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ABSTRACT availability against the potential for misuse is a pervasive challenge

The growing adoption of digital assets—including but not limited
to cryptocurrencies, tokens, and even identities—calls for secure
and robust digital assets custody. A common way to distribute the
ownership of a digital asset is (M, N)-threshold access structures.
However, traditional access structures leave users with a painful
choice. Setting M = N seems attractive as it offers maximum resis-
tance to share compromise, but it also causes maximum brittleness:
A single lost share renders the asset permanently frozen, inducing
paralysis. Lowering M improves availability, but degrades security.

In this paper, we introduce techniques that address this impasse
by making general cryptographic access structures dynamic. The
core idea is what we call Paralysis Proofs, evidence that players or
shares are provably unavailable. Using Paralysis Proofs, we show
how to construct a Dynamic Access Structure System (DASS), which
can securely and flexibly update target access structures without a
trusted third party. We present DASS constructions that combine a
trust anchor (a trusted execution environment or smart contract)
with a censorship-resistant channel in the form of a blockchain. We
offer a formal framework for specifying DASS policies, and show
how to achieve critical security and usability properties (safety,
liveness, and paralysis-freeness) in a DASS.

To illustrate the wide range of applications, we present three
use cases of DASSes for improving digital asset custody: a multi-
signature scheme that can “downgrade” the threshold should play-
ers become unavailable; a hybrid scheme where the centralized
custodian can’t refuse service; and a smart-contract-based scheme
that supports recovery from unexpected bugs.
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« Security and privacy — Key management; Access control.
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1 INTRODUCTION

Nearly all key management and access control systems have an
“always / never” requirement [54]: they should always provide avail-
ability when validly authorized, but never when not. Balancing
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though. Consider the task of securing a single private key. Repli-
cate the key broadly across geography, machine architectures, and
custodians, and the risk of key compromise increases. Store the
key in a single location and the probability of loss increases, as do
barriers to timely access.

Generally, this challenging trade-off is navigated by distributing
control across a small number of parties by means of an access
structure [33]. An access structure is a policy determining which
players can control a resource. (M, N)-access structures, as in, e.g.,
Shamir secret sharing [55], are a popular choice. They allow any
M out of N players to access a target resource, e.g., to sign a cryp-
tocurrency transaction. Varying M and N provides flexibility on the
defensibility vs. availability spectrum. Unfortunately this flexibility
is often still inadequate.

For example, in the setting of a cryptocurrency custodian, despite
the availability of (M, N)-multisig wallets (which require M of N
players to sign), loss and theft of cryptocurrency have been rampant
for years [13, 23, 47, 48, 61]. Over 980,000 Bitcoin (currently worth
about $6.4 billion) [52] have been stolen from exchanges alone. An
estimated 4,000,000 Bitcoin (currently worth around $26 billion),
have vanished forever due to lost keys [53].

One of the primary concerns looming over the use of (M, N)-
multisig schemes is what we call a “shareholders’ dilemma”: setting
M = N is not only desirable for its maximum resilience to key
compromise and collusion, but it could also be the only option to
meet certain business requirements, e.g., when N people want a
joint-account with equal ownership. However, setting M = N also
causes maximum brittleness: a single lost key share renders the
asset permanently frozen.

Fundamentally, the problem with traditional (M, N)-access struc-
tures is that they are static. M cannot be lowered or N raised when
funds become unavailable, so insecure choices are often made at
system setup.

1.1 Owur work

In this paper, we show how to achieve both good availability and
good security, and to do so without trusted third parties (TTPs).
Specifically, we show how to achieve a better trade-off than any
static access structure alone can do. We accomplish this by means
of access structures that are dynamic.

We introduce the idea of a Dynamic Access Structure System
(DASS), which allows for secure conditional downgrading, e.g., chang-
ing (3, 3)-multisig to a (2, 3)-multisig if a player becomes unavail-
able. Consequently, the full security of a (3, 3)-multisig is available
in the general case. A (2, 3)-multisig is instantiated in the critical
case that funds would otherwise be lost. (If Alice has lost her key,
it’s better to run the risk of Bob and Carol absconding with funds
than to lose funds with certainty forever.) In other words, a DASS
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implements a policy of access-structure migrations (e.g., down-
grades). Fig. 1 illustrates the idea by showing a three-player DASS
that can withstand two key losses.

DASSes do not completely avoid security/availability trade-offs.
They do however introduce new and desirable points on the se-
curity/availability spectrum, and thus new security management
options for cryptocurrencies and a wide range of other crypto-
graphic systems.

One major technical challenge in our work is ensuring that the
downgrading of access structures only happens when a player
is truly unavailable. Otherwise, players can cheat by simulating
the disappearance of a live player. The tool we introduce for this
purpose are strong proofs of player (or key-share) unavailability
called Paralysis Proofs.

1.2 Approach overview and challenges

Proving that a player is available is easy: just have her sign a fresh
message. Secure Paralysis Proofs, though, require that a player be
able to signal liveness when other players collude and potentially
try to block her network access. This is challenging even with a
trusted third party (TTP).

Our constructions rely on a censorship-resistant stateful channel
to detect and record the fact of an unavailable player. Such a channel
has two properties: censorship-resistance, meaning players can freely
send and receive messages with a bounded delay, and statefulness,
meaning messages sent through the channel are recorded and can
be retrieved later. These properties are strictly stronger than those
of anonymous channels (e.g., Tor [59]), which lack statefulness.

We leverage public blockchains as censorship-resistant stateful
channels in our work. The basic idea is that if a player, e.g., Alice,
disappears, other players can post a challenge to her on chain. If
Alice tries to post a response within A blocks (for some suitable
A), she can do so with high probability even in the face of power-
ful network adversaries and her response will be world readable.
Thanks to these properties, lack of response from Alice within A
blocks of a challenge constitutes a Paralysis Proof.

Building a DASS from Paralysis Proofs is easy given a TTP,
which can simply manage all users’ keys. Again, we aim critically
to avoid TTPs. Our DASS schemes thus reply on two technologies
that server as trust anchors by emulating TTPs: trusted execution
environment (TEEs) and smart contracts.

However, naive combination of Paralysis Proofs with TEEs or
smart contracts doesn’t yield a DASS. Verifying a Paralysis Proof
requires the verifier to have an up-to-date view of the blockchain in
order to determine whether a given A is appropriate. Keeping TEEs
in sync with a blockchain is undesirable and problematic, though,
as TEEs are fundamentally stateless and unaware of accurate time.
Attempts to work around these limitations result in larger attack
surface and/or extra assumptions. As we will show shortly, our
protocol does not require the TEE to have an up-to-date view of the
blockchain. In fact, it does not require any view of the blockchain.

Smart contracts, on the other hand, doesn’t suffer from the same
limitation. Indeed, for assets controllable by smart contracts, imple-
menting DASSes for them is straightforward. But for other assets
smart contracts can’t be employed in general because they can’t
manage secret keys. Moreover, smart contracts are known to suffer
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“Paralysis Proof
for P;”

“Paralysis Proof
for Py”

Figure 1: An example DASS with three players. Nodes repre-
sent access structures, edges migration conditions.

unavailability induced by accidental or unexpected bugs. We ex-
plore a novel scheme that allows secure recovery of smart-contract-
controlled assets in face of software-induced paralysis.

To analyze and prove the security of DASSes, we provide a formal
framework for specifying dynamic access structure policies (DASPs)
and introduce new security definitions. Additionally, we also show
how to overcome technical obstacles in securing DASSes in practice.
One is to avoid placing a TEE on the critical path for ordinary
transactions and risking service failures by, e.g., storing players’
keys only in the TEE. We also consider minimizing the impact of
side-channel attacks on TEEs, e.g., [62].

1.3 Improved digital asset custody with DASS

We consider three use cases of Paralysis Proofs that illustrate our
techniques’ wide range of application to improving digital asset
custody and beyond:

Tolerate cryptocurrency key loss. We present a (M, N)-multisig
wallet that can downgrade the threshold if players become unavail-
able. We report on implementations for both script-based cryp-
tocurrencies (e.g., Bitcoin) and smart-contract-based ones (e.g.,
Ethereum).

Tolerate custodian failures. Centralized custodians, e.g., Coin-
base [46], help users manage keys, but are single points of failure.
We present a DASS that migrates control of funds to their own-
ers if and only if a custodian fails or refuses service. The “only if”
part guarantees that as long as the centralized custodian is opera-
tional, leaking a user’s key won’t breach the user’s account, which
is desirable.

Tolerate software-induced paralysis. Smart contract bugs can
lead not just to theft, but paralyzed funds, as in the $150 million
lost to the infamous (second) Parity Multisig Wallet bug [49]. We
propose a continuous-integration framework that regularly applies
a test suite to a smart contract to validate its correct functioning,
including liveness of funds. Critical error conditions such as paral-
ysis trigger an “escape hatch” [39], failover logic that refunds or
moves a smart contract’s assets.

1.4 Contributions
In summary, our main contributions are as follows:

Paralysis Proofs. We introduce Paralysis Proofs, and show how to
achieve them using censorship-resistant stateful channels such as
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blockchains. We also introduce Dynamic Access Structure Systems
(DASSes), which offer security vs. availability trade-offs unachiev-
able with conventional, static access structures.

