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ABSTRACT An estimated four million Bitcoin (today worth $14+ Billion) have

We introduce CHURP (CHUrn-Robust Proactive secret sharing).
CHURP enables secure secret-sharing in dynamicsettings, where the
committee of nodes storing a secret changes over time. Designed for
blockchains, CHURP has lower communication complexity than pre-
vious schemes: O(n) on-chain and O(n?) off-chain in the optimistic
case of no node failures.

CHURP includes several technical innovations: An efficient new
proactivization scheme of independent interest, a technique (using
asymmetric bivariate polynomials) for efficiently changing secret-
sharing thresholds, and a hedge against setup failures in an efficient
polynomial commitment scheme. We also introduce a general new
technique for inexpensive off-chain communication across the peer-
to-peer networks of permissionless blockchains.

We formally prove the security of CHURP, report on an imple-
mentation, and present performance measurements.
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1 INTRODUCTION

Secure storage of private keys is a pervasive challenge in cryp-
tographic systems. It is especially acute for blockchains and other
decentralized systems. In these systems, private keys control the
most important resources—money, identities [6], etc. Their loss has
serious and often irreversible consequences.
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vanished forever due to lost keys [63]. Many users thus store their
cryptocurrency with exchanges such as Coinbase, which holds at
least 10% of all circulating Bitcoin [9]. Such centralized key storage
is also undesirable: It erodes the very decentralization that defines
blockchain systems.

An attractive alternative is secret sharing. In (t,n)-secret sharing,
a committee of n nodes holds shares of a secret s—usually encoded
as P(0) of a polynomial P(x) [67]. An adversary must compromise
atleast t+1 players to steal s, and at least n—t shares must be lost
to render s unrecoverable.

Proactive secret sharing (PSS), introduced in the seminal work of
Herzberg et al. [44], provides even stronger security. PSS periodically
proactivizes the shares held by players, while keeping s constant.
Players obtain new shares of the secret s that are independent of their
old shares, which are then discarded. Provided an adversary never
obtains more than ¢ shares between proactivizations, PSS protects
the secret s against ongoing compromise of players.

Secret sharing—particularly PSS—would seem to enable users to
delegate private keys safely to committees and avoid reliance on a
single entity or centralized system. Indeed, a number of commercial
and research blockchain systems, e.g., [10, 19, 27, 47, 74], rely on
secret sharing to protect users’ keys and other sensitive data.

These systems, though, largely overlook a secret-sharing problem
that is critical in blockchain systems: node churn.

In permissionless (open) blockchains, such as Bitcoin or Ethereum,
nodes may freely join and leave the system at any time. In permis-
sioned (closed) blockchains, only authorized nodes can join, but
nodes can fail and membership change. Thus blockchain protocols
for secret sharing must support committee membership changes,
i.e., dynamic committees.

Today there are no adequate PSS schemes for dynamic commit-
tees. Existing protocols support static, but not dynamic commit-
tees [17, 44], assume weak, passive adversaries [26, 64], or incur
prohibitive communication costs [12, 54, 66, 71, 73].

In this paper, we address this critical gap by introducing a new
dynamic-committee proactive secret-sharing protocol called CHURP
(CHUrn-Robust Proactivization).

1.1 CHURP functionality

CHURP allows a dynamic committee, i.e., one undergoing churn,
to maintain a shared secret s securely.
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Like a standard PSS scheme, CHURP proactivizes shares in every
fixed interval of time known as an epoch. It supports dynamic com-
mittees as follows. An old committee of size n with a (t,n)-sharing of
a secret s can transition during a handoffto a possibly disjoint new
committee of size n with a new (¢,n)-sharing of s. CHURP achieves
security against an active adversary that compromises ¢ <n/2 nodes
in each of the old and new committees. CHURP also allows changes
to t and n between epochs. (Periodic changes to s are specifically not
a goal of PSS schemes, but are easy to add.)

Our main achievement in CHURP is its very low communication
complexity: optimistic per-epoch communication complexity in a
blockchain setting of O(n) on-chain—which is optimal—and O(n?)
off-chain, i.e., over point-to-point channels. While the on-chain com-
plexity is lower than off-chain, it comes with the additional cost of
placing transactions on the blockchain. Cheating nodes cause pes-
simistic O(n?) on-chain communication complexity (no off-chain
cost). Both communication costs are substantially lower than in
other schemes.

Despite somewhat complicated mechanics, CHURP realizes a very
simple abstraction: It simulates a trusted third party that stores s for
secure use in a wide range of applications—threshold cryptography,
secure multi-party computation, etc.

1.2 Technical challenges and solutions

CHURRP is the first dynamic committee PSS scheme with an end-
to-end implementation that is practical even for large committees.
To achieve its low communication complexity, CHURP overcomes
several technical challenges in a different manner than the prior
work aimed at dynamic committees, as explained below.

The first challenge is that previous PSS schemes, relying on tech-
niques from Herzberg et al. [44], incur high communication com-
plexity for proactivization (O(n3) off-chain per epoch). CHURP uses
a bivariate polynomial B(x,y) to share secret s, and introduces a new
proactivization protocol with cost O(n?). This protocol is based on
efficient bivariate 0-sharing, i.e., generation of a randomized, shared
polynomial B(x,y) with B(0,0) =0 to refresh shares. Alternative ap-
proaches to PSS that do not explicitly generate a shared polynomial
exist [33, 62], but CHURP’s 0-sharing technique is of independent in-
terest: It can also lower the communication complexity of Herzberg
et al. [44] and related schemes.

The second challenge is that during a handoff, an adversary may
control ¢ nodes in each of the old and new committees, and thus
2t nodes in total. Compromise of 2t shares in a (t,n)-sharing would
leak the secret s. Previous schemes, e.g., [66], address this problem
using “blinding” approaches with costly communication, while [12],
address it via impractical virtualization techniques. Instead, CHURP
uses a low communication-complexity technique called dimension-
switching, that is based on known share resharing techniques. It uses
an asymmetric bivariate polynomial B(x,y), with degree ¢ in one
dimension and degree 2t in the other. During a handoff, it switches
temporarily to a (2t,n)-sharing of s to tolerate up to 2t compromised
shares; afterward, it switches back to a (¢,n)-sharing. Each switching
involves a round of share resharing. Although dimension-switching
is based on known techniques, CHURP’s novelty lies in applying
them to the dynamic committee setting to tolerate 2t compromises.

Finally, most PSS schemes commit to secret degree-t polynomials
using classical schemes (e.g., [30, 59]) with per-commitment size
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O(t). CHURP uses an alternative due to Kate, Zaverucha, and Gold-
berg (KZG) [45] with size O(1). Use of KZG for secret sharing isn’t
new [11], but CHURP introduces a novel KZG hedge. KZG assumes
trusted setup and a non-standard hardness assumption. If these fail,
CHURRP still remains secure—but degrades to slightly weaker adver-
sarial threshold t < n/3. The detection mechanisms used to hedge are
efficient—O(n) on-chain—and are KZG-free—so, our techniques can
easily be adapted to future secret-sharing schemes that rely similarly
on KZG or related non-standard assumptions.

We compose these techniques to realize CHURP with provable
security and give a rigorous security proof.

1.3 Implementation and Experiments

We present an implementation of CHURP. Our experiments show
very practical communication and computation costs—at least 1000x
improvement over the existing state-of-the-art dynamic-committee
PSS scheme [66] in the off-chain communication complexity for
large committees (See Section 6).

Additionally, to achieve inexpensive off-chain communication
among nodes in CHURP, we introduce a new technique for per-
missionless blockchains that is of independent interest. It leverages
the peer-to-peer gossip network as a low-cost anonymous point-to-
point channel. We experimentally demonstrate off-chain commu-
nication in Ethereum with monetary cost orders of magnitude less
than on-chain communication.

1.4 Outline and Contributions

After introducing the functional, adversarial, and communication
models in Section 2, we present our main contributions:

CHUrn-Robust Proactive secret sharing (CHURP ): In Section 3, we
introduce CHURP, a dynamic-committee PSS scheme with lower
communication complexity than previous schemes.

Novel secret-sharing techniques: We introduce a new 0-sharing pro-
tocol for efficient proactivization in Section 4, dimension-switching
technique to safeguard the secret in committee handoffs in Sec-
tion 5.3, and hedging techniques for failures in the KZG commit-
ment scheme in Section 5.5.

New point-to-point blockchain communication technique: We intro-
duce a novel point-to-point communication technique for permis-
sionlessblockchainsin Section 7—usable in CHURP and elsewhere—
with orders of magnitude less cost than on-chain communication.
Implementation and experiments: We report on an implementation
of CHURP in Section 6 and present performance measurements
demonstrating its practicality.

We give a security proof for CHURP in Appendix A. We discuss
related work in Section 8 and CHURP’s many potential applications—
threshold cryptography, smart contracts with private keys, consen-
sus simplification for light clients, etc.—in Appendix B. We have
released the CHURP system as an open-source tool at https://www.
churp.io.

2 MODEL AND ASSUMPTIONS

We now describe the functional, adversarial, and communication
models used for CHURP.

In a secret-sharing scheme, a committee of nodes shares a fixed
secret s. Let C denote a committee and {C;} " ; denote the nnodes in
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Figure 1: Handoff between two committees at the end of a dy-
namic proactive secret-sharing epoch. The secret s remains fixed.
Committees may intersect, e.g., B, = A; and B3 = As.

the committee. Each node C; holds a distinct share s;. CHURP proac-
tivizes shares, i.e., changes them periodically to prevent leakage of
s to an adversary that gradually compromises nodes. Again, we em-
phasize that CHURP does so for a dynamic committee [12, 66], i.e.,
nodes may periodically leave / join the committee.

Shares change in a proactive secret-sharing protocol such as
CHURP during what is called a handoff protocol. Handoff proac-
tivizes s, i.e., changes its associated shares, while transferring s from
an old committee to a new, possibly intersecting one. Fig. 1 depicts
the handoff process. The adversarial model for proactive secret shar-
ing in general limits adversarial control to a threshold t of nodes per
committee. During a handoff, CHURP allows nodes to agree out of
band on a change to t, as explained below.

2.1 Functional model

Epoch: Timein CHURP, asin any proactive secret-sharing scheme [44],

is divided into fixed intervals of predetermined length called epochs.
In each epoch, a specific committee of nodes assumes control of and
then holds s. Concretely, in an epoch e, a committee C () of size N(¢)
shares s using a (¢,N (¢))-threshold scheme.

Handoff Committee C(¢1 Handoff Committee C(€)

< > ¢ >

Epoch e-1 Epoch e

Figure 2: Each epoch begins with a handoff phase where the old
committee hands off the secret s to the new committee. It is followed
by a period of committee operation.

Handoff: Fig. 2 depicts the handoff at the beginning of an epoch.
It involves a transfer of s from an old committee, which we denote
(e, to a new committee, denoted C®. Prior to completion of the
handoff, C(¢~1 is able to perform operations using s.

Churn: In the dynamic-committee setting of CHURP, nodes can
leave a committee at any time, but can only be added during a handoff.

LetC l(:J:tl) denote the set of nodes that have left the committee before

the handoff in epoch e. Let C[(l‘;i_ii =cleD \Cl(:J:tl) denote the set of
nodes that participate in the handoff. We let churn rate & denote a
bound such that |C§£l_vlil >|C¢=D|(1-a). Later, we provide a lower
bound on the committee size using the rate a.

2371

CCS ’19, November 11-15, 2019, London, United Kingdom

Keys: We assume that every node in CHURP has private / public
key pair and that public keys are known to all nodes in the system.
Such a setup is common in secret-sharing systems [44, 66].

2.2 Adversarial model

We consider a powerful active adversary A. It may decide to cor-
rupt nodes at any time. Once a node is corrupted by the adversary,
it is assumed to be corrupted until the end of the current epoch. (A
node may thus be “released” by an adversary in a new epoch so
that it is no longer corrupted.) Corrupted nodes are allowed to devi-
ate from the protocol arbitrarily. The proofs of correctness used by
nodes in CHURP requires that we assume a computationally bounded
(polynomial-time) adversary.

As noted above, we limit the adversary A to corruption of no
more than a threshold of nodes in a given committee. This threshold,
as noted above, may change in CHURP through out-of-band agree-
ment by committees. In this case, letting ¢ and ¢’ denote corruption
thresholds for old and new committees respectively, A may control
at most ¢ nodes in C(¢~V and ¢’ nodes in C(¢). We present the pro-
tocol in CHURP for threshold changes in Section 5.4. For simplicity
of exposition, however, we assume in what follows that t =/, i.e.,
the corruption threshold ¢ remains fixed.

