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We study the static responses of cold quark matter in the intermediate baryonic density region
(characterized by a chemical potential μ) in the presence of a strong-magnetic field. We consider in
particular, the so-called magnetic dual Chiral Density Wave (MDCDW) phase, which is materialized by an
inhomogeneous condensate formed by a particle-hole pair. It is shown, that the MDCDW phase is more
stable in the weak-coupling regime than the one considered in the magnetic catalysis of chiral symmetry
braking phenomenon and even than the chiral symmetric phase that was expected to be realized at
sufficiently high baryonic chemical potential. The different components of the photon polarization operator
of the MDCDW phase in the one-loop approximation are calculated. We found that in the MDCDW phase
there is neither Debye screening nor Meissner effect in the lowest-Landau-level approximation. The
obtained Debye length depends on the amplitude m and modulation b of the inhomogeneous condensate
and it is only different from zero if the relation jμ − bj > m holds. But, we found that in the region of
interest this inequality is not satisfied. Thus, no Debye screening takes place under those conditions. On the
other hand, since the particle-hole condensate is electrically neutral, the U(1) electromagnetic group is not
broken by the ground state and consequently there is no Meissner effect. These results can be of interest for
the astrophysics of neutron stars.
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I. INTRODUCTION

It is well known that quantum chromodynamics (QCD)
has a rich phase structure. In its usual temperature versus
baryon-number density phase map, color superconductivity
(CS) is the well-established ground state in the asymptoti-
cally large density and low-temperature region. This phase is
characterized by the formation of quark-quark pairs analo-
gous to the Bardeen-Cooper-Schrieffer (BCS) pairs of
conventional electronic superconductivity. While on the
other extreme of low-density/low-temperature region, the
quarks are confined into hadrons having large masses
produced by the breaking of chiral symmetry due to the
chiral homogeneous condensate formed by quark-antiquark
pairs. In the intermediate density region, however, the
energetically favored ground state at low temperature
remains murky since neither perturbative QCD nor lattice
calculations are applicable in that region.

Nevertheless, various QCD effective model studies, as
well as QCD calculations in the large Nc limit, indicate that
between the hadronic phase and the more energetic favored
superconducting phase (the so-called CFL phase) there
would be some intermediate states characterized by inho-
mogeneous particle-hole condensates, in which the pairs
carry a total finite momentum [1–12]. Although these
studies suggest that the inhomogeneous phases might be
unavoidable in the regions of intermediate temperature and
density, the circumstances are still involved due to the fact
that the pairing energies between particle-particle, particle-
antiparticle and particle-hole are comparable in those
regions. A systematic and complete investigation to deter-
mine the most energetically favored state under different
conditions is still open and beyond the scope of the
present study. Instead, we shall focus our attention on
one particular inhomogeneous phase, the so-called dual
chiral density wave (DCDW), whose ground state is
characterized by a spatially modulated chiral condensation
in both scalar and pseudoscalar channels.
Notably, in most situations where quark-matter phases

can be generated, magnetic fields are usually present. Off-
central heavy-ion collisions (HIC) where quark matter
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degrees of freedom become relevant are known to produce
large magnetic fields (eB ≃ 1018 G at RHIC, eB ≃ 1019 G,
at the LHC [13,14]). Likewise, neutron stars (NS) typically
have strong-magnetic fields. Estimates based on the scalar
virial theorem give inner fields for magnetars of order
1018 G for nuclear matter [15] and 1020 G for quark matter
[16]. Even inner fields, 1 to 3 orders of magnitude smaller,
would be significant and should not be ignored in NS
studies [17]. The magnetic field can noticeably enhance the
window for inhomogeneous phases [8,18,19]; and activate
attractive channels producing new condensates, as it occurs
with chiral condensate [18], color superconductivity [19]
and quarkyonic matter [8].
The interplay of magnetic fields with the spatially

inhomogeneous chiral condensate is therefore important
and worth to be investigated. Within Nambu-Jona-Lasino
(NJL) model, it had been shown that the presence of an
external magnetic field favors the formation of spatially
inhomogeneous condensate in dense quark matter at low
temperature [5]. Moreover, the constant external magnetic
field breaks the rotational symmetry of the system pro-
ducing Landau momentum quantization, which can give
rise to an asymmetric quark energy spectrum in the lowest
Landau level (LLL). This asymmetry is basic to originate a
nontrivial topology in the system. Recently, it was pointed
out that the DCDW phase in a magnetic field is physically
distinguishable from the DCDW phase at zero field
and thus named as magnetic dual chiral density wave
(MDCDW) [10]. The topology of the MDCDW phase
manifests in the effective electromagnetic action by the
presence of a dynamical axion field coupled to the
electromagnetic field. This coupling in turn leads to several
topological effects in dense quark matter, as for instance, an
anomalous nondissipative Hall current, the existence of
magnetoelectricity, etc. [11].
Here the following comment is in order. It is well known

that single-modulated phases in three spatial dimensions
are unstable against thermal fluctuations at any finite
temperature, a phenomenon known in the literature as
Landau-Peierls instability [20]. In dense QCD models, the
Landau-Peierls instability has been shown to occur in the
periodic real kink crystal phase [21]; in the DCDW phase
[22]; and in the quarkyonic phase [23]. The instability
signals the lack of long-range correlations at any finite
temperature and hence the lack of a true order parameter.
Only a quasi-long-range order remains in all these cases, a
situation that resembles what happens in smectic liquid
crystals [24]. In [12], the stability of the MDCDW phase
against thermal fluctuations in the region of relevance for
NS applications was investigated. There, it was shown that
a background magnetic field introduces new structures in
the system that are consistent with the symmetry group that
remains after the explicit breaking of the rotational and
isospin symmetries by the magnetic field. The new terms
not only modify the condensate minimum equations, but

they also lead to a linear, anisotropic spectrum of the
thermal fluctuations, which lacks soft transverse modes.
Soft transverse modes are the essence of the Landau-Peierls
instability because they produce infrared divergencies in
the mean square of the fluctuation field that in turn wipe out
the average of the condensate at any low temperature. Since
this does not happen in the MDCDW phase, there exists the
possibility that the MDCDW long-range order may remain
stable within a range of temperatures feasible for this phase
to be stable in the NS core.
Another important magnetic effect in quark matter is that

a magnetic field helps the condensation of the homo-
geneous chiral condensate by increasing the population of
the quarks in the LLL, which are then closer to the
antiquarks in the Dirac sea, a phenomenon that has been
called magnetic catalysis of chiral symmetry breaking
(MCχSB) [25–27]. The MCχSB is a universal phenomenon
that takes place in any relativistic theory of interactive
massless fermions in a magnetic field, and it has been
proposed as the mechanism explaining various effects in
quasiplanar condensed matter systems [28].
Now, with increasing chemical potential, the energy

separation between quarks and antiquarks increases up
to a point where it is no longer energetically favorable to
excite antiquarks all the way from the Dirac sea to be paired
with the quarks at the Fermi surface. When this happens,
various possibilities are opened: Either no condensate
is favored, and the chiral symmetry is restored; or quarks
and holes near the Fermi surface pair with parallel
momenta, giving rise to inhomogeneous chiral conden-
sates; or quark may even pair with quarks through an
attractive channel at the Fermi surface to form a CS phase
that ultimately may be inhomogeneous. Thus, in the
presence of a magnetic field, there will be a competition
between the strong-field effect that forces the quarks to be
in the LLL near the antiquarks with whom to form the
homogeneous chiral pair and the chemical potential that
opens the gap between the quarks on the Fermi surface and
the antiquarks in the Dirac see, so favoring the formation of
the inhomogeneous condensate of the particle-hole pair
sitting on the Fermi surface.
An interesting question that we want to investigate in this

