
CHURP: Dynamic-Committee Proactive Secret Sharing

Sai Krishna DeepakMaram
∗†

Cornell Tech

Fan Zhang
∗†

Cornell Tech

LunWang
∗

UC Berkeley

Andrew Low
∗

UC Berkeley

Yupeng Zhang
∗

Texas A&M

Ari Juels
∗

Cornell Tech

Dawn Song
∗

UC Berkeley

ABSTRACT
We introduceCHURP (CHUrn-Robust Proactive secret sharing).

CHURP enables secure secret-sharing indynamic settings,where the
committee of nodes storing a secret changes over time. Designed for

blockchains,CHURPhas lower communication complexity thanpre-

vious schemes:O(n) on-chain andO(n2) off-chain in the optimistic

case of no node failures.

CHURP includes several technical innovations: An efficient new

proactivization scheme of independent interest, a technique (using

asymmetric bivariate polynomials) for efficiently changing secret-

sharing thresholds, and a hedge against setup failures in an efficient

polynomial commitment scheme. We also introduce a general new

technique for inexpensive off-chain communication across the peer-

to-peer networks of permissionless blockchains.

We formally prove the security of CHURP, report on an imple-

mentation, and present performance measurements.

KEYWORDS
secret sharing; dynamic committee; decentralization; blockchain

ACMReference Format:
Sai Krishna DeepakMaram, Fan Zhang, LunWang, Andrew Low, Yupeng

Zhang, Ari Juels, andDawn Song. 2019.CHURP: Dynamic-Committee Proac-

tiveSecret Sharing. In 2019ACMSIGSACConference onComputer andCommu-
nications Security (CCS ’19), November 11–15, 2019, London, United Kingdom.
ACM,NewYork, NY, USA, 18 pages. https://doi.org/10.1145/3319535.3363203

1 INTRODUCTION
Secure storage of private keys is a pervasive challenge in cryp-

tographic systems. It is especially acute for blockchains and other

decentralized systems. In these systems, private keys control the

most important resources—money, identities [6], etc. Their loss has

serious and often irreversible consequences.

∗
Also part of IC3, The Initiative for CryptoCurrencies & Contracts

†
The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3363203

An estimated fourmillion Bitcoin (todayworth $14+ Billion) have

vanished forever due to lost keys [63]. Many users thus store their

cryptocurrency with exchanges such as Coinbase, which holds at

least 10% of all circulating Bitcoin [9]. Such centralized key storage

is also undesirable: It erodes the very decentralization that defines

blockchain systems.

An attractive alternative is secret sharing. In (t ,n)-secret sharing,
a committee of n nodes holds shares of a secret s—usually encoded
as P(0) of a polynomial P(x) [67]. An adversary must compromise

at least t+1 players to steal s , and at least n−t shares must be lost

to render s unrecoverable.
Proactive secret sharing (PSS), introduced in the seminal work of

Herzberg et al. [44], provides even stronger security. PSS periodically

proactivizes the shares held by players, while keeping s constant.
Players obtain new shares of the secret s that are independent of their
old shares, which are then discarded. Provided an adversary never

obtains more than t shares between proactivizations, PSS protects
the secret s against ongoing compromise of players.

Secret sharing—particularly PSS—would seem to enable users to

delegate private keys safely to committees and avoid reliance on a

single entity or centralized system. Indeed, a number of commercial

and research blockchain systems, e.g., [10, 19, 27, 47, 74], rely on

secret sharing to protect users’ keys and other sensitive data.

These systems, though, largely overlook a secret-sharing problem

that is critical in blockchain systems: node churn.
In permissionless (open) blockchains, such as Bitcoin or Ethereum,

nodes may freely join and leave the system at any time. In permis-
sioned (closed) blockchains, only authorized nodes can join, but

nodes can fail and membership change. Thus blockchain protocols

for secret sharing must support committee membership changes,

i.e., dynamic committees.

Today there are no adequate PSS schemes for dynamic commit-

tees. Existing protocols support static, but not dynamic commit-

tees [17, 44], assume weak, passive adversaries [26, 64], or incur

prohibitive communication costs [12, 54, 66, 71, 73].

In this paper, we address this critical gap by introducing a new

dynamic-committeeproactivesecret-sharingprotocolcalledCHURP
(CHUrn-Robust Proactivization).

1.1 CHURP functionality
CHURP allows a dynamic committee, i.e., one undergoing churn,

to maintain a shared secret s securely.

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2369

https://doi.org/10.1145/3319535.3363203
https://doi.org/10.1145/3319535.3363203

Like a standard PSS scheme,CHURP proactivizes shares in every

fixed interval of time known as an epoch. It supports dynamic com-

mittees as follows. An old committee of sizenwith a (t ,n)-sharing of
a secret s can transition during a handoff to a possibly disjoint new

committee of size n with a new (t ,n)-sharing of s .CHURP achieves

security against an active adversary that compromises t <n/2 nodes
in each of the old and new committees. CHURP also allows changes

to t andn between epochs. (Periodic changes to s are specifically not
a goal of PSS schemes, but are easy to add.)

Our main achievement inCHURP is its very low communication
complexity: optimistic per-epoch communication complexity in a

blockchain setting ofO(n) on-chain—which is optimal—andO(n2)
off-chain, i.e., over point-to-point channels.While the on-chain com-

plexity is lower than off-chain, it comes with the additional cost of

placing transactions on the blockchain. Cheating nodes cause pes-

simisticO(n2) on-chain communication complexity (no off-chain

cost). Both communication costs are substantially lower than in

other schemes.

Despite somewhat complicatedmechanics,CHURP realizes avery
simple abstraction: It simulates a trusted third party that stores s for
secure use in a wide range of applications—threshold cryptography,

secure multi-party computation, etc.

1.2 Technical challenges and solutions
CHURP is the first dynamic committee PSS scheme with an end-

to-end implementation that is practical even for large committees.

To achieve its low communication complexity,CHURP overcomes

several technical challenges in a different manner than the prior

work aimed at dynamic committees, as explained below.

The first challenge is that previous PSS schemes, relying on tech-

niques from Herzberg et al. [44], incur high communication com-

plexity for proactivization (O(n3) off-chain per epoch).CHURP uses

a bivariate polynomial B(x ,y) to share secret s , and introduces a new
proactivization protocol with costO(n2). This protocol is based on
efficient bivariate 0-sharing, i.e., generation of a randomized, shared

polynomial B(x ,y)with B(0,0)=0 to refresh shares. Alternative ap-
proaches to PSS that do not explicitly generate a shared polynomial

exist [33, 62], butCHURP’s 0-sharing technique is of independent in-
terest: It can also lower the communication complexity of Herzberg

et al. [44] and related schemes.

The second challenge is that during a handoff, an adversary may

control t nodes in each of the old and new committees, and thus

2t nodes in total. Compromise of 2t shares in a (t ,n)-sharing would
leak the secret s . Previous schemes, e.g., [66], address this problem

using “blinding” approaches with costly communication, while [12],

address it via impractical virtualization techniques. Instead,CHURP
uses a low communication-complexity technique called dimension-
switching, that is based on known share resharing techniques. It uses
an asymmetric bivariate polynomial B(x ,y), with degree t in one

dimension and degree 2t in the other. During a handoff, it switches
temporarily to a (2t ,n)-sharing of s to tolerate up to 2t compromised

shares; afterward, it switches back to a (t ,n)-sharing. Each switching
involves a round of share resharing. Although dimension-switching

is based on known techniques, CHURP’s novelty lies in applying

them to the dynamic committee setting to tolerate 2t compromises.

Finally, most PSS schemes commit to secret degree-t polynomials

using classical schemes (e.g., [30, 59]) with per-commitment size

O(t).CHURP uses an alternative due to Kate, Zaverucha, and Gold-

berg (KZG) [45] with sizeO(1). Use of KZG for secret sharing isn’t

new [11], butCHURP introduces a novel KZG hedge. KZG assumes

trusted setup and a non-standard hardness assumption. If these fail,

CHURP still remains secure—but degrades to slightly weaker adver-

sarial threshold t <n/3. The detectionmechanisms used to hedge are

efficient—O(n) on-chain—and are KZG-free—so, our techniques can
easily be adapted to future secret-sharing schemes that rely similarly

on KZG or related non-standard assumptions.

We compose these techniques to realize CHURPwith provable
security and give a rigorous security proof.

1.3 Implementation and Experiments
Wepresent an implementation ofCHURP. Our experiments show

very practical communication and computation costs—at least 1000x

improvement over the existing state-of-the-art dynamic-committee

PSS scheme [66] in the off-chain communication complexity for

large committees (See Section 6).

Additionally, to achieve inexpensive off-chain communication

among nodes in CHURP, we introduce a new technique for per-

missionless blockchains that is of independent interest. It leverages

the peer-to-peer gossip network as a low-cost anonymous point-to-

point channel. We experimentally demonstrate off-chain commu-

nication in Ethereumwith monetary cost orders of magnitude less

than on-chain communication.

1.4 Outline and Contributions
After introducing the functional, adversarial, and communication

models in Section 2, we present our main contributions:

• CHUrn-Robust Proactive secret sharing (CHURP): In Section 3, we
introduceCHURP, a dynamic-committee PSS scheme with lower

communication complexity than previous schemes.

• Novel secret-sharing techniques:We introduce a new 0-sharing pro-
tocol for efficient proactivization in Section 4, dimension-switching
technique to safeguard the secret in committee handoffs in Sec-

tion 5.3, and hedging techniques for failures in the KZG commit-

ment scheme in Section 5.5.

• New point-to-point blockchain communication technique:We intro-

duce a novel point-to-point communication technique for permis-

sionlessblockchains inSection7—usable inCHURPandelsewhere—
with orders of magnitude less cost than on-chain communication.

• Implementation and experiments:We report on an implementation

ofCHURP in Section 6 and present performance measurements

demonstrating its practicality.

We give a security proof forCHURP in Appendix A.We discuss

relatedwork inSection8andCHURP’smanypotential applications—

threshold cryptography, smart contracts with private keys, consen-

sus simplification for light clients, etc.—in Appendix B. We have

released theCHURP system as an open-source tool at https://www.

churp.io.

2 MODELANDASSUMPTIONS
We now describe the functional, adversarial, and communication

models used forCHURP.
In a secret-sharing scheme, a committee of nodes shares a fixed

secret s . Let C denote a committee and {Ci }
n
i=1 denote then nodes in

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2370

https://www.churp.io
https://www.churp.io

A1

A2

A3

A4

s

B1

B2

B3

B4

B5

s

Old committee New committee

Figure 1: Handoff between two committees at the end of a dy-
namic proactive secret-sharing epoch. The secret s remains fixed.
Committeesmay intersect, e.g., B2=A2 and B3=A3.

the committee. Each node Ci holds a distinct share si .CHURP proac-
tivizes shares, i.e., changes them periodically to prevent leakage of

s to an adversary that gradually compromises nodes. Again, we em-

phasize thatCHURP does so for a dynamic committee [12, 66], i.e.,

nodes may periodically leave / join the committee.

Shares change in a proactive secret-sharing protocol such as

CHURP during what is called a handoff protocol. Handoff proac-

tivizes s , i.e., changes its associated shares, while transferring s from
an old committee to a new, possibly intersecting one. Fig. 1 depicts

the handoff process. The adversarial model for proactive secret shar-

ing in general limits adversarial control to a threshold t of nodes per
committee. During a handoff,CHURP allows nodes to agree out of

band on a change to t , as explained below.

2.1 Functional model
Epoch:TimeinCHURP, as inanyproactivesecret-sharingscheme[44],

is divided into fixed intervals of predetermined length called epochs.
In each epoch, a specific committee of nodes assumes control of and

then holds s . Concretely, in an epoch e , a committee C(e) of sizeN (e)

shares s using a (t ,N (e))-threshold scheme.

Handoff Committee C(e)Committee C(e−1)Handoff

Epoch eEpoch e−1

Figure 2: Each epoch begins with a handoff phase where the old
committeehands off the secret s to thenewcommittee. It is followed
by a period of committee operation.

Handoff: Fig. 2 depicts the handoff at the beginning of an epoch.

It involves a transfer of s from an old committee, which we denote

C(e−1), to a new committee, denoted C(e). Prior to completion of the

handoff, C(e−1) is able to perform operations using s .

Churn: In the dynamic-committee setting of CHURP, nodes can
leave a committee at any time, but canonlybe addedduringahandoff.

LetC
(e−1)
lef t denote the set of nodes that have left the committee before

the handoff in epoch e . Let C
(e−1)
alive =C

(e−1)\C
(e−1)
lef t denote the set of

nodes that participate in the handoff. We let churn rate α denote a

bound such that |C
(e−1)
alive | ≥ |C

(e−1) |(1−α). Later, we provide a lower
bound on the committee size using the rate α .

Keys:We assume that every node in CHURP has private / public

key pair and that public keys are known to all nodes in the system.

Such a setup is common in secret-sharing systems [44, 66].

2.2 Adversarial model
We consider a powerful active adversaryA. It may decide to cor-

rupt nodes at any time. Once a node is corrupted by the adversary,

it is assumed to be corrupted until the end of the current epoch. (A

node may thus be “released” by an adversary in a new epoch so

that it is no longer corrupted.) Corrupted nodes are allowed to devi-

ate from the protocol arbitrarily. The proofs of correctness used by

nodes inCHURP requires thatwe assumea computationally bounded
(polynomial-time) adversary.

As noted above, we limit the adversary A to corruption of no

more than a threshold of nodes in a given committee. This threshold,

as noted above, may change inCHURP through out-of-band agree-

ment by committees. In this case, letting t and t ′ denote corruption
thresholds for old and new committees respectively,A may control

at most t nodes in C(e−1) and t ′ nodes in C(e). We present the pro-

tocol inCHURP for threshold changes in Section 5.4. For simplicity

of exposition, however, we assume in what follows that t = t ′, i.e.,
the corruption threshold t remains fixed.

Observe that during the handoff between epochs e−1 and e , mem-

bers of both committees, C(e−1) and C(e), are active. ThusA may

control up to 2t nodes at this time. As committees may intersect, i.e.,

an adversarymay control a given node i in both the old and new com-

mittees. Alternatively,A may control node i in one committee, but

not the other, reflecting either a fresh corruption or node recovery.

Definition1. Aprotocol for dynamic-committeeproactive secret

sharing satisfies the following properties in the functional model above
for any probabilistic polynomial time adversaryA with threshold t :

Secrecy: IfA corrupts no more than t nodes in a committee of any
epoch,A learns no information about the secret s .

Integrity: IfA corrupts no more than t nodes in each of the com-
mittees C(e−1) and C(e), after the handoff, the shares for honest nodes
can be correctly computed and the secret s remains intact.