Observe that during the handoff between epochs e—1 and e, mem-
bers of both committees, ¢ and C(e), are active. Thus A may
control up to 2t nodes at this time. As committees may intersect, i.e.,
an adversary may control a given node i in both the old and new com-
mittees. Alternatively, A may control node i in one committee, but
not the other, reflecting either a fresh corruption or node recovery.

DEFINITION 1. A protocol for dynamic-committee proactive secret
sharing satisfies the following properties in the functional model above
for any probabilistic polynomial time adversary A with threshold t:

Secrecy: If A corrupts no more than t nodes in a committee of any
epoch, A learns no information about the secret s.

Integrity: If A corrupts no more than t nodes in each of the com-
mittees C¢~) and C(®), after the handoff, the shares for honest nodes
can be correctly computed and the secret s remains intact.

2.3 Communication model

We aim to minimize communication complexity in CHURP. Specif-
ically, we optimize for on-chain complexity and off-chain complexity
in that order. We also consider the round complexity of our pro-
tocol designs, but prioritize communication complexity because
blockchains—particularly permissionless ones—incur high costs for
on-chain operations. We measure the communication complexity
of our protocol (and related ones) in terms of on-chain and off-chain
communication cost, as follows:

On-chain: Existing approaches such as MPSS [66] use PBFT [18]
for consensus. Instead, we assume the availability of a blockchain
(or other bulletin-board abstraction) to all nodes in the committee.
We do this for two reasons. First, abstracting away the consensus
layer results in simpler, and more modular secret-sharing protocols.
Second, it makes sense to capitalize on the availability of blockchains
today, rather than re-engineer their functionality.

In our model, nodes can either post a message (or) retrieve any
number of messages from the blockchain. After a node posts a mes-
sage to the blockchain, within a finite time period T, it gets published,
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i.e., blockchain access is synchronous and the message is now retriev-
able by any node. This channel is assumed to be reliable: messages
posted are not lost. This model is widely adopted in the literature
(e.g., See [48, 58, 72]).

Permissionless blockchains. While our techniques apply also to
permissioned blockchains, we focus on permissionless blockchains—
e.g., Ethereum. On such chains, users pay (heavily) for writes, but
reads are free. Thus we measure on-chain communication complex-
ity only in terms of writes, e.g., O(n) on-chain cost means O(n) bits
written to the blockchain.

Off-chain: Nodes may alternatively communicate point-to-point
(P2P) without direct use of the blockchain. We assume that every
node has such a channel with every other node. P2P channels are also
assumed to be reliable: all messages arrive without getting lost. We
work in a synchronous model, i.e., any message sent via this channel
will be received within a known bounded time period, T".

We emphasize that synchronicity of the P2P network is required
only for performance, not for liveness, secrecy or integrity. Looking
ahead, without enough synchronicity, the off-chain protocol halts
and the execution switches to the on-chain channel. In other words,
an adversary may slow down the protocol execution temporarily
by delaying messages, but she cannot learn or corrupt the secret.
Moreover, CHURP only requires a short period of synchronicity (e.g.,
a few minutes) at the end of every epoch (a relatively long epoch,
e.g., aday, would be the norm for CHURP). We discuss synchronicity
assumptions in Section 5.3.3.

Off-chain P2P channels can be implemented in different ways de-
pending on the deployment environment. In a decentralized setting,
though, nodes are often assumed not to have P2P communication,
to protect them from targeted attacks and anonymity compromise.
In such cases, one can use anonymous channels, such as Tor [69],
to preserve anonymity with additional setup cost and engineering
complexity. Alternatively, off-chain channels can be implemented by
an overlay on top of the existing blockchain infrastructure. We show
how to leverage the gossip network of a blockchain system [28] for
inexpensive off-chain communication in Section 7.

We measure off-chain communication complexity as the total
number of bits transmitted in P2P channels. In general, where we
refer informally to proactivization protocols’ cost in this work, we
mean their communication complexity, on-chain or off-chain, as the
case may be.

3 OVERVIEW OF CHURP

Now we provide an overview of CHURP, with intuition behind
our core techniques. First, we briefly review two key new techniques
used in CHURP: bivariate 0-sharing and dimension-switching. (We
defer details until later in the paper.) Then we give an overview and
example of optimistic execution of CHURP. Finally, we briefly dis-
cuss pessimistic execution paths in CHURP, i.e., what happens when
nodes are faulty, and our third key technique of hedging against
failures in KZG.

3.1 Key secret-sharing techniques

Recall that in an ordinary (¢,n)-threshold Shamir secret sharing
(see [67]), shares of secret s are points on a univariate polynomial
P(x) such that P(0) = s. Instead, to enable its two key techniques,
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CHURP employs a bivariate polynomial B(x,y) such that B(0,0)=s.
A share of B(x,y) is itself a univariate polynomial: Either B(x,i) or
B(i,y) where i is the node index.

Bivariate 0-sharing: Proactivization in nearly all secret-sharing
schemes involves generating a fresh, random polynomial that shares
a 0-valued secret, e.g., Q(x,y) such that Q(0,0) =0. This is added to
the current polynomial that encodes the secret s. We call such a poly-
nomial Q(x,y) a 0-hole polynomial and generation of this polynomial
0-sharing. Previous approaches’ main communication bottleneck is
naive 0-sharing that incurs high (O(n?) off-chain) communication
complexity. Our 0-sharing protocol achieves lower (O(n?) off-chain)
complexity. (Details in Section 4).

Dimension-switching: CHURP uses a bivariate polynomial B(x,y)
asymmetric and of non-uniform degree. Specifically, it uses a polyno-
mial B(x,y) of degree (¢,2t). By this, we mean that it is degree-t in x
(highest term x*) and degree-2t in y (highest term y??).

This structure enables our novel dimension-switching technique
in CHURP. Nodes can switch between a sharing in the degree-t
dimension of B(x,y) and the degree-2¢ dimension. The result is a
change from a (¢,n)-sharing of s to a (2¢,n)-sharing—and vice versa.
We apply known resharing techniques [24, 32] via bivariate polyno-
mials to switch between different sharings. As we show, dimension
switching provides an efficient way to address a key challenge men-
tioned above. During a handover, the adversary can control up to
2t nodes, but between handovers, we instead want a (¢,n)-threshold
sharing of's. (Details in Section 5.3.)

3.2 CHURP: Overview

We now give an overview of CHURP execution. We first consider
the optimistic case, and discuss pessimistic cases below in Section 3.5.

At the end of a given epoch e — 1, before a handoff occurs, the
current committee C(¢~1) is in what we call a steady state.

The committee C(¢~1 holds a (t,n)-sharing of s = B(0,0). This
sharing uses the degree-t dimension of B(x,y), as noted above. Node
Ci(e_l) holds share s; = B(i,y), and can compute B(x,0) for x =i. So
it is easy to see that s; is actually a share in a (¢,n)-sharing of B(0,0).
We refer to the shares in steady state as full shares.

During the handoff in epoch e, nodes in the old and new com-
mittees C(¢~1) and C(¢) switch their sharing of s to the degree-2t
dimension of B(x,y), resulting in what we call reduced shares.

Specifically, node C}e) holds share s; = B(x,j). Node C;e) can com-
pute B(0,y) for y=j,and consequently s; is a share in a (2¢,n)-sharing
of B(0,0). The share s; here has “reduced” power in the sense that
2t+1 of these shares (as opposed to ¢t +1 full shares in steady state)
are needed to reconstruct s. Thus the adversary cannot recover s
despite potentially compromising 2t nodes across the old and new
committees C(¢~1) and C(©).

After share reduction, the polynomial B(x,y) is proactivized. A
0-hole bivariate polynomial Q(x,y), i.e., such that Q(0,0) =0, is gener-
ated (using the new protocol given in Section 4). Q(x,y) is then added
to B(x,y), yielding a fresh polynomial B’(x,y) = B(x,y) + Q(x,y).
Nodes update their reduced shares accordingly. Because Q(x,y) is
0-hole, the secret s remains unchanged, i.e., s=B’(0,0).

Shares in B’(x,y), i.e., for the new committee, are now indepen-
dent of those for B(x,y), i.e., for the old committee. So it is now safe
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to perform full-share distribution, i.e., to switch to the degree-t di-
mension of B’(x,y). This involves distributing full shares to the new
committee C€). At this point, the steady state is achieved for epoch
e. Committee C(¢) holds a (¢,n)-sharing of s using B’(x,y).

To summarize, the three phases in the CHURP handoff are:

Share reduction: Nodes switch from the degree-t dimension of
B(x,y) to the degree-2t dimension. As a result, each node C}e) in
the new committee obtains a reduced share B(x,j).
Proactivization: The new committee generates Q(x,y) such that
0(0,0)=0, and each node C;e) obtains a reduced share: B’ (x,j) =
B(x,j) + Q(x, ). Proactivization ensures that shares in the new
committee are independent of those in the old.

Full-share distribution: New shares B’(i,y) are generated from
reduced shares {B’(x,j)} j» by switching back to the degree-t di-
mension of B'(x,y).

The protocol thus returns to its steady state. Note that during the
handoff, remaining nodes in old committee can still perform oper-
ations using s. So there is no operational discontinuity in CHURP.

3.3 Anexample

In Fig. 3, we show a simple example of the handoff protocol in
CHURP assuming all nodes are honest. The old committee con-
sists of three nodes C(¢~V) = {A1,A2,A3}. A3 leaves at the end of
the epoch, and a new node A joins. The new committee is thus
clo = {Al,Az,Ag } The underlying polynomial B(x,y) is thus of
degree (1,2). Node A;’s share is B(i,y) or 3 points: B(i,1),B(i,2) and
B(i,3). The figure depicts the three phases of the handoff, as follows.

Share reduction: To start the handoff, each node j in the new
committee constructs its reduced share B(x,j) from points received
from C(¢=1. As shown in the figure, node A receives points B(1,3)
and B(2,3) from A; and A; respectively, from which B(x,3) can be
constructed. Similarly, A; and Ay construct B(x,1) and B(x,2).

Proactivization: Having reconstructed reduced shares {B(x.j)};,
nodes in the new committee collectively generate a 0-hole bivariate
polynomial Q(x,y) of degree (t,2t), with the constraint that each j
only learns Q(x,j). Reduced shares are updated as B’(x,j) = B(x,j)+
Q(x,j). In the example above, node j ends up with Q(x,j) of a random
0-hole polynomial Q(x,y).

Full-share distribution: Nodes in the new committee get their full
shares from the updated reduced shares. Take A; as an example.
By this point, A; has B’(x,1) and sends B’(i,1) to A; fori € {2,3}.
Other nodes do the same. Hence, A; receives B’(1,2) and B’(1,3)
from Az and A7 respectively. It now has the necessary three points
{B’(1,)) } j¢[3] in order to interpolate its full share B'(1,y).

3.4 Active security

Asnotedbefore, the above example assumes an honest-but-curious
adversary. Additional machinery in the form of cryptographic proofs
of correctness for node communications—detailed in Section 5.3—are
required against an active adversary. These proofs do not alter the
overall structure of the protocol.
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3.5 Pessimistic CHURP execution paths

What we have described thus far is an optimistic execution of
CHURRP. This corresponds to a subprotocol Opt-CHURP that is
highly efficient and optimistic: it only completes when all nodes are
honest and the assumptions of the KZG scheme hold.

When things go wrong, CHURP can detect the violation and
resort to pessimistic paths. Specifically, Exp-CHURP-A can hold
malicious nodes accountable. Moreover, CHURP introduces a novel
hedge against any soundness failure of the KZG scheme, due to ei-
ther a compromised trusted setup or a falsified hardness assumption
(t-SDH). The hedging technique is efficient and incurs only O(n) on-
chain cost to detect such failures. When detected, CHURP switches
to Exp-CHURP-B that only relies on DL and no trusted setup.

As noted above, the on-chain / off-chain communication complex-
ity of CHURP is O(n) / O(n?) in the optimistic case. Unlike the opti-
mistic path, the two pessimistic paths do not use the off-chain channel
and incur O(n?) on-chain cost. Opt-CHURP and Exp-CHURP-A re-
quires ¢ <n/2, while Exp-CHURP-B requires ¢ <n/3. We give more
details on all the paths in CHURP in Section 5.

4 EFFICIENT BIVARIATE 0-SHARING

In this section, we introduce our technique for efficient 0-sharing
of bivariate polynomials. It is a key new building block in CHURP,
used in the proactivization phase. The bivariate 0-sharing protocol
uses resharing techniques [24, 32] as a building block.