paper is how this competition between the MCχSB
phenomenon and the formation of the MDCDW conden-
sate at weak coupling takes place in the dense region to
determine the more energetically favored phase.
Another important feature, which is worthy to study in

this context is that, depending on the characteristics of the
ground state, quark matter can have different electric
screening properties. For example, it is noticeable that
finite density, which usually leads to Debye screening in
systems of free fermions [29], fails to produce the same
effect neither in the color-flavor-locked (CFL) phase [30],
nor in the magnetic-color-flavor-locked (MCFL) [31]
phase of CS, because no infrared electric screening can
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be produced by diquark condensates that are neutral. Let us
recall that even though the original electromagneticUð1Þem
symmetry is broken by the formation of quark Cooper pairs
in the CFL phase [32] of CS, a residual Ũð1Þ symmetry
still remains. The massless gauge field associated with
this symmetry is given by the linear combination of the
conventional photon field and the 8th-gluon field [32,33],
Ãμ ¼ cos θAμ − sin θG8

μ. The field Ãμ plays the role of an
in-medium or rotated electromagnetic field. Therefore, a
magnetic field associated with Ãμ can penetrate the CS
without being subject to the Meissner effect, since the color
condensate is neutral with respect to the corresponding
rotated electric charge. A similar residual electromagnetic
group also remains in the 2SC phase of CS [34]. In this
paper, we shall study the screening properties of the
MDCDW phase in a strong-magnetic field validating the
LLL approximation at weak coupling.
The knowledge of the screening effect in a dense

medium is important for astrophysics. Since many years
ago, gravitationally bound system under electric fields has
been a topic of investigation [35]. It has been found that any
bound system whose size is smaller than the Debye length
of the surrounding media can be electrified by the escape of
electrons, which being the lighter particles in the system
are displaced to the star surface. This electron motion is
stopped by the electric field created by the corresponding
charge separation between the electrons and the other
heavier charged particles existing in the interior as protons,
up quarks, etc. The effects of the induced electric field may
become important to the structure of the star. Thus, to know
how this inner field can be screened by the stellar medium
is an important ingredient to determine the general setting
of this interesting problem. In the same footing, to know if a
magnetic field can be screened in the stellar medium is of
major importance.
The rest of the paper is organized as follows: in Sec. II,

we introduce the MDCDW model and discuss the validity
of the LLL approximation at strong-magnetic fields in the
weak-coupling regime for the density domain of interest.
In Sec. III, comparing the thermodynamic potentials of the
MDCDW and MCχSB phases, we prove that at weak
coupling, the MDCDW phase is energetically favored in
the whole density domain. In Sec. IV, we calculate the
photon polarization operator in the one-loop approximation
and in the strong-field limit for the MDCDW phase. From
its infrared limit we obtain the Debye and Meissner masses.
The Debye mass has a dynamical nature depending on the
condensate parameters. Then, we show that in the density
region of interest the Debye length is zero. Hence, there is
no electrostatic screening in this medium under the pres-
ence of the particle-hole pairs. We also show that there is no
Meissner screening in this medium. In Sec. V, we sum-
marize the outcomes of this paper and give the concluding
remarks. Finally, some calculation details are presented in
the Appendices.

II. STRONG MAGNETIC-FIELD LIMIT
IN THE WEAK-COUPLED MDCDW

QUARK MATTER PHASE

We shall consider in this paper a two flavor NJL model
of massless quarks in the presence of an external constant
and uniform magnetic field. The Lagrangian reads

L¼ ψ̄ ½iγμð∂μþ iQAμÞþγ0μ�ψþG½ðψ̄ψÞ2þðψ̄iτaγ5ψÞ2�;
ð1Þ

with Q ¼ diagðeu; edÞ ¼ diagð2e=3;−e=3Þ being the
charge operator of the quark doublet ψT ¼ ðu; dÞ, μ the
baryonic chemical potential, andG the coupling constant of
the four-fermion interaction. τa with a ¼ 1, 2, 3 are the
three Pauli matrices. For the external magnetic field we
impose the Landau gauge, in which the electromagnetic
potential Aμ ¼ ð0; 0; Bx; 0Þ corresponds to a constant and
uniform magnetic field B in the positive z direction.
The MDCDW phase is characterized by the following

scalar and pseudoscalar condensates:

hψ̄ψi ¼ Δ cos qμxμ; hψ̄iτ3γ5ψi ¼ Δ sin qμxμ; ð2Þ

with Δ the magnitude of the condensate and qμ ¼
ð0; 0; 0; qÞ its modulation, which is taking along the field
direction since this configuration minimizes the system
energy [5]. The MDCDW phase has a symmetry different
from the DCDW one. The flavor symmetry SUð2ÞL ×
SUð2ÞR of the DCDW phase is reduced to the subgroup
Uð1ÞL ×Uð1ÞR due to the coupling of quarks to the
magnetic field, and more importantly, the presence of
the magnetic field induces a nontrivial topology in the
MDCDW phase that gives rise to axion electrodynamics
[10,11].
For the sake of clarity and understanding, we will

summarize as follows some of the results that were obtained
in otherworks (see for exampleRefs. [5,10,11]). In themean
field approximation, the Lagrangian of the MDCDW is

LMF ¼ ψ̄ ½iγμð∂μ þ iQAμÞ þ γ0μ −mðcos qz

þ iτ3γ5 sinqzÞ�ψ −
m2

4G
; ð3Þ

with m ¼ −2GΔ. Now, we use the gauge chiral trans-
formation,

ψ → e−iτ
3γ5bzψ ; ψ̄ → ψ̄e−iτ

3γ5bz; ð4Þ

with b ¼ q=2, to remove the spatial modulation in the mean
field Lagrangian and obtain
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LMF ¼ ψ̄ ½iγμð∂μ þ iQAμÞ þ γ0μþ τ3γ3γ5b −m�ψ −
m2

4G
:

ð5Þ

As it was found in [10,11], there is a lack of invariance
of the path-integral fermion measure under the chiral gauge
transformation (4). Thus, in [10,11] it was used the
Fujikawa’s method [36] with a representation of the
Jacobian in terms of a complete and orthogonal set of
eigenfunctions that ensured unitarity via the diagonaliza-
tion of the fermion action. Considering the appropriate set
of eigenfunctions, it was found, in a gauge-invariant way,
the contribution to the effective action that came from
the regularized path-integral measure. This contribution
turned out to be a chiral anomaly term ðκ=4ÞθF�

μνFμν, that
coupled the axion field θ ¼ qz=2 to the electromagnetic
strength tensor Fμν and its dual with coupling κ ¼ α=2π.
Nevertheless, we should notice that for the investigation of
the screening effects of this phase, the axion term is not
relevant, since it will not contribute to the quark propagator
forming the internal lines in the photon polarization
operator [see Eq. (22)], which is the QFT diagram from
where the screening effects are investigated.
The effective potential of the system is

Ω ¼ −
1

Ṽ
lnZ; ð6Þ

with Ṽ the four-dimensional volume and

Z¼
Z

Dψ̄ðxÞDψðxÞei
R
d4xfψ̄ ½iγμð∂μþiQAμÞþγ0μþτ3γ3γ5b−m�ψ−m2

4Gg:

