi(ry), 6)

where w is a multiplicative constant that incorporates the
quantum efficiency, digital to analog conversion, and solid
angle of the detector, the efficiency of light coupling out
of the medium (assumed constant for each detector), and 7
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and ;. gm(ry,r;) is the diffusion equation Green’s function
for (2) at \,,,. The Green’s functions are derived for a semi-
infinite medium with a single physical boundary. We set w = 0
to correspond to continuous wave (not pulsed or modulated)
light. The detectors are modeled as effective isotropic point
detectors, and the source and detectors are placed one transport
length (I* = 3D) below the physical boundary, as shown
in Fig. 1 [16], [19]. An extrapolated zero flux boundary
condition is enforced at a distance [, = 5.03D above the
physical boundary using image sources [26], and analytic
expressions for g,(rs,ry) and g, (ry,r;) are found using
(3) and subtracting the contributions of the image sources.
Considering the coordinate system in Fig. 1 and letting r; =
(x4, yi,2:i) and vy = (z7,y7,25), we find

| Te—ikra  o=ikme
R e el NG

where 7o = [(w; — ap)® + (yi — ys)* + (20 — 2)°]"/? is
the distance from the fluorescent source to the detector and
o = [(zi —xp)? + (yi —yp)? + (=20 + 27 — 6D = 20,)*|/% is
the distance from the image fluorescent source to the detector.

[1l. LOCALIZATION WITH EXPANDED BEAM ILLUMINATION

If a fluorescent inhomogeneity is present, its position can be
estimated by finding the value of r; that minimizes the cost
function [16]

c(ry) = min |ly — wf(rs)[[3-1, ®)

where y is a vector of N measurements, f(ry) is a vec-
tor of N forward calculations f;(ry) from (6), ¥ =
adiag[ly1|, ..., |yn]] is the noise covariance matrix, for which
we assume a shot noise model characterized by « [30], and,
for an arbitrary vector v, ||v||2T,1 = viY~ly, where H
denotes the Hermitian transpose. We consider the case where
a single excitation source is present at position rg. Therefore,
the measurements will have a linear dependence on ¢, (r s, w),
allowing (8) to be written

c(ry) = min|ly — we, (v, w)h(ry)|3, ©)

where h;(ry) = g (ry, r;) is the ith component of h(r/). In
general, calculating ¢, (r;,w) is important for simulating the
correct fluorescence emission distribution within the medium.
However, because of the linear dependence, ¢, (r s w) can be
incorporated into a new multiplicative constant, ws, as

o(ry) = min|ly — wsh(r)[3-:. (10)
If the measurement is not linear in ¢, (ry,w), as would be
the case when multiple fluorescent sources are present and in
FDOT, ¢, (rs,w) cannot be incorporated into w;.

For localization, our goal now is to find the ry that min-
imizes (10), and we note that the inverse problem is linear
in w, and nonlinear in ry. Equation (10) can be minimized
using a two step procedure [16]. First, we set the derivative

O (8),2mm
(8), 5mm
O (8),8mm
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6 8 10
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Fig. 2: Simulation demonstrating the localization of a flu-
orescent inhomogeneity. (a) Simulation geometry, where 25
detectors (blue) and 1 excitation source (red) are placed at
the z = 10 mm plane. A fluorescent point source (green) is
located at vy = (x7,yy, z7) = (5.0,5.0,5.0) mm. The tissue
boundary is the gray shaded region, and the simulated source
and detectors are [* below the surface. The tissue optical
parameters are p/, = 2.0 mm~!, y, = 0.025 mm~!, and the
refractive index is 1.33. Fluorescence emission data measured
at the detectors is used to localize the inhomogeneity. (b)
Cost functions calculated as a function of position, x, for
xy = 2, 5, and 8 mm, as indicated by the legend, and fixed
yr = 5.0 mm and zy = 5.0 mm. The circular markers signify
cost calculations using (8), and the solid lines signify cost
calculations using (12). The excitation source in (a) is used to
calculate (8) but not (12). For each value of zf, (8) and (12)
are matched and minimized at the true value. In 3D, the cost
is calculated at each z, y, and 2z coordinate position within the
region of interest.