Recall that in the context of bivariate polynomials, 0-sharing
means having a committee C generate a (t,2t)-bivariate polynomial
QO(x,y) such that Q(0,0)=0. Each node C; holds a share Q(i,y).

Previous works have naively extended 0-sharing techniques for
univariate polynomials to the bivariate case: Each node generates its
own 0-hole bivariate polynomial Q; i.e., Q;(0,0) =0, and distributes
points on it. Thus each node transmits O(n) univariate polynomials,
resulting in O(n?) off-chain communication complexity per node,
and O(n?) in total.

Our new technique, specified as protocol BivariateZeroShare,
brings the total off-chain communication complexity down to just
O(tn) in the optimistic case. In the pessimistic case, i.e., if a node
is caught cheating, different protocols (see Section 5) must then be
invoked. Even in the pessimistic case, though, our techniques incur
no more cost than in previous schemes: O(n?) in the dynamic setting
and O(n?) in the static Herzberg et al. setting,

BivariateZeroShare comprises two steps. In the first step, a 0-
sharing subprotocol UnivariateZeroShare is executed among a sub-
set U of 2t+1 nodes. At the end of this step, each node U; holds a
share s; of a univariate polynomial P(x). In the second step, eachnode
in U reshares its share s; among all nodes, i.e., the full committee.
Each node C; thereby obtains share Q(i,y) of bivariate polynomial
Q(x,y), as desired.

BivariateZeroShare is formally specified in Fig. 10. (For the in-
terest of space, we present all protocols formally in the appendix.
Nonetheless, the text description here is sufficient to understand the
paper.) For ease of presentation, we describe an honest-but-curious
protocol version in this section. Our full protocol, which is secure
against active adversaries, is detailed in Section 5.3.

First step—Sharing P(x): Asnoted, BivariateZeroShare first chooses
a subset U C C of 2t + 1 nodes, i.e., |U| = 2t + 1. This can be done
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polynomials. See Section 3.3 for a description.

as follows: Order nodes lexicographically by their public keys and
choose the first 2t +1. Without loss of generality, U ={C; }JZSI

The nodes of U then execute the univariate 0-sharing subproto-
col UnivariateZeroShare presented in Fig. 9. This subprotocol is not
new—it was previously used for proactivization in [44]. Each node
Uj generates a degree-2¢ univariate 0-hole polynomial Pj(x).! The
sum P(x)= iji *1'1Pj (x) is itself a degree-2¢ univariate 0-hole polyno-
mial P(x). Then, U; redistributes points onits local polynomial P;j(x),
enabling every U; at the end of the step to compute its share s; = P(i).

Second step—Resharing P(x):Nodes in U now reshare P(x) among
all of C, resulting in a sharing of the desired bivariate polynomial
QCx.y)-

Each node U; generates a degree-t univariate polynomial R;(x)
uniformly at random under the constraint Rj(0) =s;, i.e., Rj(x) en-
codes the node’s share s;. Together, the 2t +1 degree-t polynomials
{Rj(x)} uniquely define a degree-(t,2t) bivariate polynomial Q(x,y)
such that Q(x,j) =R;(x) for j=1,2,...,2t+1 and Q(0,0) =0.

Node U; sends R;(i) = Q(i,j) to every other node C; in the full
committee. Using the received points, each committee member C;
interpolates to compute its share—a 2t-degree polynomial Q(i,y).
The constraint Q(0,0) = 0 is satisfied because the zero coefficients
of Rj(x) are composed of shares generated from the 0-sharing step
before, i.e., UnivariateZeroShare. Since each node in U transmits
n points, the overall cost incurred is just O(¢n) off-chain.

We use (t, n)-BivariateZeroShare as a subroutine in CHURP
with some modifications. As explained before, it can also reduce
the off-chain communication complexity of Herzberg et al’s PSS
scheme [44], i.e., the static-committee setting, by a factor of O(n).
Due to lack of space, we present this application in the online full
version of the paper [50].

5 CHURPPROTOCOL DETAILS

CHURRP consists of a suite of tiered protocols with different trust
assumptions and communication complexity.

The execution starts at the top tier—a highly efficient optimistic
protocol. Only upon detection of adversarial misbehavior, does the
execution fall back to lower tiers. The three tiers of CHURP and their
relationship are shown in Fig. 4, detailed as below.

! An attack is outlined in [51] that breaks the UnivariateZeroShare protocol in [44].
It does so in an adversarial model similar to ours, i.e., the adversary controls # nodes
in old and new committees and thus 2¢ in total, rather than ¢ in total as in [44]. CHURP
defeats this attack via dimension-switching, using reduced shares during the handoff.

Handoff
Figure 3: An example of the handoff protocol: Curves denote univariate polynomials (reduced shares) while squares denote points on these
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The top tier, Opt-CHURP, is the default protocol of CHURP. It
is optimistic and highly efficient: if no node misbehaves, the exe-
cution completes incurring only O(n) on-chain and O(n?) off-chain
cost. As a design choice, Opt-CHURP does not identify faulty nodes
but rather just detects faulty behavior, upon which the execution
switches to alower tier protocol, also referred to as a pessimistic path.

The second tier is Exp-CHURP-A, the main pessimistic path of
CHURP. Unlike the optimistic path, Exp-CHURP-A exclusively uses
on-chain communication channel, which allows to identify and ex-
pel faulty nodes using proofs of correctness. Exp-CHURP-A trades
performance for robustness: the execution is guaranteed to com-
plete as long as the adversarial threshold t < n/2, but incurs O(n?)
on-chain communication in the worst case.

Both Opt-CHURP and Exp-CHURP-A use KZG commitments to
achieve t <n/2. As noted before, this commitment scheme requires
a trusted setup phase to generate public keys with a trapdoor. The
trapdoor must be “destroyed” after the setup; otherwise soundness is
lost, i.e., binding property of KZG is broken. KZG introduces the only
trusted setup in CHURP, and thus represents its main protocol-level
vulnerability. KZG also relies on a non-standard hardness assump-
tion, the ¢-Strong Diffie-Hellman assumption (¢-SDH).

To hedge against soundness failure in KZG (either due to a falsi-
fied trust assumption or a compromised trusted setup), we introduce
an additional verification step (StateVerif), which can be executed
at the end of Opt-CHURP or Exp-CHURP-A. StateVerif is highly
efficient—incurs only O(n) on-chain complexity. Any fault detected
by StateVerif indicates that KZG is unusable, and triggers a KZG-free
pessimistic path named Exp-CHURP-B. Exp-CHURP-B has the same
cost as Exp-CHURP-A, but one drawback: It tolerates a lower adver-
sarial threshold, t <n/3. More details on StateVerif in Section 5.5.

In summary, the three tiers (subprotocols) of CHURP are:

(1) Opt-CHURP: The default protocol of CHURP. It incurs O(n)
on-chain and O(n?) off-chain communication complexity under
the optimal resilience bound ¢t <n/2.

(2) Exp-CHURP-A: Invoked if Opt-CHURP fails. It incurs O(n?)
on-chain communication complexity under the optimal bound
t<n/2.

(3) Exp-CHURP-B: Invoked if a soundness breach of KZG is de-
tected by StateVerif. It incurs the same cost as Exp-CHURP-A,
but requires t <n/3.
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Table 2 summarizes the three tiers. Due to space constraints, we
present only Opt-CHURP in the body of the paper and present Exp-
CHURP-A and Exp-CHURP-B in Appendix C.

Opt-CHURP
—_—>
(e<n/2) (&)
: A
:
Y
Exp-CHURP-A
(t<n/2)
Exp-CHURP-B 1
(t<n/3)

Trusted-setup failure = = = = Fault detected

Figure 4: CHURP protocol tiers. Opt-CHURP is the default protocol
of CHURP. Exp-CHURP-A and Exp-CHURP-B are run only if a fault
occurs in Opt-CHURP.

5.1 Notation and Invariants

We now introduce the notation and invariants that will be used to
explain the protocols of CHURP. Notation is summarized in Table 1.

KZG polynomial commitments: KZG commitment allows a prover
to commit to a polynomial P(x) and later prove the correct evaluation
P(i) to a verifier. (Further details in Fig. 8 and [45].)

CHURRP invariants: We say the system arrives at a steady state
after it completes a successful handoff. The following invariants
stipulate the desired properties of a steady state. We use invariants
to explain the protocol and reason about its security.

Let C be a committee of nnodes {C; },. Let B(x,y) denote the
asymmetric bivariate polynomial of degree (#,2t) used to share the
secret s, i.e., s=B(0,0). In a steady state, the three invariants below
must hold:

o Inv-Secret: The secret s is the same across handoffs.

Inv-State: Each node C; holds a full share B(i,y) and a proof to the
correctness thereof. Specifically, the full share B(i,y) is a degree-
2t polynomial, and hence can be uniquely represented by 2t +1

points {B(i,j) }531—1 ]2:1

Inv-Comm: KZG commitments to reduced shares ( { B(x,j) }]2:{1
are available to all nodes.

. The proof'is a set of witnesses {WB(,-,]-) }

The first invariant Inv-Secret ensures the secret remains un-
changed, a core functionality of CHURP.

Inv-State and Inv-Comm ensures the correctness of the protocol.
For example, recall from Section 3 that during the handoff (the Share
Reduction phase), nodes in the old and the new committee switch
their dimension of sharing, from full shares to reduced shares. Using
the commitments (specified by Inv-Comm) and the witnesses (speci-
fied by Inv-State), new committee nodes can verify the correctness
of reduced shares, thus the correctness of dimension-switching.

Note that to realize Inv-Comm, hashes of KZG commitments are
put on-chain for consensus while the commitments are transmitted
off-chain between nodes.
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Notation Description
cle=D (o) Old, New committee
B(x,y) Bivariate polynomial used to share the secret
(t,k) Degree of (x,y) terms in B

RS;(x)=B(x,i)
FSi(y)=B(iy)

Reduced share held by C;
Full share held by C;’s

CB(x, ) KZG commitment to B(x,j)

Wh(i, ) Witness to evaluation of B(x,j) at i

Q(x,y) Bivariate proactivization polynomial
u’ Subset of nodes chosen to participate in handoff
Ai Lagrange coefficients

Table 1: Notation

5.2 CHURP Setup

The setup phase of CHURP sets the system to a proper initial
steady state. To start, an initial committee C () is selected. The setup
of KZG is performed and the secret is shared among C ©), Using their
shares, members of C(¥) can generate commitments to install the
three invariants.

The setup of KZG can be performed by a trusted party or a commit-
tee assuming at least one of them is honest. The secret to be managed
by CHURP can be generated by a trusted party or in a distributed
fashion, e.g., [37]. We leave committee selection out-of-scope for
this paper. Readers can refer to, e.g., [40], for a discussion.

5.3 CHURP Optimistic Path (Opt-CHURP)

Recall that Opt-CHURP transfers shares of some secret s from an
old committee, denoted C = C(¢™D, to a new committee C’ = C(®).
CHURP can support both committee-size and threshold changes, i.e.,
atransition from (n,t) to some (n’,t") in any epoch. For ease of exposi-
tion here, though, we allow n to change across epochs assuming a con-
stant threshold t. Changing the threshold is discussed in Section 5.4.

Opt-CHURP proceeds in three phases. The first phase,
Opt-ShareReduce, performs dimension-switching to tolerate an
adversary capable of compromising 2t nodes across the old and
new committees. By the end of this phase, reduced shares are con-
structed by members of the new committee. The second phase, Opt-
Proactivize, proactivizes these reduced shares so that new shares
are independent of the old ones. The third and the final phase, Opt-
ShareDist, restores full shares from reduced shares, and thus returns
to the steady state.

At the beginning of Opt-CHURP, each node in C’ requests the
set of KZG commitments from any node in C, say C;. Recall that
by the invariant Inv-Comm, each node in C holds the KZG com-
2t+1 .
i1 while the
corresponding hashes are on-chain. The received commitments are
verified using the on-chain hashes. Optimistically, each node in C’
receives the correct set of commitments. If a node receives corrupt
ones, we switch to a pessimistic path where the KZG commitments
are published on-chain. The above check enabled by the on-chain
hashes ensures that new committee nodes receive the correct set of
commitments. The phases of Opt-CHURP are as follows:

mitments to the current reduced shares, {CB(x, 7 }

5.3.1 Share Reduction (Opt-ShareReduce). The protocol starts by
choosing a subset U’ € C’ of 2t + 1 members (possible because

|C’| > 2t). The nodes in U’ are denoted {‘LIJ’ ]2;’1
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Some members in the old committee C may have left the protocol
by this point. Let C,;, € C denote the subset of nodes that are
present, w.l.o.g., let this subset be {C; }ll.g‘””e l.