ð7Þ

Upon a Wick rotation from Minkowski to Euclidean
spacetime, the functional Z is just the partition function
of the system andΩ becomes the thermodynamic potential.
Integrating out the fermion field, one obtains

Ω ¼ Tr ln ½iγμð∂μ þ iQAμÞ þ γ0μþ τ3γ3γ5b −m� þ m2

4G
:

ð8Þ

The trace, extended to flavor, color and spinor indices, can
be evaluated in the presence of a magnetic field through a
standard procedure, as for instance the Ritus’ approach
[37]. Hence, we obtain

Ω ¼ −
Nc

2

XZ d4p
ð2πÞ4 tr ln ½−ðp

0Þ2 þ ðEl − μÞ2� þ m2

4G
; ð9Þ

whereNc is the number of color degrees of freedom and the
trace tr is extended to flavor indices only. In (9), we used
the notation

PR
d4p ¼ 1

β

P∞
n¼−∞

P∞
l¼0

R
dp2dp3

P
ϵ¼�;ε¼�,

with l the Landau-level number and the statistical formu-
lation is introduced following Matsubara’s prescription for
fermions

p0 → iωn ¼
i
β
ð2nþ 1Þπ;

Z
∞

−∞

dp0

2π
→

i
β

X∞
n¼−∞

; ð10Þ

with β ¼ 1=T.
The energy spectrum [5]

El ¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

3

q
þ b

�2 þ 2jefBjl
r

; l ¼ 1; 2; 3;…;

ð11Þ

and

E0 ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

3

q
þ b; l ¼ 0; ð12Þ

with ϵ ¼ �, ε ¼ �, are the eigenvalues of the single
particle Hamiltonian that can be read from the
Lagrangian (5) for each flavor as

Hf ¼ −iγ0γi½∂i þ iefAi þ ibγ3γ5sgnðefÞ�: ð13Þ

Here ef with f ¼ u, d are the electric charges of the u and d
quarks respectively.
The thermodynamic potential is then given by

Ω ¼ −
Nc

2

X
f¼u;d

jefBj
β

X
n

X
l;ε;ϵ

×
Z

dp3

ð2πÞ2 ln½−ðiωnÞ2 þ ðEl − μÞ2� þ m2

4G
: ð14Þ

The sum over Matsubara frequencies ωn can be readily
carried out and one obtains

Ω ¼ −
Nc

2

X
f¼u;d

jefBj
X
l;ε;ϵ

Z
dp3

ð2πÞ2

×

�
jEl − μj þ 2

β
ln ð1þ e−βjEl−μjÞ

�
þ m2

4G
: ð15Þ

Obviously, the vacuum part in the thermodynamic
potential is UV divergent and needs to be regularized.
Using the proper-time regularization, the regularized poten-
tial reads [5]

Ω ¼ Ωvac þ Ωanom þΩμ þ ΩT þ m2

4G
; ð16Þ

with
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Ωvac ¼ Nc
1

4
ffiffiffi
π

p
X
f¼u;d

jefBj
X
l;ε;ϵ

Z
dp3

ð2πÞ2
Z

∞

1=Λ2

ds

s3=2
e−sE

2
l ;

ð17Þ

Ωanom ¼ −Nc
bμ
2π2

X
f¼u;d

jefBj; ð18Þ

Ωμ ¼ −
1

2

X
f¼u;d

jefBj
X
l;ε;ϵ

Z
dp3

ð2πÞ2 ðjEl − μj − jEljÞ; ð19Þ

and

ΩT ¼ −
X
f¼u;d

jefBj
X
l;ε;ϵ

Z
dp3

ð2πÞ2 ln ð1þ e−βjEl−μjÞ: ð20Þ

The anomalous contribution Ωanom comes from the
regularization of the LLL part ensuring that the thermo-
dynamic potential is independent of b when m ¼ 0 [5].

The order parameters m and b should be determined
from the gap equations

∂Ω
∂m ¼ ∂Ω

∂b ¼ 0; ð21Þ

which indicates their dynamical origin.
In what follows, we rescale all dimensional quantities

with the cutoff Λ, as for instance, m=Λ, b=Λ, GΛ2, etc.
In order to keep a simplified notation, we simply use the
same symbols as the original ones to represent the new
dimensionless quantities.
We are interested in comparing the properties of the

MCχSB phenomenon with those of the MDCDW phase.
As it is known, in the MCχSB it was considered a weak-
coupling massless fermion theory in the presence of a
magnetic field that is the leading parameter. In those circum-
stances, the fermions were mostly confined to the LLL, and
the study of the chiral condensation phenomenonwas limited
to solve the gap equations for a thermodynamic potential in
the LLL approximation. Thus, a first step in our investigation
will be to determine the range of parameters where the same
approximation will be valid in the MDCDW phase.
In Fig. 1, we show the solutions for m and b versus the

baryonic chemical potential for different coupling strengths
and magnetic-field values. The calculations are implemented
for two cases: for a thermodynamic potential in the LLL
approximation and for a thermodynamic potential obtained
by summing in all LLs (see Fig. 1 caption). There, we notice
that while the modulation b has similar values independent
of the used approximation, the condensate amplitude, m,
coincides only at weak coupling in the region of higher
chemical potentials. Also notice that the modulation (b ≠ 0)
is present in all the μ ≠ 0 domain. This is a consequence of
the presence of the anomalous contribution (18).
To determine the validity region of the LLL approxi-

mation, in Fig. 2 we plotted the percentage deviation,

defined as ½ðm −mðLLLÞÞ=m� × 100%, to have a better
criterion of what is the density region where the approxi-
mation is sound. Considering that in a strict way, the
magnetic field becomes the scale, i.e., eB ∼ Λ2, when the
LLL approximation is valid, the values in Fig. 2 corre-
sponding to

ffiffiffiffiffiffi
eB

p ¼ 1.0 are the more trustworthy ones. For
this magnetic field, we can see from Fig. 2 that for a
percentage deviation of 20% the density region is 0.2≲
μ≲ 1 and for a 10% is 0.5≲ μ≲ 1. Decreasing the
magnetic field, the density validity regions shrink, moving
to higher values of the chemical potential. In Fig. 2 we
considered only one coupling constant value (G ¼ 3), but
we checked that changing G among the value set consid-
ered in Fig. 1 the valid density intervals remain practically
the same.
Then, contrary to what occurred in the MCχSB case,

when working in the MDCDW phase and using the LLL
approximation, we should be careful in specifying the valid
density region where the results are reliable. The situation
here is different to what happens for example in QED under
a strong-magnetic field at zero density, where in the strong-
field limit it is equivalent to sum in all Landau levels or to
work in the LLL [38].
Finally, the following technical comment is in order. It

should be noticed that the sum in Landau levels in the
many-particle thermodynamic potential at zero temperature
(19) does not require the introduction of a cutoff parameter
Λ, as it was the case in color superconductivity, where a soft
cutoff was necessary [see for example Eq. (6) in Ref. [39]].
In the present case, expression (19) is automatically

0.1

0.2
m
b/2
m   (LLL)
b/2 (LLL)

0.1

0.3

0.1 0.5 0.9

0.3

0.6

0.1 0.5 0.9 0.1 0.5 0.9

FIG. 1. The solutions to the gap equations of the MDCDW
phase versus baryonic chemical potential at different values of the
coupling constant (G ¼ 2, 2.5, 3) and at magnetic-field values
(

ffiffiffiffiffiffi
eB

p ¼ 0.6, 0.8, 1.0). The solutions for m and b=2 are obtained
summing in all Landau levels and for mðLLLÞ and b=2ðLLLÞ by
only taking into account the lowest Landau level.
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regularized by the baryonic chemical potential, which
enforces the Fermi momentum as a natural cutoff at zero
temperature, as it is explicitly seen in Eq. (73) of Ref. [11].