of [ly — wsh(ry)|[3-, with respect to w equal to zero and
solve for wg, resulting in
" h' (rf)Y 'y
W) = YT Y —Th(r )’
(ry) (ry)
c(ry) = lly — ws(rp)h(rs)|[3--
Second, we calculate (12) at a set of positions r; within

a region of interest that encompasses the true location. The
maximum likelihood estimates are then

Y
12)

13)

tp= argngnc(rf),
i, = 1y (E). (14)

An important step in our derivation that differentiates it
from the method developed by Milstein et al. [16] is the
incorporation of ¢, (r;,w) into w,. This step implies that
the inverse problem can be solved without consideration or
modeling of the excitation source because ¢ (ry,w) does
not need to be computed. This is of great utility because
complicated illumination patterns (such as an expanded beam)
do not need to be modeled.

We demonstrate localization of a fluorescent inhomogeneity
numerically in Fig. 2, and show that minimizing (12) without
modeling the excitation source is equivalent to minimizing
(8) and modeling the excitation source. Figure 2(a) shows the
simulation geometry, where 25 point detectors (blue) and 1
point excitation source (red) are placed at the z = 10 mm
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Expander
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Fig. 3: Experimental setup for the localization of a fluorescent
inhomogeneity (green point). The laser source is tuned to A,
and the beam is expanded by a lens to illuminate the sample.
Detection is by a CCD camera with a bandpass emission filter
centered at \,,,.

plane, and a fluorescent point source (green) is located at
ry = (5.0,5.0,5.0) mm. Simulated measurement data y was
generated using (6) (which included modeling of a point
excitation source through calculation of g, (r,,r/)) and adding
shot noise with an assumed 30 dB SNR [30]. The 10 mm X
10 mm x 10 mm volume below the detectors was defined
as the region of interest and discretized into a Cartesian
grid. Equations (12) and (8) were then calculated at each
grid point, and the grid point with the minimum cost is
ts, according to (13). Figure 2(b) plots the normalized cost
function calculated as a function of position, z, for z; = 2,
5, and 8 mm, as indicated by the legend, and fixed y; =
5.0 mm and zy = 5.0 mm. The circular markers signify
cost calculations using (8), and the solid lines signify cost
calculations using (12). We see that both cost functions are the
same after being normalized to their maximum, demonstrating
that g, (rs,r f) can be incorporated into ws and does not need
to be calculated for the inversion. Both cost functions have a
single minimum at the same value of x = 4.52 mm.

V. EXPERIMENTS

We present two applications of localizing fluorescent in-
homogeneities. The first is finding folate-targeted fluorescent
agents to assist in guided surgery, and the second is local-
ization of an inhomogeneity in the brain. Both applications
use the same experimental setup, which is described in this
section.

A. Experimental Setup

The experimental setup is similar to what we have used
previously for FDOT [31], and a schematic is shown in
Fig. 3. Laser excitation light at \, is reflected through a beam
expander onto the surface of the subject (shown in Fig. 3 as
a mouse). We used a microscope objective with a short focal
length as the beam expander. The output of a pulsed super-
continuum source (EXR-20 NKT Photonics, 5 ps seed pulse
width, 20 MHz repetition rate) is filtered by a VARIA tunable
filter to generate excitation light at a desired wavelength and
bandwidth. With a typical 10 nm bandwidth, the average power
is about 15 mW. Light at \,, is emitted from fluorophores in
deep tissue (green circle), reflected from a mirror, and detected
by a CCD camera (PIMAX, 512 x 512 pixels) through an