2.3 Communicationmodel
Weaimtominimizecommunicationcomplexity inCHURP. Specif-

ically,we optimize for on-chain complexity and off-chain complexity

in that order. We also consider the round complexity of our pro-

tocol designs, but prioritize communication complexity because

blockchains—particularly permissionless ones—incur high costs for

on-chain operations. Wemeasure the communication complexity

of our protocol (and related ones) in terms of on-chain and off-chain
communication cost, as follows:

On-chain: Existing approaches such as MPSS [66] use PBFT [18]

for consensus. Instead, we assume the availability of a blockchain

(or other bulletin-board abstraction) to all nodes in the committee.

We do this for two reasons. First, abstracting away the consensus

layer results in simpler, and more modular secret-sharing protocols.

Second, itmakes sense to capitalize on the availability of blockchains

today, rather than re-engineer their functionality.

In our model, nodes can either post a message (or) retrieve any

number of messages from the blockchain. After a node posts a mes-

sage to the blockchain, within a finite time periodT , it gets published,

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2371

i.e., blockchain access is synchronous and themessage is now retriev-

able by any node. This channel is assumed to be reliable: messages

posted are not lost. This model is widely adopted in the literature

(e.g., See [48, 58, 72]).

Permissionless blockchains. While our techniques apply also to

permissioned blockchains, we focus on permissionless blockchains—

e.g., Ethereum. On such chains, users pay (heavily) for writes, but

reads are free. Thus we measure on-chain communication complex-

ity only in terms of writes, e.g.,O(n) on-chain cost meansO(n) bits
written to the blockchain.

Off-chain:Nodes may alternatively communicate point-to-point

(P2P) without direct use of the blockchain. We assume that every

nodehas such a channelwith every other node. P2P channels are also

assumed to be reliable: all messages arrive without getting lost. We

work in a synchronous model, i.e., any message sent via this channel

will be received within a known bounded time period,T ′.
We emphasize that synchronicity of the P2P network is required

only for performance, not for liveness, secrecy or integrity. Looking
ahead, without enough synchronicity, the off-chain protocol halts

and the execution switches to the on-chain channel. In other words,

an adversary may slow down the protocol execution temporarily

by delaying messages, but she cannot learn or corrupt the secret.

Moreover,CHURP only requires a short period of synchronicity (e.g.,
a few minutes) at the end of every epoch (a relatively long epoch,

e.g., a day, would be the norm forCHURP).We discuss synchronicity

assumptions in Section 5.3.3.

Off-chain P2P channels can be implemented in different ways de-

pending on the deployment environment. In a decentralized setting,

though, nodes are often assumed not to have P2P communication,

to protect them from targeted attacks and anonymity compromise.

In such cases, one can use anonymous channels, such as Tor [69],

to preserve anonymity with additional setup cost and engineering

complexity. Alternatively, off-chain channels can be implemented by

an overlay on top of the existing blockchain infrastructure.We show

how to leverage the gossip network of a blockchain system [28] for

inexpensive off-chain communication in Section 7.

We measure off-chain communication complexity as the total

number of bits transmitted in P2P channels. In general, where we

refer informally to proactivization protocols’ cost in this work, we
mean their communication complexity, on-chain or off-chain, as the

case may be.

3 OVERVIEWOFCHURP
Nowwe provide an overview ofCHURP, with intuition behind

our core techniques. First, we briefly review two key new techniques

used inCHURP: bivariate 0-sharing and dimension-switching. (We

defer details until later in the paper.) Then we give an overview and

example of optimistic execution ofCHURP. Finally, we briefly dis-
cuss pessimistic execution paths inCHURP, i.e., what happenswhen
nodes are faulty, and our third key technique of hedging against

failures in KZG.

3.1 Key secret-sharing techniques
Recall that in an ordinary (t ,n)-threshold Shamir secret sharing

(see [67]), shares of secret s are points on a univariate polynomial

P(x) such that P(0) = s . Instead, to enable its two key techniques,

CHURP employs a bivariate polynomial B(x ,y) such that B(0,0)=s .
A share of B(x ,y) is itself a univariate polynomial: Either B(x ,i) or
B(i,y)where i is the node index.

Bivariate 0-sharing: Proactivization in nearly all secret-sharing
schemes involves generating a fresh, randompolynomial that shares

a 0-valued secret, e.g.,Q(x ,y) such thatQ(0,0)=0. This is added to
the current polynomial that encodes the secret s . We call such a poly-

nomialQ(x ,y) a 0-hole polynomial and generation of this polynomial

0-sharing. Previous approaches’ main communication bottleneck is

naïve 0-sharing that incurs high (O(n3) off-chain) communication

complexity. Our 0-sharing protocol achieves lower (O(n2) off-chain)
complexity. (Details in Section 4).

Dimension-switching: CHURP uses a bivariate polynomial B(x ,y)
asymmetric and of non-uniform degree. Specifically, it uses a polyno-
mial B(x ,y) of degree ⟨t ,2t⟩. By this, we mean that it is degree-t in x
(highest term xt) and degree-2t iny (highest termy2t).

This structure enables our novel dimension-switching technique
in CHURP. Nodes can switch between a sharing in the degree-t
dimension of B(x ,y) and the degree-2t dimension. The result is a

change from a (t ,n)-sharing of s to a (2t ,n)-sharing—and vice versa.
We apply known resharing techniques [24, 32] via bivariate polyno-

mials to switch between different sharings. As we show, dimension

switching provides an efficient way to address a key challenge men-

tioned above. During a handover, the adversary can control up to

2t nodes, but between handovers, we instead want a (t ,n)-threshold
sharing of s . (Details in Section 5.3.)

3.2 CHURP: Overview
We now give an overview ofCHURP execution.We first consider

the optimistic case, and discuss pessimistic cases below in Section 3.5.

At the end of a given epoch e − 1, before a handoff occurs, the

current committee C(e−1) is in what we call a steady state.
The committee C(e−1) holds a (t ,n)-sharing of s = B(0,0). This

sharing uses the degree-t dimension of B(x ,y), as noted above. Node

C
(e−1)
i holds share si =B(i,y), and can compute B(x ,0) for x = i . So

it is easy to see that si is actually a share in a (t ,n)-sharing of B(0,0).
We refer to the shares in steady state as full shares.

During the handoff in epoch e , nodes in the old and new com-

mittees C(e−1) and C(e) switch their sharing of s to the degree-2t
dimension of B(x ,y), resulting in what we call reduced shares.

Specifically, node C
(e)
j holds share sj =B(x ,j). Node C

(e)
j can com-

puteB(0,y) fory= j , and consequently sj is a share in a (2t ,n)-sharing
of B(0,0). The share sj here has “reduced” power in the sense that

2t+1 of these shares (as opposed to t+1 full shares in steady state)
are needed to reconstruct s . Thus the adversary cannot recover s
despite potentially compromising 2t nodes across the old and new

committees C(e−1) and C(e).

After share reduction, the polynomial B(x ,y) is proactivized. A
0-hole bivariate polynomialQ(x ,y), i.e., such thatQ(0,0)=0, is gener-
ated (using the newprotocol given in Section 4).Q(x ,y) is then added
to B(x ,y), yielding a fresh polynomial B′(x ,y) = B(x ,y) +Q(x ,y).
Nodes update their reduced shares accordingly. BecauseQ(x ,y) is
0-hole, the secret s remains unchanged, i.e., s=B′(0,0).

Shares in B′(x ,y), i.e., for the new committee, are now indepen-
dent of those for B(x ,y), i.e., for the old committee. So it is now safe

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2372

to perform full-share distribution, i.e., to switch to the degree-t di-
mension of B′(x ,y). This involves distributing full shares to the new

committee C(e). At this point, the steady state is achieved for epoch

e . Committee C(e) holds a (t ,n)-sharing of s using B′(x ,y).
To summarize, the three phases in theCHURP handoff are:

• Share reduction: Nodes switch from the degree-t dimension of

B(x ,y) to the degree-2t dimension. As a result, each node C
(e)
j in

the new committee obtains a reduced share B(x ,j).
• Proactivization: The new committee generatesQ(x ,y) such that

Q(0,0)=0, and each node C
(e)
j obtains a reduced share: B′(x ,j)=

B(x , j)+Q(x , j). Proactivization ensures that shares in the new

committee are independent of those in the old.

• Full-share distribution: New shares B′(i,y) are generated from

reduced shares {B′(x ,j)}j , by switching back to the degree-t di-
mension of B′(x ,y).

The protocol thus returns to its steady state. Note that during the

handoff, remaining nodes in old committee can still perform oper-

ations using s . So there is no operational discontinuity inCHURP.

3.3 An example
In Fig. 3, we show a simple example of the handoff protocol in

CHURP assuming all nodes are honest. The old committee con-

sists of three nodes C(e−1) = {A1,A2,A3 }. A3 leaves at the end of

the epoch, and a new node A′
3
joins. The new committee is thus

C(e) =
{
A1,A2,A

′
3

}
. The underlying polynomial B(x ,y) is thus of

degree ⟨1,2⟩. NodeAi ’s share is B(i,y) or 3 points: B(i,1),B(i,2) and
B(i,3). The figure depicts the three phases of the handoff, as follows.

Share reduction: To start the handoff, each node j in the new

committee constructs its reduced share B(x ,j) from points received

from C(e−1). As shown in the figure, nodeA′
3
receives points B(1,3)

and B(2,3) fromA1 andA2 respectively, from which B(x ,3) can be

constructed. Similarly,A1 andA2 construct B(x ,1) and B(x ,2).

Proactivization:Having reconstructed reduced shares {B(x ,j)}j ,
nodes in the new committee collectively generate a 0-hole bivariate

polynomialQ(x ,y) of degree ⟨t ,2t⟩, with the constraint that each j
only learnsQ(x ,j). Reduced shares are updated as B′(x ,j)=B(x ,j)+
Q(x ,j). In the example above, node j ends upwithQ(x ,j) of a random
0-hole polynomialQ(x ,y).

Full-share distribution:Nodes in the new committee get their full

shares from the updated reduced shares. Take A1 as an example.

By this point, A1 has B
′(x ,1) and sends B′(i,1) to Ai for i ∈ {2,3}.

Other nodes do the same. Hence, A1 receives B
′(1,2) and B′(1,3)

fromA2 andA
′
3
respectively. It now has the necessary three points

{B′(1,j)}j ∈[3] in order to interpolate its full share B
′(1,y).

3.4 Active security
Asnotedbefore, theaboveexampleassumesanhonest-but-curious

adversary.Additionalmachinery in the formof cryptographic proofs

of correctness for node communications—detailed in Section 5.3—are

required against an active adversary. These proofs do not alter the

overall structure of the protocol.

3.5 PessimisticCHURP execution paths
What we have described thus far is an optimistic execution of

CHURP. This corresponds to a subprotocol Opt-CHURP that is

highly efficient and optimistic: it only completes when all nodes are

honest and the assumptions of the KZG scheme hold.

When things go wrong, CHURP can detect the violation and

resort to pessimistic paths. Specifically, Exp-CHURP-A can hold

malicious nodes accountable. Moreover,CHURP introduces a novel
hedge against any soundness failure of the KZG scheme, due to ei-

ther a compromised trusted setup or a falsified hardness assumption

(t-SDH). The hedging technique is efficient and incurs onlyO(n) on-
chain cost to detect such failures. When detected,CHURP switches

to Exp-CHURP-B that only relies on DL and no trusted setup.

As noted above, the on-chain / off-chain communication complex-

ity ofCHURP isO(n) /O(n2) in the optimistic case. Unlike the opti-

misticpath, the twopessimisticpathsdonotuse theoff-chainchannel

and incurO(n2) on-chain cost.Opt-CHURP and Exp-CHURP-A re-

quires t <n/2, while Exp-CHURP-B requires t <n/3. We give more

details on all the paths inCHURP in Section 5.

4 EFFICIENT BIVARIATE 0-SHARING
In this section, we introduce our technique for efficient 0-sharing

of bivariate polynomials. It is a key new building block inCHURP,
used in the proactivization phase. The bivariate 0-sharing protocol

uses resharing techniques [24, 32] as a building block.

Recall that in the context of bivariate polynomials, 0-sharing

means having a committee C generate a ⟨t ,2t⟩-bivariate polynomial

Q(x ,y) such thatQ(0,0)=0. Each node Ci holds a shareQ(i,y).
Previous works have naïvely extended 0-sharing techniques for

univariate polynomials to the bivariate case: Each node generates its

own 0-hole bivariate polynomialQi i.e.,Qi (0,0)=0, and distributes

points on it. Thus each node transmitsO(n) univariate polynomials,

resulting inO(n2) off-chain communication complexity per node,

andO(n3) in total.
Our new technique, specified as protocol BivariateZeroShare,

brings the total off-chain communication complexity down to just

O(tn) in the optimistic case. In the pessimistic case, i.e., if a node

is caught cheating, different protocols (see Section 5) must then be

invoked. Even in the pessimistic case, though, our techniques incur

nomore cost than in previous schemes:O(n3) in the dynamic setting

andO(n2) in the static Herzberg et al. setting.
BivariateZeroShare comprises two steps. In the first step, a 0-

sharing subprotocolUnivariateZeroShare is executed among a sub-

setU of 2t+1 nodes. At the end of this step, each nodeUj holds a

sharesj of aunivariatepolynomialP(x). In the secondstep, eachnode
inU reshares its share sj among all nodes, i.e., the full committee.

Each node Ci thereby obtains shareQ(i,y) of bivariate polynomial

Q(x ,y), as desired.
BivariateZeroShare is formally specified in Fig. 10. (For the in-

terest of space, we present all protocols formally in the appendix.

Nonetheless, the text description here is sufficient to understand the

paper.) For ease of presentation, we describe an honest-but-curious

protocol version in this section. Our full protocol, which is secure

against active adversaries, is detailed in Section 5.3.

First step—SharingP(x):Asnoted,BivariateZeroSharefirstchooses
a subsetU ⊆ C of 2t +1 nodes, i.e., |U| = 2t +1. This can be done

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2373

𝐴1

𝐴2

𝐴3′

𝐴1

𝐴2

𝐴1

𝐴2

𝐴3

Handoff

s s

𝐴3

Share
Reduction

Full Share
Distribution

Randomize

ProactivizationEpoch e-1 Epoch e

X
Figure 3: An example of the handoff protocol: Curves denote univariate polynomials (reduced shares) while squares denote points on these
polynomials. See Section 3.3 for a description.

as follows: Order nodes lexicographically by their public keys and

choose the first 2t+1. Without loss of generality,U= {Cj }
2t+1
j=1 .