Recall that by the invariant Inv-State, each node C; holds a full
share B(i,y). Now, C; distributes points on its full share allowing com-
putation of reduced shares B(x,j) by all members of U’ —making
a dimension-switch from the degree-t dimension of B(x,y) to the

degree-2t dimension. Specifically, C; sends B(i,j) to U ]' , which inter-

polates the received points to get its reduced share B(x,j).? Note that
in the optimistic path we require all 2t +1 nodes in U’ to participate.
If any adversarial nodes fail to do so, we switch to a pessimistic path
as detailed above.

The received points are accompanied by witnesses allowing for
verification using the KZG commitments received previously. Since
t+1 correct points are sufficient to reconstruct the reduced share,
we need at least 2t +1 points (|Cy;4¢ | > 2t) to guarantee liveness.

The size of Cyj;¢ is governed by the bounded churn rate o, i.e.,
[Calivel = |Cl(1—a). Thus, the condition for liveness, |Cyjivel > 2t,
places a lower bound on the committee size, |C|(1 — a) > 2t or
IC|> [2t/1-a].

The protocol Opt-ShareReduce is formally specified in Fig. 11. At
the end of Opt-ShareReduce, dimension-switching is complete and
each node (L{]' has a reduced share B(x,j).

Communication complexity: Each node in U’ receives O(n) points,
so Opt-ShareReduce incurs O(nt) off-chain cost.

5.3.2  Proactivization (Opt-Proactivize). In this phase, U’ proac-
tivizes the bivariate polynomial B(x,y)—a key step in generating
new shares independent of the old ones held by members of C. The
polynomial B(x,y) is updated using a random bivariate polynomial
Q(x,y) generated such that Q(0,0) = 0. The result is a new poly-
nomial B’(x,y) = B(x,y) + Q(x,y). The fact that Q(0,0) = 0 ensures
preservation of our first invariant Inv-Secret.

We achieve this by adapting the bivariate 0-sharing technique
(BivariateZeroShare) presented in Section 4 to handle active adver-
saries. Recall that BivariateZeroShare comprises two steps. First,
a univariate 0-sharing subroutine generates shares of the number
0. These shares are then re-shared in a second step resulting in a
sharing of Q(x,y) among C’.

By the end of the previous, i.e., Share Reduction phase, every
node (L(]’ in the set of 2t +1 nodes U’ holds a reduced share B(x,j).
Now, by the end of the current, i.e., Proactivization phase, we update
these reduced shares by adding Q(x,j) from the generated bivariate
polynomial Q(x,y).

The protocol starts by invoking the 0-sharing subroutine Uni-
variateZeroShare introduced previously, which is the first step of
BivariateZeroShare. Specifically, (2¢,2¢ +1)-UnivariateZeroShare is
run among U’ to generate shares s; at each rL[]’ . To handle active ad-
versaries, U ]’ sends a commitment to the share, g%/, to all other nodes
in U’ (where g is a publicly known generator). Lagrange coefficients
{Ajz.t }j can be precomputed to interpolate and verify if the shares
264152t

-1 A

form a 0-sharing, ; i sj=0. Translating it to the commitments,

all nodes check the following:

?Dimension-switch can be thought as a resharing of the shares. The zero points on
full shares B(i,0) i.e., shares of the secret s, are reshared.

2376

CCS ’19, November 11-15, 2019, London, United Kingdom

2641 o
[ T@H =1 (1)
Then, "LIJ’ generates a garlldom degree-t univariate polynomial
Rj(x) that encodes the node’s share sj, i.e., Rj(0) =s;. Together, the
2t + 1 polynomials uniquely define a 0-hole bivariate polynomial
Q(x,y) such that {Q(x,j) =Rj(x)}]2iJ{1. 'LI]’ also updates the reduced
share, B'(x,j) = B(x,j) + Rj(x). Points on B’(x,j) will be distributed
to the entire committee C” in the next phase of Opt-CHURP. (We
make a modification to BivariateZeroShare: In the re-sharing step
of BivariateZeroShare, points on Q(x,j) were distributed directly.)
Each U ]' sends constant-size information to other nodes off-chain
enabling verification of the above step. Let Z;(x) =R;(x)—s; denote
a 0-hole polynomial, the commitment to Z;(x), Cz;,and a witness
to the evaluation at zero are distributed enabling verification of the
statement: Z;(0) = 0; equivalent to Rj(0) = sj. The commitment to
the updated reduced share B’(x,j) is also distributed. Since B’(x,j) =
B(x,j) + Zj + sj, the homomorphic property of the commitment
scheme allows other nodes to verify if Cp/(y, jy =Cp(x, j)XCz, XCs;
where Cs; =g* and the other two were received previously.
In total, each node U j’ generates the following set of commit-
and witness

ment information during Opt-Proactivize,

{gsf,CZj,WZj(O),C B/(x, ) } While this set is transmitted off-chain
to all nodes in the full committee C’, a hash of it is published on-
chain. The received commitments can then be verified using the
published hash, thereby ensuring that everyone receives the same
commitments. Note that the set of commitments is sent to C’ instead
of just the subset U’ to preserve the invariant Inv-Comm, i.e., ensure
that all nodes hold KZG commitments to the updated reduced shares.

The verification mechanisms used in this protocol are sufficient
to detect any faulty behavior, although they do not identify which
nodesare faulty. Thus, the adversary can disrupt the protocol without
revealing his / her nodes. For example, it could send corrupt commit-
ments to nodes selectively. Although the published hash reveals this,
a verifiable accusation cannot be made since the commitments were
sent off-chain. Another example would be a corrupt node sending
points from a non-0-hole polynomial in the UnivariateZeroShare
protocol. Again, we detect such a fault but cannot identify which
nodes are faulty. So detection of a fault simply leads to a switch to the
pessimistic path, Exp-CHURP-A. While Exp-CHURP-A is capable
of identifying misbehaving nodes, note that we do not retroactively
identify the faulty nodes from Opt-CHURP.

The protocol Opt-Proactivize is formally specified in Fig. 12. By
the end of this, if no faults are detected, each U J' holds B’(x,j). The
invariants Inv-Secret and Inv-Comm hold as s = B’(0,0) and all of
C’ hold the KZG commitments respectively. In the next phase, we
preserve the other invariant Inv-State.

Communication complexity: Each node in U’ publishes a hash on-
chain and transmits O(t) data off-chain. Hence, Opt-Proactivize
incurs O(t) on-chain and O(t?) off-chain cost.

5.3.3  Full Share Distribution (Opt-ShareDist). In the final phase,
full shares are distributed to all members of the new committee, thus
preserving the Inv-State invariant. A successful completion of this
phase marks the end of handoff.

By the end of the previous phase, each (L(J' in the chosen subset
of nodes U’ C C’ holds a new reduced share B’(x,j).
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Protocol On-chain, Off-chain  Threshold Optimistic
Opt-CHURP 0(n),0(n?) t<n/2 Yes
Exp-CHURP-A 0(n),;n/a t<n/2 No
Exp-CHURP-B 0(n),n/a t<n/3 No
Opt-Schultz-MPSS 0(n),0(n*) t<n/3 Yes
Schultz-MPSS 0(n?),0(n*) t<n/3 No

Table 2: On-chain costs and Off-chain costs for the dynamic setting.
An optimistic protocol ends successfully only if no faulty behavior
is detected. n/a indicates Not Applicable.

Now, ’L[j' distributes points on B’(x.,j), allowing computation of
full shares B’(i,y) by all members of C’—we make a dimension-switch
from the degree-2¢ dimension of B’ (x,y) to the degree-t dimension.
Specifically, each C/ receives 2t +1 points {B’(i,j)}}zg’l,which canbe
interpolated to compute B’(i,y), its full share. This is made verifiable
by sending witness along with the points.

Since the point distribution is off-chain, a faulty node can send
corrupt points without getting identified similar to the previous
phase. In this event, we switch to the pessimistic path Exp-CHURP-A
without identifying which nodes are faulty.

The protocol Opt-ShareDist is formally specified in Fig. 13. If all
nodes receive correct points, this phase ends successfully and the
optimistic path ends. The remaining invariant Inv-State is fulfilled
as eachnode in C’ receives a full share, and hence the system returns
to the steady state. After a successful completion of CHURP, we
require that members of the old committee C delete their old full
shares and members of U’ delete their new reduced shares.
Communication complexity: Each node in C’ receives 2t +1 points,
thus Opt-ShareDist incurs O(nt) off-chain cost.

Each of the three phases in Opt-CHURP (and thus Opt-CHURP
itself) incur no more than O(n) on-chain and O(n?) off-chain cost.
In terms of round complexity, it completes in three rounds (one for
each phase) that does not depend on the committee size. Due to
lack of space, we reiterate that the pessimistic paths of CHURP are
discussed in Appendix C. Table 2 compares on-chain and off-chain
costs of the three paths of CHURP and Schultz-MPSS [66], the latter
will be explained in more detail in Section 6.3.1.

THEOREM 1. Protocol Opt-CHURP is a dynamic-committee proac-
tive secret sharing scheme by Definition 1.

We present the security proof in Appendix A.

Notes on the synchronicity assumptions. As discussed in Section 2,
CHURP works in the synchronous model and assumes a latency
bound for both on-chain and off-chain communication. While the for-
mer is a well-accepted assumption (e.g., see [48, 58, 72]), the latter is
assumed by the blockchain consensus protocol itself, as the required
difficulty of proof-of-work is dependent on the maximum network
delay [57]. However, we emphasize that synchronicity for off-chain
communication is needed only for performance, not for liveness or
safety of the full protocol. In the optimistic path, if messages take
longer to deliver, a fault is detected and the protocol switches to the
pessimistic path. After that, nodes communicate via the on-chain
channel only.
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5.4 Change of threshold

Thus far we have focused on schemes that allow the committee
size to change while the threshold t remains constant. We now briefly
describe how to enable an old committee with threshold te—1 (i.e.
the adversary can corrupt up to t,—1 nodes) to hand off shares to a
new committee with a different threshold t.

Generally, we follow the same methodology as that of [53, 66]. To
increase the threshold (i.e., £, > te—1), the new committee generates a
(te,2te)-degree zero-hole polynomial Q(x,y) so that the proactivized
sharing has threshold t.. To reduce the threshold (i.e., t, <te-1), the
old committee creates 2X(t,—1 —t,) virtual servers that participate
in the handoff as honest players, but expose their shares publicly. At
the end of the handoff, the new commitment incorporates the virtual
servers’ shares to form a sharing of threshold ¢, in a similar process
as the public evaluation scheme in [53].

To make changes of the threshold verifiable, we also need to
extend the KZG commitment scheme with the degree verification
functionality such that given a commitment Cy_4 to a polynomial 4,
it can be publicly verified that ¢ is at most d-degree. Our extension re-
lies on the g-power knowledge of exponent (g-PKE [41]) assumption.
Due to lack of space, we refer readers to Appendix D for more details.

5.5 State Verification (StateVerif)

Both Opt-CHURP and Exp-CHURP-A make use of the KZG com-
mitment scheme, which requires a trusted setup phase and its se-
curity (binding property) relies on the t-SDH assumption. Now, we
devise a hedge against these—a verification phase that relies only on
discrete log assumptions. At a high level, StateVerif includes checks
to ensure that the two important invariants, Inv-Secret and Inv-State,
hold, without using the KZG commitments on-chain.

Checking Inv-Secret: Assume that the commitment to the secret
g° is on-chain from the beginning (done as part of the setup phase).
Recall that at the end of Opt-CHURP or Exp-CHURP-A, each new
committee node Ci' holds a full share B(i,y). The secret can also be
computed from the zero points of the full shares, s = ;’zlﬂtiB’ (i,0),
where n=|C’| and A; =AI'.’_1 as defined in Eq. (1). Each C/ computes
s; =B’(i,0) and publishes g*i. Allnodes verify that Inv-Secret remains
intact by checking g° =[], (¢* i

Checking Inv-State: In this check, we ensure that the bivariate
polynomial B’(x,y) is of degree (t,2t). We achieve this by check-
ing that the 2t + 1 reduced shares {B'(x.j)};¢[2¢+1] are of degree
t. We build an efficient procedure that reduces the checks to a sin-
gle check through a random linear combination. If the degree of

def N
Pr(x) = ngl rjB’(x,j) is t, where rjs are chosen randomly, then

with high probability, the degree of all B’ (x,j) is ¢. It is important that
the adversary does not know the randomness a priori, as adversarial
nodes can then choose reduced shares of degree > t (in the proac-
tivization phase) in such a way that the higher degree coefficients
cancel in the linear combination. In practice, rjs can be obtained
from a public source of randomness [15].