Formal definitions and framework. We formally define key
properties for a DASS (liveness, safety) and its underlying migration
policy (privilege-preserving, paralysis-free) (Section 3). We present
an ideal functionality that formally specifies security properties
required for a broad range of applications (Section 4).

Improved digital asset custody with DASS. We present three
example applications of DASS to protect digital asset custody from:
cryptocurrency key loss (Section 4), cryptocurrency custody failures
(Section 5), and smart contract failures (Section 6).

TEE compromise. We explore alternative DASS designs that pro-
vide resilience to TEE compromise, such as through side-channel
attacks demonstrated against SGX (Section 4.4).

Implementation. We present implementations in Ethereum and
Bitcoin for the first application, using smart contracts and TEEs
(Intel SGX, in particular) respectively. To illustrate the limitations
of pure blockchain approaches for Bitcoin, we also explore script-
based schemes in Appendix B.

2 BACKGROUND

In this section we provide some basic background on Trusted Exe-
cution Environments, Bitcoin, and smart contracts.

2.1 Trusted Execution Environments and SGX

A Trusted Execution Environment (TEE) is an execution environ-
ment that provides confidentiality and integrity for applications
running on potentially malicious hosts.

Intel Software Guard Extensions (SGX) [10, 31, 41] is a CPU-
based TEE implementation available in recent Intel CPUs. SGX
allows processes to execute in an enclave, an environment that
enforces application confidentiality and integrity against even a
malicious operating system and some classes of hardware attacks.
SGX also enables applications to emit third-party verifiable attesta-
tions to their origin and outputs.

Limitations of TEEs. Although powerful, TEEs have fundamental
security limitations. TEEs generally don’t guarantee availability.
Moreover, TEEs depend upon a potentially malicious operating
system for I/O. A consequence is that TEEs cannot provide trusted
sources of time. In the case of SGX, although a trusted relative
timer is available in an off-CPU component, the communication
between enclaves and the timer can be delayed by the malicious
OS [1]. Thus SGX enclaves can only ascertain a lower bound on the
elapsed time. Server-grade Intel CPUs offer no support for timers
at the time of writing. Moreover, unless with additional protection
mechanisms (e.g., [40]), SGX doesn’t have trustworthy monotonic
counters and therefore is susceptible to state rollback attack. These
security limitations make Paralysis Proofs challenging even with
TEE.

2.2 Bitcoin

Bitcoin is a decentralized electronic cash scheme in which transac-
tions moving funds are recorded in an append-only log, a blockchain.
Rather than storing funds in accounts whose balance is altered by
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transactions, Bitcoin uses transactions themselves to record both
ownership and balance. Transactions consist of inputs and outputs.
An output consists of an amount and a script_pubkey that speci-
fies how that amount can be spent. Inputs specify the transaction
output which is the source of the funds and include a script_sig
showing authorization to use the funds. Thus transactions spend the
outputs of previous transactions. Unconsumed outputs are known
as Unspent Transaction Outputs (UTXOs). One can check if an
output has been spent by seeing if it is in the set of UTXOs. By
requiring that outputs can only be spent once and that the amount
of money included in a transaction’s inputs is at least as much as
its outputs, Bitcoin enforces the invariants of a monetary system
and prevents forgery.

Bitcoin Script. When creating an output, users can specify an ac-
cess control policy by embedding a script—called script_pubkey—
in the output. To spend an output, one must provide a witness—
called script_sig—such that running the script with the provided
witness outputs true. For example, a typical script_pubkey spec-
ifies the keys that must sign any transaction spending that output.
This may be a single key or an arbitrary combination of keys, e.g.,
(pky A pky) V pks. An input consuming an output with such a
script_pubkey would then need a signature that satisfied that
requirement, e.g., it would need to contain signatures under both
pk; and pk,. While in principle Bitcoin Script can represent com-
plex logic, in practice limitations on supported instructions and the
length of a script mean it is mainly used for simple authorization.

We use (V, ¢) to denote an UTXO of V coins with a script_pubkey
¢. A Bitcoin transition (with the exception of coinbase transitions)
consumes a set of UTXOs and creates one or more new ones. We use
Iy, —
with n inputs, m outputs, and n witnesses, one for each input, such
that w; satisfies the script of In;.

{Out j }]”il) to denote a Bitcoin transaction

Time-based opcodes. An essential ingredient of ITIggy is Bitcoin’s
relative timeout script opcode, also known as CheckSequenceVerify
or CSV [17]. By putting the CSV instruction with parameter 7 in
the script ¢ of a UTXO u, we assert that the transaction that spends
u must reside in a block whose height (or timestamp) is more than
7 relative to u.

2.3 Smart contracts

Smart contracts are executable objects stored in a blockchain. Users
can send transactions with input data to the blockchain to trigger
the execution of a smart contract. To process a transaction, the
blockchain executes the code with the provided input data and
potentially alters the blockchain state.

A key differentiator between such smart contracts and script-
based systems (e.g. Bitcoin) rich-statefulness [64]. In a smart contract
system, all executing transactions have native access to persistent
state stored across transactions, blocks, and time. Rich statefulness
is particularly relevant to our system. It is Bitcoin’s lack of such
that renders TEEs the only practical solution.

2.4 Censorship-resistant stateful channels

We use a blockchain to realize a censorship-resistant stateful chan-
nel, i.e., messages sent to the blockchain will be delivered within
A time, and items added to the blockchain cannot be removed. In
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practice, a central goal of public blockchains such as Bitcoin is to
prevent a malicious miner from dropping a user’s transactions [28].
Also thanks to the high redundancy of the underlying peer-to-peer
network, as long as a user can connect to some network nodes, her
transactions will be propagated and included in a block with high
probability, thus offering censorship-resistant access.

Bitcoin and other public blockchains have been proposed as a
means to facilitate an anonymous channel (e.g., in [4, 9]). We note,
however, that public blockchains are more powerful than anony-
mous channels (such as Tor), because blockchain-based channels
are also stateful, i.e., messages are persisted on-chain with strong
availability guarantees. As statefulness is critical in Paralysis Proofs,
anonymous channels such as Tor insufficient. The statefulness of
blockchains is also used in [22] to enforce fairness in MPC, and
in [35] to build stateful TEE execution.

3 DYNAMIC ACCESS STRUCTURE SYSTEMS

In this section, we develop formal definitions and a framework for
reasoning about the security of dynamic access structures.

A Dynamic Access Structure Policy (DASP) consists of a set of
access structures and rules dictating migration conditions among
them. For example, “this Bitcoin fund requires signatures from Alice,
Bob and Carol to spend; if any of them disappears, signatures from
the remaining two suffice to spend the fund” informally specifies a
DASP. The access structure is the set of holders authorized to spend
Bitcoin, and migration entails removing unresponsive signers.

We use the term Dynamic Access Structure System (DASS) to
denote a system that enforces a DASP. Essential to our DASS con-
structions is the use of Paralysis Proofs to demonstrate conditions,
e.g., party incapacitation, that justify migration from one access
structure to another.

Motivating example. Getting dynamic access control policies
right is hard and intuitive correctness often is not enough. There
are subtle vulnerabilities that are missed without the formalism. For
example, consider s; = “at least a majority of {1, 2, 3, 4} is required
to access”, sp = “at least a majority of {1, 2, 3} is required to access”.
If the current access structure is s; and player 4 goes missing, it’s
intuitive to permit migration to s;. However this is not secure as it
would deprive the privilege of one of the three players.

Looking forward, Definition 2 correctly prevents such a migra-
tion because sy ¢ Sip({1,2,3}). (The only secure migration is to
stay at s1.) Capturing subtle vulnerabilities like this is critical and
challenging, and motivates our exploration of the formal framework
presented below.

3.1 Policy specification

3.1.1 Basic definitions. A Dynamic Access Structure Policy (DASP)
comprises a tuple (R, S, M) that specifies the resources (R) be-
ing access-controlled, a set of access structures (S), and a set of
migration rules (M) dictating conditions under which access-
structure migrations are permitted.

Let{P;} = {P; }fil denote the set of N parties at beginning of
the protocol, and L; the set of live (i.e. not incapacitated) parties at
time t. As we shall see shortly, correctly determining L;, i.e. which
parties are actually live, is the main technical challenge in enforcing
a DASP. We use L; to denote the ground truth. When generally
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referring to a single player, we drop the subscript and simply denote
the player as P. We assume that if a party becomes incapacitated, it
remains incapacitated throughout the protocol, i.e. P ¢ L; implies
P¢ Ly forallt’ > t.

In this paper, an access structure s is a function s(L) — {true, false }
that determines whether a set of live parties L C {P; } is allowed to
access the managed resource. Access structures are monotonic, i.e.,
s(L) = true and L C L’ together imply that s(L") = true.

A migration rule Ms,,s; € M s afunction Ms,,s; (w) — {true, false }
that determines whether migrating from s; to s; is permitted given
witness w. We use s; “ sj to denote Ms,,s; (w) = true. The exact
form of w depends on the migration rule. An example of w is L;,
the set of live players.