The nodes ofU then execute the univariate 0-sharing subproto-

colUnivariateZeroShare presented in Fig. 9. This subprotocol is not
new—it was previously used for proactivization in [44]. Each node

Uj generates a degree-2t univariate 0-hole polynomial Pj (x).
1
The

sum P(x)=
∑
2t+1
j=1 Pj (x) is itself a degree-2t univariate 0-hole polyno-

mialP(x). Then,Uj redistributes points on its local polynomialPj (x),
enabling everyUi at the end of the step to compute its share si =P(i).

Second step—ResharingP(x):Nodes inU now reshareP(x) among

all of C, resulting in a sharing of the desired bivariate polynomial

Q(x ,y).
Each nodeUj generates a degree-t univariate polynomial Rj (x)

uniformly at random under the constraint Rj (0)=sj , i.e., Rj (x) en-
codes the node’s share sj . Together, the 2t+1 degree-t polynomials

{Rj (x)} uniquely define a degree-⟨t ,2t⟩ bivariate polynomialQ(x ,y)
such thatQ(x ,j)=Rj (x) for j=1,2,...,2t+1 andQ(0,0)=0.

NodeUj sends Rj (i) =Q(i,j) to every other node Ci in the full

committee. Using the received points, each committee member Ci
interpolates to compute its share—a 2t-degree polynomial Q(i,y).
The constraintQ(0,0)= 0 is satisfied because the zero coefficients

of Rj (x) are composed of shares generated from the 0-sharing step

before, i.e., UnivariateZeroShare. Since each node inU transmits

n points, the overall cost incurred is justO(tn) off-chain.
We use (t , n)-BivariateZeroShare as a subroutine in CHURP

with some modifications. As explained before, it can also reduce

the off-chain communication complexity of Herzberg et al.’s PSS

scheme [44], i.e., the static-committee setting, by a factor ofO(n).
Due to lack of space, we present this application in the online full

version of the paper [50].

5 CHURP PROTOCOLDETAILS
CHURP consists of a suite of tiered protocols with different trust

assumptions and communication complexity.

The execution starts at the top tier—a highly efficient optimistic

protocol. Only upon detection of adversarial misbehavior, does the

execution fall back to lower tiers. The three tiers ofCHURP and their
relationship are shown in Fig. 4, detailed as below.

1
An attack is outlined in [51] that breaks the UnivariateZeroShare protocol in [44].

It does so in an adversarial model similar to ours, i.e., the adversary controls t nodes
in old and new committees and thus 2t in total, rather than t in total as in [44].CHURP
defeats this attack via dimension-switching, using reduced shares during the handoff.

The top tier,Opt-CHURP, is the default protocol of CHURP. It
is optimistic and highly efficient: if no node misbehaves, the exe-

cution completes incurring onlyO(n) on-chain andO(n2) off-chain
cost. As a design choice,Opt-CHURP does not identify faulty nodes

but rather just detects faulty behavior, upon which the execution

switches to a lower tier protocol, also referred to as a pessimistic path.

The second tier is Exp-CHURP-A, the main pessimistic path of

CHURP. Unlike the optimistic path, Exp-CHURP-A exclusively uses

on-chain communication channel, which allows to identify and ex-

pel faulty nodes using proofs of correctness. Exp-CHURP-A trades

performance for robustness: the execution is guaranteed to com-

plete as long as the adversarial threshold t <n/2, but incursO(n2)
on-chain communication in the worst case.

BothOpt-CHURP and Exp-CHURP-A use KZG commitments to

achieve t <n/2. As noted before, this commitment scheme requires

a trusted setup phase to generate public keys with a trapdoor. The

trapdoormust be “destroyed” after the setup; otherwise soundness is

lost, i.e., binding property ofKZG is broken.KZG introduces the only

trusted setup inCHURP, and thus represents its main protocol-level

vulnerability. KZG also relies on a non-standard hardness assump-

tion, the t-Strong Diffie-Hellman assumption (t-SDH).
To hedge against soundness failure in KZG (either due to a falsi-

fied trust assumption or a compromised trusted setup), we introduce

an additional verification step (StateVerif), which can be executed
at the end of Opt-CHURP or Exp-CHURP-A. StateVerif is highly
efficient—incurs onlyO(n) on-chain complexity. Any fault detected

by StateVerif indicates thatKZG is unusable, and triggers aKZG-free
pessimistic path named Exp-CHURP-B.Exp-CHURP-B has the same

cost as Exp-CHURP-A, but one drawback: It tolerates a lower adver-
sarial threshold, t <n/3. More details on StateVerif in Section 5.5.

In summary, the three tiers (subprotocols) ofCHURP are:

(1) Opt-CHURP: The default protocol of CHURP. It incurs O(n)
on-chain andO(n2) off-chain communication complexity under

the optimal resilience bound t <n/2.
(2) Exp-CHURP-A: Invoked if Opt-CHURP fails. It incurs O(n2)

on-chain communication complexity under the optimal bound

t <n/2.
(3) Exp-CHURP-B: Invoked if a soundness breach of KZG is de-

tected by StateVerif. It incurs the same cost as Exp-CHURP-A,
but requires t <n/3.

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2374

Table 2 summarizes the three tiers. Due to space constraints, we

present onlyOpt-CHURP in the body of the paper and present Exp-
CHURP-A and Exp-CHURP-B in Appendix C.

Start
Opt-CHURP
(t <n/2)

Exp-CHURP-A
(t <n/2)

Exp-CHURP-B
(t <n/3)

End

Trusted-setup failure Fault detected

Figure 4: CHURP protocol tiers. Opt-CHURP is the default protocol
of CHURP. Exp-CHURP-A and Exp-CHURP-B are run only if a fault
occurs inOpt-CHURP.

5.1 Notation and Invariants
Wenow introduce the notation and invariants that will be used to

explain the protocols ofCHURP. Notation is summarized in Table 1.

KZG polynomial commitments:KZG commitment allows a prover

to commit to apolynomialP(x) and later prove the correct evaluation
P(i) to a verifier. (Further details in Fig. 8 and [45].)

CHURP invariants:We say the system arrives at a steady state
after it completes a successful handoff. The following invariants

stipulate the desired properties of a steady state. We use invariants

to explain the protocol and reason about its security.

Let C be a committee of n nodes {Ci }
n
i=1. Let B(x ,y) denote the

asymmetric bivariate polynomial of degree ⟨t ,2t⟩ used to share the
secret s , i.e., s=B(0,0). In a steady state, the three invariants below
must hold:

• Inv-Secret: The secret s is the same across handoffs.

• Inv-State: Each node Ci holds a full share B(i,y) and a proof to the
correctness thereof. Specifically, the full share B(i,y) is a degree-
2t polynomial, and hence can be uniquely represented by 2t+1

points {B(i,j)}2t+1j=1 . The proof is a set ofwitnesses

{
WB(i, j)

}
2t+1
j=1 .

• Inv-Comm: KZG commitments to reduced shares ({B(x ,j)}2t+1j=1)

are available to all nodes.

The first invariant Inv-Secret ensures the secret remains un-

changed, a core functionality ofCHURP.
Inv-State and Inv-Comm ensures the correctness of the protocol.

For example, recall from Section 3 that during the handoff (the Share

Reduction phase), nodes in the old and the new committee switch

their dimension of sharing, from full shares to reduced shares. Using

the commitments (specified by Inv-Comm) and the witnesses (speci-

fied by Inv-State), new committee nodes can verify the correctness

of reduced shares, thus the correctness of dimension-switching.

Note that to realize Inv-Comm, hashes of KZG commitments are

put on-chain for consensus while the commitments are transmitted

off-chain between nodes.

Notation Description

C(e−1),C(e) Old, New committee

B(x ,y) Bivariate polynomial used to share the secret

⟨t ,k⟩ Degree of ⟨x ,y⟩ terms in B
RSi (x)=B(x ,i) Reduced share held by Ci
FSi (y)=B(i,y) Full share held by Ci ’s

CB(x, j) KZG commitment to B(x ,j)
WB(i, j) Witness to evaluation of B(x ,j) at i
Q(x ,y) Bivariate proactivization polynomial

U ′ Subset of nodes chosen to participate in handoff

λi Lagrange coefficients

Table 1: Notation

5.2 CHURP Setup
The setup phase of CHURP sets the system to a proper initial

steady state. To start, an initial committee C(0) is selected. The setup

ofKZG is performed and the secret is shared amongC(0). Using their

shares, members of C(0) can generate commitments to install the

three invariants.

The setupofKZG canbeperformedbya trustedparty or a commit-

tee assuming at least one of them is honest. The secret to bemanaged

by CHURP can be generated by a trusted party or in a distributed

fashion, e.g., [37]. We leave committee selection out-of-scope for

this paper. Readers can refer to, e.g., [40], for a discussion.

5.3 CHURPOptimistic Path (Opt-CHURP)
Recall thatOpt-CHURP transfers shares of some secret s from an

old committee, denoted C =C(e−1), to a new committee C′=C(e).

CHURP can support both committee-size and threshold changes, i.e.,

a transition from (n,t) to some (n′,t ′) in any epoch. For ease of exposi-
tionhere, though,weallown to changeacross epochsassumingacon-

stant threshold t . Changing the threshold is discussed in Section 5.4.
Opt-CHURP proceeds in three phases. The first phase,

Opt-ShareReduce, performs dimension-switching to tolerate an

adversary capable of compromising 2t nodes across the old and

new committees. By the end of this phase, reduced shares are con-

structed by members of the new committee. The second phase,Opt-
Proactivize, proactivizes these reduced shares so that new shares

are independent of the old ones. The third and the final phase,Opt-
ShareDist, restores full shares from reduced shares, and thus returns

to the steady state.

At the beginning ofOpt-CHURP, each node in C′ requests the
set of KZG commitments from any node in C, say C1. Recall that

by the invariant Inv-Comm, each node in C holds the KZG com-

mitments to the current reduced shares,

{
CB(x, j)

}
2t+1
j=1 , while the

corresponding hashes are on-chain. The received commitments are

verified using the on-chain hashes. Optimistically, each node in C′

receives the correct set of commitments. If a node receives corrupt

ones, we switch to a pessimistic path where the KZG commitments

are published on-chain. The above check enabled by the on-chain

hashes ensures that new committee nodes receive the correct set of

commitments. The phases ofOpt-CHURP are as follows:

5.3.1 Share Reduction (Opt-ShareReduce). The protocol starts by
choosing a subset U ′ ⊆ C′ of 2t + 1 members (possible because

|C′ |>2t). The nodes inU ′ are denoted {U ′j }
2t+1
j=1 .

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2375

Somemembers in the old committee Cmay have left the protocol

by this point. Let Calive ⊆ C denote the subset of nodes that are

present, w.l.o.g., let this subset be {Ci }
|Calive |
i=1 .

Recall that by the invariant Inv-State, each node Ci holds a full
shareB(i,y). Now,Ci distributes points on its full share allowing com-

putation of reduced shares B(x ,j) by all members ofU ′—making

a dimension-switch from the degree-t dimension of B(x ,y) to the

degree-2t dimension. Specifically, Ci sends B(i,j) toU
′
j , which inter-

polates the received points to get its reduced share B(x ,j).2 Note that
in the optimistic path we require all 2t+1 nodes inU ′ to participate.
If any adversarial nodes fail to do so, we switch to a pessimistic path

as detailed above.

The received points are accompanied by witnesses allowing for

verification using the KZG commitments received previously. Since

t+1 correct points are sufficient to reconstruct the reduced share,

we need at least 2t+1 points (|Calive |>2t) to guarantee liveness.
The size of Calive is governed by the bounded churn rate α , i.e.,

|Calive | ≥ |C|(1−α). Thus, the condition for liveness, |Calive |>2t ,
places a lower bound on the committee size, |C|(1 − α) > 2t or
|C|> ⌊2t/1−α⌋.

The protocolOpt-ShareReduce is formally specified in Fig. 11. At

the end ofOpt-ShareReduce, dimension-switching is complete and

each nodeU ′j has a reduced share B(x ,j).

Communication complexity: Each node inU ′ receivesO(n) points,
soOpt-ShareReduce incursO(nt) off-chain cost.

5.3.2 Proactivization (Opt-Proactivize). In this phase,U ′ proac-

tivizes the bivariate polynomial B(x ,y)—a key step in generating

new shares independent of the old ones held by members of C. The

polynomial B(x ,y) is updated using a random bivariate polynomial

Q(x ,y) generated such that Q(0,0) = 0. The result is a new poly-

nomial B′(x ,y) = B(x ,y)+Q(x ,y). The fact thatQ(0,0) = 0 ensures
preservation of our first invariant Inv-Secret.

We achieve this by adapting the bivariate 0-sharing technique

(BivariateZeroShare) presented in Section 4 to handle active adver-
saries. Recall that BivariateZeroShare comprises two steps. First,

a univariate 0-sharing subroutine generates shares of the number

0. These shares are then re-shared in a second step resulting in a

sharing ofQ(x ,y) among C′.

By the end of the previous, i.e., Share Reduction phase, every

nodeU ′j in the set of 2t+1 nodesU
′
holds a reduced share B(x ,j).

Now, by the end of the current, i.e., Proactivization phase, we update

these reduced shares by addingQ(x ,j) from the generated bivariate

polynomialQ(x ,y).
The protocol starts by invoking the 0-sharing subroutine Uni-

variateZeroShare introduced previously, which is the first step of

BivariateZeroShare. Specifically, (2t ,2t+1)-UnivariateZeroShare is
run amongU ′ to generate shares sj at eachU

′
j . To handle active ad-

versaries,U ′j sends a commitment to the share,дsj , to all other nodes

inU ′ (whereд is a publicly known generator). Lagrange coefficients

{λ2tj }j can be precomputed to interpolate and verify if the shares

form a 0-sharing,

∑
2t+1
j=1 λ2tj sj =0. Translating it to the commitments,

all nodes check the following:

2
Dimension-switch can be thought as a resharing of the shares. The zero points on

full shares B(i,0) i.e., shares of the secret s , are reshared.

2t+1∏
j=1
(дsj)λ

2t
j =1. (1)

Then,U ′j generates a random degree-t univariate polynomial

Rj (x) that encodes the node’s share sj , i.e., Rj (0)=sj . Together, the
2t + 1 polynomials uniquely define a 0-hole bivariate polynomial

Q(x ,y) such that {Q(x ,j)=Rj (x)}
2t+1
j=1 .U ′j also updates the reduced

share, B′(x ,j)=B(x ,j)+Rj (x). Points on B′(x ,j)will be distributed
to the entire committee C′ in the next phase ofOpt-CHURP. (We

make a modification to BivariateZeroShare: In the re-sharing step
of BivariateZeroShare, points onQ(x ,j)were distributed directly.)