Each C/ computes s} = P,(i) = 2}2_:{1 rjB’(i,j) and publishes g%
on-chain. Allnodes now compute powers of the coefficients of P,.. Let
P (x)= Z]'.’:lajxj, then aj = 3.1 | A;;P,(i), where A;; are Lagrange
coefficients (an extension of Eq. (1)). Therefore, g% =[], (¢° YA,
All nodes check Vj > t,g% =1, thus P,(x) is t-degree.
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The two checks above incur O(n) on-chain cost in total, thus
StateVerif is highly efficient. StateVerif can fail due to two possible
reasons: either the commitments are computed incorrectly by adver-
sarial nodes, or the assumptions in the KZG scheme fail. Additional
tests need to be performed to determine the cause of failure, these
incur O(n?) on-chain cost and are discussed in Appendix C.2. If ad-
versarial nodes are detected, the protocol expels these nodes and
switches to Exp-CHURP-A. On the other hand, if KZG assumptions
fail, the protocol switches to Exp-CHURP-B.

6 CHURPIMPLEMENTATION & EVALUATION

We now report on an implementation and evaluation of CHURP,
including a comparison with the state-of-the-art alternative, Schultz-
MPSS [66].

6.1 Implementation

We implemented Opt-CHURP in about 2,100 lines of Go and the
code is available at https://www.churp.io. Our implementation uses
the GNU Multiprecision Library [3] and the Pairing-Based Cryp-
tography Library [5] for cryptographic primitives, and gRPC [4] for
network infrastructure.

For polynomial arithmetic, we used the polynomial ring Fj[x]
for a 256-bit prime p. For the KZG commitment scheme, we used a
type A pairing on an elliptic curve y? = x> +x over [Fy for a 512-bit
q. The order of the EC group is also p. We use SHA256 for hashing.

Blockchain Simulation: CHURP can be deployed on both per-
missioned and permissionless blockchains. We abstract away the
specific choice and simulate one using a trusted node. Note that
when deployed in the wild, writing to the blockchain would incur
an additional constant latency.

6.2 Evaluation

In our evaluation, experiments are run in a distributed network
of up to 1000 EC2 c5. large instances, each with 2 vCPU and 4GB
of memory. Each instance acts as a node in the committee and the
handoff protocol is executed assuming a static committee. All ex-
periments are averaged over 1000 epochs, i.e., 1000 invocations of
Opt-CHURP. We measure three metrics for each protocol epoch:
the latency (the total execution time), the on-chain complexity (the
total bytes written to the blockchain (i.e. the trusted node)), and the
off-chain complexity (the total bytes transmitted between all nodes).
The evaluation results are presented below.

Latency: In the first set of experiments, all EC2 instances belong
to the same region, also referred to as the LAN setting. This setting is
useful to understand the computation time of Opt-CHURP, results
are presented in Fig. 5. The experimental results show a quadratic in-
crease consistent with the O(n?) asymptotic computational complex-
ity of Opt-CHURP and suggests a low constant, e.g., for a committee
of size 1001 the total protocol execution time is only about 3 minutes
(Fig. 5b). As noted before, this does not include the additional latency
for on-chain writes. Note that Opt-CHURP involves only 1 on-chain
write per node which happens at the end of Opt-Proactivize, and in
Ethereum currently each write takes about 15 seconds. Fig. 5b also
shows that among the three phases, Opt-ShareDist dominates the
execution time due to the relatively expensive O(n) calls to KZG’s
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(b) Latency for the LAN setting with committee size 101-1001.
Figure 5: Latency

CreateWitness per node. (CreateWitness involves O(n) group ele-
ment exponentiation, thus total O(n?) computation.)

In the second set of experiments, we select EC2 instances across
multiple regions in US, Canada, Asia and Europe, also referred to as
the WAN setting. In this setting the network latency is relatively un-
stable, although even in the worst-case it is still sub-second. Hence,
during a handoff of Opt-CHURP in the WAN setting, we expect a
constant increase in the latency over the LAN setting. Moreover,
we expect this constant to be relatively small compared to the time
spent in computation. We validate our hypothesis—for a committee
size of 100, the WAN latency is 4.54 seconds while the LAN latency
is 2.92 seconds (Fig. 5a), i.e., the additional time spent in network
latency is around 1.6 sec and constant across different committee
sizes as expected. Note that we were unable to execute experiments
in the WAN setting for committee sizes beyond 100 due to scaling
limitations in AWS. (We plan to get around this soon.)

On-chain communication complexity: Opt-CHURP incurs a linear
on-chain communication complexity—n hashes, i.e. 32n bytes, are
written to the blockchain in each handoff.

Off-chain communication complexity:Fig. 6 compares the off-chain
complexity for different committee sizes for Opt-CHURP and [66],
a discussion about the comparison is in Section 6.3.1. Now, we dis-
cuss the off-chain costs of Opt-CHURP. The concrete performance
numbers are consistent with the expected O(n?) complexity.

The off-chain data transmitted per node includes: 2n (polynomial
point, witness) pairs in the share reduction and the share distribution
phase, and n elements of Fj, in the proactivization phase; each node
also sends 1 commitment to share, 3 commitments to polynomials,
and 1 witness. With aforementioned parameters, a commitment to a
t-degree polynomial is of size 65B (with compression) and points on
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Figure 6: Concrete off-chain communication complexity for
Opt-CHURP and Schultz-MPSS, with log-scale y-axis. Points show
experimental results; expected polynomial curves (respectively
quadratic and quartic) are also shown.

polynomial are of size 32B. For example, for t =50 and n=101, the
off-chain complexity of Opt-CHURP is about 226n? +325n~ 2.3MB.
InFig. 6, the expected curve is slightly below the observed data points
due to trivial header messages unaccounted in the above calculations.

As we’ll show now, the above is about 2300x lower than the com-
munication complexity of the state of the art.

6.3 Comparison with other schemes

6.3.1 Schultz’s MPSS. The Mobile Proactive Secret Sharing (MPSS)
protocol of Schultz et al. [66], referred to as Schultz-MPSS hereafter,
achieves the similar goal as CHURP in asynchronous settings, as-
suming ¢ < n/3. Compared to [66], Opt-CHURP achieves an O(n?)
improvement for off-chain communication complexity. To evaluate
the concrete performance, we also implemented the optimistic path
of Schultz-MPSS (Section 5 of [66]) and evaluated the communica-
tion complexity empirically.

Asymptotic improvement: Schultz-MPSS extends the usage of ex-
pensive blinding polynomials introduced by Herzberg et al. [44]
to enable a dynamic committee membership. We recall briefly the
asymptotic complexity of Schultz-MPSS and refer readers to [66]
for details. Each node in the old committee generates a proposal of
size O(n?) and send it to other nodes, resulting in an O(n*) off-chain
communication complexity in total. Each node then validates the
proposals and reaches consensus on the set of proposals to use by
sending O(n) accusations to the primary, incurring a O(n?) on-chain
communication complexity. In the optimistic case where no accusa-
tion is sent—labelled Opt-Schultz-MPSS—the consensus publishes
O(n) hashes of proposals on chain and thus only incurs O(n) on-chain
communication complexity.

Table 2 compares the asymptotic communication complexity of
Schultz-MPSS and CHURP. Schultz-MPSS has the same on-chain
complexity as CHURP, but is O(n?) more expensive for off-chain.

Performance evaluation: We implemented the optimistic path of
Schultz-MPSS in about 3,100 lines of Go code. To adapt Schultz-
MPSS to the blockchain setting, we replace the BFT component of
Schultz-MPSS with a trusted node. Fig. 6 compares the off-chain
communication complexity of Opt-Schultz-MPSS and Opt-CHURP.

For practical parameterizations, our experiments show that Opt-
CHURP can incur orders of magnitude less (off-chain) communica-
tion complexity than Opt-Schultz-MPSS. For example, for a com-
mittee of size 100, the off-chain complexity of Schultz-MPSS is
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53.667n* ~ 5.3GB, whereas that for Opt-CHURP is only 2.3MB,
a 2300x improvement! (If n > 65, the improvement is at least three
orders of magnitude.) Since Schultz-MPSS incurs excessive (GB)
off-chain cost, we do not run it for committee sizes beyond 100.

6.3.2 Baronetal [12]. Baron et al. devise a batched secret-sharing
scheme that incurs O(n3) cost to transfer O(n®) secrets from an old to
anew committee. In the single secret setting of CHURP, [12] achieves
worse asymptotic cost than CHURP’s optimistic path (O(n?) vs
O(n?)) and equivalent in the pessimistic case. The asymptotic cost,
though, masks the much worse practical performance caused by
the use of impractical techniques to boost corruption tolerance. The
implications are twofold. First, their protocol only works when the
committee size is large (hundreds to thousands as we explain be-
low), whereas CHURP works for arbitrary committee sizes. Second,
even with a large committee, their protocol requires large subgroups
of nodes (hundreds to thousands) to run maliciously-secure MPC,
making their protocol significantly more expensive in practice.

Thebottleneck in [12] lies in the use of virtualization techniques to
achieve corruption threshold close to ¢t < n/2. Virtualization involves
two steps: first, the committee of size n is divided into n virtual groups
of size s <n; then each group is treated as a node in the committee
to execute the protocol using MPC. [12] uses the group construction
techniques of [22] that only work for large committees: for a fixed
€>0, to achieve a corruption threshold ¢ < (1/2—¢)n, the size of the
constructed group is 16/€? (See Appendix B.2 of [22]). We want € to
be small, e.g., e =0.01—yielding ¢ only slightly worse than CHURP.
This, however, causes the group size to explode to s =160,000. Even
choosing a moderate €, say € =1/6—yielding t <n/3 which is worse
than CHURP, still requires a group of size s =576, meaning [12] needs
to be run using maliciously-secure MPC among n > 576 groups of
576 nodes each, making it extremely impractical.

7 POINT-TO-POINT
COMMUNICATION TECHNIQUE

CHURRP takes advantage of a hybrid on-chain / off-chain com-
munication model to minimize communication costs. A blockchain
is used to reach consensus on a total ordering of messages, while
much cheaper and faster off-chain P2P communication transmits
messages with no ordering requirement.

Off-chain P2P channels can be implemented in different ways
depending on the deployment environment. However, in a decen-
tralized setting, establishing direct off-chain connection between
nodes is undesirable, as it would compromise nodes’ anonymity.
Revealing network-layer identities (e.g., IP addresses) would also
be dangerous, as it could lead to targeted attacks. One can instead
use anonymizing overlay networks, such as Tor—but at the cost of
considerable additional setup cost and engineering complexity.

Alternatively, off-chain channels can be implemented as an over-
lay on existing blockchain infrastructure. In this section, we present
Transaction Ghosting, a technique for cheap P2P messaging on a
blockchain. The key trick to reduce cost is to overwrite transactions
so that they are broadcast, but subsequently dropped by the network.
Most of these transactions—and their embedded messages—are then
essentially broadcast for free. We focus on Ethereum, but similar
techniques can apply to other blockchains, e.g., Bitcoin.
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Figure 7: Tradeoff in latency vs. message transmission cost. The blue
curve shows the on-chain tradeoff. The red dot at (0.06s, 1.09USD/MB)
corresponds to Transaction Ghosting.

We note that while our techniques may seem an abuse of the
Ethereum P2P network, the idea of leveraging the network for al-
ternative forms of communication has been under consideration by
the community for some time; see, e.g., [29].

7.1 Transaction Ghosting

A (simplified) Ethereum transaction tx = (n,m,g) includes a nonce
n, payload m, and a per-byte gas price g paid to the miner of tx. For
a basic (“send”) transaction, Alice pays a miner f+|m|Xg, where
fo is a base transaction cost and |m| is the payload size. (We make
this more precise below.)

Alice sends tx to network peers, who add tx to their pool of uncon-
firmed transactions, known as the mempool [56]. They propagate tx
so that it can be included ultimately in all peers’ view of the mem-
pool. tx remains in the mempool until a miner includes it in a block,
at which point it is removed and f; + |m| X g units of currency is
transferred from Alice to the miner.

The key observation is, until tx is mined, Alice can overwrite it
with another transaction tx”. When this happens, tx is dropped from
the mempool. Thus, both tx and tx” are propagated to all nodes, but
Alice only pays for tx’.