For a given DASP, the set of access structures S and the asso-
ciated migration rules M may be represented as a directed graph
G = (8, M). Here we overload S and M to denote respectively
the sets of nodes and edges. A node s; € S is an access structure
and an enhanced edge (s;,sj) € M represents the migration rule
ms,,s;» which specifies the condition to migrate from access struc-
ture s; to s;j. Access structure sy is said reachable from s; by w,

denoted s; < sn, if there exists a path (s1, s2, . . ., sp) in G such that

S 2 siy1 foralli e [1,n—1].

3.1.2  Security goals. A fundamental correctness requirement for
any access control is that migration between access structures does
not eliminate the privilege of live parties. We capture this notion by
stipulating that a DASP be privilege-preserving. To define this
property, we first require two technical definitions.

DEFINITION 1. The set of least permissive access structures for
L c {P;}, denoted by Syp(L), is defined as: S;p(L) = {s € S : s(L) =
true A (VL' G L, s(L’) = false)}.

Intuitively, Spp(L) is the set of all access structures such that if the
only possible live parties are in L, then all such parties must be live
to access the resource. Given this, we define privilege-preserving:

DEFINITION 2. (Privilege-preserving) Let L; be the set of live
parties at time t. A DASP (R, S, M) is privilege-preserving if L; can
never migrate to an access structure that can be satisfied with a set
L’ of parties such that Ly ¢ L’ at any time t. Formally, Vs € S such

that s(Ly) = true, if there exists a witness o such that s 2 s’, then
s" € Ur, cr Stp(L).

A DASP is paralysis-free if, when the current access structure
cannot be satisfied, switching to another satisfiable access struc-
ture is permitted provided that the migration will not deprive the
privilege of any live party.

DEeFINITION 3. (Paralysis-freeness) Let L; be the set of live parties
at timet. A DASP (R, S, M) is paralysis-free if at any timet,Vs € S
such that s(L;) = false, it holds that:

SipLy) 20 = Fw,s’ € Spp(Le) s.t.s — 5.

Note that a paralysis-free DASP doesn’t imply the availability of
the resource. What a paralysis-free policy can guarantee is the best
possible availability: if there is a access structure s’ that can get the
system out of paralysis, then the DASP should permit a transition
to s”. However, if the set of live parties is too sparse to satisfy any of
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the prescribed access structures (i.e. S.p(L;) = 0), then the desired
availability cannot be achieved.

ExAMPLE 1. Let’s take the example of N shareholders who wish
to retain access to the resource R should one party disappear. Let
P ={P; }fil denote the set of N parties, and P_; = P \ {P; } denote
the set of N — 1 parties that excludes P;. Let I(-) denote an indicator
function. A DASP (R, S, M) that realizes the aforementioned access
control can be specified by S = {s; }fio whereso = Ip ands; =Ip_;
fori € [N], and the condition mg, s, () € M outputs true if w is a
witness to Ly = P_j.

One can examine that the DASP in Example 1 is privilege-preserving
and paralysis-free.

3.2 Security definitions for a DASS

We use the term Dynamic Access Structure System (DASS) to denote
a system that enforces a DASP. In this section, we define the se-
curity of a DASS with a Universal Composability (UC) [20] ideal
functionality 7 pass. Later in Section 4 we present a protocol ITsgx
that UC-realizes F pass.

3.2.1 Adversarial model. We assume an adversary that may corrupt
an arbitrary number of parties. An honest party always follows the
protocol, while a corrupted party controlled by the adversary may
deviate arbitrarily (i.e., perform Byzantine corruption). In the real-
ization of ¥ pass, we assume that the adversary has complete con-
trol of the network, with the exception that a censorship-resistant
stateful channel is available to all parties, i.e., anyone can send and
receive messages through the channel subject to bounded latency,
and messages sent through the channel are persisted and can be
retrieved later.

3.2.2  Ideal functionality. We specify security goals of a DASS in
the ideal functionality ¥ pagss as defined in Fig. 2.

To reduce clutter, we omit the handling of session IDs (SIDs) in
Fpass but readers are advised that messages received and sent by
Fpass are implicitly associated with an SID. When ¥ pass sends
subroutine output to parties, we use the delayed output terminol-
ogy from [20] to reflect the network adversary. Specifically, when
FDass sends a public delayed output to party P;, the output is first
sent to A and then forwarded to P; after A’s acknowledgement or
A time has past, whichever happens first.

Fpass maintains internal states (L;, s) for the set of live parties
and currently enforced access structure respectively. To capture the
paralysis explicitly, we extend the standard corruption model [20]
with special “paralysis” corruption. Upon receipt of a paralysis
message from A, a party immediately announces its paralysis and
halts until the end of the protocol. In the ideal protocol, A sends
(paralysis, P;) to ¥ pass, who removes P; from the set of live parties.

To access the resource, a set of parties P send (access, inp), in
which inp specifies the parameter of access, to ¥ pass. If P is per-
mitted to access by the current access structure, i.e. s(P) = true,
FDpass returns the result of accessing R. A set of parties can initiate
a migration to another access structure s’ by sending (migrate, s”)
to Fpass.- If the transition to s” is permitted by the enforced DASP,
FDass sets the current enforced access structure to s’.
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Fpass[so, R, S, M] with parties {P; }f\il
1: Onreceivings (init) from any P;:
20 Le={Pi}[_;,5:=50
3: Onreceiving (paralysis, P;) from A:
4: Ly =L \{P:i}
5: Onreceiving (access, inp) from P; € Ly:
6: let current time be ¢
7: if there is an unexpired access request for inp
8 if find a stored (inp, P, Ty) and t < Ty + A, then:
9: add P; to P

10 : if no access request for inp or it has expired, create a new one
11: else : store (inp, {P; }, t), overwriting (inp, _, _) if exists

12: if s(#) = true then:

13 : send a public delayed output R(%, inp) to all parties in P
14: On receiving (migrate, s’) from P; € L;:

15: assert (s’ € SAm; ¢ € M)

161 Lfake-death = 0

17 for all corrupted parties P. € L;:

18 : ask A whether P, should be added to Lgaye-death

19 if mg o/(L¢ \ Liake-death) = true then:

20 : send a public delayed output (s, s’, P;, ok) to all; set s = s’

Figure 2: The ideal functionality of a Dynamic Access Struc-
ture System. The entry point marked with = is only executed
once.

3.2.3  Security properties. Fpass[so, R, S, M] encapsulates the fol-
lowing security properties of a Dynamic Access Structure System.
Let s denote the effective access structure of ¥ pass, and L; the set
of live parties at time ¢. Fpass guarantees both safety and liveness
in all states s € S at any time t:

Safety: A set of parties L C L; can access R only if s(L) = true. A
transition to s” # s occurs only if mg (Ls) = true.

Liveness: If s(L) = true for some L C L;, then L can access
R within A time after interacting with the DASS honestly. If
ms, (L) = true, then a transition to s’ # s occurs within A
after L; interacts with the DASS honestly.

Examples. Consider a DASS enforcing the DASP in Example 1,
the Safety property ensures that access is enforced by the current
access structure at any time, and that the access structure can be
downgraded to allow access by N — 1 shareholders only if |[L;| < N,
i.e., a collusion of N — 1 shareholders cannot maliciously accuse
the N*" shareholder of being incapacitated and thereby steal her
share. The Liveness property ensures that access is granted if the
structure is satisfied by a set of cooperating parties. Moreover, if
allowed by the policy, the Liveness property ensures that the access
structure will be downgraded within a bounded time should parties
submit legitimate requests. Note that the Liveness property does
not stipulate that access structure s; is automatically instantiated if
|L¢| < N. This is because parties may not immediately activate an
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access-structure migration; in fact, if all parties are incapacitated,
such migration cannot happen.

4 PARALYSIS PROOFS FOR
CRYPTOCURRENCIES

In this section, we expand on the use of Paralysis Proofs to recover
from cryptocurrency key loss (and related failures, e.g., player dis-
appearance).

Bitcoin, the most popular cryptocurrency with a market cap
of $110B at the time of writing, is an important application tar-
get for Paralysis Proofs. Implementing secure Paralysis Proofs for
the current Bitcoin protocol, however, is challenging because of
the limited expressiveness of Bitcoin scripts. Were a proposed en-
hancement called “covenants” available [44], we show in the full
version [69] that Paralysis Proofs can be constructed, though with
significantly higher complexity. Moreover, it is unclear when or
whether covenants will be adopted in Bitcoin. Thus we explore an
alternative approach involves the use of TEEs—specifically, Intel
SGX—in this section. In Appendix B we give a similar Paralysis
Proof construction compatible with the current Bitcoin protocol
without using SGX, but it only provides a weaker security guarantee
and incurs more than exponential overhead, making it impractical.

Realizing Paralysis Proofs is challenging even with TEEs, due to
their inherent security limitations: they can’t maintain persistent
states, their I/O can be censored by the malicious OS and they don’t
have an accurate sense of time. We use the following strawman pro-
tocol to illustrate why these limitations lead to design challenges.

A strawman protocol. Suppose there are N players. On initial-
ization, the enclave generates a key pair (sk, pk) and outputs pk.
Players moves the fund to the address of pk. The enclave also
initializes the access structure as an (N, N)-multisig scheme, i.e.,
signatures from all N players are required to spend the fund con-
trolled by sk. To attempt to remove a player P, the enclave sends a
challenge to P and starts the timer. If P doesn’t respond within A
time, the enclave removes P from the access structure.