III. MAGNETIC CATALYSIS OF CHIRAL
SYMMETRY BREAKING VERSUS MDCDW
PHASE OF DENSE QUARK MATTER IN A

STRONG-MAGNETIC FIELD

As we already pointed out, in the MCχSB phenomenon
at finite density, we have two competing elements: the
strong-magnetic field and the particle density. While the
magnetic field acts in favor of the condensation by
increasing the population of the quarks in the LLL, which
are the ones closed in the energy-momentum space to the
antiquarks with which to form the chiral condensate; the
density tends to break the chiral pair by increasing
the energy gap between the Fermi surface and the Dirac
sea. Avalid question is then, what will be the effect of these
two ingredients in the particle-hole condensate of the
MDCDW phase? The first noticeable difference is that
since the particle and the hole forming the pair are both
sitting on the Fermi surface, the chemical potential, whose
function is to increase the Fermi sphere radius, will not tend
to break the pair since it will not produce an energy gap
between the two pair components, as it was done in the
MCχSB case between the particle and the antiparticle.
In Fig. 3 it is plotted the MCχSB and MDCDW

condensate parameters versus the baryonic chemical poten-
tial for a strong-magnetic-field value at different coupling
constants, all in the range ofweak couplings (the critical value
for theweak regime in theMDCDWphase isGc ¼ 3.27 [5]).
We notice that in each case there is a critical value of the

chemical potential, μc, where the chiral condensate of the
MCχSB phase vanishes. By increasing the strength of the
coupling constant, μc increases, but always having values that
satisfy μc ≲mðμ ¼ 0Þ, where mðμ ¼ 0Þ is the particle mass
at zero chemical potential. On the contrary, the amplitude and
modulation of the particle-hole condensates in the region of
intermediate densities where the LLL approximation is valid
increasewith the chemical potential. These results validate the
physical arguments we exposed before.
Once we know how the condensates of the two phases

behave in the region of interest, we can answer another
important question: what of the twoweak-coupled phases is
the more energetically favored at strong-magnetic fields in
the intermediate density region? To answer this question,
we calculate the corresponding thermodynamic potential
for each phase evaluated in the minimum solutions of the
condensates obtained for each value of chemical potential
at the strong-magnetic field value of

ffiffiffiffiffiffi
eB

p ¼ 0.8 and at
different values of the coupling constant G. Note that in
these calculations, whose results are given in Fig. 4, the
sum in all LLs was carried out. We can see from the plots in
Fig. 4 that in all cases, the MDCDW phase, having lower
values of its thermodynamic potential, is more energetically
favored than the MDCDW phase. Notice that in Fig. 4, in
order to make a sharper distinction between the two cases,
we subtracted from each thermodynamic potential the
noncondensate dependent part Ωð0; 0Þ.
Moreover, we can observe from Fig. 4 that strengthening

the interaction between the pairs’ ingredients by increasing
the coupling constant G, the difference between the two
thermodynamic potentials is enlarged, which implicates
that the MDCDW phase becomes more stable under the
given conditions than the MCχSB phase.

0

20

40

60

100%|(m-m(LLL))|/m

0.1 0.3 0.5 0.7 0.9

0

20

40

60

0.1 0.3 0.5 0.7 0.9

FIG. 2. Percentage deviation, ½ðm −mðLLLÞÞ=m� × 100%, ver-
sus chemical potential for four magnetic-field values and at a
coupling constant G ¼ 3. The deviation is taking between the
induced mass calculated summing in all LLs, m, and only
considering the LLL, mðLLLÞ.
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FIG. 3. The solutions to the gap equations of the MDCDW
(m and b) and MCχSB [mðb ¼ 0Þ] phases versus baryonic
chemical potential at different values of the coupling constant
(G ¼ 2, 2.5, 3, 3.2) and at a fixed magnetic field (

ffiffiffiffiffiffi
eB

p ¼ 0.8).
The solutions are obtained in the LLL approximation.
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Finally, we see from Fig. 4 that in the region where the
potential Ωðm; 0Þ −Ωð0; 0Þ of the MCχSB is different
from zero (i.e., when m ≠ 0), its value is always larger
than that of the MDCDW phase. This can be connected to
the presence of the anomalous contribution (18) in the
thermodynamic potential of the MDCDW phase. Thus, we
conclude that the particle-hole inhomogeneous condensate
prevails at any given density value in the weak-coupling
regime under a strong-magnetic field. Therefore, the
MCχSB phenomenon, as it is known to be characterized
by an homogeneous chiral condensate, is only energetically
realizable at μ ¼ 0.

IV. PHOTON POLARIZATIONOPERATOR IN THE
STRONGLY MAGNETIZED MDCDW PHASE,

DEBYE AND MEISSNER MASSES

A. Photon polarization operator

In this section, we shall calculate the one-loop photon
polarization operator in the MDCDW phase in a strong-
magnetic field using the LLL approximation in the quark
propagators. The photon polarization operator is a second-
rank tensor that in the above approximation reads

ΠμνðpkÞ ¼
X
f

Πμν
f ðpkÞ ¼

X
f

Nce2fjefBj
Z

d2qk

ð2πÞ3 Tr½ΔðsgnðefÞÞγ
μkSLLLf ðq̃k − p̃kÞΔðsgnðefÞÞγνkSLLLf ðq̃kÞ�; ð22Þ

where Δð�Þ ¼ ð1� iγ1γ2Þ=2 are the spin projectors and SLLLf is the quark propagator of the MDCDW phase in the LLL
approximation for one flavor [11],

SLLLf ðq̃kÞ ¼ q̃μkþ γkμ þm

ðq̃kþÞ2 −m2
ΔðþÞ þ q̃μk− γkμ þm

ðq̃k−Þ2 −m2
Δð−Þ; ð23Þ

with q̃μk� ¼ ðq0 − μ� sgnðefÞb; 0; 0; q3Þ and γμk ¼ ðγ0; 0; 0; γ3Þ.

B. Debye mass

As known, the Debye mass is obtained from the 00 component of the photon polarization operator. Thus, specializing the
Lorentz indices in (22) as μ ¼ ν ¼ 0 and using the Matsubara technique with the prescription given in (10), we obtain after
taking the trace

Π44
f ðpkÞ ¼ 2Nce2f

jefBj
β

X
q4

Z
dq3

ð2πÞ2
ðiq4 − μ̃Þðiq4 − μ̃ − ip4Þ þ q3ðq3 − p3Þ þm2

½ðiq4 − μ̃ − ip4Þ2 − ϵ2q3−p3 �½ðiq4 − μ̃Þ2 − ϵ2q3 �
; ð24Þ

with ϵq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
and μ̃ ¼ μ − b. The Matsubara sum can be carried out by using the contour integral and, as usual, the

results can be divided into the QFT-vacuum part, Π00
vac, and the statistical part, Π00

med, which after making the analytic
continuation from Euclidean to Minkowski space reads