emission bandpass filter centered at \,,,. A {/2.8 camera lens
(AF micro Nikkor, Nikon) was focused to the surface of the
subject. All measurements were pseudo-CW, where the CCD
camera integration time was much longer than the inverse of
the pulsed laser repetition rate (50 ns). A 3D topography laser
line scanner (not shown in Fig. 3) was employed to obtain
the 3D profile of the subject [13]. The 3D profile was used to
determine the detector positions by projecting the CCD camera
pixels to the subject’s surface [32]. The 3D topography scanner
was controlled using a 150 mm motorized linear stage (Zaber
T-LSM150A-KT04U). From Fig. 1, the simulated detectors are
each placed Az = —3D below the boundary. Considering (7),
the simulated fluorescence image source is placed along the z
dimension and above the physical boundary. We have therefore
assumed that the z direction is approximately normal to the
tissue surface, removing the need to calculate surface normal
vectors. This forward model solution is calculated for each
simulated detector position r; = (z;,y;, 2;). Then, for each
detector, a different zero-flux boundary condition is satisfied
at approximately Az = [, above the local tissue surface.

V. TUMOR LOCALIZATION

Over forty percent of human cancer cells over-express folate
receptors, enabling the cells to be identified using folate-
targeted fluorescence imaging [33], [34]. In a typical study,
a fluorophore is attached to the targeting agent (folate) and
injected into the blood stream of an animal. The fluorescent
agent is then distributed to the extracellular extravascular
space, where it is either captured by a folate receptor and
retained in the receptor-expressing (cancer) tissue or is rapidly
cleared from receptor-negative (healthy) tissues and excreted
from the body [35]. Roughly 30 minutes after injection, the
fluorescent agent is mostly cleared from the blood, and is
concentrated in the kidneys, the liver, and any tumors that are
present (the fluorescent agent is present in the kidneys and liver
because these organs constitute the major routes of excretion
of the fluorescent dye). This process introduces a contrast
in fluorescence throughout the tissue, enabling fluorescence-
guided surgery. In a previous study, it was shown that a
surgeon can detect 5 times more malignant masses with the aid
of fluorescence than with the naked eye [34]. However, once
a tumor has been identified, additional information about its
location, such as its depth, could be used to minimize damage
to the surrounding healthy tissue. Here, we use a mouse model
to demonstrate that the location of a tumor can be estimated
using our localization method. Expanded beams are commonly
used for illumination in fluorescence-guided surgery, further
motivating the development of our approach.

Female nu/nu mice purchased from NCI Charles River
Laboratories were maintained on folate deficient rodent chow
for 3 weeks prior to experimental study and kept on a standard
12 hour light-dark cycle. The animal procedure was carried
out with the approval of the Purdue Animal Care and Use
Committee in accordance with NIH guidelines. Tumor cells
(106 of L1210A) were injected intravenously into the tail
vein of a six-week-old female nu/nu mouse. The cancer cells
were allowed to grow for 30 days, at which point 10 nmol
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of a folate-targeted fluorescent agent (OTL38) dissolved in
saline was injected intravenously via the tail vein. The OTL38
attached itself to the folate-receptors present in the tumors,
allowing for fluorescent imaging [21], [22]. Two hours after
injection of OTL38, the mouse was euthanized through CO;
asphyxiation. The mouse was then placed on its side in the
experimental setup shown in Fig. 3.

OTL38 is a tumor-targeted near infrared fluorescent dye
comprised of folic acid linked to an indocyanine fluorophore.
The peak excitation of the OTL38 is 770 nm and the peak
emission is 790 nm. The lower absorption and scattering
of light in tissue at these wavelengths relative to shorter
wavelengths enables deep tissue imaging. An OD4 emission
bandpass filter with a center wavelength of 780 nm and a
10 nm bandwidth (Andover - 780FS10-50) was placed in
front of the CCD camera in order to measure the fluorescence
emission. The wavelength of the expanded-beam excitation
light from the EXR-20 was tuned by the VARIA until peak
emission and low filter bleed through were observed. This
procedure resulted in an excitation wavelength of 740 nm with

100
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a 10 nm bandwidth.