This strawman protocol is insecure for three reasons. First, unless
additional mechanisms (e.g., [12, 40]) are employed, an SGX enclave
is susceptible to state rollback. A malicious player could restore the
enclave to a state before she’s removed from the access structure,
defeating the basic security requirement. Second, since the enclave’s
network is censored by the network adversary, she can cause a live
player to be removed by delaying the response.

Note that these two problems can be solved by using a blockchain
as a censorship-resistant stateful channel between players and the
enclave. Nonetheless, the strawman protocol is still insecure. The
issue is that the enclave—lacking a trusted timer—cannot establish
an update-to-date view of the blockchain. For example, the adver-
sary could present the enclave with a fork without P’s response.
Thanks to the lack of a trusted timer—in the case of SGX, an enclave
can only ascertain an lower bound on the elapsed time—even an
adversary with a low computational power can mount such attacks.

Solutions. Instead of patching TEEs to make the above strawman
protocol work, we took a different path that does not rely on TEE
for keeping track of time or maintaining the current access struc-
ture. It is important to emphasize that the security of our protocol
doesn’t require the enclave to have an update-to-date view of the
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blockchain—in fact, the enclave need not any view of the blockchain
state. Moreover, a challenged player does not communicate with
the enclave to signal her liveness. Finally, the enclave doesn’t main-
tain any state, except for a secret key. Since the state is static, our
protocol is immune from state rollback.

The high-level idea behind our solution is to use Bitcoin’s time-
based opcodes to track time, and to condition the output of the
enclave on the state of the blockchain that is presented to the en-
clave. For example, if the TEE is presented with a forked blockchain,
then the enclave output would only be valid on that fork. We achieve
this using “life signal” transactions with time-based opcodes.

4.1 System model and trust assumptions

In this section we setup the formal model in which we specify the
protocol, and discuss trust assumptions.

SGX and attested execution. Throughout the paper, we use SGX
as a building block, although the protocol can be realized by any
TEE capable of attested execution.

In our formal specification, we adopt the (local) ideal function-
ality 7 sgx based on Pass et al [50] to model TEEs with attested
execution. Informally, a party first loads a program prog,, ; into an
SGX enclave with a install message. On a resume call, the program
is run on the given input inp, generating an output along with an
attestation osgx = ZsGx.Sig(skatt, (Progencs outp)), a signature un-
der the hardware key skatt. The public key pk,;; is can be obtained
from 7 sgx.getpk(). We refer readers to [50] for details.

An ideal blockchain. Our protocol uses an ideal blockchain de-
fined in Fig. 7 as a censorship-resistant stateful channel. 7 ¢pain[succ]
generalizes the bulletin board model because it also captures the no-
tion of item validity. succ(history, item) — {0, 1} is a function that
specifies the criteria for a new item to be appended to history. We
retain the append-only property of blockchains but abstract away
the inclusion of items in blocks. As reflected in ¥ p,in, We assume
items are timestamped when added. In practice, block numbers can
serve as such timestamps.

Trust assumptions. Our protocol relies on TEE with attestation
that protects the confidentiality and integrity of computation, and
an censorship-resistant stateful channel. Concretely, we assume
SGX is correctly implemented and that the Bitcoin blockchain is
secure and available to all parties. Let us stress that the trust as-
sumptions in SGX is local, i.e., only the parties in the protocol will
be affected should SGX properties be broken. We discuss ways to
minimize trust in SGX in Section 4.4.

4.2 Protocol details

We denote our DASS for Bitcoin by IIsgx. IIsgx is formally spec-
ified in Fig. 8 and Fig. 9. We give text descriptions below of the
steps involved in IIsgy, so formal protocol or ideal-functionality
specifications are not required for understanding.

Recall that we use N to denote the number of players at the start
of IIsgx, and P; for i € {1,2,..., N} to denote each player. Each P;
is associated with a Bitcoin public key pk;, whose corresponding
secret key is only known to P;. For simplicity, {P; } is used to refer
to the complete set of all players.
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Initialization. To start the protocol, some honest party needs to
load an SGX instance with prog,,; (Fig. 9) and invoke the init pro-
cedure. For now we assume a single SGX available to all honest
parties; thus any honest party can initiate the enclave (once ini-
tialized, sequential initialization will be ignored). In Section 4.4 we
present an expanded distributed setup procedure that avoids this
assumption and provides stronger guarantees.

After the setup procedure is completed, the parties send a small
fund of 5B (e.g. § = 0.00001) to a new output that can be spent
by pksgx. Then the parties launch the protocol by sending their
unspent output of V coins (denoted UTXOgy,q4) to a new output of

V coins with a script spendable by {pki }fil or pkgax-

Spending funds. There are two ways to spend the funds that are
managed in ITggx. At any time, the players can spend the money
via a Bitcoin transaction that embeds their N signatures (per ¢, in
Fig. 8). Hence, even in the case that all N SGX CPUs are destroyed,
the players are still able to spend the funds just as they could before
the execution of IIsgx. However, a better way to spend the funds
is by sending N requests to an enclave, letting the enclave create a
Bitcoin transaction with a single signature (signed by sksgx). This
reduces the on-chain complexity and the transaction fee.

Migrating to another access structure. The migrate procedure
of IIsgx resolves system paralysis by letting the live sharehold-
ers spend the money if one or more shareholders is incapacitated.
Intuitively, the role of SGX is to be an arbitrator: when any share-
holder alleges that the money is stuck due to an unresponsive
party, SGX first gives the accused party A time to appeal. The set
of shareholders that controls the fund will be reduced only if no
appeal is observed on the blockchain within this sufficiently large
A (meaning that such an appeal did not occur, assuming censorship
resistance [28] holds on the underlying blockchain).

The core idea of implementing an “appeal” in Bitcoin is to use
what we call life signals. A life signal for party Py is a UTXO of neg-
ligible Bitcoin amount ¢B, that can be spent either by P;.—thereby
signaling her liveness—or by pkggy, but only after a delay. IIsgx
makes use of life signals to securely migrate to remove a party from
the current access structure. Specifically, suppose the current set of
shareholders is P = {P; }f\i 1» to (propose to) remove party Py from P,
any live players can send a message (migrate, UTXOgund, P \ {Px })
to proge,,;- Then prog,,  will generate two signed transactions, t;
and #; (defined in Fig. 9 and illustrated in Fig. 3), as follows:

o ty: alife signal for Py.
e ty: spends both the life signal UTXOlifesignal in ¢1 and the es-
crowed fund UTXOgypq to a script that is spendable without

Py (ice., by ({pk; }511 \ {Pki ) V pksox)-

The SGX enclave gives both #; and t, together as output. If #;
is sent to the Bitcoin blockchain, P can cancel her removal by
spending t1. Otherwise, t; will become valid after the A delay and
can be sent to the blockchain, thereby removing P’s control over
the fund. Fig. 3 demonstrates an example with three players.

Notice that prog,. parses UTXOgng and obtains the list of
current shareholders, so that prog,,; does not have to keep track
of current live shareholders locally, nor does it need to have an
up-to-date view of the blockchain. As we will discuss shortly, this
is an important security feature.
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UTXOfund
5000 BTC 5000 BTC
Init: _
pky A pky A pks (pky A pky A pks) V pksgx

UTXOlifesignal
. 0.00001 BTC 0.00001 BTC
v pksgx " pky V (pkg A (CSV > 144))
UTXOfund |— | 5000 BTC

ta:

(pky A pks) V pksgx

——
UTXOlifesignal

Figure 3: Example of IIsgx with three players and P; accused
of being incapacitated. Note that pkp, is a fresh ephemeral
key generated for each life signal.

4.3 Security of IIsgx

Intuitively, the security of ITggx stems from the use of SGX and the
relative timeout feature of Bitcoin. We discuss the security of ITsgx
informally, then present a formal proof.

4.3.1  Security arguments. The core security property of IIggy is
that a live party cannot be falsely removed from the access structure,
no matter how many of parties are malicious. This is achieved by
the use of the relative timeout feature of Bitcoin [17] in the fresh
t1, and the atomicity of the signed transaction ;.

To elaborate, t; will be valid only if the witness of both inputs
(UTXOfunq and UTXOyfesignal) is correct. The witness that the SGX
enclave produced for spending the UTXOg,y,q is immediately valid,
but the witness for spending UTXOJjfesignal becomes valid only after
t; has been incorporated into a Bitcoin block that has been extended
by A additional blocks (due to the CSV condition). The shareholder
P; that accused Py of being incapacitated should therefore broadcast
t1 to the Bitcoin network, wait until ¢; is added to the blockchain,
then wait for the next A blocks, and then broadcast ¢, to the Bitcoin
network. However, while these A blocks are being generated, Py
has the opportunity to appeal by spending #; with the secret key
sk that is known only to her (the script of ¢; does not require the
CSV condition for spending with skg). A is set to a large enough
value for two purposes: (1) to give Py enough time to respond, and
(2) to ensure that it is infeasible for an attacker to create a secretive
chain of A blocks faster than the Bitcoin miners, and then broadcast
this chain (in which #; is valid) to overtake the public blockchain.

A fresh, ephemeral key pair (skg, pkg) is generated for each life
signal to ensure that t; is unique and hence does not already reside
on the blockchain (e.g., P may have failed to respond to an earlier
life signal but luckily another shareholder P; was removed at that
time). The SGX enclave does not need to store ephemeral keys, as
they are consumed right after generation.