Π00
f ¼ Π00

vac þ Π00
med; ð25Þ

with

-2.0

-1.0

0.0

0.2 0.4 0.6 0.8

-2.0

-1.0

0.0

0.2 0.4 0.6 0.8

( [m,b]- [0,0])x103

( [m,0]- [0,0])x103

FIG. 4. Thermodynamic potential evaluated in the gap solutions
of the MDCDW phase,Ωðm; bÞ, minus its zero-condensate value,
Ωðm ¼ 0; b ¼ 0Þ (solid line), and for the MCχSB phase,
Ωðm; b ¼ 0Þ −Ωðm ¼ 0; b ¼ 0Þ (interrupted line), versus the
baryonic chemical potential at different values of the coupling
constant (G ¼ 2, 2.5, 3, 3.2) for

ffiffiffiffiffiffi
eB

p ¼ 0.8 and summing in all
Landau levels.
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Π00
vacðpkÞ ¼ −Nce2fjefBj

Z
dq3

ð2πÞ2
�

1

ϵq3
þ 1

ϵq3−p3

�
ϵq3ϵq3−p3 − q3ðq3 − p3Þ −m2

ðp0Þ2 − ðϵq3 þ ϵq3−p3Þ2 ; ð26Þ

and

Π00
medðpkÞ ¼ 2Nce2jeBj

Z
dq3

ð2πÞ2
� ðp0 þ ϵq3−p3Þϵq3−p3 þ q3ðq3 − p3Þ þm2

2ϵq3−p3ðp0 þ ϵq3−p3 þ ϵq3Þðp0 þ ϵq3−p3 − ϵq3Þ
nFðϵq3−p3 þ μ̃Þ

þ −ðp0 − ϵq3−p3Þϵq3−p3 þ q3ðq3 − p3Þ þm2

2ϵq3−p3ðp0 − ϵq3−p3 þ ϵq3Þðp0 − ϵq3−p3 − ϵq3Þ
nFðϵp3−q3 − μ̃Þ

þ −ðp0 − ϵq3Þϵq3 þ q3ðq3 − p3Þ þm2

2ϵq3ðp0 − ϵq3−p3 − ϵq3Þðp0 þ ϵq3−p3 − ϵq3Þ
nFðϵq3 þ μ̃Þ

þ −ðp0 þ ϵq3Þϵq3 þ q3ðq3 − p3Þ þm2

2ϵq3ðp0 − ϵq3−p3 þ ϵq3Þðp0 þ ϵq3−p3 þ ϵq3Þ
nFðϵq3 − μ̃Þ

�
: ð27Þ

Here, nFðzÞ ¼ 1=ð1þ eβzÞ is the Fermi-Dirac distribution function. In general, as seen from (27), the statistical part
depends on temperature and chemical potential. In order to carry out then the infrared limit (p0 ¼ 0; p3 → 0), needed for
static responses, it is convenient to rewrite (27) in the following way:

Π00
medðpkÞ ¼ 2Nce2fjefBj

Z
dq3

ð2πÞ2

×

	
1

4

�
1þ q3ðq3 − p3Þ þm2

ϵq3ϵq3−p3

��
nFðϵq3−p3 þ μ̃Þ − nFðϵq3 þ μ̃Þ

p0 − ϵq3 þ ϵq3−p3

−
nFðϵq3−p3 − μ̃Þ − nFðϵq3 − μ̃Þ

p0 þ ϵq3 − ϵq3−p3

�

þ 1

4

�
1 −

q3ðq3 − p3Þ þm2

ϵq3ϵq3−p3

��
nFðϵq3−p3 þ μ̃Þ þ nFðϵq3 − μ̃Þ

p0 þ ϵq3 þ ϵq3−p3

−
nFðϵq3−p3 − μ̃Þ þ nFðϵq3 þ μ̃Þ

p0 − ϵq3 − ϵq3−p3

�

: ð28Þ

In the present situation, we are interested only in the
screening effect in a cold-dense medium, which are the
conditions that better simulates what happens in a NS’s
core where μ ≫ T. Hence, we will take the zero-
temperature limit of Π00

med. Moreover, in order to investigate
the electrostatic screening in that medium, we need to
search for the infrared behavior of Π00

f ðpkÞ. In statistics, it

is well known that the limits p0 → 0 and p → 0 do not
commute. But, the prescription to get the medium’s static
response is to take first p0 ¼ 0 and then p → 0 [40].

For the vacuum part, we can regularize it by Pauli-Villars
(PV) scheme, which removes all UV divergences and
maintains gauge invariance,

Π00
vacðpkÞ ¼ −Nce2fjefBj

XS
s¼0

Cs

Z
dq3

ð2πÞ2
�

1

ϵq3;Ms

þ 1

ϵq3−p3;Ms

�
ϵq3;Ms

ϵq3−p3;Ms
− q3ðq3 − p3Þ −M2

s

ðp0Þ2 − ðϵq3;Ms
þ ϵq3−p3;Ms

Þ2 ; ð29Þ

with ϵq3;Ms
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq3Þ2 þM2

s

p
, M0 ¼ m, C0 ¼ 1, and the auxiliary masses Ms≠0 → ∞ after the integration. The coefficients

Cs are judiciously chosen so as to remove some of the singularities in the vacuum part. The strongest singularity was
eliminated by imposing

P
s Cs ¼ 0 and other singularities, if they exist, would disappear if the condition

P
s CsM2

s ¼ 0
holds [41]. In the infrared limit we have

Π00
vacðp0 ¼ 0; p3 → 0Þ ¼ Nce2fjefBj

XS
s¼0

Cs

Z
dq3

ð2πÞ2
�
−
q3p3

ϵ3q3;Ms

þOððp3Þ2Þ
�
: ð30Þ

As expected, the vacuum-part contribution vanishes in the leading order.
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For the medium part, we start from the zero-temperature limit expression with p0 ¼ 0,

Π00
medðp0 ¼ 0; p3Þ ¼ Nce2fjefBj

2

Z
dq3

ð2πÞ2
��

1þ q3ðq3 − p3Þ þm2

ϵq3ϵq3−p3

�
θðμ̃ − ϵq3−p3Þ − θðμ̃ − ϵq3Þ

ϵq3−p3 − ϵq3

þ
�
1 −

q3ðq3 − p3Þ þm2

ϵq3ϵq3−p3

�
θðμ̃ − ϵq3−p3Þ þ θðμ̃ − ϵq3Þ

ϵq3−p3 þ ϵq3

�
; ð31Þ

and now taking the limit p3 → 0, we obtain in the leading order,

Π00
medðp0 ¼ 0; p3 → 0Þ ¼ 2Nce2fjefBj

Z
∞

0

dq3

ð2πÞ2
∂θðμ̃ − ϵq3Þ

∂ϵq3 ¼ −
Nce2fjefBj

2π2
μ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̃2 −m2
p θðμ̃ −mÞ: ð32Þ

Note that, the same result for the Debye mass can be
obtained alternatively from the second-order derivative of
the thermodynamic potential (16) with respect to the
temporal component of the external electromagnetic field
A0. See Appendix B for details.
It is interesting to check that the polarization tensor, in the

strong-field approximation, satisfies the transversality con-

dition in the reduced ð1þ 1Þ-D space, i.e., pμkΠk
μνðpkÞ ¼

Πk
μνðpkÞpνk ¼ 0. In statistical QED in the presence of a

magnetic field, the photon polarization tensor has nine
independent gauge invariant tensorial structures [42]. At a
strong-magnetic field, however, there is only one indepen-

dent structure given by gkμν − pk
μp

k
ν=ðpkÞ2 due to the fact that

the transverse momentum is zero for the quarks in the LLL
[31]. Thus

Πf
μνðpkÞ ¼ Πðpk; μ̃; efBÞ

�
gkμν −

pk
μp

k
ν

ðpkÞ2
�
; ð33Þ

with Πðpk; μ̃; efBÞ being a scalar coefficient, which can be

obtained by contracting Πμν with the tensor gkμν

Πðpk; μ̃; efBÞ ¼ gμνkΠf
μν ¼ Πf

00 − Πf
33: ð34Þ

From (24) and (A1), we have

Πðpk; μ̃; efBÞ ¼ 4Nce2f
jefBj
β

X
q4

Z
dq3

ð2πÞ2
1

½ðiq4 − μ̃ − ip4Þ2 − ϵ2q3−p3 �½ðiq4 − μ̃Þ2 − ϵ2q3 �
: ð35Þ

Carrying out the sum of the Matsubara frequencies and making the continuation to Minkowski space, one has