Two additional techniques can further reduce costs. Alice can
embed m in tx only, putting no message data in tx’. She then pays
nothing for the data containing m, only the cost associated with tx’.
This technique also generalizes to multiple overwrites, i.e., Alice
can embed a large message m in multiple transactions {tx; };e[x-1],
which is useful given bounds (e.g., 32kB in Ethereum) on transaction
sizes. Alice will only pay the cost of the final transaction tx.

On-chain Transaction Ghosting
Bandwidth (KB/sec) <6.4 32.3(9.31)
Latency (sec) varies (Fig. 7)  1.09 (0.82)

$0.06 ($0.02)
92.2% (14.2%)

varies (Fig. 7)
100%

Message transmission cost (USD/MB)
Transaction delivery rate

Table 3: Comparison between communication via the Ethereum
blockchain and via Transaction Ghosting. Numbers in parentheses
are standard deviations. See Appendix E for details.

Here we summarize the results of the our experiments in Ta-
ble 3 and Fig. 7, deferring details to Appendix E. Empirically, by
employing Transaction Ghosting on the Ethereum blockchain, we
can build cheap P2P messaging channels with an average bandwidth
of 32.3KB/sec (5x the throughput upper bound of on-chain commu-
nication). Our technique achieves extremely low cost and latency
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Protocol Dynamic Adversary Network  Threshold Cost
Herzberg et al. [44] No active synch. t<n/2 0o(n?)
Cachinetal. [17] No active asynch. t<n/3 o(n*)
Desmedt et al. [24] Yes passive synch. t<n/2 0o(n?)
Wong et al. [71] Yes active synch. t<n/2 exp(n)
Zhou et al. [73] Yes active asynch. t<n/3 exp(n)
Schultz-MPSS [66] Yes active asynch. t<n/3 o(n*)
Baron etal. [12] Yes active synch.  t<n(1/2—¢) on?)
2 Lo
CHURRP (this work) Yes active synch. t<n/2 O(n) (optimistic)

O(n®) (pessimistic)

Table 4: Comparison of Proactive Secret Sharing (PSS) schemes—
those above the line do not handle dynamic committees while the
ones below do so. Cost indicates the off-chain commn. complexity.

compared with on-chain communication. As shown in Fig. 7, the
cost of sending 1MB of data using Transaction Ghosting is $0.06 and
the latency is 1.09 seconds. The lowest latency in on-chain commu-
nication is about 10-15 seconds [1, 2], costing hundreds of dollars per
megabyte. To summarize, Transaction Ghosting enables efficient P2P
communication in a decentralized setting, which we can leverage
in CHURP and is of independent interest.

8 RELATED WORK

Verifiable Secret Sharing (VSS): Polynomial-based secret sharing
was introduced by Shamir [67]. Feldman [30] and Pedersen [59]
proposed an extension called verifiable secret sharing (VSS), in which
dealt shares’ correctness can be verified against a commitment of
the underlying polynomial. In these schemes, a commitment to a
degree-t polynomial has size O(t). The polynomial-commitment
scheme of Kate et al. [45] (KZG) reduces this to O(1), and is adopted
for secret sharing in, e.g., [11], and in CHURP.

KZG hedge: Prior works [42] hedge against the failure of a commit-
ment scheme (or a cryptosystem [13]) by creating hybrid schemes
that combine multiple schemes, in contrast to CHURP’s approach
of using protocol tiers with different schemes in each tier. This ap-
proach coupled with novel, efficient detection techniques to switch
between tiers (StateVerif), allows CHURP to include an efficient top
tier (optimistic path). The notion of graceful degradation in the event
of a failure appears in several works [13, 35, 65]—loosely similar to
how CHURP degrades to a lower corruption threshold when the
KZG scheme fails (exact notion hasn’t appeared before).

Proactive Secret Sharing (PSS): Proactive security, the idea of re-
freshing secrets to withstand compromise, was first proposed by
Ostrovsky and Yung [55] for multi-party computation (MPC). It was
first adapted for secret sharing by Herzberg et al. [44], whose tech-
niques continue to be used in subsequent works, e.g., [ 16, 20,36, 43,49,
53,66],and in CHURP (in UnivariateZeroShare). As noted, a result of
independent interest in our work is an O(n) reduction in the off-chain
communication complexity of [44]. (Details in the full version [50].)
All the above schemes assume a synchronous network model and
computationally bounded adversary; CHURP does too, given its
blockchain setting. PSS schemes have also been proposed in asyn-
chronous settings [17, 66, 73] and unconditional settings [54, 68].
Nikov and Nikova [51] provide a survey of the different techniques
used in PSS schemes along with some attacks (which CHURP ad-
dresses via its novel dimension-switching techniques).
Dynamic committee membership: Desmedt and Jajodia [24] pro-
pose a scheme that can change the committee and threshold in a
secret-sharing system, but is unfortunately not verifiable. Wong et
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al. [71] build a verifiable scheme assuming that the nodes in the
new committee are non-faulty. Subsequent works [12, 25, 73] build
schemes that do not make such assumptions, but are impractical for
our use—[73] incurs exponential communication cost, [25] incurs
exponential computation cost, and [12] uses impractical virtualiza-
tion techniques (See Section 6.3.2). Schultz et al. [66] were the first
to build a practical scheme under an adversarial model similar to
ours. While [66] incurs O(n*) off-chain communication cost, as Ta-
ble 4 shows, CHURP improves it to worst-case O(n?) off-chain cost
(O(n?) in the optimistic case). We convert the on-chain cost incurred
by CHURP to its equivalent off-chain cost in order to facilitate a
comparison with prior work in the following manner: Instead of
using a blockchain, use PBFT [18] to post messages on the bulletin
board which incurs an extra O(n) off-chain cost per bit.

Bivariate polynomials: Bivariate polynomials have been explored
extensively in the secret-sharing literature, to build VSS protocols [17,
31], for multipartite secret-sharing [70], to achieve unconditional
security [54], and to build MPC protocols [14, 38]. Prior to CHURP,
few works [26, 64] have considered application of bivariate polyno-
mials to dynamic committees, but these have been limited to passive
adversaries. CHURP’s novel use of dimension-switching provides
security against a strong active adversary controlling 2t nodes dur-
ing the handoff. The dimension-switching technique applies well
known resharing techniques [24, 38] via bivariate polynomials to
switch between full and reduced shares.

0-sharing, the technique of generating a 0-hole polynomial has
been widely used for proactive security since the work of [44]. As we
explain before, prior works [26, 54, 64] have naively extended these
to the bivariate case leading to expensive 0-sharing protocols. In-
stead, CHURP applies resharing techniques [24] to build an efficient
bivariate 0-sharing protocol.

CHURP’s use of two sharings appears in some prior works [60, 62]
(with largely differing goals and detail) where each node stores an
additive share of the secret and a backup share of every other node’s
additive share. Proactivization is achieved by resharing the additive
shares, in contrast to CHURP’s approach of generating a shared
polynomial explicitly which is then used to update the reduced
shares. We note that adapting these techniques for use in CHURP
is non-trivial, moreover, CHURP’s bivariate 0-sharing protocol has
other uses as well, e.g., can reduce the off-chain cost of [44].
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A SECURITY PROOF FOR Opt—CHURP

Recall that a protocol for dynamic-committee proactive secret
sharing satisfies secrecy and integrity. We prove secrecy first.

Secrecy. We consider the handoff protocol of one epoch first. As
described in Section 5.3, Opt-CHURP consists of three phases: Opt-
ShareReduce, Opt-Proactivize and Opt-ShareDist. Other than the
public inputs, the information obtained by the adversary A is:

Opt-ShareReduce:

e For all corrupt Uj in the previous handoff, reduced share B(x,j).

e For all corrupt nodes C; in the old committee,
{B(i,j),WB(,-,j) }je[2t+1j (full share B(i,y)).

e For all corrupt ”Llj’ in the new committee selected to participate

in the handoff, {B(i,j),WB(,-,j) }ie[2t+1] (reduced share B(x,j)).
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Opt-Proactivize:

e For all corrupt nodes (L{]f, sj and Q(x,j) =R;j(x).

e For all corrupt nodes C/ in the new committee, H; and
{9%.C2, W0 Corcen |

Opt-ShareDist:

e Forall corrupt C! in the new committee, {B’ ij)w’ . } .

PrE (- Wh) jelzt+1]

The information above assumes the secrecy of our bivariate 0-sharing

protocol, which we explained in the main body. In addition, note

that the public information posted on chain are all commitments of

the polynomials. By the hiding property of the commitment scheme

based on the discrete log assumption, the PPT A learns no extra

information from these commitments. To prove secrecy, we have

the following lemmas.

LEMMA 2. If A corrupts no more than t nodes in the old committe
node, and no more than t nodes in U’, the information received by A
in Opt-ShareReduce is random and independent of the secret s.

Proor. This is implied by the degree of the bivariate polynomial
B(x,y). In the worst case when all ¢ corrupted nodes are in U and
U’, A learns 2t reduced shares B(x,j) and ¢ full shares B(i,y). For a
(t,2t)-bivariate polynomial, any ¢ shares of B(i,y) and 2t shares of
B(x,j) are random and independent of s = B(0,0).

Moreover, based on the discrete-log assumption, the proofs Wpy; ;)
are computationally zero-knowledge by the KZG scheme, and the
PPT adversary cannot learn additional information from them. O

LEMMA 3. Given a bivariate 0-sharing scheme with secrecy and
integrity, if at least one node is honest in Opt-Proactivize, Q(x,y) is
randomly generated.

PrOOF. Any 2t+1degree t univariate polynomials Q(x,j) uniquely
define a (t,2t)-bivariate polynomial. Therefore, as long as one node
is honest and generates a random degree t polynomial, Q(x,y) is
randomly generated to mask B(x,y).

Similar to the proof above, the hashes and commitments do not

leak additional information to a PPT adversary ‘A.
u]

LEMMA 4. If A corrupts no more thant nodes in the new committee
C’, the information received by A in Opt-ShareDist is random and
independent of the secret s.

Proor. ByLemma2,Q(x,y) israndomly generated, thus B’ (x,y) =
B(x,y)+Q(x,y) is independent of B(x,y). Regardless of the number
of nodes corrupted by A in U’, A receives no more than ¢ out of
n’ shares of B’(i,y) in Opt-ShareDist. As the degree of B(x,y) is
(t,2t) and is independent of B(x,y), these shares are random and
independent of s. Again, the proofs in the second part do not leak
additional information. O

By Lemma 2, 3 and 4, A does not learn any information about s in
consecutive epochs. The secrecy of the scheme follows by induction.
Integrity. For integrity, we have the following lemmas.

LEMMA 5. After Opt-ShareReduce, at least t+1 honest nodes ‘ZIJ’
can successfully reconstruct B(x,j).
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KZG Commitment

(sk, pk) Keygen(lz, q): Select a bilinear group (p,G,GT,e,9) BiIGen(lA) and s

2
randomly in Z;,. Setsk=sand pk=g°,g°%", ...,gsq.

2: Cg « Commit(¢(x), pk): Compute Cyy =g%() using pk.

(¢(i), W;) «— CreateWitness(¢(x), i, pk): Compute ¢(x)— (i) =(x—i)w(x), set
Wi=g"0),

{True, False } < VerifyEval(Cy, i, ¢(i), W;, pk): Output True if e(C /g¢(i),g):
e(g°~%, W;). Otherwise, output False.

Figure 8: Protocols of KZG commitment scheme.

(2t,2t+1)-UnivariateZeroShare
1: Input: £,setof 2t +1nodes {Uj }je[ar+1]
2: Output: Each node Uj outputs a share s = P(j) for randomly
3: generated degree-2¢ polynomial P(y) with P(0)=0
4: node Uj
5: Generate a random 2¢-degree polynomial Pj s.t. Pj(0)=0
6: Send a point Pj(i) to node Uj for each i €[2¢ +1]
7: Wait to receive points {P;(j) }je[27+1] from all other nodes

8:  Let P=3;e[2¢4+1]Pi, compute share P(j)= X jepzr+11 Pi (/)

(t,n)-BivariateZeroShare
1: Input: £,n, setof nodes {C; }je[n] (2t <n)

Output: Each node C; outputs a share Q(i, y) for randomly generated degree- (¢, 2t )
bivariate polynomial Q(x,y) with Q(0,0)=0

3: Order {C; }ie[n] based on lexicographic order of their public keys

4: Choose first 2¢ +1nodes, wlog, U={Cj}je2r41]

Invoke (2£,2¢+1)-UnivariateZeroShare among { U} } jc[27+1] to generate shares
{si }je|2t+1|

6: node (uj:

7: Generate a random ¢-degree polynomial Rj s.t Rj(0)=s;

8: Send a point Rj(i) to node C; for each i €[n]

9: Denote the bivariate polynomial Q(x, y) where {Q(x,j) =Rj(x) }
: node C;:

Jjel2t+1]

Wait to receive points {Rj(i) }je|2t+1| = {Q(i.)) }jeze+1)
Interpolate to reconstruct a 2¢-degree polynomial Q(i, y)

13:

Output share Q(i, y)

Figure 10: (t, n)-BivariateZeroShare between n nodes. A 0-hole
bivariate polynomial Q of degree-(t,2¢t) is generated.