EachU ′j sends constant-size information to other nodes off-chain

enabling verification of the above step. LetZ j (x)=Rj (x)−sj denote
a 0-hole polynomial, the commitment toZ j (x),CZ j , and a witness
to the evaluation at zero are distributed enabling verification of the

statement: Z j (0)= 0; equivalent to Rj (0)= sj . The commitment to

the updated reduced share B′(x ,j) is also distributed. Since B′(x ,j)=
B(x , j) + Z j + sj , the homomorphic property of the commitment

scheme allows other nodes to verify ifCB′(x, j)=CB(x, j)×CZ j ×Csj
whereCsj =д

sj
and the other two were received previously.

In total, each node U ′j generates the following set of commit-

ment and witness information during Opt-Proactivize,{
дsj ,CZ j ,WZ j (0),CB′(x, j)

}
. While this set is transmitted off-chain

to all nodes in the full committee C′, a hash of it is published on-

chain. The received commitments can then be verified using the

published hash, thereby ensuring that everyone receives the same

commitments. Note that the set of commitments is sent to C′ instead

of just the subsetU ′ to preserve the invariant Inv-Comm, i.e., ensure

that all nodes holdKZG commitments to the updated reduced shares.

The verification mechanisms used in this protocol are sufficient

to detect any faulty behavior, although they do not identify which

nodesare faulty.Thus, theadversarycandisrupt theprotocolwithout

revealing his / her nodes. For example, it could send corrupt commit-

ments to nodes selectively. Although the published hash reveals this,

a verifiable accusation cannot be made since the commitments were

sent off-chain. Another example would be a corrupt node sending

points from a non-0-hole polynomial in the UnivariateZeroShare
protocol. Again, we detect such a fault but cannot identify which

nodes are faulty. So detection of a fault simply leads to a switch to the

pessimistic path, Exp-CHURP-A. While Exp-CHURP-A is capable

of identifying misbehaving nodes, note that we do not retroactively
identify the faulty nodes fromOpt-CHURP.

The protocolOpt-Proactivize is formally specified in Fig. 12. By

the end of this, if no faults are detected, eachU ′j holds B
′(x ,j). The

invariants Inv-Secret and Inv-Comm hold as s =B′(0,0) and all of
C′ hold the KZG commitments respectively. In the next phase, we

preserve the other invariant Inv-State.
Communication complexity: Each node inU ′ publishes a hash on-
chain and transmits O(t) data off-chain. Hence, Opt-Proactivize
incursO(t) on-chain andO(t2) off-chain cost.

5.3.3 Full Share Distribution (Opt-ShareDist). In the final phase,

full shares are distributed to all members of the new committee, thus

preserving the Inv-State invariant. A successful completion of this

phase marks the end of handoff.

By the end of the previous phase, eachU ′j in the chosen subset

of nodesU ′⊆C′ holds a new reduced share B′(x ,j).

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2376

Protocol On-chain, Off-chain Threshold Optimistic

Opt-CHURP O(n),O(n2) t <n/2 Yes

Exp-CHURP-A O(n2),n/a t <n/2 No

Exp-CHURP-B O(n2),n/a t <n/3 No

Opt-Schultz-MPSS O(n),O(n4) t <n/3 Yes

Schultz-MPSS O(n2),O(n4) t <n/3 No

Table 2: On-chain costs and Off-chain costs for the dynamic setting.
An optimistic protocol ends successfully only if no faulty behavior
is detected. n/a indicates Not Applicable.

Now,U ′j distributes points on B
′(x ,j), allowing computation of

full sharesB′(i,y) by allmembers ofC′—wemake a dimension-switch
from the degree-2t dimension of B′(x ,y) to the degree-t dimension.

Specifically, eachC′i receives 2t+1points {B
′(i,j)}2t+1j=1 , which can be

interpolated to compute B′(i,y), its full share. This is made verifiable

by sending witness along with the points.

Since the point distribution is off-chain, a faulty node can send

corrupt points without getting identified similar to the previous

phase. In this event, we switch to the pessimistic path Exp-CHURP-A
without identifying which nodes are faulty.

The protocolOpt-ShareDist is formally specified in Fig. 13. If all

nodes receive correct points, this phase ends successfully and the

optimistic path ends. The remaining invariant Inv-State is fulfilled
as each node inC′ receives a full share, and hence the system returns

to the steady state. After a successful completion of CHURP, we
require that members of the old committee C delete their old full

shares and members ofU ′ delete their new reduced shares.

Communication complexity: Each node in C′ receives 2t+1 points,
thusOpt-ShareDist incursO(nt) off-chain cost.

Each of the three phases inOpt-CHURP (and thusOpt-CHURP
itself) incur no more thanO(n) on-chain andO(n2) off-chain cost.

In terms of round complexity, it completes in three rounds (one for

each phase) that does not depend on the committee size. Due to

lack of space, we reiterate that the pessimistic paths ofCHURP are

discussed in Appendix C. Table 2 compares on-chain and off-chain

costs of the three paths ofCHURP and Schultz-MPSS [66], the latter
will be explained in more detail in Section 6.3.1.

Theorem 1. ProtocolOpt-CHURP is a dynamic-committee proac-
tive secret sharing scheme by Definition 1.

We present the security proof in Appendix A.

Notes on the synchronicity assumptions. As discussed in Section 2,
CHURP works in the synchronous model and assumes a latency

bound forbothon-chainandoff-chain communication.While the for-

mer is a well-accepted assumption (e.g., see [48, 58, 72]), the latter is

assumed by the blockchain consensus protocol itself, as the required

difficulty of proof-of-work is dependent on the maximum network

delay [57]. However, we emphasize that synchronicity for off-chain

communication is needed only for performance, not for liveness or
safety of the full protocol. In the optimistic path, if messages take

longer to deliver, a fault is detected and the protocol switches to the

pessimistic path. After that, nodes communicate via the on-chain

channel only.

5.4 Change of threshold
Thus far we have focused on schemes that allow the committee

size to changewhile the threshold t remains constant.Wenowbriefly

describe how to enable an old committee with threshold te−1 (i.e.
the adversary can corrupt up to te−1 nodes) to hand off shares to a

new committee with a different threshold te .
Generally, we follow the samemethodology as that of [53, 66]. To

increase the threshold (i.e., te > te−1), the new committee generates a

(te ,2te)-degree zero-hole polynomialQ(x ,y) so that the proactivized
sharing has threshold te . To reduce the threshold (i.e., te < te−1), the
old committee creates 2×(te−1−te) virtual servers that participate
in the handoff as honest players, but expose their shares publicly. At

the end of the handoff, the new commitment incorporates the virtual

servers’ shares to form a sharing of threshold te in a similar process

as the public evaluation scheme in [53].

To make changes of the threshold verifiable, we also need to

extend the KZG commitment scheme with the degree verification

functionality such that given a commitmentCϕ,d to a polynomial ϕ,
it can be publicly verified thatϕ is atmostd-degree. Our extension re-
lies on theq-power knowledge of exponent (q-PKE [41]) assumption.

Due to lack of space, we refer readers to Appendix D formore details.

5.5 State Verification (StateVerif)
BothOpt-CHURP and Exp-CHURP-Amake use of the KZG com-

mitment scheme, which requires a trusted setup phase and its se-

curity (binding property) relies on the t-SDH assumption. Now, we

devise a hedge against these—a verification phase that relies only on
discrete log assumptions. At a high level, StateVerif includes checks
to ensure that the two important invariants, Inv-Secret and Inv-State,
hold, without using the KZG commitments on-chain.

Checking Inv-Secret:Assume that the commitment to the secret

дs is on-chain from the beginning (done as part of the setup phase).

Recall that at the end ofOpt-CHURP or Exp-CHURP-A, each new
committee node C′i holds a full share B

′(i,y). The secret can also be
computed from the zero points of the full shares, s=

∑n
i=1λiB

′(i,0),

where n= |C′ | and λi =λ
n−1
i as defined in Eq. (1). Each C′i computes

si =B
′(i,0)andpublishesдsi .All nodesverify that Inv-Secret remains

intact by checking дs =
∏n

i=1(д
si)λi .

Checking Inv-State: In this check, we ensure that the bivariate

polynomial B′(x ,y) is of degree ⟨t ,2t⟩. We achieve this by check-

ing that the 2t + 1 reduced shares {B′(x ,j)}j ∈[2t+1] are of degree
t . We build an efficient procedure that reduces the checks to a sin-

gle check through a random linear combination. If the degree of

Pr (x)
def

=
∑
2t+1
j=1 r jB

′(x ,j) is t , where r j s are chosen randomly, then

with high probability, the degree of allB′(x ,j) is t . It is important that

the adversary does not know the randomness a priori, as adversarial

nodes can then choose reduced shares of degree > t (in the proac-

tivization phase) in such a way that the higher degree coefficients

cancel in the linear combination. In practice, r j s can be obtained

from a public source of randomness [15].

Each C′i computes s ′i = Pr (i)=
∑
2t+1
j=1 r jB

′(i,j) and publishes дs
′
i

on-chain.All nodesnowcomputepowers of the coefficients ofPr . Let
Pr (x)=

∑n
j=1ajx

j
, then aj =

∑n
i=1λi jPr (i), where λi j are Lagrange

coefficients (an extension of Eq. (1)). Therefore,дaj =
∏n

i=1(д
s ′i)λi j .

All nodes check ∀j > t ,дaj =1, thus Pr (x) is t-degree.

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2377

The two checks above incur O(n) on-chain cost in total, thus

StateVerif is highly efficient. StateVerif can fail due to two possible
reasons: either the commitments are computed incorrectly by adver-

sarial nodes, or the assumptions in the KZG scheme fail. Additional

tests need to be performed to determine the cause of failure, these

incurO(n2) on-chain cost and are discussed in Appendix C.2. If ad-
versarial nodes are detected, the protocol expels these nodes and

switches to Exp-CHURP-A. On the other hand, if KZG assumptions

fail, the protocol switches to Exp-CHURP-B.

6 CHURP IMPLEMENTATION& EVALUATION
We now report on an implementation and evaluation of CHURP,

including a comparisonwith the state-of-the-art alternative, Schultz-
MPSS [66].

6.1 Implementation
We implementedOpt-CHURP in about 2,100 lines of Go and the

code is available at https://www.churp.io. Our implementation uses

the GNU Multiprecision Library [3] and the Pairing-Based Cryp-

tography Library [5] for cryptographic primitives, and gRPC [4] for

network infrastructure.

For polynomial arithmetic, we used the polynomial ring Fp [x]
for a 256-bit prime p. For the KZG commitment scheme, we used a

type A pairing on an elliptic curvey2=x3+x over Fq for a 512-bit

q. The order of the EC group is also p. We use SHA256 for hashing.

Blockchain Simulation: CHURP can be deployed on both per-

missioned and permissionless blockchains. We abstract away the

specific choice and simulate one using a trusted node. Note that

when deployed in the wild, writing to the blockchain would incur

an additional constant latency.

6.2 Evaluation
In our evaluation, experiments are run in a distributed network

of up to 1000 EC2 c5.large instances, each with 2 vCPU and 4GB

of memory. Each instance acts as a node in the committee and the

handoff protocol is executed assuming a static committee. All ex-

periments are averaged over 1000 epochs, i.e., 1000 invocations of

Opt-CHURP. We measure three metrics for each protocol epoch:

the latency (the total execution time), the on-chain complexity (the

total bytes written to the blockchain (i.e. the trusted node)), and the

off-chain complexity (the total bytes transmitted between all nodes).

The evaluation results are presented below.

Latency: In the first set of experiments, all EC2 instances belong

to the same region, also referred to as the LAN setting. This setting is

useful to understand the computation time ofOpt-CHURP, results
are presented in Fig. 5. The experimental results show a quadratic in-

crease consistentwith theO(n2) asymptotic computational complex-

ity ofOpt-CHURP and suggests a low constant, e.g., for a committee

of size 1001 the total protocol execution time is only about 3minutes

(Fig. 5b). As noted before, this does not include the additional latency

for on-chain writes. Note thatOpt-CHURP involves only 1 on-chain
write per node which happens at the end ofOpt-Proactivize, and in
Ethereum currently each write takes about 15 seconds. Fig. 5b also

shows that among the three phases,Opt-ShareDist dominates the

execution time due to the relatively expensiveO(n) calls to KZG’s

20 40 60 80 100

0

2

4

6

Nodes

L
a
t
e
n
c
y
(
s
e
c
)

Opt-ShareReduce

Opt-Proactivize

Opt-ShareDist

20 40 60 80 100

0

2

4

6

(a) Latency for the LAN (left bar) and WAN (right bar) setting with
committee sizes 11-101.

200 400 600 800 1,000

0

50

100

150

200

Nodes

L
a
t
e
n
c
y
(
s
e
c
)

Opt-ShareReduce

Opt-Proactivize

Opt-ShareDist

(b) Latency for the LAN setting with committee size 101-1001.
Figure 5: Latency

CreateWitness per node. (CreateWitness involvesO(n) group ele-
ment exponentiation, thus totalO(n2) computation.)

In the second set of experiments, we select EC2 instances across

multiple regions in US, Canada, Asia and Europe, also referred to as

theWAN setting. In this setting the network latency is relatively un-

stable, although even in the worst-case it is still sub-second. Hence,

during a handoff ofOpt-CHURP in theWAN setting, we expect a

constant increase in the latency over the LAN setting. Moreover,

we expect this constant to be relatively small compared to the time

spent in computation. We validate our hypothesis—for a committee

size of 100, theWAN latency is 4.54 seconds while the LAN latency

is 2.92 seconds (Fig. 5a), i.e., the additional time spent in network

latency is around 1.6 sec and constant across different committee

sizes as expected. Note that we were unable to execute experiments

in theWAN setting for committee sizes beyond 100 due to scaling

limitations in AWS. (We plan to get around this soon.)

On-chain communication complexity:Opt-CHURP incurs a linear

on-chain communication complexity—n hashes, i.e. 32n bytes, are
written to the blockchain in each handoff.

Off-chain communication complexity:Fig. 6 compares theoff-chain

complexity for different committee sizes forOpt-CHURP and [66],

a discussion about the comparison is in Section 6.3.1. Now, we dis-

cuss the off-chain costs ofOpt-CHURP. The concrete performance

numbers are consistent with the expectedO(n2) complexity.

The off-chain data transmitted per node includes: 2n (polynomial

point,witness) pairs in the share reduction and the share distribution

phase, and n elements of Fp in the proactivization phase; each node

also sends 1 commitment to share, 3 commitments to polynomials,

and 1witness. With aforementioned parameters, a commitment to a

t-degree polynomial is of size 65B (with compression) and points on

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2378

https://www.churp.io

0 200 400 600 800 1,000
10
−2

10
3

10
8

Nodes

O
ff
-
c
h
a
i
n
c
o
m
m
.
c
o
m
p
.
(
M
b
y
t
e
s
)

Opt-CHURP
Opt-Schultz-MPSS

Figure 6: Concrete off-chain communication complexity for
Opt-CHURP and Schultz-MPSS, with log-scale y-axis. Points show
experimental results; expected polynomial curves (respectively
quadratic and quartic) are also shown.

polynomial are of size 32B. For example, for t =50 and n=101, the
off-chain complexity ofOpt-CHURP is about 226n2+325n≈2.3MB.