4.3.2 Strawman attacks. To illustrate the security properties of
IIsgx, we discuss a few strawman attacks in which N — 1 malicious
players (collectively referred to as the attacker) attempt to remove
the Nth player (i.e., PN) from the access structure and why they
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are prevented by ITsgx. The attacker’s goal is to somehow get tp—
the transaction that changes the access structure—included in the
blockchain. Recall that we assume players can reliable connect to
the blockchain (while the enclave may not.)

Withholding transactions. Clearly, withholding t; is only to the
disadvantage of the attacker. On the other hand, withholding #;
doesn’t gain the attacker any advantage either. Due to the relative
timeout in t1, Py always gets the A blocks worth of time to respond
regardless when #; is included in the blockchain.

Manipulating the I/0 of the enclave. In IIsgx, the enclave re-
ceives as input (migrate, UTXOgund, P \ { PN }) and outputs signed
transactions (t1, t2) as specified. The enclave doesn’t (and generally
can’t) check the validity of the input UTXO, nor does it check that
the output transactions are sent to the blockchain correctly. This is,
however, not a security problem.

The attacker may feed the enclave with an invalid (e.g., spent
or non-existent) UTXO. However, since the output transaction f2
spends UTXOgyy4, providing the enclave with an invalid UTXOgyq
would result in an invalid #; that can’t change the access structure,
making the attack a no-op.

The attacker may also send the output transactions to secretive
forks as opposed to the main chain. Note that since tz spends ¢4,
in order for t5 to be valid, both must be in the same fork. If both
are sent to the main chain, then Py would notice and respond
normally. However, if both are sent to a secretive fork, the access
structure would indeed be changed on that fork. Nonetheless, unless
the attacker can overtake the main chain with that fork, which is at
least as difficult as double spending attack assuming a large enough
A, the fund on the main chain remains intact.

4.3.3  Security proofs. The security of IIsgx is proven using the
framework developed in Section 3, as summarized in Theorem 1.
See the full version [69] for a proof sketch.

THEOREM 1 (THE SECURITY OF Ilsgx). Assume FsGx’s attesta-
tion scheme and the digital signature used in Ilsgx are existentially
unforgeable under chosen message attacks (EU-CMA). Then IIsgx UC-
realizes T pass[sp,, R, S, M] in the (¥ sGx, T chain)-hybrid model,
for static adversaries.

4.4 Minimizing trust in TEEs

We now briefly consider some ways to minimize the trust placed in
the TEE employed in our protocol.

Avoiding a single point of failure. Trusted hardware in general
cannot ensure availability. In the case of SGX, a malicious host can
terminate enclaves, and even an honest host could lose enclaves to
outages. To avoid reliance on a centralized SGX server, each party
in ITggx can run her own SGX enclave with an identical program.
This way, any individual party (or set of parties) can always use all
the capabilities of the protocol without being dependent on others.

Specifically, the initialization procedure of IIsgx can be replaced
with the following procedure that distributes the master key sksgx
across multiple hosts. First, each enclave first generates a fresh key
pair (pksgx,»skscx;) and outputs pkggy, while keeping sksgx;
secret. Then, each player uses her identity P; to endorse pkggy;.
and all the players reach agreement on the list of SGX identities
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{pPkscx; }i\il Finally, the enclaves then use {pkggx; }f\il to estab-
lish secure channels (TLS) with each other, and create a fresh shared
secret key sksgx that is associated with {PkSGXi }f\il (i.e., another
invocation of the setup procedure will generate a different shared
key). Given use of the secure hardware random number generator
(RDRAND), secret keys generated by SGX are known only to the
enclaves, not to any of the players. From now on, no inter-enclave
communication is needed in the course of the protocol. Each enclave
then seals its state (which mainly consists of sksgx) by encrypting
it using the hardware key (unique to each CPU) and storing the
ciphertext to persistent storage. Hence, the enclave program does
not have to run persistently, and each players can run the backup
on-demand when needed.

Side-channel resistance. Although SGX aims to provide confi-
dentiality, recent work has uncovered data leakage via side-channel
attacks (e.g. [62, 66]). Admittedly IIsgx is not side-channel-free, but
it has a relatively small and controlled attack surface. The only se-
cret in SGX is sksgx and only operation involving sksgx is signature
generation (besides key generation)—this makes IIsgx amenable
to software-level side-channel mitigations, such as constant-time
ECDSA implementation (e.g. [25]).

A more powerful and somewhat more interesting approach is
to design side-channel-free Paralysis Proofs. We claim that no
side-channel-free construction of Paralysis Proofs exists given the
current trust assumptions. However, if we relax the assumptions
slightly, for example, by assuming a trusted relative clock in SGX
(which is not available now [1]), or assuming certain stationarity
properties of the blockchain (e.g. difficulty), a side-channel-free
Paralysis Proofs can be constructed by establishing an up-to-date
view of blockchain in SGX (e.g., using techniques in [21]). Specifi-
cally, SGX will only be activated when paralysis happens (which
requires an up-to-date view of the blockchain to detect), and will
generate a new key sksgx for every new UTXOgyq4. Since the en-
clave secret is used only once, such a construction is side-channel-
free.

Least-privileged SGX. In ITsgx and the examples above the fund
can be spent by pkggy alone, but it’s important to note that is not
the only option. In fact, one can tune the knob between security
and paralysis-tolerance to the best fit their needs. Specifically, for a
desired level of paralysis-tolerance, one can design a DASP such that
the SGX is least-privileged. For example, if the three shareholders
only desire to tolerate up to one missing key share, what they can
do is to move the funds into 3-out-of-4 multisig wallet where the 4th
share is only known to the SGX enclave. If all of the parties are alive,
then they can spend without use of the SGX node. If one of them is
incapacitated, the enclave will release its share upon presentation
of a Paralysis Proof. Therefore, even if the secret state of the SGX
node (i.e., the fourth share) is leaked via a successful side-channel
attack, the attacker cannot spend the fund unless two malicious
parties collude. It can be shown that the SGX in the above DASP
is least-privileged, in the sense that compromise of its secret state
imparts minimal capabilities to an adversary. Intuitively, since we
want to retain access even one player is incapacitated, the enclave
must store a credential equivalent to that of the lost player. We
leave formal specification of least-privileged SGXs for future work.
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Figure 4: Execution time of P2W when accusing one user.

4.5 Implementation

4.5.1  Paralysis Proofs for Bitcoin. We implemented IIsgx as a
Paralysis-Proof Wallet (called P>W) for Bitcoin based on Intel SGX
SDK and Bitcoin Core. The source code of P2W is published at [2].
The same code works for Bitcoin and compatible systems, e.g.,
Litecoin.

To minimize the Trusted Computing Base (TCB), we ported only
the necessary part of Bitcoin Core v0.14.0 to SGX, resulting in
only using ~9.5% of it. The entire TCB includes 734 lines of C++
code written by us, ~9.5% of the Bitcoin Core and its Elliptic Curve
library (libsecp256k1).

In the normal case, P?W is essentially a (N, N)-multisig wal-
let. Users can spend the coins by either send N signatures to the
blockchain, or to P2W which then generates a single signature. The
latter method reduces the transaction size and saves transaction
fees, while the former ensures the availability of the fund. When
a user is suspected to be unavailable, others can accuse her using
P2W, which sends transactions t; and t (c.f. Section 4.2) to the
blockchain. The accused user can appeal by spending the life signal
UTXO in #; (a standard P2PKH output) using P*W or any standard
Bitcoin wallet.

We evaluated P2W’s performance by simulating N users and
measuring the execution time of accusing one of them . As sum-
marized in Fig. 4, P2W is very fast. For example, for 100 users, it
only takes about 10 ms to generate accusation transactions. t is
of constant size (224 bytes) which means the cost of a malicious
accusation is about as high as dismissing it. ¢, is roughly (443+34N)
bytes. With a suggested fee rate of 20 Satoshi/byte! at the time of
writing, the transaction fee of ¢, would be about $0.02N, which is
a very reasonable cost for such an infrequent and security-critical
operation.

We validated P2W’s compatibility with Bitcoin by deploying it on
the testnet. We set A = 144 blocks (roughly 24 hours in Bitcoin) and
simulated the following two scenarios: a) a user is falsely accused,
but she appeals within A and maintains the ownership of the wallet,
and b) a disappeared user is challenged and removed from the
wallet after A. Accepted Bitcoin transactions can be found at [5,
6] (for scenario A) and [7, 8] (for scenario B). Note that in the
latter scenario, 7 is not accepted until 24 hours after #; is included,
enforced by the CSV opcode.

1See, e.g., https://statoshi.info/dashboard/db/fee- estimates
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4.5.2  Paralysis Proofs for Ethereum. For assets that can be con-
trolled by smart contracts, an implementation of the ideal func-
tionality 7 pass is straightforward. Our reference implementation
of a paralysis-free multisig wallet for Ethereum [64] consists of
156 lines of commented Solidity code. Fully tested contract code,
including logic for pruning incapacitated signers and updating the
signature threshold is at [3].