Figure 9: (2¢,2t +1)-UnivariateZeroShare between 2t +1 nodes. A 0-hole
univariate polynomial P of degree-2t is generated.

ProoF. As the number of nodes in the old committee n > 2¢+1,
each node ﬂj’ receives at least t + 1 correct shares of B(i,j). As the
degree on the first variable of B(x,y) is t, (L(J' can reconstruct B(x,j)
successfully. Finally, as the number of nodes in U” is 2t + 1, there are

at least t+1 honest nodes. |

LEMMA 6. Assuming the correctness of the bivariate 0-sharing
scheme, after Opt-Proactivize, either honest nodes U/ hold the correct
shares of B'(x,j) such that B’(0,0) = B(0,0) = s and their commitments
CB(x, j) are on-chain, or at least t+1 honest nodes in C’ output fail.

Proor. Byline15inFigure 12,{g%.Cz;,Wz;(0).Cp(x, ) } is consis-
tent with the hash H; posted on chain by ’llj’ IfCz, isnota univariate
polynomial with constant term 0, by line 16, VerifyEval outputs false
and C/ outputs fail by the soundness of KZG. Otherwise, by the
second check of line 16, Cpr(y, ;) is the commitment of a polyno-
mial B’(x,j) with constant term B(x,j)+s;. Finally, by the check of
line 17, by the discrete-log assumption, Z]zi*l'ls jAJZ.t =0. Therefore,

B’(0,0)=B(0,0) because of the property of Lagrange coefficients. O

By Lemma 5 and 6, if Opt-ShareReduce and Opt-Proactivize do
not fail, all nodes U J’ hold the correct shares of B’(x,j) such that
B’(0,0)=B(0,0)=s and their commitments Cp(y, j are on the chain.
In Opt-ShareDist, each node C/ receives 2t +1 shares of B'(i,j) from
all ‘LIJ’ s. By the soundness of the KZG scheme, if any of these shares
is corrupt, VerifyEval rejects, and honest nodes in C’ output fail.
Otherwise, with 2¢+1 correct shares of B(i,j), C/ can successfully
reconstruct B’(i,y), which completes the proof of integrity.

B APPLICATIONS
IN DECENTRALIZED SYSTEMS
Secret sharing finds use in innumerable applications involving
cryptographic secrets, including secure multi-party computation
(MPC) [14], threshold cryptography [23], Byzantine agreement [61],
and cryptocurrency custody [9].
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Opt-ShareReduce
1: Public Input: {CB(x,j) }jE[2t+1]

. Input: Set of nodes {C; }ie[n] where each node C; is given {B(i,j), Wh(i, ) }jGIZH-lI'

Set of nodes {C]’ }je[n’] st.n’ >2t+1
3: Output:Vj €[2¢+1],node Cj/. output B(x, j)
4: Order {C]/ } based on lexicographic order of their public keys
5. Choose the first 2/ +1 nodes, denoted as U’, w.lo.g., U’ = (CJ/ Fiel2e+1)
6: node Cj:
7: Vj €[2¢+1], send a point and witness {B(i,j), Wh(i, ) } to "L{j’ off-chain

’.
8: node"L{j,

9: Wait and receive n points and witnesses, {B(i,j), WB(i,j) }is[nl
Vi €[n], invoke VerifyEval(Cpx. j), &, B(i, /), Wp(, j))

Interpolate any ¢+ 1 verified points to construct B(x, j)

Figure 11: Opt-ShareReduce between the committees C and C’.

Decentralized systems, however, are an especially attractive ap-
plication domain, though, for two reasons.

First, blockchain systems task individual users with management
of their own private keys, an unworkable approach for most users. A
frequentresult,asnoted above, iskey loss [63] or centralized key man-
agement [9, 52] that defeats the main purpose of blockchain systems.

Second, blockchain objects cannot keep private state. This fact limits
the applications of smart contracts, as they cannot compute digital
signatures or manage encrypted data.

We briefly enumerate a few of the most important potential ap-
plications in decentralized systems using CHURP:

Usable cryptocurrency management. Rather than relying on cen-
tralized parties (e.g., exchanges) to custody private keys for cryp-
tocurrency, or using hardware or software wallets, which are notori-
ously difficult to manage [8], users could instead store their private
keys with committees. These committees could authenticate users
and enforce access-control, resulting in the decentralized equivalent
of today’s exchanges.

Decentralized identity. Initiatives such as the Decentralized Iden-
tity Foundation [6] and uPort [7] envision an ecosystem in which
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Opt-Proactivize

1: Public Input: {CB(x,j) }je[2t+1]

2: Input: Set of nodes {C; }iE[n’]' Let U = {Cj/ }jel2¢+1)- each node "ll]/ is given B(x, j)
Output: U/, outputs success and B’ (x, j) for a degree-(#,2t ) bivariate polynomial
B/ (x,y) with B(0,0)=B(0,0) (or) fail
: Public Out t:{C }
4: Public Outpu B/(x, /) el2e+1]
Invoke (22,2t +1)-UnivariateZeroShare among the nodes {'7/(]/ }je[2¢+1) to generate

shares {Sj }je[zt+1]

’.
6: node’uj.

7: Generate random ¢-degree polynomial Rj(x) such that Rj(0)=s;

8: Denote the bivariate polynomial Q(x,y) where {Q(x,_]) =Rj(x) }je[2t+lJ

9: Denote the bivariate polynomial B’ (x,y) = B(x,y)+Q(x,y)
. node ‘Ll]'
Compute B'(x,j) = B(x, /) +Q(x,j) and Zj(x) = Rj(x)—s;

Se\{lgsj, CZ]-, WZj (0)> CB’(x,j) } off-chain to all nodes in C’, where

CZJ- =Commit(Z;); WZJ- (0) = CreateWitness(Z}, 0); Cpr ., j=Commit(B'(x, j))

Publish hash of the commitments on-chain H; = H(g"J | \CZJ. | |WZ]-(0) ICB(x, )

node CL{:

Vj €[2t +1], retrieve on-chain hash Hj, also receive {gsj S CZ], s WZj(O)’CB’(x,j) }
off-chain

. . s

vji € [2t + 1] if Hi # H(g/ ”CZj HWZj(O)”CB’(x,j)) or

. Sj s
VerlnyvaI(CZj ,0,0, sz(o))thrue or Cpr(x, j) #CB(x. j) ><CZ]. Xg~/ , output fail
gt
Using Lagrange coefficients in Eq. (1), if H?iﬁl(gsj ) J #1outputfail
’.
. node ’Uj.

Output success and B'(x, j)

Figure 12: Opt-Proactivize updates the reduced shares.

Opt-ShareDist

1: Public Input: {CB’(x,j) }je[2t+1]

2: Input: Set of nodes {C; }is[n/]. Let U = {C]l }jef2¢+1]> each node ‘L{]’ is given B/ (x, j)
3: Output: Vi €[n'], C; outputs success and B’ (i, y) (or) fail

’.
4: node'llj.

Vi €[n’], send a point and witness off-chain {B’(i,j), WI;
WI; =CreateWitness(B’(x, j), i)

(i) } to CL{ where
(i,))
6: node le:
7: Wait and receive points and witnesses {B’(i,j), Wé(i,j) }je[ZtH]
8: Vj €[2¢+1],invoke VerifyEval(Cpr (. j), i B'(i, ), Wé“’j))
9: Ifall 2¢+1 points are correct, interpolate to construct B (i, y)

Output success and the full share B’ (i, y)

In all other cases, output fail

Figure 13: Opt-ShareDist uses the updated reduced shares to distribute
full sharesin C’.

users control their identities and data by means of private keys. The
same techniques used in the cryptocurrency case for private-key
management would similarly apply to assets such as identities.

Smart-contract attestations. Committee management of smart-
contract private keys could also enable digital signing by smart
contracts. Committee members would execute threshold signatures
using a shared private key, emitting a signature for a particular smart
contract in response to a request issued by the contract on chain.
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Simplified Committee-based consensus for light clients. A number
of consensus schemes, e.g., proof-of-stake protocols [21, 46], aim to
achieve scalability by delegating consensus to committees. As these
committees change over time, verifying the blocks they sign requires
awareness of their identities. By instead maintaining its key pair, a
committee could make it easier for light clients to verify blockchains.

Secure multiparty computation (MPC) for smart contracts. More
generally, dynamic-committee secret sharing would enable decen-
tralized secure MPC by smart contracts, effectively endowing them
with confidential storage and computation functionalities, as envi-
sioned in, e.g., [19, 74].

C CHURP PESSIMISTIC PATHS

In this section, we present protocols for the two pessimistic paths
of CHURP: Exp-CHURP-A and Exp-CHURP-B.

C.1 Exp-CHURP-A

This path is invoked when a failure occurs in Opt-CHURP. As
mentioned before, the pessimistic paths use on-chain communica-
tion only. The first phase is the same as Opt-ShareReduce, and is not
re-executed if Opt-ShareReduce ends successfully.

In Exp-Proactivize, we use a different zero-sharing protocol, al-
lowing honest parties to avoid re-execution of the protocol in case
of corruption — they can simply discard the shares generated by
the adversarial nodes. Messages are encrypted under the receiver’s
public key and posted on-chain, so that a verifiable accusation can
be performed in case of a corruption.

Ifany adversary in U’ is expelled in this phase, we ask members in
the old committee to publish the shares and witnesses sent to the ad-
versarial nodes during Opt-ShareReduce on-chain. Thus, all honest
parties have access toreduced shares that belong to adversarial nodes,
which allows them to reconstruct the full shares in the next phase.

In Exp-ShareDist, to allow identification of malicious nodes, mem-
bers post all messages on-chain in contrast to the optimistic path.
Exp-Proactivize and Exp-ShareDist are presented in Figure 14 and 15.
The overall on-chain complexity of Exp-CHURP-A is O(n?).

C.2 State Verification Details

Failure. There are two possible reasons that may cause StateVerif
to fail: either the commitments are computed incorrectly by adver-
sarial nodes, or the assumptions in the KZG scheme fails. We further
perform the following test to determine the reason.

We make use of the on-chain KZG commitments (published
in CHURP) to verify the commitments Z; = g% and Zi’”d = gs;.
Each node i posts exponents of their state {gB/(i’j)} Vj e [2t +
1], and their witness Wj/',i to the KZG polynomial commitments
Cpr(x, j) on-chain (each node already has these witnesses at the end
of Opt-CHURP or Exp-CHURP-A). Then all members verify the
message published by node i: VerifyEval Exp(CB,(x’j),i,gBl(i’j),Vl/j’ i)
for j e [2t +1]. (We make use of the following additional function-
ality in KZG scheme that allows us to verify the exponent of the
evaluation without any changes to the scheme: {True, False} «
VerinyvalExp(C¢,i,g¢(i),Wi).)
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Exp-Proactivize

1: Public Input: {CB(x,j) }je[2t+1]

2: Input: Setof 2¢+1 nodes {(llj' }je[2¢+1]- Eachnode 'le' is given B(x, j)
Output: ‘L{]/ outputs B’(x, j) for a degree-(#, 2t ) bivariate polynomial B(x, y) with
B’(0,0)=B(0,0)

4: Public Output: {CB’(XJ)> jel20+1]
J

2
5. mnode Uj:

6: Generate {Sij } 1 that form a 0-sharing i.e., Z?i{llgtsij =0.

Jje[2t+1
Publish {g°%/ }jg[2t+]] , {Encpkj [sij] }je[2t+1] and zk proofs of correctness of the
encryptions on-chain.

’.
8: node‘Lle

9: Decrypt {Encpkj [sif]} from node i and verify s; ; using 9°%J on-chain.

’.
10: node ’L(].A
11: If any adversarial node i is detected in step 9, add it to (Llcnrrup[ed’ and publish s;;.

. Setsj=:cqmay Sij.
12: 7 €U \ﬂcorrupted 7
13: Execute step 7-9, 11-12 of Opt-Proactivize in Figure 12, with messages posted on the

* chainin step 12.