In Fig. 6, the expected curve is slightly below theobserveddata points

due to trivial headermessages unaccounted in the above calculations.

As we’ll show now, the above is about 2300x lower than the com-

munication complexity of the state of the art.

6.3 Comparison with other schemes
6.3.1 Schultz’s MPSS. The Mobile Proactive Secret Sharing (MPSS)

protocol of Schultz et al. [66], referred to as Schultz-MPSS hereafter,
achieves the similar goal as CHURP in asynchronous settings, as-

suming t <n/3. Compared to [66],Opt-CHURP achieves anO(n2)
improvement for off-chain communication complexity. To evaluate

the concrete performance, we also implemented the optimistic path

of Schultz-MPSS (Section 5 of [66]) and evaluated the communica-

tion complexity empirically.

Asymptotic improvement: Schultz-MPSS extends the usage of ex-
pensive blinding polynomials introduced by Herzberg et al. [44]

to enable a dynamic committee membership. We recall briefly the

asymptotic complexity of Schultz-MPSS and refer readers to [66]
for details. Each node in the old committee generates a proposal of

sizeO(n2) and send it to other nodes, resulting in anO(n4) off-chain
communication complexity in total. Each node then validates the

proposals and reaches consensus on the set of proposals to use by

sendingO(n) accusations to the primary, incurring aO(n2) on-chain
communication complexity. In the optimistic case where no accusa-

tion is sent—labelledOpt-Schultz-MPSS—the consensus publishes
O(n)hashesofproposals onchainand thusonly incursO(n)on-chain
communication complexity.

Table 2 compares the asymptotic communication complexity of

Schultz-MPSS andCHURP. Schultz-MPSS has the same on-chain

complexity asCHURP, but isO(n2)more expensive for off-chain.

Performance evaluation:We implemented the optimistic path of

Schultz-MPSS in about 3,100 lines of Go code. To adapt Schultz-
MPSS to the blockchain setting, we replace the BFT component of

Schultz-MPSS with a trusted node. Fig. 6 compares the off-chain

communication complexity ofOpt-Schultz-MPSS andOpt-CHURP.
For practical parameterizations, our experiments show thatOpt-

CHURP can incur orders of magnitude less (off-chain) communica-

tion complexity thanOpt-Schultz-MPSS. For example, for a com-

mittee of size 100, the off-chain complexity of Schultz-MPSS is

53.667n4 ≈ 5.3GB, whereas that for Opt-CHURP is only 2.3MB,

a 2300x improvement! (If n≥ 65, the improvement is at least three

orders of magnitude.) Since Schultz-MPSS incurs excessive (GB)

off-chain cost, we do not run it for committee sizes beyond 100.

6.3.2 Baron et al. [12]. Baron et al. devise a batched secret-sharing
scheme that incursO(n3) cost to transferO(n3) secrets froman old to

anewcommittee. In the single secret settingofCHURP, [12] achieves
worse asymptotic cost than CHURP’s optimistic path (O(n3) vs
O(n2)) and equivalent in the pessimistic case. The asymptotic cost,

though, masks the much worse practical performance caused by

the use of impractical techniques to boost corruption tolerance. The

implications are twofold. First, their protocol only works when the

committee size is large (hundreds to thousands as we explain be-

low), whereasCHURPworks for arbitrary committee sizes. Second,

evenwith a large committee, their protocol requires large subgroups

of nodes (hundreds to thousands) to run maliciously-secure MPC,

making their protocol significantly more expensive in practice.

Thebottleneck in [12] lies in theuseofvirtualization techniques to

achieve corruption threshold close to t <n/2. Virtualization involves
two steps: first, the committeeof sizen is divided inton virtual groups
of size s <n; then each group is treated as a node in the committee

to execute the protocol usingMPC. [12] uses the group construction

techniques of [22] that only work for large committees: for a fixed

ϵ >0, to achieve a corruption threshold t < (1/2−ϵ)n, the size of the
constructed group is 16/ϵ2 (See Appendix B.2 of [22]). We want ϵ to
be small, e.g., ϵ =0.01—yielding t only slightly worse thanCHURP.
This, however, causes the group size to explode to s=160,000. Even
choosing a moderate ϵ , say ϵ =1/6—yielding t <n/3which is worse
thanCHURP, still requires agroupof sizes=576,meaning [12]needs

to be run using maliciously-secure MPC among n > 576 groups of
576 nodes each, making it extremely impractical.

7 POINT-TO-POINT
COMMUNICATIONTECHNIQUE

CHURP takes advantage of a hybrid on-chain / off-chain com-

munication model to minimize communication costs. A blockchain

is used to reach consensus on a total ordering of messages, while

much cheaper and faster off-chain P2P communication transmits

messages with no ordering requirement.

Off-chain P2P channels can be implemented in different ways

depending on the deployment environment. However, in a decen-

tralized setting, establishing direct off-chain connection between

nodes is undesirable, as it would compromise nodes’ anonymity.

Revealing network-layer identities (e.g., IP addresses) would also

be dangerous, as it could lead to targeted attacks. One can instead

use anonymizing overlay networks, such as Tor—but at the cost of

considerable additional setup cost and engineering complexity.

Alternatively, off-chain channels can be implemented as an over-

lay on existing blockchain infrastructure. In this section, we present

Transaction Ghosting, a technique for cheap P2P messaging on a

blockchain. The key trick to reduce cost is to overwrite transactions
so that they are broadcast, but subsequently dropped by the network.

Most of these transactions—and their embeddedmessages—are then

essentially broadcast for free. We focus on Ethereum, but similar

techniques can apply to other blockchains, e.g., Bitcoin.

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2379

0 100 200 300

0

200

400

(0.06s,1.09USD/MB)

Message transmission cost (USD/MB)

L
a
t
e
n
c
y
(
s
e
c
)

On-chain (Ethereum)

Transaction Ghosting

Figure 7: Tradeoff in latency vs.message transmission cost. The blue
curve shows the on-chain tradeoff. The red dot at (0.06s,1.09USD/MB)

corresponds to Transaction Ghosting.

We note that while our techniques may seem an abuse of the

Ethereum P2P network, the idea of leveraging the network for al-

ternative forms of communication has been under consideration by

the community for some time; see, e.g., [29].

7.1 Transaction Ghosting
A (simplified) Ethereum transaction tx= (n,m,д) includes a nonce

n, payloadm, and a per-byte gas price д paid to the miner of tx. For
a basic (“send”) transaction, Alice pays a miner f0+ |m | ×д, where
f0 is a base transaction cost and |m | is the payload size. (We make

this more precise below.)

Alice sends tx to network peers, who add tx to their pool of uncon-
firmed transactions, known as themempool [56]. They propagate tx
so that it can be included ultimately in all peers’ view of the mem-

pool. tx remains in the mempool until a miner includes it in a block,

at which point it is removed and f0 + |m | ×д units of currency is

transferred from Alice to the miner.

The key observation is, until tx is mined, Alice can overwrite it

with another transaction tx′. When this happens, tx is dropped from
the mempool. Thus, both tx and tx′ are propagated to all nodes, but
Alice only pays for tx′.

Two additional techniques can further reduce costs. Alice can

embedm in tx only, putting no message data in tx′. She then pays

nothing for the data containingm, only the cost associated with tx′.
This technique also generalizes to multiple overwrites, i.e., Alice

can embed a large messagem in multiple transactions {txi }i ∈[k−1],
which is useful given bounds (e.g., 32kB in Ethereum) on transaction

sizes. Alice will only pay the cost of the final transaction txk .

On-chain Transaction Ghosting

Bandwidth (KB/sec) ≤ 6.4 32.3 (9.31)

Latency (sec) varies (Fig. 7) 1.09 (0.82)

Message transmission cost (USD/MB) varies (Fig. 7) $0.06 ($0.02)

Transaction delivery rate 100% 92.2% (14.2%)

Table 3: Comparison between communication via the Ethereum
blockchain and via Transaction Ghosting. Numbers in parentheses
are standard deviations. See Appendix E for details.

Here we summarize the results of the our experiments in Ta-

ble 3 and Fig. 7, deferring details to Appendix E. Empirically, by

employing Transaction Ghosting on the Ethereum blockchain, we

can build cheap P2Pmessaging channels with an average bandwidth

of 32.3KB/sec (5x the throughput upper bound of on-chain commu-

nication). Our technique achieves extremely low cost and latency

Protocol Dynamic Adversary Network Threshold Cost

Herzberg et al. [44] No active synch. t <n/2 O(n2)
Cachin et al. [17] No active asynch. t <n/3 O(n4)

Desmedt et al. [24] Yes passive synch. t <n/2 O(n2)
Wong et al. [71] Yes active synch. t <n/2 exp(n)
Zhou et al. [73] Yes active asynch. t <n/3 exp(n)

Schultz-MPSS [66] Yes active asynch. t <n/3 O(n4)
Baron et al. [12] Yes active synch. t <n(1/2−ϵ) O(n3)

CHURP (this work) Yes active synch. t <n/2
O(n2) (optimistic)

O(n3) (pessimistic)

Table 4: Comparison of Proactive Secret Sharing (PSS) schemes—
those above the line do not handle dynamic committees while the
ones below do so. Cost indicates the off-chain commn. complexity.

compared with on-chain communication. As shown in Fig. 7, the

cost of sending 1MB of data using Transaction Ghosting is $0.06 and

the latency is 1.09 seconds. The lowest latency in on-chain commu-

nication is about 10-15 seconds [1, 2], costing hundreds of dollars per

megabyte. To summarize, TransactionGhosting enables efficientP2P

communication in a decentralized setting, which we can leverage

inCHURP and is of independent interest.

8 RELATEDWORK
Verifiable Secret Sharing (VSS): Polynomial-based secret sharing

was introduced by Shamir [67]. Feldman [30] and Pedersen [59]

proposed an extension called verifiable secret sharing (VSS), in which
dealt shares’ correctness can be verified against a commitment of

the underlying polynomial. In these schemes, a commitment to a

degree-t polynomial has size O(t). The polynomial-commitment

scheme of Kate et al. [45] (KZG) reduces this toO(1), and is adopted
for secret sharing in, e.g., [11], and inCHURP.

KZG hedge: Prior works [42] hedge against the failure of a commit-

ment scheme (or a cryptosystem [13]) by creating hybrid schemes

that combine multiple schemes, in contrast toCHURP’s approach
of using protocol tiers with different schemes in each tier. This ap-

proach coupled with novel, efficient detection techniques to switch

between tiers (StateVerif), allowsCHURP to include an efficient top

tier (optimistic path). The notion of graceful degradation in the event

of a failure appears in several works [13, 35, 65]—loosely similar to

how CHURP degrades to a lower corruption threshold when the

KZG scheme fails (exact notion hasn’t appeared before).

Proactive Secret Sharing (PSS): Proactive security, the idea of re-
freshing secrets to withstand compromise, was first proposed by

Ostrovsky and Yung [55] for multi-party computation (MPC). It was

first adapted for secret sharing by Herzberg et al. [44], whose tech-

niquescontinue tobeused insubsequentworks, e.g., [16, 20, 36, 43, 49,

53, 66], and inCHURP (inUnivariateZeroShare). As noted, a result of
independent interest in ourwork is anO(n) reduction in theoff-chain
communication complexity of [44]. (Details in the full version [50].)

All the above schemes assume a synchronous networkmodel and

computationally bounded adversary; CHURP does too, given its

blockchain setting. PSS schemes have also been proposed in asyn-

chronous settings [17, 66, 73] and unconditional settings [54, 68].

Nikov and Nikova [51] provide a survey of the different techniques

used in PSS schemes along with some attacks (which CHURP ad-

dresses via its novel dimension-switching techniques).

Dynamiccommitteemembership:Desmedt and Jajodia [24] pro-

pose a scheme that can change the committee and threshold in a

secret-sharing system, but is unfortunately not verifiable. Wong et

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2380

al. [71] build a verifiable scheme assuming that the nodes in the

new committee are non-faulty. Subsequent works [12, 25, 73] build

schemes that do not make such assumptions, but are impractical for

our use—[73] incurs exponential communication cost, [25] incurs

exponential computation cost, and [12] uses impractical virtualiza-

tion techniques (See Section 6.3.2). Schultz et al. [66] were the first
to build a practical scheme under an adversarial model similar to

ours. While [66] incursO(n4) off-chain communication cost, as Ta-

ble 4 shows,CHURP improves it to worst-caseO(n3) off-chain cost
(O(n2) in the optimistic case).We convert the on-chain cost incurred

by CHURP to its equivalent off-chain cost in order to facilitate a

comparison with prior work in the following manner: Instead of

using a blockchain, use PBFT [18] to post messages on the bulletin

board which incurs an extraO(n) off-chain cost per bit.

Bivariate polynomials:Bivariate polynomials have been explored

extensively in thesecret-sharing literature, tobuildVSSprotocols [17,

31], for multipartite secret-sharing [70], to achieve unconditional

security [54], and to build MPC protocols [14, 38]. Prior toCHURP,
few works [26, 64] have considered application of bivariate polyno-

mials to dynamic committees, but these have been limited to passive

adversaries.CHURP’s novel use of dimension-switching provides

security against a strong active adversary controlling 2t nodes dur-
ing the handoff. The dimension-switching technique applies well

known resharing techniques [24, 38] via bivariate polynomials to

switch between full and reduced shares.

0-sharing, the technique of generating a 0-hole polynomial has

beenwidely used for proactive security since thework of [44]. Aswe

explain before, prior works [26, 54, 64] have naively extended these

to the bivariate case leading to expensive 0-sharing protocols. In-

stead,CHURP applies resharing techniques [24] to build an efficient

bivariate 0-sharing protocol.

CHURP’s use of two sharings appears in somepriorworks [60, 62]

(with largely differing goals and detail) where each node stores an

additive share of the secret and a backup share of every other node’s

additive share. Proactivization is achieved by resharing the additive

shares, in contrast to CHURP’s approach of generating a shared

polynomial explicitly which is then used to update the reduced

shares. We note that adapting these techniques for use inCHURP
is non-trivial, moreover,CHURP’s bivariate 0-sharing protocol has
other uses as well, e.g., can reduce the off-chain cost of [44].

ACKNOWLEDGEMENT
This workwas funded byNSF grants CNS-1514163, CNS-1564102,

and CNS-1704615, as well as ARO grantW911NF16-1-0145 and sup-

port from IC3 industry partners.