Πðpk; μ̃; efBÞ ¼ −Nce2fjefBj
Z

dq3

ð2πÞ2
1

ϵq3−p3ϵq3

�
nFðϵq3−p3 þ μ̃Þ þ nFðϵq3 − μ̃Þ

p0 þ ϵq3−p3 þ ϵq3
þ nFðϵq3−p3 − μ̃Þ − nFðϵq3 − μ̃Þ

p0 − ϵq3−p3 þ ϵq3

þ nFðϵq3 þ μ̃Þ − nFðϵq3−p3 þ μ̃Þ
p0 þ ϵq3−p3 − ϵq3

−
nFðϵq3 þ μ̃Þ þ nFðϵq3−p3 − μ̃Þ

p0 − ϵq3−p3 − ϵq3

�
þ Πvaccum: ð36Þ

At zero temperature and in the infrared limit (p0 ¼ 0, p3 → 0), only the statistical part contributes,

Πðpk ¼ 0; μ̃; efBÞ ¼ −2Nce2fjefBj
Z

∞

m

dϵq3

ð2πÞ2
1

ϵq3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2q3 −m2

q �
θðμ̃ − ϵq3Þ

ϵq3
−
∂θðμ̃ − ϵq3Þ

∂ϵq3
�
;

¼ −
Nce2fjefBj

2π2
μ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̃2 −m2
p θðμ̃ −mÞ: ð37Þ

From (33), we thus have

Πf
00ðp0 ¼ 0; p3 → 0Þ ¼ Πðpk ¼ 0; μ̃; efBÞ ¼ −

Nce2fjefBj
2π2

μ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃2 −m2

p θðμ̃ −mÞ; ð38Þ
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which is exactly (32). The result (38) also indicates that
the 33 component of the polarization operator, Πf

33, which
appears in (34), vanishes in the infrared limit. This
conclusion is demonstrated by explicit calculations in
Appendix A. More physical implications of the vanishing
of Πf

33 in the infrared limit will be presented in Sec. IV D.

C. Debye Length

The shieldingof an external electric field in a plasmacan be
seen as a consequence of a dielectric polarization of the
medium. That is, under an applied electric field, it takes place
a redistribution of space charge that prevents the penetration
of the external field beyond certain length. The length scale
associated with such shielding is the Debye length.
The medium polarization is quantized by the 00 com-

ponent of the photon polarization tensor in the infrared
limit. Its effect is reflected in the modification of the
Poisson equation, which for a point charge q is then
given by

∇2A0 ¼ −Π00A0 −
q
ϵ0
δðrÞ; ð39Þ

with ϵ0 the vacuum permittivity. The solution of (39) is the
modified Coulomb law,

A0 ¼
q
ϵ0r

e−r=λD; ð40Þ

with the Debye length given by λD ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
−Π00

p
.

Hence, the screened Coulomb potential (40) can be
seen as the one with the bare 1=r decay in the presence
of a modified permittivity, ϵ, which absorbs the medium
polarization

A0 ¼
q
ϵr

; ϵ ¼ ϵ0er=λD: ð41Þ

That is, when Π00 is not zero in the infrared limit, the
Coulomb potential of a point charge q is shielded on
distance scales longer than λD by a shielding cloud
of approximate radius λD consisting of charges with
opposite sign.
In particular, in the strongly magnetized MDCDW phase,

we find from (32) that the corresponding Debye length is

λD ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
P

fΠ00
f

q ¼
�

2π2

Nc
P

fe
2
fjefBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

μ̃2

s �1=2

¼
�

π

2αjeBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

μ̃2

s �1=2

; μ̃ ¼ jμ − bj ≥ m; ð42Þ

with α the fine-structure constant and e the electron charge.
In (42), we used the fact that Nc ¼ 3.

In the MDCDW phase, the Debye length depends on the
dynamical parametersm and b, so they have to be found for

each value of chemical potential through the gap equa-
tions (21). Now, from (42), we have that λD will be different
from zero only if jμ − bj > m. But, from Fig. 5 we see that
jμ − bj < m in the density domain where the LLL approxi-
mation is valid. Thus, in this phase, there will be no Debye
screening in that density region in the strong-magnetic field
range 0.6 ≤

ffiffiffiffiffiffi
eB

p
≤ 1.0.

In the case of MCχSB at finite density, the Debye
screening requires that μ > m. Thus, we find that it will
take place only beyond the critical chemical potential value
for the phase transition to the chiral symmetric phase with
m ¼ 0. However, since as shown in Sec. III, the more
favored phase at those densities is the MDCDW phase, we
have that no Debye screening will take place in cold quark
matter in a strong-magnetic field at least in the density
region where our approximation is valid. To extend our
result to the whole domain of chemical potentials, it is
needed to find the quark propagator under an arbitrary
magnetic field, which will depend on all LLs, from where
to calculate the corresponding photon polarization operator.
This is an involved task that goes beyond the scope of the
present work. Nevertheless, if we accept a 20% of accuracy
in our results, for

ffiffiffiffiffiffi
eB

p
∼ 1.0 the lack of Debye screening

will take place for a relatively wide range of densities
(0.2 < μ < 1).

D. Meissner mass

In our case, the Meissner mass is obtained from the 33
component of the polarization operator (22) in the infrared
limit. As in the 00-component case, the result after the
Matsubara sum will be decomposed into the vacuum and
statistical parts
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m
| -b|
m (b=0)

0.10

0.30

0.1 0.5 0.9

0.30

0.60

0.1 0.5 0.9 0.1 0.5 0.9

FIG. 5. Parameters’ values in the density region at magnetic-
field values in the horizontal rows (

ffiffiffiffiffiffi
eB

p ¼ 0.6, 0.8, 1.0) and
coupling constants (G ¼ 2.0, 2.5, 3.0) in the vertical columns.
The solutions are obtained in the LLL approximation.
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Π33
f ¼ Π33

vac þ Π33
med: ð43Þ

The details of the calculation will be given in Appendix A. Here, we give the results after the infrared limit is carried out

Π33
vacðp0 ¼ 0; p3 → 0Þ ¼ Nce2fjefBj

XS
s¼0

Cs

Z
dq3

ð2πÞ2
M2

s

ϵ3
q3

¼ Nce2fjefBj
1

2π2
XS
s¼0

Cs ¼ 0; ð44Þ

where we take into account the regularization constraint
P

S
s¼0 Cs ¼ 0.

For the statistical part at zero temperature

Π33
medðp0 ¼ 0; p3 → 0Þ ¼ Nce2fjefBj

Z
dq3

ð2πÞ2
ðq3Þ2

ðq3Þ2 þm2

�∂θðμ̃ − ϵq3Þ
∂ϵq3 þ m2

ðq3Þ2
1

ϵq3
θðμ̃ − ϵq3Þ

�
¼ 0: ð45Þ

Here, the two terms in the bracket cancel out.
Therefore, there is no Meissner effect in this medium.