The 3D topography of the mouse was captured using
the laser line scanner. Laser light was focused through a
cylindrical lens to form a line, which was scanned along the
length of the mouse to 92 positions. At each position, a CCD
camera image was captured. Figure 4(a) shows one of these
92 images. The line scans were combined and calibrated using
the corresponding scans of a half-cylinder [13] in order to
form the 3D mouse topography shown in Fig. 4(b). This 3D
topography was used to determine the positions of CCD pixels
on the surface of the mouse, giving r;. Figure 4(c) shows a
fluorescence image of a portion of the mouse captured by the
CCD camera through the bandpass filter. Strong fluorescence
(in red) from a tumor is clearly visible, as well as fluorescence
from the kidney (yellow) and some tissue autofluorescence
(cyan). Overlaid on Fig. 4(c) are 144 detectors (red points)
that were chosen in the region above a tumor, as well as the
line scans used to determine the positions of the detectors
(green lines). The values shown by the colorbar (AU) at these
144 detectors form the data vector y.

w
(=3
o

10 100 200 300 400 500
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(©

Fig. 4: Data captured for localization. (a) CCD images for a single laser line scan. The line was moved along the y direction,
and 92 CCD images were captured and used to generate the 3D profile shown in (b). This profile defines the geometry of
the problem. The head of the mouse is at y < 0 mm. (c) The fluorescence CCD image captured through the band pass filter.
Peaks in fluorescence due to a tumor and a kidney are visible. The colorbar shows fluorescence intensity. The 144 detectors
are plotted as red points, and the 3D laser line scans used to determine the position in mm of these detectors are plotted in

green.
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Fig. 5: Localization of a fluorescent mouse tumor using the data from Fig. 4. The 3D profile was discretized into 62,574 nodes,
and the cost was calculated at each node position. (a) Cost image slice at y = 17 mm. (b) Cost image slice at z = 9 mm.
The position that minimized the cost, or the estimated position of the tumor, was (11.1,17.0,9.0) mm, and is the point with
minimum cost in (a) and (b). There is less contrast in the cost with depth, as seen in (a), because the detectors are only on the
top surface. (c) Plot of the boundary nodes in green, the simulated detector positions in blue, and the estimated tumor position
in red. (d) Comparison of the measured data (y) and the forward model (estimated y) using the estimated optical properties
and tumor position. Since the surface is slowly varying, and only one inhomogeneity dominates the contribution to the data at
the detectors, the model fits the data well. The discrepancy could be due to autofluorescence or fluorescence from the kidney.



IEEE TRANSACTIONS ON MEDICAL IMAGING

A. Tumor Localization Results

Localization of the tumor requires that the p/ and p, of
the tissue are known so that g,,(rf,r;) can be calculated
using (3) subject to the boundary condition. The p/ and
1tg can be determined from the literature [36], or they can
be estimated by incorporating them into the optimization
problem. We chose to estimate (i, in order to improve the
accuracy of the localization. This was accomplished by fixing
p, = 1.6 mm~! [13], and, for each ry within the region of
interest, calculating the cost in (12) for values of ;. between 0
and 0.05 mm~! separated by increments of 0.005 mm~*. The
position of the fluorescent inhomogeneity was then estimated
as the position ry that minimized the cost in (12). Because
the tissue is inhomogeneous and our model assumes that it is
homogeneous, estimated values of y, and p, represent effec-
tive values obtained from a fitting procedure. For localization,
we are only interested in the position of the inhomogeneity.

The results of this localization procedure using data from
Fig. 4 are presented in Fig. 5. The region of interest was de-
fined as a Cartesian grid confined by the mouse 3D topography
of Fig. 4(b). The position that minimized (12), or the estimated
position of the tumor, was (11.1,17.0,9.0) mm, a reasonable
result given the location of the fluorescence intensity at the
tissue surface in Fig. 4(c). Figures 5(a) and (b) show flat field
images of the cost function for 2D slices at y = 17 mm and
z = 9 mm, respectively. Figure 5(c) shows a plot of the node
boundary in green obtained using the 3D topography laser
line scan, the simulated detector positions in blue, and the
estimated tumor location in red. The depth of the tumor was
estimated to be about 6.4 mm. In Fig. 5(d), the measured
data vector y from Fig. 4(c) is plotted with the estimated
y, or y = wsh(f;). Since the surface is slowly varying,
and only one inhomogeneity dominates the contribution to
the data at the detectors, the model fits the data well. The
discrepancy could be due to autofluorescence, fluorescence
from the kidney, errors in the 3D topography, or assumptions
made in the forward model derivation.