REFERENCES
[1] [n.d.]. ETH Gas Station. https://ethgasstation.info/. (Accessed on 11/13/2018).

[2] [n.d.]. Ethereum Gas Price Tracker. https://etherscan.io/gastracker.

[3] [n.d.]. Go language interface to GMP - GNUMultiprecision Library.

[4] [n.d.]. gRPC: A high performance, open-source universal RPC framework.

[5] [n.d.]. The PBC GoWrapper. https://github.com/Nik-U/pbc.

[6] 2018. Decentralized Identity Foundation (DIF) homepage.

[7] 2018. uPort. https://www.uport.me/.

[8] Yazin Akkawi. 21 Dec. 2017. Bitcoin’s Most Pressing Issue Summarized in Two

Letters: UX. Inc. (21 Dec. 2017).
[9] Brian Armstrong. Feb. 25, 2018. Coinbase is not a wallet. https:

//blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7.

[10] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich,

Ronen Tamari, and David Yakira. 2018. Helix: a scalable and fair consensus
algorithm. Technical Report. Technical report, Orbs Research.

[11] Michael Backes, Amit Datta, and Aniket Kate. 2013. Asynchronous computational

VSS with reduced communication complexity. In CT-RSA. Springer.
[12] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. 2015.

Communication-optimal proactive secret sharing for dynamic groups. InACNS.
[13] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav

Shacham, and Scott Yilek. 2009. Hedged public-key encryption: How to protect

against bad randomness. InASIACRYPT. Springer, 232–249.
[14] Michael Ben-Or, Shafi Goldwasser, and AviWigderson. 1988. Completeness theo-

rems for non-cryptographic fault-tolerant distributed computation. InACMTOCS.
[15] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. 2015. On Bitcoin as a public

randomness source. IACR ePrint Archive 2015 (2015), 1015.
[16] Kevin D Bowers, Ari Juels, and Alina Oprea. 2009. HAIL: A high-availability and

integrity layer for cloud storage. In 16th ACM CCS.
[17] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. 2002.

Asynchronous verifiable secret sharing andproactive cryptosystems. InACMCCS.
[18] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and

proactive recovery. ACM TOCS (2002).
[19] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah

Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A Platform

for Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts.

In 2019 IEEE EuroS&P.
[20] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. 1997. A secure and

optimally efficient multi-authority election scheme. ETT (1997).

[21] Phil Daian, Rafael Pass, and Elaine Shi. 2016. SnowWhite: Provably Secure Proofs

of Stake. Cryptology ePrint Archive, Report 2016/919.

[22] Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam

Smith. 2008. Scalable multiparty computation with nearly optimal work and

resilience. In CRYPTO. Springer, 241–261.
[23] Yvo Desmedt and Yair Frankel. 1991. Shared generation of authenticators and

signatures. In CRYPTO.
[24] Yvo Desmedt and Sushil Jajodia. 1997. Redistributing secret shares to new access

structures and its applications. Technical Report.
[25] Yvo Desmedt and Kirill Morozov. 2015. Parity check based redistribution of secret

shares. In ISIT.
[26] Shlomi Dolev, Juan Garay, Niv Gilboa, and Vladimir Kolesnikov. 2009. Swarming

secrets.

[27] Michael Egorov, MacLane Wilkison, and David Nuñez. 2017. Nucypher KMS:

decentralized key management system. arXiv preprint arXiv:1707.06140 (2017).
[28] Ethereum. [n.d.]. Devp2p. https://github.com/ethereum/devp2p

[29] Ethereum. [n.d.]. Whisper. https://github.com/ethereum/wiki/wiki/Whisper

[30] Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret

sharing. In FOCS.
[31] Pesech Feldman and Silvio Micali. 1997. An optimal probabilistic protocol for

synchronous Byzantine agreement. SIAM J. Comput. (1997).
[32] Yair Frankel, Peter Gemmell, Philip D MacKenzie, and Moti Yung. 1997.

Optimal-resilience proactive public-key cryptosystems. In FOCS.
[33] Yair Frankel, Peter Gemmell, Philip DMacKenzie, and Moti Yung. 1997. Proactive

rsa. In CRYPTO.
[34] frontrun.me. [n.d.]. Visualizing Ethereum gas auctions. http://frontrun.me/.

[35] Georg Fuchsbauer. 2018. Subversion-zero-knowledge SNARKs. In IACR
International Workshop on Public Key Cryptography. Springer, 315–347.

[36] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1996. Robust

threshold DSS signatures. In EUROCRYPT.
[37] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Secure

distributed key generation for discrete-log based cryptosystems. In EUROCRYPT.
[38] Rosario Gennaro, Michael O Rabin, and Tal Rabin. [n.d.]. Simplified VSS and

fast-track multiparty computations with applications to threshold cryptography.

[39] geth. [n.d.]. The maximum data size in a transaction is 32 KB. https://github.com/

ethereum/go-ethereum/blob/6a33954731658667056466bf7573ed1c397f4750/

core/tx_pool.go#L570.

[40] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In SOSP.
[41] Jens Groth. 2010. Short pairing-based non-interactive zero-knowledge arguments.

InASIACRYPT.
[42] Amir Herzberg. 2009. Folklore, practice and theory of robust combiners. Journal

of Computer Security 17, 2 (2009), 159–189.
[43] Amir Herzberg, Markus Jakobsson, Stanislław Jarecki, Hugo Krawczyk, and Moti

Yung. 1997. Proactive public key and signature systems. InACMCCS.
[44] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. 1995.

Proactive secret sharing or: How to cope with perpetual leakage. In CRYPTO.
[45] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. InASIACRYPT.
[46] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In CRYPTO.

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2381

https://ethgasstation.info/
https://etherscan.io/gastracker
https://github.com/Nik-U/pbc
https://www.uport.me/
https://blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7
https://blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7
https://github.com/ethereum/devp2p
https://github.com/ethereum/wiki/wiki/Whisper
http://frontrun.me/
https://github.com/ethereum/go-ethereum/blob/6a33954731658667056466bf7573ed1c397f4750/core/tx_pool.go#L570
https://github.com/ethereum/go-ethereum/blob/6a33954731658667056466bf7573ed1c397f4750/core/tx_pool.go#L570
https://github.com/ethereum/go-ethereum/blob/6a33954731658667056466bf7573ed1c397f4750/core/tx_pool.go#L570

[47] Eleftherios Kokoris-Kogias, Enis CeyhunAlp, Sandra Deepthy Siby, Nicolas Gailly,

Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford. 2018. CALYPSO:

Auditable Sharing of Private Data over Blockchains. Cryptology ePrint Archive.

[48] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. 2016. Hawk: The

Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts. In

IEEE S&P.
[49] Haiyun Luo, Petros Zerfos, Jiejun Kong, Songwu Lu, and Lixia Zhang. 2002.

Self-Securing Ad HocWireless Networks. In ISCC.
[50] Sai Krishna DeepakMaram, Fan Zhang, LunWang, Andrew Low, Yupeng Zhang,

Ari Juels, and Dawn Song. 2019. CHURP: Dynamic-Committee Proactive Secret

Sharing. https://eprint.iacr.org/2019/017.

[51] Ventzislav Nikov and Svetla Nikova. 2004. On proactive secret sharing schemes.

In International Workshop on Selected Areas in Cryptography.
[52] John P. Njui. [n.d.]. Coinbase Custody Service SecuresMajor Institutional Investor

Worth $20 Billion. EthereumWorld News ([n. d.]).
[53] Mehrdad Nojoumian and Douglas R Stinson. 2013. On dealer-free dynamic

threshold schemes. Adv. in Math. of Comm. (2013).
[54] Mehrdad Nojoumian, Douglas R Stinson, and Morgan Grainger. 2010. Uncon-

ditionally secure social secret sharing scheme. IET information security (2010).
[55] Rafail Ostrovsky and Moti Yung. 1991. How to withstand mobile virus attacks.

InACM PODC.
[56] Parity. [n.d.]. Transaction Queue. https://wiki.parity.io/Transactions-Queue.

[57] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain

protocol in asynchronous networks. In EUROCRYPT. Springer, 643–673.
[58] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with Optimistic

Instant Confirmation. In EUROCRYPT.
[59] Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic secure

verifiable secret sharing. In CRYPTO.
[60] Bartosz Przydatek and Reto Strobl. 2004. Asynchronous proactive cryptosystems

without agreement. InASIACRYPT. Springer, 152–169.
[61] Michael O Rabin. 1983. Randomized byzantine generals. In FOCS.
[62] Tal Rabin. 1998. A simplified approach to threshold andproactiveRSA. InCRYPTO.
[63] Jeff John Roberts and Nicolas Rapp. 2017. Exclusive: Nearly 4 Million Bitcoins

Lost Forever, New Study Says. http://fortune.com/2017/11/25/lost-bitcoins/

[64] Nitesh Saxena, Gene Tsudik, and Jeong Hyun Yi. 2005. Efficient node admission

for short-lived mobile ad hoc networks. In 13th ICNP.
[65] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. 2016. Trinocchio:

privacy-preserving outsourcing by distributed verifiable computation. InACNS.
[66] David A Schultz, Barbara Liskov, and Moses Liskov. 2008. Mobile proactive secret

sharing. InACM PODC.
[67] Adi Shamir. 1979. How to share a secret. Commun. ACM (1979).

[68] Douglas R Stinson and Ruizhong Wei. 1999. Unconditionally secure proactive

secret sharing scheme with combinatorial structures. In SAC.
[69] Paul Syverson, R Dingledine, and NMathewson. 2004. Tor: The secondgeneration

onion router. In Usenix Security.
[70] Tamir Tassa and Nira Dyn. 2009. Multipartite secret sharing by bivariate

interpolation. Journal of Cryptology (2009).
[71] Theodore MWong, ChenxiWang, and Jeannette MWing. 2002. Verifiable secret

redistribution for archive systems. In the 1st Security in StorageWorkshop.
[72] Fan Zhang, Philip Daian, Gabriel Kaptchuk, Iddo Bentov, Ian Miers, and Ari Juels.

2018. Paralysis Proofs: Secure Access-Structure Updates for Cryptocurrencies

andMore. Cryptology ePrint Archive, Report 2018/096.

[73] Lidong Zhou, Fred B Schneider, and Robbert Van Renesse. 2005. APSS: Proactive

secret sharing in asynchronous systems. ACM TISSEC (2005).

[74] Guy Zyskind, Oz Nathan, et al. 2015. Decentralizing privacy: Using blockchain

to protect personal data. In Security and PrivacyWorkshops.

A SECURITY PROOF FOROpt−CHURP
Recall that a protocol for dynamic-committee proactive secret

sharing satisfies secrecy and integrity. We prove secrecy first.

Secrecy.We consider the handoff protocol of one epoch first. As

described in Section 5.3,Opt-CHURP consists of three phases:Opt-
ShareReduce,Opt-Proactivize andOpt-ShareDist. Other than the
public inputs, the information obtained by the adversaryA is:

Opt-ShareReduce:

• For all corruptUj in the previous handoff, reduced share B(x ,j).
• For all corrupt nodes Ci in the old committee,{

B(i,j),WB(i, j)
}
j ∈[2t+1] (full share B(i,y)).

• For all corruptU ′j in the new committee selected to participate

in the handoff,

{
B(i,j),WB(i, j)

}
i ∈[2t+1] (reduced share B(x ,j)).

Opt-Proactivize:

• For all corrupt nodesU ′j , sj andQ(x ,j)=Rj (x).

• For all corrupt nodes C′i in the new committee,Hj and{
дsj ,CZ j ,WZ j (0),CB′(x, j)

}
.

Opt-ShareDist:

• For all corruptC′i in the new committee,

{
B′(i,j),W ′B(i, j)

}
j ∈[2t+1]

.

The informationaboveassumes thesecrecyofourbivariate0-sharing

protocol, which we explained in the main body. In addition, note

that the public information posted on chain are all commitments of

the polynomials. By the hiding property of the commitment scheme

based on the discrete log assumption, the PPT A learns no extra

information from these commitments. To prove secrecy, we have

the following lemmas.

Lemma 2. IfA corrupts no more than t nodes in the old committe
node , and no more than t nodes inU ′, the information received byA
inOpt-ShareReduce is random and independent of the secret s .

Proof. This is implied by the degree of the bivariate polynomial

B(x ,y). In the worst case when all t corrupted nodes are inU and

U ′,A learns 2t reduced shares B(x ,j) and t full shares B(i,y). For a
⟨t ,2t⟩-bivariate polynomial, any t shares of B(i,y) and 2t shares of
B(x ,j) are random and independent of s=B(0,0).

Moreover,basedonthediscrete-logassumption, theproofsWB(i, j)
are computationally zero-knowledge by the KZG scheme, and the

PPT adversary cannot learn additional information from them. □

Lemma 3. Given a bivariate 0-sharing scheme with secrecy and
integrity, if at least one node is honest inOpt-Proactivize,Q(x ,y) is
randomly generated.

Proof. Any2t+1degreet univariatepolynomialsQ(x ,j)uniquely
define a ⟨t ,2t⟩-bivariate polynomial. Therefore, as long as one node

is honest and generates a random degree t polynomial, Q(x ,y) is
randomly generated to mask B(x ,y).

Similar to the proof above, the hashes and commitments do not

leak additional information to a PPT adversaryA.

□

Lemma 4. IfA corrupts no more than t nodes in the new committee
C′, the information received byA inOpt-ShareDist is random and
independent of the secret s .

Proof. ByLemma2,Q(x ,y) is randomlygenerated, thusB′(x ,y)=
B(x ,y)+Q(x ,y) is independent of B(x ,y). Regardless of the number

of nodes corrupted byA inU ′,A receives no more than t out of
n′ shares of B′(i,y) in Opt-ShareDist. As the degree of B′(x ,y) is
⟨t ,2t⟩ and is independent of B(x ,y), these shares are random and

independent of s . Again, the proofs in the second part do not leak

additional information. □

By Lemma 2, 3 and 4,A does not learn any information about s in
consecutive epochs. The secrecy of the scheme follows by induction.

Integrity. For integrity, we have the following lemmas.

Lemma 5. AfterOpt-ShareReduce, at least t+1 honest nodesU ′j
can successfully reconstruct B(x ,j).

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2382

https://eprint.iacr.org/2019/017
https://wiki.parity.io/Transactions-Queue
http://fortune.com/2017/11/25/lost-bitcoins/

KZGCommitment

1 :

(sk,pk)←Keygen(1λ,q): Select a bilinear group (p,G,GT ,e,д)←BilGen(1λ) and s

randomly in Z∗p . Set sk=s and pk=д
s ,дs

2

, ...,дs
q
.

2 : Cϕ←Commit(ϕ(x),pk): ComputeCϕ =д
ϕ (s)

using pk.