This is a physically expected result, since the particle-hole
condensate under consideration is electrically neutral and
consequently the electromagnetic Uð1Þ symmetry is not
broken by the ground state.

V. CONCLUDING REMARKS

In this paper we study the screening effect of strongly
magnetized cold quark matter in the intermediate density
region. With this goal, we compared the phase character-
ized by a quark-antiquark chiral condensate (i.e., the
MCχSB phase) with the one with a quark-hole inhomo-
geneous condensate (i.e., the MDCDW phase). We showed
that at weak coupling the MDCDW phase is the more stable
one at any density value. This result, together with the one
reported in Ref. [5] for strong coupling, indicates that the
MDCDW phase is energetically favored for the entire
coupling domain in the intermediate density region. This
is an important result, since it changes the previous belief
that a massless fermion theory under a strong-magnetic
field at finite density will dynamically generate a mass
through a homogeneous chiral condensate (i.e., the gen-
eration of the MCχSB phase) that will be present up to
certain critical value of the chemical potential [43], from
where on the condensate is evaporated and the chiral
symmetry is reinstated. By the present result, we have that
this homogeneous phase will be unstable at any μ value,
and that it should be replaced by a more energetically
favored phase characterized by an inhomogeneous particle-
hole condensate (i.e., the MDCDW phase).
Another significant part of this paper has been devoted to

the investigation of the screening effects on this dense
medium. In order to find the Debye and Meissner masses,
we calculated the photon polarization operator of the
MDCDW phase at finite density and in the presence of
a uniform and constant magnetic field in the one-loop
approximation and in the strong-field limit. The 00 com-
ponent of the calculated polarization operator was different
from zero under the condition that jμ − bj ≥ m in the

infrared limit (p0 ¼ 0, p → 0). Since m and b are dynami-
cal parameters that should be found as the solution of the
gap equations (21), the Debye length becomes a dynamical
quantity that will be different from zero only if the
condition jμ − bj > m is satisfied. It happens that in the
density region valid in the LLL approximation, the con-
dition m > jμ − bj leads, as it can be seen from the plots in
Fig. 5. Hence, in this quark matter phase no generated static
electric field can be screened. Physically this can be
understood from the fact that in this phase all the particles
are forming neutral pairs, thus, no charge exists to form a
screening cloud.
On the other hand, there is no Meissner effect in this

medium [i.e., Π33ðp0 ¼ 0; p3 → 0Þ ¼ 0). This is physi-
cally expected by the same reason previously mentioned,
that is, because the particle-hole condensate under consid-
eration is electrically neutral and consequently the electro-
magneticUð1Þ symmetry is not broken by the ground state.
This result puts a finishing touch on the screening effects

of cold-dense quark matter under a strong-magnetic field: if
it is considered that in moving from the lower to the higher
density region quark matter passes from the MDCDW to
the CFL color-superconducting phase respectively, we have
that the electric screening, as well as the magnetostatic
screening (i.e., Meissner effect) will be absent in the
relatively high-density region. We recall that the MCFL
phase of color superconductivity lacks the Debye and
Meissner screening [31], since all the quarks in this phase
are paired in neutral Cooper pairs with respect to the in-
medium electromagnetism [44].
Our findings can be of interest for the astrophysics of

NS, where the conditions of relatively high densities and
strong-magnetic fields prevail. On the other hand, as we
already pointed out in the Introduction, the study of electric
field effects on astronomical objects has been a topic of
investigation since many years ago [35]. The topic has got a
renewed attention due to the fact that many observed
pulsars have been estimated to have huge electric fields
in their surfaces [45]. Moreover, it is noteworthy that stars’
collapse to a singularity point may be avoided by the
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existence of a net charge in its composition that can
counterbalance the gravitational attraction by the
Coulomb repulsion if it is not screened. On the same
footing, a charged compact star can be in hydrodynamical
equilibrium having a radius on the verge of forming an
event horizon. Thus, charged stars can exhibit larger masses
for a given radius. Several mechanisms to charge the star
have been already proposed. For example, in binary
neutron-star systems, one of the components may acquire
a net charge by accretion from the companion [46]. It has
also been pointed out [47] that in ultracompact stars like
strange stars composed of u, d and s quarks, the electric
field at the surface could be as high as 1019 eV=cm. In this
context, to know that the different plausible phases of
magnetized quark matter, if realized in the core of NS, do
not have the capability to screen a generated electric field is
a noteworthy result, since the presence of a Debye screen-
ing in the stellar medium will erase all these effects. The
same is valid regarding the lack of magnetic screening in

the whole density domain. As known, a strong star inner
magnetic field can affect significantly its equation of state
for nuclear matter [48], as well as for quark matter [39,49].
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APPENDIX A: OTHER COMPONENTS OF THE
PHOTON POLARIZATION OPERATOR

In Sec. IV, we calculated in detail only the 00 component
of the one-loop photon polarization operator in the strong-
field limit. In this Appendix, we shall present the calcu-
lation of the remaining components, especially the 33
component that indicates the possible magnetostatic
screening of this medium. From (22), we have

Π33
f ðpkÞ ¼ 2Nce2f

jefBj
β

X
q4

Z
dq3

ð2πÞ2
ðiq4 − μ̃Þðiq4 − μ̃ − ip4Þ þ q3ðq3 − p3Þ −m2

½ðiq4 − μ̃ − ip4Þ2 − ϵ2q3−p3 �½ðiq4 − μ̃Þ2 − ϵ2q3 �
; ðA1Þ

and

Π03
f ðpkÞ ¼ Π30

f ðpkÞ ¼ 2Nce2f
jefBj
β

X
q4

Z
dq3

ð2πÞ2
ðiq4 − μ̃Þðq3 − p3Þ þ ðiq4 − μ̃ − ip4Þq3

½ðiq4 − μ̃ − ip4Þ2 − ϵ2q3−p3 �½ðiq4 − μ̃Þ2 − ϵ2q3 �
: ðA2Þ

Carrying out the sum in Matsubara frequencies and making the analytic continuation from Euclidean to Minkowski space,
one obtains for the 03 component

Π03
f ¼ Π03

vac þ Π03
med; ðA3Þ

with

Π03
vacðpkÞ ¼ Nce2fjefBj

XS
s¼0

Cs

Z
dq3

ð2πÞ2
p0½ðq3 − p3Þϵq3;Ms

− q3ϵq3−p3;Ms
�

ðϵq3;Ms
ϵq3−p3;Ms

Þ½ðp0Þ2 − ðϵq3;Ms
þ ϵq3−p3;Ms

Þ2� ; ðA4Þ

and

Π03
medðpkÞ ¼ −2Nce2fjefBj

Z
dq3

ð2πÞ2

×

	
q3ϵq3−p3 þ ðq3 − p3Þϵq3

4ϵq3ϵq3−p3

�
nFðϵq3 þ μ̃Þ − nFðϵq3−p3 þ μ̃Þ

p0 − ϵq3 þ ϵq3−p3

þ nFðϵq3 − μ̃Þ − nFðϵq3−p3 − μ̃Þ
p0 þ ϵq3 − ϵq3−p3

�

þ q3ϵq3−p3 − ðq3 − p3Þϵq3
4ϵq3ϵq3−p3

�
nFðϵq3 − μ̃Þ þ nFðϵq3−p3 þ μ̃Þ

p0 þ ϵq3 þ ϵq3−p3

þ nFðϵq3 þ μ̃Þ þ nFðϵq3−p3 − μ̃Þ
p0 − ϵq3 − ϵq3−p3

�

: ðA5Þ

Similarly, we have for the 33 component

Π33
f ¼ Π33

vac þ Π33
med; ðA6Þ

with

FENG, FERRER, and PORTILLO PHYS. REV. D 101, 056012 (2020)