The localization method was implemented in MATLAB
and run on a 12 core computer with 3.47 GHz Intel X5690
processors and 96 GB RAM. In order to improve the compu-
tational time, the MATLAB parallel computing toolbox [37]
was used to distribute computation of the cost function across
multiple processors. Subsets of the set of nodes within the
region of interest were assigned to each processor so that the
cost could be calculated at each node position. Without parallel
processing, the computational time for the results in Fig. 5 was
30.9 minutes. With parallel processing, the computational time
was reduced to 3.3 minutes, which is much more manageable
for applications in surgery, but insufficient for live interven-
tion. The computational time could be further reduced, for
example, by decreasing the number of nodes within the region
of interest or reducing the number of detectors. The number of
nodes could be reduced significantly using the multiresolution
method that we have described previously, potentially offering
at least a factor of 10 reduction in computational time [19],
[20].

VI. BRAIN LOCALIZATION

Essential to in vivo studies of the brain is the ability to
detect fluorescence from deep in the tissue. This is a difficult
task because the fluorescent signal is highly attenuated on its
way to the surface by the high p, and p/, of brain tissue [36].
However, here we demonstrate that with a sufficient concen-
tration of NIR dye, fluorescent signals can be detected from
deep within the brain, opening the door for important optical
imaging studies.

We chose to use the dye ATTO647N because its optical
properties are amenable to in vivo imaging. Namely, its peak
excitation and emission wavelengths are 646 nm and 664 nm,
respectively. Thus, there is expected to be far less interference
from biomolecules with absorbing properties at shorter wave-
lengths. An OD6 emission bandpass filter centered at 676 nm
with a 29 nm bandwidth (Edmund Optics - 86-996) was used
to measure the fluorescence emission. The dye was excited by
the expanded light from the EXR-20 filtered to 633 nm with
a 10 nm bandwidth. The dye is bright for its wavelength, with
a quantum yield of 0.65 and a fluorescence lifetime of 3.5 ns.
A 10 mM stock solution of 1 mg maleimide ATTO647N
(868 g/mol) and 115 pL of PBS was prepared. The stock
solution was used to form 50 pL aliquots at concentrations
of 10 mM, 1 mM, and 0.1 mM, as shown in Fig. 6(a). We
found significant quenching at high concentration, as seen in
Fig. 6(b) [38]. For this reason, 2 uL of the 1 mM solution
was used for stereotaxic injections, as shown in Fig. 6(c).

In order to study the signal level, CCD fluorescence im-
ages of a rat were captured before and after injection of
ATTOG647N. The rat was euthanized (before injection) and
handled in accordance with the Purdue animal care and use
committee (PACUC) guidelines. It was shaved in order to
reduce autofluorescence and scattering. First, the top of the
rat was imaged, as shown in Figs. 7(a) and (b). Next, the
2 pL solution of ATTO647N was stereotaxically injected into
the substantia nigra (8§ mm below the surface of the skull) at
a rate of 2 nL/sec. After injection the needle was kept in place
for 10 minutes before being slowly removed. The tissue was
sutured and washed, and the top of the rat was imaged again,
as shown in Figs. 7(c) and (d). A strong fluorescence signal is
visible above the injection site. The same signal was observed
after pinching the skin and shifting it, ensuring that the signal
emanated from deep within the brain and not from near the
tissue surface. This result demonstrates that it is possible to
detect fluorescent inhomogeneities within the brain for in vivo
studies of, for example, the rat substantia nigra.

