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We investigate the effect of an applied constant and uniform magnetic field in the fine-structure constant
of massive and massless QED. In massive QED, it is shown that a strong magnetic field removes the so
called Landau pole and that the fine-structure constant becomes anisotropic having different values along
and transverse to the field direction. Contrary to other results in the literature, we find that the anisotropic
fine-structure constant always decreases with the field. We also study the effect of the running of the
coupling constant with the magnetic field on the electron mass. We find that in both cases of massive
and massless QED, the electron dynamical mass always decreases with the magnetic field, what can be

interpreted as an inverse magnetic catalysis effect.
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I. INTRODUCTION

The effect of magnetic fields on the different properties
of quantum particles has always attracted great interest [1].
At present, it has been reinforced by the fact that there
is the capability to generate very strong magnetic fields in
non-central heavy ion collisions, and because of the
discovery of strongly magnetized compact stars, which
have been named magnetars. In this domains, fields of
the order or larger than the QCD scale (B > Ajcp =

4 x 10* MeV? = 6.8 x 10'® G) are estimated to be gen-
erated at RHIC and LHC [2], and fields larger than the

electron critical field, BY) = 4.4 x 10" G, can exist in the
surface of magnetars [3].

Among the magnetic field effects studied in electrody-
namics, those related to the possible variation of the fine-
structure constant [4—6] and to the electron mass [7—15]
have attracted special attention.

In QED, screening effects can modify the value of the
observable coupling constant. There exists even the pos-
sibility that the renormalized coupling becomes screened to
zero. In that case, the theory is said to be “trivial.” Thus, a
theory that appears to describe interacting particles at the
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classical level, can become a trivial theory of noninteracting
free particles when quantum and relativistic effects are
included. This phenomenon is referred to as quantum
triviality [16]. This problem appears in QED in what is
known as the Landau pole problem [17], where QED
becomes inconsistent at very short-distance scales in the
perturbative regime unless the renormalized charge is set to
zero. The inclusion of a magnetic field can affect this result
since the magnetic field contribute to the charge screening.
In this paper, we will show that in a strong magnetic field
the Landau-pole is removed by the screening produced by
the electron-positron pairs filling the lowest Landau level
(LLL). On the other hand, we obtain that the behavior of
the fine-structure constant with the magnetic field is in
disagreement with those reported in Refs. [4,5] years ago.
We will make a detailed exposition of the gauge invariant
method we are using so to show what is the source of this
discrepancy.

Another problem that has attracted much attention in the
last two decades is the so-called magnetic catalysis of chiral
symmetry breaking (MCySB) [9—15]. This phenomenon is
responsible for the dynamical generation of a fermion mass
(i.e., by catalyzing chiral symmetry breaking) by an applied
magnetic field in a massless fermion theory. The study of
theories of massless relativistic fermions has recently
gained new interest in the context of quasiplanar systems,
such as pyrolitic graphites (HOPG) [18,19] and graphene
[20], because their low-energy excitation quasiparticle
spectrum has a linear dispersion relation. The dynamics
of those charge carriers is described by a relativistic
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quantum field theory of massless fermions in 2+ 1
dimensions [18,21]. The MCySB is a universal phenome-
non that takes place in any relativistic theory of interactive
massless fermions in a magnetic field, and it has been
proposed as the mechanism explaining various effects in
quasiplanar condensed matter systems [22].

In the original works of MCySB a characteristic feature
is the increase of the dynamical mass with the magnetic
field (for a review see [23] and references therein). Hence,
as the critical temperature for chiral restoration results
proportional to the dynamical mass, the critical temperature
also increases with the field [24]. Nevertheless, this result
is in sharp contrast with recent QCD-lattice calculations
that showed a decrease of the critical temperature for the
chiral/deconfinement transition with the magnetic field
[25], a phenomenon that has been called “inverse magnetic
catalysis” (IMC).