This implementation differs from the ideal functionality only in
minor engineering changes and optimizations. There is no way to
asynchronously prune keyholders that fail to respond to a challenge
in time in Ethereum, where all contract calls must be initiated by
some user. We instead check and prune any signers that did not
respond to a challenge at the beginning of each on-chain operation
that requires checking or manipulating only valid signers. This
ensures that the state of unparalyzed signers is correct, reflecting
L; in ¥ pass, before any contract action is processed.

A final caveat is that block timestamps are used to measure time;
while this can be trivially replaced with block numbers, which are
less susceptible to miner manipulation (timestamps are miner set),
the bounded degree of manipulation and monotonically increasing
timestamp constraints on Ethereum provide some assurance that
the timestamps are reasonably accurate for our purposes.

One useful property of the Ethereum-based realization is that
the multisignature key holders need not necessarily run archival
nodes: because a log is emitted whenever a user is accused, users
can simply watch transaction receipts for an accusation against
them, using any Ethereum full or lite client to respond by calling
the respond function (guaranteed to work as long as an adversary
cannot censor a user’s connection to the blockchain, given that
the user accepts the relevant trust assumptions surrounding their
choice of node software, hardware, and connectivity).

5 EXTENDED PARALYSIS PROOFS: THE CASE
OF CUSTODIAN PARALYSIS

5.1 Motivation

A (digital asset) custodian is a centralized service that secures or
helps secure a user’s digital asset (or other key-controlled resource).
Use of custodians is common as they offer better usability and
security, compared to having end users managing secrets on their
own. Coinbase recently indicated that it was holding 10% of all
Bitcoin in circulation [11].

An obvious concern with centralized custodians is theft, in which
a custodian (or hacker that has compromised a custodian) steals
funds from users’ accounts. In addition to theft, Denial-of-Service
(DoS) is another major concern. If a custodian refuses to respond
to a user’s transaction requests, the user effectively loses her funds.

In this section, we show how DASSes enable an interesting new
architecture for digital assets custodians—a hybrid custodian—to
address both concerns.

To achieve these properties, we refine the definition of paralysis.
In addition to unavailability, a party (i.e., a custodian here) is con-
sidered paralyzed if it exhibits a certain behavior (e.g., maliciously
rejects users’ withdrawal requests). This definition refines the pre-
vious ones, as it such cases, the custodian may be “available” in the
sense of responding to clients, but exhibits paralysis by failing to
process certain legitimate transaction requests.
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In addition to realizing a new and appealing custody architecture,
this example also illustrates how Paralysis Proofs can embody rich
and precise conditions beyond mere unavailability. Specifically,
we show that a publicly verifiable proof can be constructed if a
custodian rejects valid authentication attempts. Generally, Paralysis
Proofs can be a condition predicated on user and/or system secrets
(passwords and/or keys for two-factor authentication), in addition
to mere absence of response.

5.2 Protocol

Setup. In our hybrid custodian scheme, a user stores her funds
in a (2, 2)-paralysis-proof-multisig wallet (using techniques in Sec-
tion 4), of which one key is held by a TEE operated by the centralized
custodian. The custodian is responsible for authenticating the user
(e.g., via a password, SMS code, etc.) before authorizing a transac-
tion. Both signatures from the user and the custodian are required
to spend funds.

Such a setup has two security benefits. First, it prevents the
custodian from stealing the funds, as the custodian only possesses
one of the secret keys. Second, it offers the user stronger security
than if she managed her own keys, given the general weakness
of endpoint security and the fact that an institutional custodian
is usually much better at managing and securing keys than an
ordinary user is.

Dealing with malicious DoS. As mentioned, we add additional
rules to basic Paralysis Proofs so that a party (i.e., the custodian) is
considered paralyzed unless a predicate ¢ is met. In other words,
when the custodian is accused (see Section 4 for terminology), it
can only appeal if ¢ is true.

Specifically, ¢ will ensure an “appeal” is issued if and only if
the custodian’s TEE faithfully attempted and failed to authenticate
the user (e.g., the user inputs a wrong password). In other words,
the custodian is honest but the accusation is invalid. Without this
predicate, a malicious custodian can always appeal to dismiss honest
users’ accusations. With the predicate, however, the custodian can
only appeal against invalid accusations. Thus, we reduce the case
of a malicious custodian actively refusing to accept authenticated
transactions to that of a simple paralyzed party who cannot appeal.

Fig. 5 illustrates the idea of conditioning the issuance of response
on the predicate of “the challenge contains valid authentication
information.” The exact details of this predicate can vary depending
on the authentication mechanism, as explored by example below.

Example: Password-based authentication. Consider a simple
scenario where the user authenticates to the custodian with a pass-
word. The user submits her password (encrypted under the TEE’s
public key) along with a partially signed transaction, and a signature
over her full request. The custodian’s TEE verifies the signature on
the request and checks if the password is correct. If so, it signs the
transaction with its key. Otherwise, the request is discarded. If the
signature is correct but the password is wrong, then the custodian
may advance a counter which can be used to trigger rate limiting
or lock the account. Here the custodian’s role would be to store a
hashed version of the password securely, check it against the sub-
mitted password, and rate limit password attempts. Assuming that
rollback attacks against TEEs are prevented using, e.g., distributed
state [40], authenticating the password request with a signature
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prevents the custodian itself from submitting false authentication
attempts in an effort to deny service by locking a user’s account.
If the custodian is available but refuses to accept the password,
we can now enter into an on-chain dispute resolution process, as
shown in Fig. 5. The user posts a challenge containing the encryp-
tion of her password under a key known to the custodian’s TEE.
If the custodian doesn’t respond within A, the standard Paralysis
Proofs mechanism can kick in and remove the custodian from the
access structure. To appeal with a response, the custodian’s TEE
must decrypt the submitted password and test if it is correct. If the
password is correct, the TEE refuses to issue a response, which is
equivalent to the first case where no response is issued.

5.3 Extensions

For the ease of exposition the above protocol description uses simple
password-based authentication. Various extensions are discussed
below, including authentication via a third party (e.g., 2FA), user
account recovery, and a general approach to use any interactive
authentication protocol.

Third-party authentication. Another option is for the TEE to
contact third parties directly to provide a primary or secondary au-
thentication factor. Town Crier [68] demonstrated that it is possible
to make a TLS request from an enclave to a third-party service and
condition behavior on the response. Combined with input from the
user via the blockchain, this can be used to directly authenticate
a user, to provide a second factor via services such as Authy or
Twillo, or to ensure that a user still has an account with some ser-
vice. Many of these mechanisms depend on trusting a third party,
but in the case of established and widely used services this may
be more palatable than trusting any specific custodian. Multiple
services can of course be combined to further distribute trust—with
a trade-off against availability.

User account recovery. Using the same mechanisms for interac-
tive protocols or authenticating via third parties, the custodian can
provide a mechanism for account recovery in the case of lost creden-
tials. Given a Paralysis Proof for the user, control can be transferred
to a fresh multisig address. Indeed, if the custodian relies on third
parties for authentication, then it inherits the account recovery
mechanism automatically. This is, of course, a double-edged sword:
the same mechanisms that are used for account recovery can be
used to hijack the account. We are not limited, however, to simple
password recovery mechanisms. If the custodian only controls one
of two keys necessary to spend the funds, we can realize account
recovery by requiring a Paralysis Proof against the user to migrate
access control to another key.

More complex protocols. Following the techniques of [35], any
interactive authentication protocol can be realized by posting en-
crypted messages between the client and the custodian to the
blockchain. A Paralysis Proof then is simply an on-chain execution
of the protocol where messages are delivered and logged via the
blockchain. Indeed, the password example is a simple one-round
version of this. The same idea can be applied to n-round proto-
cols through repetition and extended to, for example, integrating
federated authentication protocols or challenge-response-based
two-factor authentication.
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(b) Extended Paralysis Proofs: the accused party can appeal only if a predicate is met. Read Section 5.2

Figure 5: An example of custodian paralysis and migration.

6 PARALYSIS WITHIN SMART CONTRACTS

6.1 Motivation

We’ve explored the use of smart contracts in Paralysis Proofs in Sec-
tion 4. In the broader smart contract community, it is well known
that paralysis can occur within smart contracts themselves. A clas-
sic example is the second of two well-publicized and related Parity
multisignature vulnerabilities [15] [56] which permanently and
irrevocably froze hundreds of millions of US dollars in smart con-
tracts. The Parity multisignature vulnerabilities are far from the
only high-profile failures that resulted in paralysis; early analysis of
Ethereum smart contract vulnerabilities [19] enumerated a number
of vulnerable contracts with stuck funds and DoS vulnerabilities.
Some vulnerabilities are subtle, involving low-level platform details
like the “gas" model for pricing computation [64].

Most smart contract vulnerabilities, despite their different mani-
festations, have a fundamental commonality: in each case, a smart
contract was operating as intended until some unexpected change
to the state of the contract, the network, or the computation model
under which the contract was operating. These changes then caused
subsequent executions of previously working functionality to fail,
leaving the funds in a contract potentially “paralyzed,’ and stuck
indefinitely. This problem is so widespread and severe on Ethereum,
that hard-fork-based manual remediation of affected contracts has
been suggested as a major governance issue and debate [18] [30].