7
14: node C;
N _ PP PR : . ’
1s: Execute step 16 of Opt-Proactivize in Figure 12.If it outputs fail,add j to wcorrupted'
Nodes in U’ discard shares by executing step 12 again.

16: node Cj:
" For all malicious nodes j detected in step 9 and 15, publish point and witness

{B(i,j), wi,j } on-chain.

Figure 14: Exp-Proactivize protocol.

If the checks above pass, all members validate Z;, Z] nd 5s. 7, =
7o VA2 sis s )2t
H_??l—l(gB (z,])) T ’Z{nd — H?f{l(gB (z,j))rj o

Exp-ShareDist
: Publictnput: {Cpr(y ;) |
1 ublic Inpu B/ (x.j) e241)
2: Input: Set of nodes {C; }ie[n/]. Let U = {C]’ }jel2¢+1)> each node ‘L{]’ is given B/ (x, j)
3: Output: Vi€ [n'], C; outputs B'(i,y)
’.
4. node (Z’{j‘

Vi € [n’], publish Encpi; (B'(i, j)) gB,(i’j), w ; on-chain, where w ;=

CreateWitness(B’(x, j), i). Also publish zk proofs of correctness of the encryption.
6: node C :

: D t th -chain t t{B’i,',w(.}

7 ecrypt the message on-chain to ge (i, /). 0.7 f jefzes1]
. ’ ’

vieU \wcarrupted

checks fail, add j to U’

corrupted

,invoke VerifyEval(Cpr (., j)» i, B' (i, ), w;.’j). Ifany of the

9: node Cj:
Publish B(i, j), w;, j for any new adversarial node j detected above.
node Uj:
Publish s; j for any new adversarial node j detected above and discard shares by executing
step 12 in Fig. 14.
node C; :

’
corrupted’

Vi €[n], VerifyEval(Cpy, j), i, B(i, /), Wi, j)-

Viel validate their reduced shares posted by the old committee by

’
corrupted

B'(i.j)=B(i.j)+* ZichonestSij
Interpolate all B (i, j) for j € [2¢+1] to construct B (i, y)

Viel Interpolate any ¢ +1 verified points to construct B(x, j). Set

Output the full share B’ (i, y)

Figure 15: Exp-ShareDist protocol.
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If any of the checks above fail, it means the commitments are
not correctly computed. The members can perform a verifiable ac-
cusations since all information is on-chain, and then switch to pes-
simistic path Exp-CHURP-A. Otherwise, it implies a failure of the
assumptions in the KZG scheme. In this case, we switch to a different
pessimistic path Exp-CHURP-B. In this test, each node publishes
O(n) data on-chain, incurring O(n?) on-chain cost overall.

C.3 Exp-CHURP-B

This pessimistic path is taken only after a detection of breach in
the underlying assumptions of the KZG scheme.

In this path, we use relatively expensive polynomial commitments
(Pedersen commitments) instead of KZG and supports alower thresh-
old on the number of adversarial nodes n > 3t. In the share reduction
phase, as n>3t, we rely on the error correcting mechanisms of Reed-
Solomon codes to construct reduced shares, instead of the verifica-
tion of KZG scheme. In the proactivization phase and full share distri-
bution phase, we replace the KZG commitments and verification with
the Pedersen commitments (step 13 in Figure 14 and step 5,8,12 in Fig-
ure 15). Exp-CHURP-B incurs O(n?) on-chain cost, assuming n > 3t.
Due to the space limit, we omit the full protocol of Exp-CHURP-B.

D CHANGING THE THRESHOLD

D.1 Increasing the threshold: t, >t,_;

Note that a change of the threshold reflects that of the adversary’s
power, i.e., the number of nodes it can corrupt in the committee
¢V andCl®, respectively. Therefore extra care is needed if we
were to increase the power of the adversary (i.e. te > te—1). Similar
to [66], increasing the threshold takes two steps: first, a handoff is
executed between C(¢~1) and C(¢) assuming the threshold doesn’t
change; then we increase the threshold to t, after the handoff. As
illustrated below, the new threshold takes effect after the handoft.

threshold t¢_1 i threshold te
- |} >

te—1,1t
handoff committee C(€~1) lfanldoflf committee C(€)

< epoch e i epoch e+1 >

Specifically, to increase the threshold, (t—1,te )-handoff runs the
proactivization phase with parameters ¢t = t,. That is, during the
proactivization protocol, a bivariate polynomial Q(x,y) of degree
(te,2te) is generated such that Q(0,0) = 0. Each node i holds a .-
degree polynomial Q(x,i) and commitments to {Q(x,i)}; are pub-
licly available. The rest of the proactivization follows without modifi-
cation, besides now each node i holds two polynomials with different
degrees: B’ (x,i) that is t,—1-degree while Q(x,i) is t.-degree. Thus
the proactivized global polynomial B’(x,y) is of degree (f,2t¢ ), con-
cluding the threshold upgrade.

We also need to extend KZG to support dynamic thresholds, i.e.,
given a commitment Cy, it can be publicly verified that ¢ is at most
d-degree. Essentially, the setup phase of the KZG fixes the highest
degree (say, D) of polynomials it can work with. In the setting of a
static threshold ¢, we set D=t and a KZG commitment can guarantee
that hidden polynomials are of degree < ¢, which is critical to the
correctness of shares. To support dynamic thresholds up to tmax, we
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KZG extended with degree verification

1) (sk, pk) Keygen(l/l, q): Select a bilinear group (p, G, G, e, g) «— BilGen(l’l),
.d

g+1group elements {c; };¢[4) and s randomly in Z,. Set sk=s, pko = {g°,....¢%" }.
d

pkg={g?d®,...g%d*" }ford €[q]and pk= {pk, pky, ...,pkg }.

2) Cy  Commit(¢p(x), pk): Let d = deg(¢). Compute Cyy = (d, g#(*), g%d #()) using

pko and pk 4.

3) (¢(i), W) « CreateWitness(§(x), i, pk): Compute ¢(x)—P(i) =(x—i)w(x), set

w; =gW(S).

4) {True, False} « VerifyEval(Cy, i, $(i), Wi, pk): Parse C as (d,C,C4). Output True

ifE(C/g¢(i),g) =e(g5™%, W;). Otherwise, output False.

5) {True, False } < VerifyDegree(Cy ): Parse C as (d,C,C ). Output True if

e(C4,9)=e(C,g%d). Otherwise, output False.

Figure 16: KZG [45] extended with degree verification.

extend KZG as specified in Fig. 16 and run the trusted setup with
D =tmax. Our extension relies on the g-PKE [41] assumption.

D.2 Decreasing the threshold

The intuition of decreasing the threshold is to create 2X(t,—1 —te)
virtual nodes, denoted as V, and execute the handoff protocol be-
tweenC=CVandC’=C@uy, assuming the threshold remains
te—1. A virtual node participates in the protocol as if an honest player,
but exposes its state publicly. At the end of the handoff protocol,
nodes in C’ incorporate V’s state and restore the invariants. The
handoff protocol is outlined as follows.

Decreasing the threshold

1) Choose a subset U C C’ of 2t + 1 nodes. For notational simplicity, suppose
U={1,....,2te+1}and V = {2t +2,...,2t¢—1+1}. Each node i € U recovers a

reduced share nge_n(x) = B(x, i).In addition, C publishes reduced shares for virtual
nodes: RS}eil)(x) =B(x,j)forjeV.

2) U executes the proactivization phase and collectively generate a (¢, 2t )-degree bivari-
ate zero-hole polynomial Q(x, y). At the end of this phase, each node i € U has Q(x, i).

3)Let V=3 jep Ajte*l RS;E_I)(O). Each node i € U incorprates virtual nodes’ state and
@2 2 (gsten v
updates its state as RS; ™ (x) = ;?T RS; (x)+ m +Q(x, i) where
A2%e—1 and A%t are Lagrange coefficients for corresponding thresholds. One can verify
that nge)(x) are 2t -sharing of the secret, i.e., B(0,0) can be calculated from any 2¢¢ +1
of RS\ ().
4)Eachnode i € U sends to every node j € C’ a point RSE.E) (). The full share of each node
J € C’ consists of 2t + 1 points {RSEe)(]') = B/(i, j)}jeqs, from which j can compute
FSj(y)=B'(j,y).
The updated reduced shares RSEE) (x) can be verified using the
. . -1 .
published value V, and the commitment to RSEe )(x) and Q(x,i). At
the end, each node i has 2t, +1 points on B’(i,y). It remains to show
that {FS;(y)=B'(j,y)}; form a t.-sharing ofB(e>(0,0), which can be
_ - -1
checked by 11" A% FS;(0) = 330 a0t lej.e )(0)=B(0,0).

i=1 j=1
Several optimizations are possible. For example, one can reduce

the degree of RSge)(x) to te (as opposed to t.—q currently) by building

new polynomials and proving equivalence to RSEe_l)(x). We leave
further optimization for future work.

E POINT-TO-POINT TECHNIQUE DETAILS

E.0.1 Choosing overwrite ratek. An optimal strategy is to overwrite
as many times as possible. Ethereum, though, imposes a constraint
on overwriting: the sender must raise the transaction fee by at least

2386

CCS ’19, November 11-15, 2019, London, United Kingdom

a minimum fraction p. (p ranges from 10% to 12.5%). Here we de-
termine the optimal value of k. Recall that the fee for a transaction
with |m| bytes of data is f = fy + g X |m|, for constants f, and g.
Overwriting transactions with a fractional fee increase of p results

k
% for k overwritings, assuming
the kth transaction gets mined. In the worst case, where p=12.5%,
the optimal strategy is to overwrite k = 7 times, yielding average

cost 0.29 X £

[m|
Moreover, if the first k— 1 transactions have |m| bytes of data and

foxp*
[mlxk

in an average per-byte fee of

per byte, about 70% less than without overwriting.

the last one empty, the average cost is down to

per byte.

E.0.2 Experiments. We validate our ideas experimentally on the
Ethereum mainnet. The sender and receiver are full nodes connected
to the Ethereum P2P network and the goalis for the sender to transmit
messages to the receiver by embedding them in pending transactions.
To overwrite a pending transaction in Ethereum, the sender reuses
the same nonce and raises the gas price.

In our experiments, we rewrite k = 7 times. Each of the first 7
transactions contains 31KB of data and the 8th is empty. A total of
~100MB data is transmitted in 4,200 transactions, in about 1 hour.
Table 3 summarizes the results, which we now discuss.
Bandwidth: DoS prevention measures and network latency in
Ethereum cause overly frequent overwritten transactions to drop. Ex-
perimentally, we can propagate overwritten transactions at a rate of
just under once a second, yielding approximate bandwidth 32.3KB/s,
as the maximum permitted per-transaction data is 32KB [39]. While
this suffices for CHURP, we belived more engineering would yield
higher bandwidth. Studies of blockchain arbitrage [34] show that
arbitrageurs can overwrite transactions in hundreds of milliseconds.
Message-transmission cost: Transaction costs for message deliv-
ery are extremely low: $0.06 per MB on average, with gas price 1
GWei. The gas price should be chosen minimum required to get
transactions relayed by peer nodes. Empirically of late, a gas price
between 1 to 2 GWei offers good delivery rate, which we now explain.
Transaction delivery rate: Although a sender can make sure over-
writing succeeds in her mempool, overwritten transactions are not
guaranteed to arrive on the receiver’s side. Possible reasons are an
overloaded mempool [56], network congestion and/or out-of-order
delivery. Generally transactions with a higher transaction fee are
relayed preferentially by peer nodes, and less frequently dropped.
The 8th transaction in our rewriting sequence has the highest fee
and the smallest payload, and is always delivered in our experiments.

Overall, we observe an average transaction delivery rate of 91.9%
in our experiments, or a ~ 9% loss rate.

E.0.3 Comparison to on-chain communication. For comparison, we
estimate the same metrics for on-chain communication, i.e. using
the Ethereum blockchain. The results are summarized in Table 3.
An upper bound on the on-chain bandwidth is estimated assum-
ing a 8 million block gas limit. Each block can hold at most three 32KB
transactions, thus a total of 96KB data every 15 seconds, or 6.4 KB/s.
The message transmission cost per MB is estimated as that of sending
32 transactions with 32KB data in each, assuming an exchange rate of
1ETH =$200. The latency depends on the gas price and the network
condition. A lower latency requires a higher gas price and thus a
higher transmission cost. We used [ 1] for our estimation. The tradeoff
between latency and message transmission cost is shown in Fig. 7.
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