056012-12



Π33
vacðpkÞ ¼ −Nce2fjefBj

XS
s¼0

Cs

Z
dq3

ð2πÞ2
�

1

ϵq3;Ms

þ 1

ϵq3−p3;Ms

�
ϵq3;Ms

ϵq3−p3;Ms
− q3ðq3 − p3Þ þM2

s

ðp0Þ2 − ðϵq3;Ms
þ ϵq3−p3;Ms

Þ2 ; ðA7Þ

and

Π33
medðpkÞ ¼ 2Nce2fjefBj

Z
dq3

ð2πÞ2

×

	
1

4

�
1þ q3ðq3 − p3Þ −m2

ϵq3ϵq3−p3

��
nFðϵq3−p3 þ μ̃Þ − nFðϵq3 þ μ̃Þ

p0 − ϵq3 þ ϵq3−p3

−
nFðϵq3−p3 − μ̃Þ − nFðϵq3 − μ̃Þ

p0 þ ϵq3 − ϵq3−p3

�

þ 1

4

�
1 −

q3ðq3 − p3Þ −m2

ϵq3ϵq3−p3

��
nFðϵq3−p3 þ μ̃Þ þ nFðϵq3 − μ̃Þ

p0 þ ϵq3 þ ϵq3−p3

−
nFðϵq3−p3 − μ̃Þ þ nFðϵq3 þ μ̃Þ

p0 − ϵq3 − ϵq3−p3

�

: ðA8Þ

Notice that, we had regularized the vacuum parts by PV regularization. In the following, we will calculate the contribution
from the vacuum and statistical parts in the static limit p0 ¼ 0, p3 → 0. We thus again write the statistical part in a form in
which the static limit is easy to handle. For the vacuum part, we obtain

Π03
vacðp0 ¼ 0; p3Þ ¼ 0; ðA9Þ

and

Π33
vacðp0 ¼ 0; p3Þ ¼ Nce2fjefBj

XS
s¼0

Cs

Z
dq3

ð2πÞ2
�
M2

s

ϵ3q3
þ p3q3ðM2

s − 2ðq3Þ2Þ
2ϵ5

q3;Ms

þOððp3Þ2Þ
�
: ðA10Þ

In the leading order,

Π33
vacðpk ¼ 0Þ ¼ Nce2fjefBj

XS
s¼0

Cs

Z
dq3

ð2πÞ2
M2

s

ϵ3
q3

¼ Nce2fjefBj
1

2π2
XS
s¼0

Cs ¼ 0: ðA11Þ

For the statistical part, at zero temperature, we have

Π03
medðp0 ¼ 0; p3Þ ¼ −

Nce2fjefBj
2

Z
dq3

ð2πÞ2
��

q3ϵq3−p3 þ ðq3 − p3Þϵq3
ϵq3ϵq3−p3

�
θðμ̃ − ϵq3Þ − θðμ̃ − ϵq3−p3Þ

ϵq3 − ϵq3−p3

þ
�
q3ϵq3−p3 − ðq3 − p3Þϵq3

ϵq3ϵq3−p3

�
θðμ̃ − ϵq3Þ − θðμ̃ − ϵq3−p3Þ

ϵq3 þ ϵq3−p3

�
; ðA12Þ

and

Π33
medðp0 ¼ 0; p3Þ ¼ Nce2fjefBj

2

Z
dq3

ð2πÞ2
��

1þ q3ðq3 − p3Þ −m2

ϵq3ϵq3−p3

�
θðμ̃ − ϵq3−p3Þ − θðμ̃ − ϵq3Þ

ϵq3−p3 − ϵq3

þ
�
1 −

q3ðq3 − p3Þ −m2

ϵq3ϵq3−p3

�
θðμ̃ − ϵq3−p3Þ þ θðμ̃ − ϵq3Þ

ϵq3−p3 þ ϵq3

�
: ðA13Þ

Taking the limit p3 → 0, they become

Π03
medðp0 ¼ 0; p3 → 0Þ ¼ −Nce2fjefBj

Z
dq3

ð2πÞ2
q3

ϵq3

∂θðμ̃ − ϵq3Þ
∂ϵq3 ¼ 0; ðA14Þ

and
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Π33
medðp0 ¼ 0; p3 → 0Þ ¼ Nce2fjefBj

Z
dq3

ð2πÞ2
ðq3Þ2

ðq3Þ2 þm2

�∂θðμ̃ − ϵq3Þ
∂ϵq3 þ m2

ðq3Þ2
1

ϵq3
θðμ̃ − ϵq3Þ

�

¼ −
Nce2fjefBj

2π2

�Z
∞

m

dϵq3

ϵq3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2q3 −m2

q
δðμ̃ − ϵq3Þ −

Z
μ̃

m

dϵq3

ϵ2q3

m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2q3 −m2

q �

¼ −
Nce2fjefBj

2π2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃2 −m2

p
μ̃

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃2 −m2

p
μ̃

�
¼ 0: ðA15Þ

Therefore, as expected, there is no Meissner effect in the medium [i.e., Π33ðp0 ¼ 0; p3 → 0Þ ¼ 0] since the particle-hole
condensate under consideration is electrically neutral and consequently the electromagnetic Uð1Þ symmetry is not broken
by the ground state. This result is also consistent with the covariant form of the photon polarization operator that we claimed
in (33).

APPENDIX B: AN ALTERNATIVE WAY TO OBTAIN THE DEBYE MASS

As known, the Debye mass can also be obtained from the second-order derivative of the thermodynamic potential (16)
with respect to the temporal component of the external electromagnetic field A0, which is related to the chemical potential
via the simple relation, efA0 → μ. At zero temperature, the only part contributing to the Debye mass is the medium one, i.e.,
Ωμ. In LLL, it reads [10]

ΩfLLL
μ ¼ −

1

2

NcjefBj
ð2πÞ2

Z
∞

−∞
dp3

X
ϵ

ðjE0 − μj − E0Þ

¼ −
NcjefBj
ð2πÞ2

	�
QðμÞ þm2 ln

m
RðμÞ

�
θðb − μ −mÞθðb −mÞ

−
�
Qð0Þ þm2 ln

m
Rð0Þ

�
θðb −mÞ þ

�
QðμÞ þm2 ln

m
RðμÞ

�
θðμ − b −mÞ

−
�
Qð0Þ þm2 ln

m
Rð0Þ

�
θðμ − b −mÞθð−b −mÞ



; ðB1Þ

with

QðμÞ ¼ jb − μj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb − μÞ2 −m2

q
; RðμÞ ¼ jb − μj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb − μÞ2 −m2

q
: ðB2Þ

One thus obtains

∂2ΩfLLL
μ

∂μ2 ¼ −
NcjefBj
2π2

μ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃2 −m2

p θðμ̃ −mÞ: ðB3Þ

Therefore, we obtain the Debye mass by replacing A0 with μ=ef

∂2ΩfLLL
μ

∂ðA0Þ2 ¼ e2f
∂2ΩfLLL

μ

∂μ2 ¼ −
Nce2fjefBj

2π2
μ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̃2 −m2
p θðμ̃ −mÞ: ðB4Þ

This is exactly the result we obtained in (32).
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