We find a natural way to capture to this class of failure in Paral-
ysis Proofs using software engineering tradition. When integrating
various system components which may potentially be faulty, devel-
opers often create and run integration tests [34], often continuously
as software is developed, in a process known as “continuous inte-
gration" [26, 58]. We can naturally extend Paralysis Proofs using
continuous integration: if a full integration test suite is available,
a provable test failure constitutes a Paralysis Proof and triggers a
“downgrading of access control", authorizing transfer of funds to a
simpler recovery contract.

6.2 Protocols

Smart-contract based implementation. Two variant implemen-
tations of this idea are possible. The first is smart-contract based,
with a protocol specification for the smart contract given in Fig. 6.
(We omit user entry points from this specification.) In this protocol,
there is a static, hardcoded set of tests T, with each test 7; con-
taining some storage locations to initialize that are required for
correct operation of the test. (These locations are not necessarily
comprehensive; tests can and should can pull storage variables from
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Program for Smart Contract Paralysis Proofs (prog;)

1: Hardcoded: T = {(1, 01, @1), ---, (70, On, wn)}// test set
2: test 7r; should run in state o; for expected output «w;
3: where o; = {(sl, 1), e (8§, vj)} test setup

4: hnow // the latest height,

5: H, // mapping from block hash to height,

6: A, // maximum time to construct a proof, in blocks

7: C =[Cp, Crl

addresses of main and recovery contract
8: On input (access, d):

9: Return C[0](d, msg.sender)

10:  On input (migrate, (i, p = {(s1, v1, p1), -+ (Sk» Vk> P&) })):

11 Assert {p; } are all from the block (i.e. have the same Merkle root)
12 Assert hpow — H[p;.merkle_root] < A // Ensure proof is fresh

13 : Y := @ // Initialize state (location to value map) for test to run in
14: For each (s;, vj, p;) € p:

15 : Assert is_valid((s;, v}, pj)) / Ensure Merkle proofs are valid

16 : 2[s;] = v; // Initialize storage from environment

17 For each (s;, vj) € o;:

18 : 3[sj] = v; // Initialize static per-test storage

19: If 7;(Z) # w;: // if test output differs from expected

20 ¢ C=C\C[0;T=0

Figure 6: An example implementation of Paralysis Proofs
for smart contracts.

the environment.) For example, static state o; might contain an ini-
tialization of a special testing account with some balance available
to be transferred that is not present in the real token contract, with
the remainder of state required for the test sourced from the global
stateful environment.

If a smart contract is paralyzed, it must be failing some unit test
i at block b. A user who notices this submits a proof by sending
migrate, including Merkle proofs-of-inclusion for all state items
consumed by the test from the environment at block b in the global
Ethereum state trie [64]. The implementation prog checks that
submitted Merkle proofs are all from the same block, that the block
is recent (to prevent DoS via stale proofs), and that all proofs are
valid.

For this check, prog; instantiates a temporary state. First all
the validated state entries from the environment are added, then



AFT 19, October 21-23, 2019, Zurich, Switzerland

updated with the hardcoded static initialization state in o;. If ob-
served test output differs from expected, paralysis is detected and
prog.; migrates any access to a recovery contract that returns user
funds, preventing paralysis of contract funds (assuming the test set
is sufficiently rich and recovery operational). The test set is nulled
to prevent further migrations.

Both users of the target contract and companies interested in
maintaining availability of the contract (like the developers, for
example Parity Technologies in [49]) are strongly incentivized to
submit such proofs when they detect paralysis. Contracts desiring
economic robustness can also incentivize a market of test executors
by adding a substantial cryptocurrency bounty, paid to any user
who successfully executes migrate.

The smart-contract based scheme has important advantages. Pri-
marily, any user can prove paralysis using only on-chain data at
any time, minimizing the trust surface required to just the code
governing proof verification and recovery (and excluding com-
plex attestation schemes and trust in enclave confidentiality). The
scheme is also practical and optimistically efficient. We tested an
example implementation provided at [37] of a Merkle-Patricia state
item proof checker in a smart contract, usable for the is_valid
function referenced in prog;. In the optimistic case where funds are
not paralyzed, our scheme adds no on-chain overhead or additional
cost to contract operation. In the exceptional case of paralysis, our
scheme’s cost is justified by the potential recovery of funds. Our
initial exploration suggests a cost of about 1.36 million gas per
invocation of the functionality required by is_valid; this is ap-
proximately 1/6 of a full Ethereum block, or $12 per storage location
proof at the time of writing: expensive but not prohibitive.

SGX-based implementation. Several issues are however present
with this SGX-free smart contract scheme. The on-chain Merkle
proof verification is still somewhat costly, and a transaction/test
can potentially access many storage locations. This may be accept-
able in smart contract form, as tests can be potentially broken up
into small/short pieces. This scheme financially incentivizes short
tests, however, which may limit expressiveness of developers’ tests.
Developers may choose to optimize against worst-case verification
cost, which is difficult in a volatile and unpredictable transaction
fee market. By making the cost of executing a test less dependent
on the size of the test using SGX and off-chain computation, longer
and more expressive tests become tractable. Such a scheme can
optionally be operated in the Sealed-Glass Proof model in [60],
enabling resilience against unbounded side channel leakage and
removing confidentiality requirements, relying only on attestations
for security.

An SGX-based solution can also leverage attestations and confi-
dential execution. For example, if any off-chain or legacy systems
are required in the integration test (e.g., when an oracle such as
Town Crier [68] is used), they can be queried or emulated by SGX,
or can use a trusted off-chain oracle. Also, confidential tests may
be useful for some contracts. While unsuitable in a public network
due to their ability to hide backdoors, one could imagine a contract
between parties with neutrally-agreed-on third parties or arbiters
responsible for maintaining independent anti-paralysis test suites.
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This approach can also be applied within a modified version
of N-of-N version programming (NNVP) as described in the Hy-
dra framework [16]. To reduce on-chain gas costs, one or more
heads can be executed off-chain within an enclave, which can issue
an attestation when a bug (divergence in component outputs) is
identified. Unfortunately, off-chain execution does not harmonize
well with the Hydra bug-bounty system, as it leaves on-chain logic
exposed to exploitation. But it does provide an objective means for
identifying vulnerabilities, creating a Paralysis Proof and triggering
fault logic within a paralyzed smart contract.

7 RELATED WORK

Static access-structures for cryptocurrencies. Bitcoin had built-
in support for threshold signatures at launch, and access-structure
scripts for Bitcoin have been discussed since at least 2012 (e.g.
[51]). However the built-in implementation (CHECKMULTISIG) sim-
ply takes a list of individual signatures and check if the threshold
are met, which increases the on-chain verification complexity (this
is undesirable, cf. [38]).

[29] presented a novel ECDSA threshold signature construction
that reduces on-chain complexity. However, this construction re-
quires a rather complex setup using ZK proofs, and does not support
arbitrary access structures. Threshold Schnorr signatures are far
more efficient [57], with support planned for Bitcoin [65].

Ethereum wallets such as Mist [43] and Gnosis [63] support
multi-signature access structures, along with other features such as
daily limits. However, these wallets are implemented via on-chain
code, which implies that users will incur higher costs when the
complexity of the access structure is greater. New versions of the
Gnosis wallet [42] allow for arbitrary, unrestricted challenge-based
policy migration, but do not formalize security or suggest secure
policies.

Access-control policies with dynamic access-structures. Se-
cret sharing schemes with revocation support do not provide the
same guarantees as a Paralysis Proof system, since such schemes
require actions by at least a threshold of players to update the access
structure (see [24, 67]). By contrast, a Paralysis Proof system enables
any player to remove incapacitated players. Privacy-preserving
cloud services can allow remote administrators to modify access-
control policies dynamically, via cryptographic constructions (see,
e.g., [32,36]). Dynamic access-control policies for a non-confidential
cloud service may also benefit from dynamic access-control poli-
cies [45]. All of these constructions requires a static set of adminis-
trator set authorized to perform modifications.

Credential-recovery. Password systems allow recovery from se-
cret loss but require a TTP. See [14] for a survey.

8 PARALYSIS PROOF SYSTEMS BEYOND
CRYPTOCURRENCIES

The techniques we have introduced for Paralysis Proof Systems in
combining SGX with blockchains can be applied to settings other
than Paralysis Proofs and even to settings other than cryptocurren-
cies. We give some examples here:

Daily spending limits. It is possible to enforce limits on the
amount of BTC that set of players can spend in a given interval of
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time. For example, players might be able to spend no more than 0.5
BTC per day. We explore this objective, and technical limitations
in efficient solutions in the full version [69].

Decryption. The credentials controlled by a Paralysis Proof System
need not be signing keys, but instead can be decryption keys. It
is possible then, for example, to create a deadman’s switch. For
example, a document can be decrypted by any of a set of journalists
should its author be incapacitated.

Event-driven policies. Using an oracle, e.g., [68], it is possible to
condition access-control policies on real-world events. For example,
daily spending limits might be denominated in USD by accessing
oracle feeds on exchange rates. Similarly, decryption credentials
for a document might be released for situations other than incapac-
itation, e.g., if a document’s author is prosecuted by a government.
(This latter example would in all likelihood require natural language
processing, but this is not beyond the capabilities of an enclaved
application.)