A. Brain Localization Results

The injected ATTO647N was localized with the same
method that was used to find the tumor in Section V-A.
The assumption of an infinite homogeneous medium and
the use of parallel computing enabled fast computation. The
3D topography of the rat shown in Fig. 8(a) was used to
define a region of interest and place 104 detectors in the
region above the injection site. The scatter was fixed at
wl, = 2.0 mm~* [36], and s, was ranged from 0.02 mm~! to
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0.05 mm~! in increments of 0.005 mm~!. As in Section V-
A, the cost was calculated for each p, within the range at
all nodes within the region of interest. The results of the
localization are presented in Fig. 8(b)-(e). The position that
minimized the cost was (19.8,16.6,24.0) mm (with p, =
0.025 mm~1!), giving an estimated depth of about 8.3 mm
below the tissue surface, which is close to the injection depth
(8 mm below the skull). Figures 8(b) and (c) show flat field
images of the cost function for 2D slices at y = 17 mm and
z = 24 mm, respectively. Figure 8(d) shows a plot of the node
boundary in green obtained using the 3D topography laser
line scan and the estimated fluorescent source location in red.
In Fig. 8(e), the measured data vector y is plotted with the
estimated y = wsh(r¢). The surface is not as slowly varying
as that of Fig 4, and there is significant autofluorescence,
causing errors in the fit. However, it was still possible to
estimate the correct depth of the ATTO647N.

VII.

We have developed an approach for the localization of a
fluorescent source in deep tissue. The primary innovation of
the method is the incorporation of the excitation flux into a
linear constant, and by optimizing for this quantity, removing
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the need to model the excitation profile. In principle, this
allows an arbitrary illumination profile to be used as long as
a single equivalent fluorescent point source is excited, which
simplifies the experimental setup. The method’s computational
time can be short because few detectors are required, the
forward model is a closed-form analytical equation, and the
calculation of the cost can be distributed between multiple
processors. The computational time could be further improved
through implementation of multiresolution methods [19], [20],
[39] or potentially through iterative inversion.

We have demonstrated that simple homogeneous analytic
solutions to the diffusion equation can be sufficient to localize
fluorescent sources in tissue. This could be because the point
fluorescent source assumption sufficiently constrains the solu-
tion space of the inverse problem such that perturbations due to
heterogeneous tissues have a minimal effect on the estimated
position. In this case, the estimated tissue parameters are not
quantitative and are treated as fitting parameters. However, a
FEM or Monte Carlo (MC) solution would provide a better
model of the light propagation [40], likely improving the
localization accuracy, especially with the incorporation of prior
information from another imaging modality [41]. The FEM or
MC solution could be used with the same cost function, (10),

Fig. 6: Preparation of ATTO647N and stereotaxic injection through the skull into a dead rat. (a) CCD image of 10, 1, and
0.1 mM solutions of ATTO647N in DMSO that were prepared from a stock solution. (b) CCD fluorescence image of the
ATTO647N from (a). A strong quenching of the ATTO647N at high concentration is apparent, limiting the concentration
that should be injected for maximum signal. (c) 2 uL of the 1 mM solution of ATTO647N in PBS was injected into the
rat substantia nigra. The injection coordinates were 5 mm anterior-posterior, 2 mm left-right from the Bregma, and 8§ mm
dorsal-ventral from the skull surface.
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Fig. 7: Rat fluorescence before and after stereotaxic injection of ATTO647N 8 mm below the skull surface. (a) CCD image
under room light before injection. (b) CCD fluorescence image through the bandpass filter before injection. There is strong
autofluorescence present. (c) CCD image under room light after injection. The surgical sutures are visible. (d) CCD fluorescence
image through the bandpass filter after injection. A signal from the region of the injection site is clearly visible, despite the
autofluorescent background.
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removing the need to model the excitation source if only
a single fluorescent source is present. The FEM or MC
solution requires substantial computational time compared to
the analytic solutions used here, but it could be precomputed
for medical applications. The experiment could be improved
by increasing the excitation laser power, which is possible
because the light is distributed over a wide area, causing
minimal tissue damage. In addition to extracting the location of
an inhomogeneity, the localization methods could be modified
to extract other parameters of interest, such as kinetic rates
or fluorescent lifetimes, which can characterize a model of
time-dependent fluorescence [14]. The localization methods
could also be used to localize absorption or scattering inho-
mogeneities [17], [18], provide prior information for FDOT
in order to improve reconstructions [16], or implemented
with photo-acoustic models [42]. In the case where multiple
fluorescent sources are present in the tissue, as long as a set
of detectors can be selected for each respective source that
measure emission from only that source, the method can be
applied sequentially to localize each source. In general, any
fluorophore could be used as long an appropriate an optical