3 :

(ϕ(i),Wi)←CreateWitness(ϕ(x),i,pk): Computeϕ(x)−ϕ(i)= (x−i)w (x), set
Wi =дw (s) .

4 :

{True,False}←VerifyEval(Cϕ ,i,ϕ(i),Wi ,pk): Output True if e(Cϕ /д
ϕ (i),д)=

e(дs−i ,Wi). Otherwise, output False.

Figure 8: Protocols of KZG commitment scheme.

(2t,2t+1)-UnivariateZeroShare

1 : Input: t , set of 2t+1 nodes {Uj }j∈[2t+1]

2 : Output: Each nodeUj outputs a share sj =P (j) for randomly

3 : generated degree-2t polynomial P (y)with P (0)=0

4 : nodeUj

5 : Generate a random 2t -degree polynomial Pj s.t. Pj (0)=0

6 : Send a point Pj (i) to nodeUi for each i ∈ [2t+1]

7 : Wait to receive points {Pi (j) }i∈[2t+1] from all other nodes

8 : Let P =
∑
i∈[2t+1]Pi , compute share P (j)=

∑
i∈[2t+1]Pi (j)

Figure 9: (2t,2t+1)-UnivariateZeroShare between 2t+1 nodes. A 0-hole
univariate polynomial P of degree-2t is generated.

Proof. As the number of nodes in the old committee n ≥ 2t+1,
each nodeU ′j receives at least t+1 correct shares of B(i,j). As the

degree on the first variable of B(x ,y) is t ,U ′j can reconstruct B(x ,j)

successfully. Finally, as the number of nodes inU ′ is 2t+1, there are
at least t+1 honest nodes. □

Lemma 6. Assuming the correctness of the bivariate 0-sharing
scheme, afterOpt-Proactivize, either honest nodesU ′j hold the correct
shares of B′(x ,j) such that B′(0,0)=B(0,0)=s and their commitments
CB′(x, j) are on-chain, or at least t+1 honest nodes in C′ output fail.

Proof. By line15 inFigure12, {дsj ,CZ j ,WZ j (0),CB′(x, j)} is consis-

tentwith thehashHj posted on chain byU
′
j . IfCZ j is not a univariate

polynomial with constant term 0, by line 16,VerifyEval outputs false
and C′i outputs fail by the soundness of KZG. Otherwise, by the

second check of line 16, CB′(x, j) is the commitment of a polyno-

mial B′(x ,j)with constant term B(x ,j)+sj . Finally, by the check of

line 17, by the discrete-log assumption,

∑
2t+1
j=1 sjλ

2t
j =0. Therefore,

B′(0,0)=B(0,0) because of the property of Lagrange coefficients. □

By Lemma 5 and 6, ifOpt-ShareReduce andOpt-Proactivize do
not fail, all nodesU ′j hold the correct shares of B′(x , j) such that

B′(0,0)=B(0,0)=s and their commitmentsCB′(x, j) are on the chain.
InOpt-ShareDist, each node C′i receives 2t+1 shares of B

′(i,j) from
allU ′j s. By the soundness of the KZG scheme, if any of these shares

is corrupt, VerifyEval rejects, and honest nodes in C′ output fail.

Otherwise, with 2t+1 correct shares of B′(i,j), C′i can successfully
reconstruct B′(i,y), which completes the proof of integrity.

B APPLICATIONS
INDECENTRALIZED SYSTEMS

Secret sharing finds use in innumerable applications involving

cryptographic secrets, including secure multi-party computation

(MPC) [14], threshold cryptography [23], Byzantine agreement [61],

and cryptocurrency custody [9].

(t,n)-BivariateZeroShare

1 : Input: t,n, set of nodes {Ci }i∈[n] (2t <n)

2 :

Output: Each node Ci outputs a shareQ (i,y) for randomly generated degree-⟨t,2t ⟩
bivariate polynomialQ (x,y)withQ (0,0)=0

3 : Order {Ci }i∈[n] based on lexicographic order of their public keys

4 : Choose first 2t+1 nodes, w.l.o.g.,U= {Cj }j∈[2t+1]

5 :

Invoke (2t,2t+1)-UnivariateZeroShare among {Uj }j∈[2t+1] to generate shares{
sj

}
j∈[2t+1]

6 : nodeUj :

7 : Generate a random t -degree polynomial Rj s.t Rj (0)=sj

8 : Send a point Rj (i) to node Ci for each i ∈ [n]

9 : Denote the bivariate polynomialQ (x,y)where
{
Q (x, j)=Rj (x)

}
j∈[2t+1]

10 : node Ci :

11 : Wait to receive points

{
Rj (i)

}
j∈[2t+1]= {Q (i, j) }j∈[2t+1]

12 : Interpolate to reconstruct a 2t -degree polynomialQ (i,y)

13 : Output shareQ (i,y)

Figure 10: (t, n)-BivariateZeroShare between n nodes. A 0-hole
bivariate polynomialQ of degree-⟨t,2t ⟩ is generated.

Opt-ShareReduce

1 : Public Input:
{
CB(x, j)

}
j∈[2t+1]

2 :

Input: Set of nodes {Ci }i∈[n] where each node Ci is given
{
B(i, j),WB(i, j)

}
j∈[2t+1] .

Set of nodes {C′j }j∈[n′] s.t.n
′ ≥ 2t+1

3 : Output: ∀j ∈ [2t+1], node C′j output B(x, j)
4 : Order {C′j } based on lexicographic order of their public keys

5 : Choose the first 2t+1 nodes, denoted asU′, w.l.o.g.,U′= {C′j }j∈[2t+1]

6 : node Ci :

7 : ∀j ∈ [2t+1], send a point and witness {
B(i, j),WB(i, j)

}
toU′j off-chain

8 :
nodeU′j :

9 : Wait and receiven points and witnesses,

{
B(i, j),WB(i, j)

}
i∈[n]

10 : ∀i ∈ [n], invokeVerifyEval(CB(x, j),i,B(i, j),WB(i, j))

11 : Interpolate any t+1 verified points to construct B(x, j)

Figure 11:Opt-ShareReduce between the committees C and C′.

Decentralized systems, however, are an especially attractive ap-

plication domain, though, for two reasons.

First, blockchain systems task individual users with management
of their own private keys, an unworkable approach for most users. A

frequent result, asnotedabove, iskey loss [63]orcentralizedkeyman-

agement [9, 52] that defeats themain purpose of blockchain systems.

Second,blockchain objects cannot keepprivate state. This fact limits

the applications of smart contracts, as they cannot compute digital

signatures or manage encrypted data.

We briefly enumerate a few of the most important potential ap-

plications in decentralized systems usingCHURP:

Usable cryptocurrency management. Rather than relying on cen-
tralized parties (e.g., exchanges) to custody private keys for cryp-

tocurrency, or using hardware or software wallets, which are notori-

ously difficult to manage [8], users could instead store their private

keys with committees. These committees could authenticate users

and enforce access-control, resulting in the decentralized equivalent

of today’s exchanges.

Decentralized identity. Initiatives such as the Decentralized Iden-
tity Foundation [6] and uPort [7] envision an ecosystem in which

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2383

Opt-Proactivize

1 : Public Input:
{
CB(x, j)

}
j∈[2t+1]

2 : Input: Set of nodes {C′i }i∈[n′] . LetU
′= {C′j }j∈[2t+1] , each nodeU

′
j is given B(x, j)

3 :

Output:U′j outputs success and B
′(x, j) for a degree-⟨t,2t ⟩ bivariate polynomial

B′(x,y)with B′(0,0)=B(0,0) (or) fail

4 : Public Output:
{
CB′(x, j)

}
j∈[2t+1]

5 :

Invoke (2t,2t+1)-UnivariateZeroShare among the nodes {U′j }j∈[2t+1] to generate

shares

{
sj

}
j∈[2t+1]

6 :
nodeU′j :

7 : Generate random t -degree polynomial Rj (x) such that Rj (0)=sj

8 : Denote the bivariate polynomialQ (x,y)where
{
Q (x, j)=Rj (x)

}
j∈[2t+1]

9 : Denote the bivariate polynomial B′(x,y)=B(x,y)+Q (x,y)

10 :
nodeU′j :

11 : Compute B′(x, j)=B(x, j)+Q (x, j) andZj (x)=Rj (x)−sj

12 :

Send

{
дsj ,CZj ,WZj (0),CB′(x, j)

}
off-chain to all nodes in C′, where

CZj =Commit(Zj);WZj (0)=CreateWitness(Zj ,0);CB′(x, j)=Commit(B′(x, j))

13 : Publish hash of the commitments on-chainHj =H (д
sj | |CZj | |WZj (0) | |CB′(x, j))

14 : node C′i :

15 :
∀j ∈ [2t+1], retrieve on-chain hashHj , also receive

{
дsj ,CZj ,WZj (0),CB′(x, j)

}
off-chain

16 :

∀j ∈ [2t + 1], if Hj , H (дsj | |CZj | |WZj (0) | |CB′(x, j)) or

VerifyEval(CZj ,0,0,WZj (0)),True orCB′(x, j),CB(x, j)×CZj ×д
sj

, output fail

17 :
Using Lagrange coefficients in Eq. (1), if

∏
2t+1
j=1 (д

sj)
λ2tj ,1 output fail

18 :
nodeU′j :

19 : Output success and B′(x, j)

Figure 12:Opt-Proactivize updates the reduced shares.

Opt-ShareDist

1 : Public Input:
{
CB′(x, j)

}
j∈[2t+1]

2 : Input: Set of nodes {C′i }i∈[n′] . LetU
′= {C′j }j∈[2t+1] , each nodeU

′
j is given B

′(x, j)

3 : Output: ∀i ∈ [n′], C′i outputs success and B′(i,y) (or) fail
4 :

nodeU′j :

5 :

∀i ∈ [n′], send a point and witness off-chain
{
B′(i, j),W ′B(i, j)

}
to C′i where

W ′B(i, j)=CreateWitness(B′(x, j),i)

6 : node C′i :

7 : Wait and receive points and witnesses

{
B′(i, j),W ′B(i, j)

}
j∈[2t+1]

8 : ∀j ∈ [2t+1], invokeVerifyEval(CB′(x, j),i,B′(i, j),W ′B(i, j))
9 : If all 2t+1 points are correct, interpolate to construct B′(i,y)

10 : Output success and the full share B′(i,y)

11 : In all other cases, output fail

Figure13:Opt-ShareDistuses theupdatedreducedshares todistribute
full shares in C′.

users control their identities and data by means of private keys. The

same techniques used in the cryptocurrency case for private-key

management would similarly apply to assets such as identities.

Smart-contract attestations. Committee management of smart-

contract private keys could also enable digital signing by smart

contracts. Committee members would execute threshold signatures

using a shared private key, emitting a signature for a particular smart

contract in response to a request issued by the contract on chain.

Simplified Committee-based consensus for light clients. A number

of consensus schemes, e.g., proof-of-stake protocols [21, 46], aim to

achieve scalability by delegating consensus to committees. As these

committees change over time, verifying the blocks they sign requires

awareness of their identities. By instead maintaining its key pair, a

committee couldmake it easier for light clients to verify blockchains.

Secure multiparty computation (MPC) for smart contracts. More

generally, dynamic-committee secret sharing would enable decen-

tralized secure MPC by smart contracts, effectively endowing them

with confidential storage and computation functionalities, as envi-

sioned in, e.g., [19, 74].

C CHURP PESSIMISTIC PATHS
In this section, we present protocols for the two pessimistic paths

ofCHURP: Exp-CHURP-A and Exp-CHURP-B.

C.1 Exp-CHURP-A
This path is invoked when a failure occurs in Opt-CHURP. As

mentioned before, the pessimistic paths use on-chain communica-

tion only. The first phase is the same asOpt-ShareReduce, and is not
re-executed ifOpt-ShareReduce ends successfully.

In Exp-Proactivize, we use a different zero-sharing protocol, al-
lowing honest parties to avoid re-execution of the protocol in case

of corruption — they can simply discard the shares generated by

the adversarial nodes. Messages are encrypted under the receiver’s

public key and posted on-chain, so that a verifiable accusation can

be performed in case of a corruption.

If any adversary inU ′ is expelled in this phase,we askmembers in

the old committee to publish the shares and witnesses sent to the ad-

versarial nodes duringOpt-ShareReduce on-chain. Thus, all honest
partieshaveaccess to reducedshares thatbelong toadversarialnodes,

which allows them to reconstruct the full shares in the next phase.

InExp-ShareDist, to allow identification ofmalicious nodes,mem-

bers post all messages on-chain in contrast to the optimistic path.

Exp-Proactivize and Exp-ShareDist are presented in Figure 14 and 15.
The overall on-chain complexity of Exp-CHURP-A isO(n2).

C.2 State Verification Details

Failure. There are two possible reasons that may cause StateVerif
to fail: either the commitments are computed incorrectly by adver-

sarial nodes, or the assumptions in theKZG scheme fails.We further

perform the following test to determine the reason.

We make use of the on-chain KZG commitments (published

in CHURP) to verify the commitments Zi = дsi and Z rnd
i = дs

′
i .

Each node i posts exponents of their state {дB
′(i, j)} ∀j ∈ [2t +

1], and their witness w ′j,i to the KZG polynomial commitments

CB′(x, j) on-chain (each node already has these witnesses at the end
of Opt-CHURP or Exp-CHURP-A). Then all members verify the

message published by node i: VerifyEvalExp(CB′(x, j),i,д
B′(i, j),Wj,i)

for j ∈ [2t +1]. (We make use of the following additional function-

ality in KZG scheme that allows us to verify the exponent of the

evaluation without any changes to the scheme: {True,False} ←
VerifyEvalExp(Cϕ ,i,д

ϕ(i),Wi).)

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2384

Exp-Proactivize

1 : Public Input:
{
CB(x, j)

}
j∈[2t+1]

2 : Input: Set of 2t+1 nodes {U′j }j∈[2t+1] . Each nodeU
′
j is given B(x, j)

3 :

Output:U′j outputs B
′(x, j) for a degree-⟨t,2t ⟩ bivariate polynomial B′(x,y)with

B′(0,0)=B(0,0)

4 : Public Output:
{
CB′(x, j)

}
j∈[2t+1]

5 : nodeU′i :

6 : Generate

{
si j

}
j∈[2t+1] that form a 0-sharing i.e.,

∑
2t+1
j=1 λ2tj si j =0.

7 :

Publish {дsi j }j∈[2t+1] , {Encpkj [si j]}j∈[2t+1] and zk proofs of correctness of the
encryptions on-chain.

8 :
nodeU′j :

9 : Decrypt {Encpkj [si j]} from node i and verify si j usingд
si j

on-chain.

10 :
nodeU′j :

11 : If any adversarial node i is detected in step 9, add it toU′corrupted , and publish sji .