The last example involving prosecution does not require use of
a blockchain, of course. Many interesting SGX-enforceable access-
control policies do not. But use of a blockchain as a censorship-
resistant stateful channel can help ensure that policies are enforced.
For example, release of a decryption key might be entangled with the
spending of cryptocurrency. A certain amount of cryptocurrency,
say, 10 BTC, might be spendable on condition that an oracle is
recently queried and the result consumed by an enclave application.
This approach provides an economic assurance of a censorship-
resistant stateful channel from the blockchain to the enclave.

9 CONCLUSION

We have shown how Paralysis Proofs can enrich existing access-
control policies in a way that was previously unachievable without
a trusted third party. By leveraging Paralysis Proofs, DASSes allow
an access structure to be securely migrated—typically downgraded—
given the incapacitation of a player, the inability of a set of players
to act in concert, or the functional paralysis of a smart contract.

Our formalisms include a formal DASP framework, and security
and functionality definitions for DASSes and DASPs, as well as
UC-type ideal functionality for a DASS. Our ideal functionality
suggests a natural proof sketch for security.

Paralysis Proofs and DASSes can be applied in many settings,
and we showcase three in the paper: cryptocurrency key loss, cryp-
tocurrency custody failures, and smart contract failures, proposing
practical schemes for all three. We report on a simple DASS for
cryptocurrency key loss in Ethereum, and on a detailed exploration
concluding that DASS for Bitcoin is only practical using a TEE.

In summary, we believe that the combination of the advent of two
pivotal technologies, blockchains and trusted hardware (specifically
SGX), is a powerful one. It enables a powerful new range of access-
control regimes without the need for trusted third parties and, we
believe, will stimulate exploration of a broad spectrum of other
novel capabilities with applications beyond cryptocurrencies.
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F chain[succ]
1: Parameter: validity succ : {0, 1}* x {0, 1}* — {0, 1}, and A.
2:  Onreceiving (init, genesis): storage := genesis
3: Onreceiving (read): output storage

4: Onreceiving (write, inp) from P:

5 send (write, inp, P) to A and start a timer of A
6: block until A acknowledges or the timer fires
7: if succ(storage, inp) = 1 then

8: t = clock(); storage := storage || (¢, P, inp);
9: output (receipt, inp)

10 else output (reject, inp)

Figure 7: Ideal blockchain. The entry point marked with *
is only executed once. The parameter succ defines the valid-
ity of new items. A new item can only be appended to the
storage if the evaluation of succ outputs 1.

[62] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with transient
out-of-order execution. In USENIX Security.

Gnosis Multisig Wallet. [n.d.]. https://github.com/gnosis/MultiSigWallet.
Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. http://yellowpaper.io/

Pieter Wuille et al. 2017. Schnorr signatures and signature aggregation. https:
//bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In IEEE
Symposium on Security and Privacy (S&P).

[67] Jia Yu, Fanyu Kong, Xiangguo Cheng, and Rong Hao. 2011. Two Protocols for
Member Revocation in Secret Sharing Schemes. In Intelligence and Security Infor-
matics - Pacific Asia Workshop, PAISI 2011, Beijing, China, July 9, 2011. Proceedings.
Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town
Crier: An Authenticated Data Feed for Smart Contracts. In ACM CCS.

Fan Zhang, Philip Daian, Iddo Bentov, and Ari Juels. 2018. Paralysis Proofs: Safe
Access-Structure Updates for Cryptocurrencies and More. IACR Cryptology ePrint
Archive 2018 (2018), 96.

[68]

[69

A ADDITIONAL FORMALISM

Fig. 7 defines the ideal blockchain used in # pass. Note that 7 ¢hain
is more than a standard bulletin board because it captures the notion
of transaction validity (by the succ function). Figs. 8 and 9 formally
specify IIsgx in Section 4.

B PURELY SCRIPT-BASED PARALYSIS
PROOFS FOR BITCOIN

A Paralysis Proof mechanism can also be implemented without
SGX (on the current Bitcoin mainnet), albeit with subpar security
and more than exponential overhead.

Our construction utilizes the “life signal” method of Section 4. In
the initial setup phase, each player P; will prepare unsigned trans-
actions {ti,j,k }je[N]\{i 1 ke[K] that accuse P; (these transactions
are similar to #;), and all players will sign transactions tl.”j’ i that
take UTXOg and the output of t; ; ; as inputs (these transactions
are similar to t3). K is a security parameter specifying the num-
ber of accusation attempts that can be made. Fig. 10 illustrates the
transactions in the aforementioned scheme.
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Protocol IIsgx with Py, ..., PN

1: Hardcoded: § (e.g. 107%), network latency A

2. For any party P;:

3:  On receiving (init) from environment Z:

4: (pk;, ski) «sKGen(1™); publish pk;

5: Wwait to receive {pk j } from other parties

J#i
6: send (install, prog,, ) to Fscx and wait to receive eid
7: send (eid, resume, init, {pki }i\il) to Fsgx and publish pkggy
- N

8 send (init, (8, pksgx), (V. (all pk € {pk; } .7 ) V pksgx)) to Tchain
9 if 7 hain is not properly initialized: broadcast abort
10: else broadcast ok
11: wait to receive ok from others and abort if a abort is received
12: On receiving (access, addrpey) from environment Z:
13:  obtain UTXOgypng from Fcpain
14: compute o = Sig(sk;, (UTXOgnd, addrpew))
15:  send (resume, (spend, o, UTXOgyng, addrpew)) to Fscx
16: On receiving (migrate, P’) from environment Z :
17: assert P’ C {pk; }f\il
18:  obtain UTXOgypg from Fcpain
19:  send (resume, (migrate, UTXOgyng, P’)) to Fscx and wait for #1, £

20: send #1, t2 t0 Fehain // 12 will be accepted A time after

Figure 8: An SGX based protocol for Paralysis Proofs.

This scheme can be implemented post-SegWit [27], where trans-
action hash (txid) excludes the ScriptSig witness. In particular,

SegWit allows one to prepare ti”ﬁ « and condition its validity on

that of unsigned ¢; ; .

After every player receives all the signed transactions, the play-
ers will move the high-value fund into UTXOq. This guarantees
atomicity: either every player will have the ability to eliminate all
the incapacitated player, or none of the player will have this ability.
The output of ¢; ; ;. requires a signature from P; before the CSV
timeout and a signature from P; after the CSV timeout, and P; may
embed this signature into ti,,j, .. after Pj failed to spend the output
of t; ; x on the blockchain. Since UTXOy requires the signatures of
all parties, the only way to eliminate an incapacitated player is by
using the signed transactions tl.”j, ¢ that were prepared in advance.

The parameter K specifies the number of accusation attempts
that can be made; hence a malicious player that pretends to be
incapacitated more than K times will break this scheme. The SGX
scheme does not exhibit this deficiency, because any player can
send a fresh small amount of bitcoins to the enclave and thereby
create an accusation transaction.

Furthermore, in order to support sequences of £ > 1 incapac-
itated players, the N players will need to prepare in advance ad-
ditional transactions that spend the outputs of t;, ik in order to
eliminate another player, and so on. The scheme offers the most
safety when ¢ = N — 1, as this implies that any lone active player
(i.e., all other players became incapacitated) will be able to gain
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Program for the SGX Enclave (prog.,.)

1: Hardcoded: 8, ¢, network latency A, access grace period T,
2:  On inputs (init, Py):

3: Parties:= Py

4: (sksgx, pksgx) «—s KGen(1™) and output pkggy

5: On input (spend, o, UTXOgng, addrpew)

6: parse UTXOgyng as (V, (all pk € P) V pkggx) or abort

7: if received |P| requests for (UTXOgynd, addrpew) within T:

8: assert Vf(o;, pk;) forall1 <i <n
9: sign transaction ¢ := (UTXOgng — addrpeyw ) with sksgx
10 : send ¢ to Fchain

11: else store o and wait for more requests

12:  On input (migrate, UTXOgypng, P’):

13:  parse UTXOgng as (V, (all pk € P) V pkggx) or abort
14: (pk,, sky) «sKGen(1")

15:  Qlifesignal = ((any pk € P\ P’) V (pk, A (CSV 2> A)))
16 : sign transitions ¢y, t, with sksgx and pk,.:

17: 1= {(6, pksgx) — (&, ¢lifesignal)’ (6 — &, pkggx))

= {(s, ¢lifesignal)» (V, (all pk € P) V pkggy) —
(V. (all pk € P") V pkgcx))
19: output #; and #,

Figure 9: The Paralysis Proof Enclave. The entry point
marked with * is only executed once.

J
UTXOlife-signal
: 0.00001 BTC 0.00001 BTC
Lk pk; pk; V (pk; A (CSV 2 144))
5000 BTC
A pk
o ne[N] n — 5000 BTC
i,j,k
A pky
j — n#j
UTXOf, .
ife-signal

Figure 10: Bitcoin-based Paralysis Proofs with N players
(with public keys {pkn }n o N]). Each player P; will prepare
unsigned transactions {ti’ ik }j e[N\{(i }.ke[K]" All players will

sign transactions t/ . .
i,j,k

control over the fund. The number of signed transactions that need
to be prepared in advance is

f(&,N,K) 2 KN(N-1)-K(N-1)(N-2)---
K(N =+ 1)(N -¢) > QKINY).

Thus, £ = N —1 implies that f(£, N, K) grows faster than g(N) =
2N,
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