filter and detector are available at the emission wavelength.

We presented two potential applications of localization.
The first was localization of tumors using folate-targeted
fluorescent indicators in order to assist with fluorescence-
guided surgery. Armed with knowledge of the location of a
tumor, a surgeon could perform minimally-invasive surgery in
order to remove it, reducing the damage to healthy tissue [43].
The experimental setup in Fig. 3 could be made into a portable
imaging device for the clinic and modified to use more sensi-
tive detectors, such as a fiber array. The 3D topography could
be measured with the laser line scan or related methods [44],
or the tissue surface could be approximated as planar at the
expense of reduced localization accuracy.

The second application that we presented was localization
of fluorescent indicators in the brain. Optical imaging through
the intact skull is a major challenge that requires bright
fluorophores, such as ATTO647N. However, the potential
applications are far-reaching. For example, in vivo imaging
of protein aggregation, a leading candidate for the basis and
onset of neurological diseases [45], could be pursued. Different
aggregation states can modulate fluorescence emission and
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Fig. 8: Localization of ATTO647N using data from Fig. 6.
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(a) 3D profile generated using the laser line scan of the rat.

Along the y-axis, the rat eyes are at about y = 0 mm, and the ears are between about y = 20 mm and y = 30 mm.
The 3D profile was discretized into 124,047 nodes, and the cost was calculated at each node position. (b) Cost image slice

24 mm. The

at y = 16.6 mm. (c) Cost image slice at z

position with minimum cost, or the estimated position of the

ATTO647N, is (19.8,16.6,24.0) mm. The estimated depth of the ATTO647N is about 8.3 mm below the tissue surface, in

excellent agreement with the injection site § mm below the

skull surface. (d) Plot of the boundary nodes in green and the

estimated position. (e) Comparison of the measured data (y) and the forward model (estimated y) using the estimated tissue
parameters and the estimated position of the ATTO647N. The surface is not as slowly varying as that of Fig 4, and there
is significant autofluorescence, causing errors in the fit. However, it was still possible to estimate the correct position of the

ATTO647N.
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lifetime [46], [47], and this information could be combined
with the localization methods presented here [48] to track the
evolution of protein aggregation in a rat disease model [49].

Additionally, the prospect of imaging calcium sensitive dyes
to monitor activity of neurons in the brain is of particular inter-
est. Signaling between neurons is accompanied by an increase
in the local concentration of calcium, which can modulate
fluorescence emission [24], [25]. In principle, measurements
with a CCD camera or a fiber array with short integration times
could provide data from individual neurons such that each
could be localized, providing an image of a whole animal brain
in vivo. These images of the whole brain could be used to form
correlation maps, which are useful for studying neurological
diseases and developing treatments [50]. It is likely that an
expanded beam illumination profile and fast computation will
be required in order to localize many neurons. This type
of imaging could provide new information on chemical and
electrical neural activity because available in vivo methods,
such as fMRI [51], provide only indirect access to neurons by
measuring secondary parameters.

VIIl. CONCLUSION

We have presented an approach for the localization of
fluorescent inhomogeneities in deep tissue that does not re-
quire modeling of the excitation profile. The method was
demonstrated using a single mouse and a single rat as a proof
of concept study. The uncertainty in the estimated position
has been shown to be tens of microns in a previous phantom
study [19], and future work will involve demonstrating this in
live mice and rats.
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