12 :
Set sj =

∑
i∈U′\U′corrupted

si j .

13 :

Execute step 7-9, 11-12 ofOpt-Proactivize in Figure 12, with messages posted on the

chain in step 12.

14 : node C′i

15 :

Execute step 16 ofOpt-Proactivize in Figure 12. If it outputs fail, add j toU′corrupted .

Nodes inU′ discard shares by executing step 12 again.

16 : node Ci :

17 :

For all malicious nodes j detected in step 9 and 15, publish point and witness{
B(i, j),wi, j

}
on-chain.

Figure 14: Exp-Proactivize protocol.

If the checks above pass, all members validate Zi , Z
rnd
i as: Zi =∏

2t+1
j=1 (д

B′(i, j))
λ2tj

,Z rnd
i =

∏
2t+1
j=1 (д

B′(i, j))
r jλ2tj

.

Exp-ShareDist

1 : Public Input:
{
CB′(x, j)

}
j∈[2t+1]

2 : Input: Set of nodes {C′i }i∈[n′] . LetU
′= {C′j }j∈[2t+1] , each nodeU

′
j is given B

′(x, j)

3 : Output: ∀i ∈ [n′], C′i outputs B′(i,y)
4 :

nodeU′j :

5 :
∀i ∈ [n′], publish Encpki (B

′(i, j)), дB
′(i, j), w′i, j on-chain, where w′i, j =

CreateWitness(B′(x, j),i). Also publish zk proofs of correctness of the encryption.

6 : node C′i :

7 : Decrypt the message on-chain to get

{
B′(i, j),w′i, j

}
j∈[2t+1]

8 :

∀j ∈U′\U′corrupted , invokeVerifyEval(CB′(x, j),i,B′(i, j),w′i, j). If any of the
checks fail, add j toU′corrupted

9 : node Ci :

10 : Publish B(i, j),wi, j for any new adversarial node j detected above.

11 : nodeU′i :

12 :

Publish si j for anynewadversarial node j detected above anddiscard shares by executing
step 12 in Fig. 14.

13 : node C′i :

14 :

∀j ∈U′corrupted , validate their reduced shares posted by the old committee by

∀i ∈ [n],VerifyEval(CB(x, j),i,B(i, j),wi, j).

15 :

∀j ∈U′corrupted Interpolate any t+1 verified points to construct B(x, j). Set

B′(i, j)=B(i, j)+
∑
i∈honest si j

16 : Interpolate all B′(i, j) for j ∈ [2t+1] to construct B′(i,y)

17 : Output the full share B′(i,y)

Figure 15: Exp-ShareDist protocol.

If any of the checks above fail, it means the commitments are

not correctly computed. The members can perform a verifiable ac-

cusations since all information is on-chain, and then switch to pes-

simistic path Exp-CHURP-A. Otherwise, it implies a failure of the

assumptions in theKZG scheme. In this case, we switch to a different

pessimistic path Exp-CHURP-B. In this test, each node publishes

O(n) data on-chain, incurringO(n2) on-chain cost overall.

C.3 Exp-CHURP-B
This pessimistic path is taken only after a detection of breach in

the underlying assumptions of the KZG scheme.

In this path,weuse relatively expensive polynomial commitments

(Pedersencommitments) insteadofKZGandsupports a lower thresh-

old on the number of adversarial nodesn>3t . In the share reduction
phase, asn>3t , we rely on the error correctingmechanisms of Reed-

Solomon codes to construct reduced shares, instead of the verifica-

tion ofKZG scheme. In the proactivization phase and full share distri-

butionphase,wereplace theKZGcommitmentsandverificationwith

the Pedersen commitments (step 13 in Figure 14 and step 5,8,12 in Fig-

ure 15). Exp-CHURP-B incursO(n2) on-chain cost, assuming n>3t .
Due to the space limit, we omit the full protocol of Exp-CHURP-B.

D CHANGINGTHE THRESHOLD
D.1 Increasing the threshold: te > te−1

Note that a change of the threshold reflects that of the adversary’s

power, i.e., the number of nodes it can corrupt in the committee

C(e−1) and C(e), respectively. Therefore extra care is needed if we

were to increase the power of the adversary (i.e. te > te−1). Similar

to [66], increasing the threshold takes two steps: first, a handoff is

executed between C(e−1) and C(e) assuming the threshold doesn’t

change; then we increase the threshold to te after the handoff. As
illustrated below, the new threshold takes effect after the handoff.

te−1, te
handoff

committee C(e)committee C(e−1)handoff

threshold te−1 threshold te

epoch e+1epoch e

Specifically, to increase the threshold, (te−1,te)-handoff runs the

proactivization phase with parameters t = te . That is, during the

proactivization protocol, a bivariate polynomialQ(x ,y) of degree
(te ,2te) is generated such that Q(0,0) = 0. Each node i holds a te -
degree polynomialQ(x ,i) and commitments to {Q(x ,i)}i are pub-
licly available. The rest of the proactivization followswithoutmodifi-

cation, besides noweachnode i holds twopolynomialswith different

degrees: B′(x ,i) that is te−1-degree whileQ(x ,i) is te -degree. Thus
the proactivized global polynomial B′(x ,y) is of degree (te ,2te), con-
cluding the threshold upgrade.

We also need to extend KZG to support dynamic thresholds, i.e.,

given a commitmentCϕ , it can be publicly verified that ϕ is at most

d-degree. Essentially, the setup phase of the KZG fixes the highest

degree (say,D) of polynomials it can work with. In the setting of a

static threshold t , we setD=t and aKZG commitment can guarantee

that hidden polynomials are of degree ≤ t , which is critical to the

correctness of shares. To support dynamic thresholds up to tmax, we

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2385

KZG extended with degree verification

1) (sk, pk) ← Keygen(1λ, q): Select a bilinear group (p,G,GT , e, д) ← BilGen(1λ),

q+1 group elements {αi }i∈[q] and s randomly in Z∗p . Set sk=s , pk0= {д
s , ...,дs

d
},

pkd = {д
αd s , ...дαd s

d
} ford ∈ [q] and pk= {pk

0
,pk

1
, ...,pkq }.

2)Cϕ←Commit(ϕ(x),pk): Letd =deg(ϕ). ComputeCϕ = (d,д
ϕ (s),дαdϕ (s)) using

pk
0
and pkd .

3) (ϕ(i),Wi)←CreateWitness(ϕ(x),i,pk): Computeϕ(x)−ϕ(i)= (x−i)w (x), set
Wi =дw (s) .

4) {True,False}←VerifyEval(Cϕ ,i,ϕ(i),Wi ,pk): ParseCϕ as (d,C,Cd). Output True

if e(C/дϕ (i),д)=e(дs−i ,Wi). Otherwise, output False.

5) {True,False}←VerifyDegree(Cϕ): ParseCϕ as (d,C,Cd). Output True if
e(Cd ,д)=e(C,д

αd). Otherwise, output False.

Figure 16: KZG [45] extended with degree verification.

extend KZG as specified in Fig. 16 and run the trusted setup with

D=tmax. Our extension relies on the q-PKE [41] assumption.

D.2 Decreasing the threshold
The intuition of decreasing the threshold is to create 2×(te−1−te)

virtual nodes, denoted asV , and execute the handoff protocol be-

tweenC=C(e−1) andC′=C(e)∪V , assuming the threshold remains

te−1. A virtual node participates in the protocol as if an honest player,

but exposes its state publicly. At the end of the handoff protocol,

nodes in C′ incorporateV’s state and restore the invariants. The

handoff protocol is outlined as follows.

Decreasing the threshold

1) Choose a subset U ⊆ C′ of 2te + 1 nodes. For notational simplicity, suppose

U = {1, ...,2te +1 } and V = {2te +2, ...,2te−1+1 }. Each node i ∈ U recovers a

reduced share RS (e−1)i (x)=B(x,i). In addition, C publishes reduced shares for virtual

nodes: RS (e−1)j (x)=B(x, j) for j ∈V .

2)U executes the proactivization phase and collectively generate a (te ,2te)-degree bivari-
ate zero-hole polynomialQ (x,y). At the end of this phase, each node i ∈U hasQ (x,i).

3) LetV =
∑
j∈Vλ2te−1j RS (e−1)j (0). Each node i ∈U incorprates virtual nodes’ state and

updates its state as RS (e)i (x)=
λ
2te−1
i
λ2tei

(
RS (e−1)i (x)+ V

λ
2te−1
i (2te +1)

)
+Q (x, i)where

λ2te−1 and λ2te are Lagrange coefficients for corresponding thresholds. One can verify

that RS (e)i (x) are 2te -sharing of the secret, i.e., B(0,0) can be calculated from any 2te +1

of RS (e)i (x).

4) Each node i ∈U sends to every node j ∈ C′ a pointRS (e)i (j). The full share of each node

j ∈ C′ consists of 2te + 1 points {RS (e)i (j) = B
′(i, j)}i∈U , from which j can compute

FSj (y)=B′(j,y).

The updated reduced shares RS
(e)
i (x) can be verified using the

published valueV , and the commitment to RS
(e−1)
i (x) andQ(x ,i). At

the end, each node i has 2te+1 points on B
′(i,y). It remains to show

that {FSj (y)=B
′(j,y)}j form a te -sharing of B

(e)(0,0), which can be

checked by

∑te+1
i=1 λtei FSi (0)=

∑
2te−1+1
j=1 λ2te−1j RS

(e−1)
j (0)=B(0,0).

Several optimizations are possible. For example, one can reduce

the degree ofRS
(e)
i (x) to te (as opposed to te−1 currently) by building

new polynomials and proving equivalence to RS
(e−1)
i (x). We leave

further optimization for future work.

E POINT-TO-POINT TECHNIQUEDETAILS
E.0.1 Choosing overwrite ratek . Anoptimal strategy is to overwrite

as many times as possible. Ethereum, though, imposes a constraint

on overwriting: the sender must raise the transaction fee by at least

a minimum fraction ρ. (ρ ranges from 10% to 12.5%). Here we de-

termine the optimal value of k . Recall that the fee for a transaction
with |m | bytes of data is f = f0 + д × |m |, for constants f0 and д.
Overwriting transactions with a fractional fee increase of ρ results

in an average per-byte fee of
f ×ρk

(1+k)×|m | fork overwritings, assuming

the kth transaction gets mined. In the worst case, where ρ=12.5%,
the optimal strategy is to overwrite k = 7 times, yielding average

cost 0.29×
f
|m | per byte, about 70% less than without overwriting.

Moreover, if the first k−1 transactions have |m | bytes of data and

the last one empty, the average cost is down to
f0×ρk

|m |×k per byte.

E.0.2 Experiments. We validate our ideas experimentally on the

Ethereummainnet. The sender and receiver are full nodes connected

to theEthereumP2Pnetworkandthegoal is for thesender to transmit

messages to the receiver by embedding them inpending transactions.

To overwrite a pending transaction in Ethereum, the sender reuses

the same nonce and raises the gas price.

In our experiments, we rewrite k = 7 times. Each of the first 7

transactions contains 31KB of data and the 8th is empty. A total of

≈100MB data is transmitted in 4,200 transactions, in about 1 hour.

Table 3 summarizes the results, which we now discuss.

Bandwidth: DoS prevention measures and network latency in

Ethereumcauseoverly frequentoverwritten transactions todrop. Ex-

perimentally, we can propagate overwritten transactions at a rate of

just under once a second, yielding approximate bandwidth 32.3KB/s,

as the maximum permitted per-transaction data is 32KB [39]. While

this suffices forCHURP, we belived more engineering would yield

higher bandwidth. Studies of blockchain arbitrage [34] show that

arbitrageurs can overwrite transactions in hundreds of milliseconds.

Message-transmission cost: Transaction costs for message deliv-

ery are extremely low: $0.06 per MB on average, with gas price 1

GWei. The gas price should be chosen minimum required to get

transactions relayed by peer nodes. Empirically of late, a gas price

between 1 to 2GWei offers good delivery rate,whichwenowexplain.

Transaction delivery rate:Although a sender canmake sure over-

writing succeeds in her mempool, overwritten transactions are not

guaranteed to arrive on the receiver’s side. Possible reasons are an

overloaded mempool [56], network congestion and/or out-of-order

delivery. Generally transactions with a higher transaction fee are

relayed preferentially by peer nodes, and less frequently dropped.

The 8th transaction in our rewriting sequence has the highest fee

and the smallest payload, and is always delivered in our experiments.

Overall, we observe an average transaction delivery rate of 91.9%

in our experiments, or a ≈9% loss rate.

E.0.3 Comparison to on-chain communication. For comparison, we

estimate the same metrics for on-chain communication, i.e. using

the Ethereum blockchain. The results are summarized in Table 3.

An upper bound on the on-chain bandwidth is estimated assum-

ing a 8million blockgas limit. Eachblock canhold atmost three 32KB

transactions, thus a total of 96KB data every 15 seconds, or 6.4 KB/s.

Themessage transmission cost perMB is estimated as that of sending

32 transactionswith 32KBdata in each, assuming an exchange rate of

1ETH=$200. The latency depends on the gas price and the network

condition. A lower latency requires a higher gas price and thus a

higher transmissioncost.Weused [1] forourestimation.The tradeoff

between latency and message transmission cost is shown in Fig. 7.

Session 10C: Secret Sharing CCS ’19, November 11–15, 2019, London, United Kingdom

2386

	Abstract
	1 Introduction
	1.1 CHURP functionality
	1.2 Technical challenges and solutions
	1.3 Implementation and Experiments
	1.4 Outline and Contributions

	2 Model and Assumptions
	2.1 Functional model
	2.2 Adversarial model
	2.3 Communication model

	3 Overview of CHURP
	3.1 Key secret-sharing techniques
	3.2 CHURP: Overview
	3.3 An example
	3.4 Active security
	3.5 Pessimistic CHURP execution paths

	4 Efficient Bivariate 0-Sharing
	5 CHURP Protocol Details
	5.1 Notation and Invariants
	5.2 CHURP Setup
	5.3 CHURP Optimistic Path (Opt-CHURP)
	5.4 Change of threshold
	5.5 State Verification (StateVerif)

	6 CHURP Implementation & Evaluation
	6.1 Implementation
	6.2 Evaluation
	6.3 Comparison with other schemes

	7 Point-to-Point Communication Technique
	7.1 Transaction Ghosting

	8 Related Work
	References
	A Security Proof for Opt-CHURP
	B Applications in Decentralized Systems
	C CHURP Pessimistic paths
	C.1 Exp-CHURP-A
	C.2 State Verification Details
	C.3 Exp-CHURP-B

	D Changing the threshold
	D.1 Increasing the threshold: te> te-1
	D.2 Decreasing the threshold

	E Point-to-Point Technique Details