In Ref. [26], we adopted the point of view, shared by
other authors [27], that the origin of the IMC in QCD
should lie in the effects of the magnetic field in the running
of the strong coupling. Our analysis contained two new
fundamental elements. On the one hand, we showed that
in the strong field region (¢B > AéCD), where the infrared
dynamics becomes relevant, the QCD running coupling
becomes anisotropic: the color interaction in the directions
parallel and transverse to the field is characterized by two
different functions of the momentum and the field [26].
On the other hand, we found that the quarks, confined by
the field to the LLL, produce magnetic antiscreening (i.e.,
the quark magnetic contribution to the running coupling
constant enters with the same sign as the gluon contribu-
tion) in the parallel coupling, which is the one entering to
determine the chiral critical temperature. The magnetic
antiscreening of the LLL quarks is connected to the color
paramagnetic behavior of the pairs formed by LLL virtual
quarks and antiquarks [28]. The magnetic antiscreening
produced by the LLL pairs increases with the magnetic
field because the phase space of the LLL increases with the
field, allowing more pairs to be formed. These results
naturally lead to IMC and also allow us to identify a
possible physical mechanism for the behavior of Tc with
the field (i.e., the decrease of the parallel strong coupling
with the field).

From this result and taking into account the universal
character of the MCySB phenomenon, it is natural to ask if
the IMC effect also takes place in massless QED. To get
inside on this question will be another goal of this paper. As
we will see below, there are some signals of IMC in this
case, although, as it will be discussed there, more work is
needed for a complete certain answer. From a physical
point of view, the question is to find if the weakening effect
on the coupling produced by the screening of the pairs into
the LLL, is surpassed by the strengthen of the interaction
due to the reduction of the spatial dimension produced by
the particle confinement to the LLL. We will show that in

this case, as in the QCD case, the weakening of the
coupling constant is the winning effect.

The paper is organized as follows: In Sec. II, we
calculate the Coulomb potential energy in the presence
of a constant and uniform magnetic field considering one-
loop corrections through the polarization operator in the
two limits of strong and weak magnetic fields. In doing
this, for the sake of completeness, we review the approach
introduced in Ref. [29] making more explicit some deri-
vations. Then, in Sec. III, we use the results of Sec. II to
calculate the running of the fine-structure constant with
the magnetic field at different strengths. In Sec. IV, we
investigate how the magnetic field affects the electron mass
in massive QED, as well as in the massless case where the
MCySB phenomenon plays a fundamental role. In this
analysis, an important new element is that the effect of the
magnetic field in the fine-structure constant for each case
is included. Then, the possibility of IMC in the massless
case is analyzed. In Sec. V, the main results of this paper
are summarized and their physical significance are dis-
cussed. Finally, in Appendix, detailed calculations of the
polarization-operator coefficient entering in the Coulomb
potential energy are given in the weak and strong-field
approximations using the Ritus’s method.

II. THE COULOMB POTENTIAL
ENERGY AT B #0

One of the main goals in this paper is to find how a
magnetic field can affect the electron mass through radi-
ative and nonperturbative corrections when the effect of
the magnetic field is also considered in the fine-structure
constant. To find how aqgp depends on B, we will start by
calculating the Coulomb potential energy in different field-
strength limits. For the sake of understanding, we review as
follows the basic derivations introduced in Ref. [29] to
study the Coulomb potential in the presence of a magnetic
field. To have this explicit derivations will serve then to
make it clear what is the source of the discrepancies with
previous results regarding the behavior of the fine-structure
constant with the magnetic field [4,5]. In particular, we will
show that the discrepancy is due to the fact that in [4,5] it
was considered in the structure of the photon propagator,
terms that are forbidden by the gauge invariance of the
polarization operator.

From the relationship between the 4-vector potential
A,(x) and the 4-current J,(y),

Ay(x) = / " Dulx =30y, (1)

where D, (x —y) is the photon propagator, we have that
for a static point-charge source, J,(y) = e5,05°(y), the
corresponding static potential is
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A(x) = e / " Dy X) e 2)

Since the photon fields are electrically neutral, the
photon propagator can be Fourier transformed

1

D, (x) = W/Dﬂy(k)eik"d“k. (3)

Then, substituting (3) in (2), we obtain the general
expression for the Coulomb potential of a pointlike static
charge,

Ap(X) = —t / Doo(0, K)e ®* k. (4)

(22)

If a second point-charge e is located at x, the system
electrostatic energy is

2

Y=

/ Do (0, k) e ** 3k, (5)

Therefore, to find the Coulomb electrostatic energy in
the presence of a uniform and constant magnetic field
taken in the Landau gauge A* = (0,0, Bx;,0), we need
to know the photon propagator. With that goal, we
introduce the four orthogonal vectors, which can expand
the 4-dimensional space in the presence of a magnetic
field [15,29,30]

b = R EL Tk, 4 Rk b = ek
b£¢3) — f;‘ﬂyku’ b/<44) — kﬂ, (6)

with F w = F,,/B, denoting the normalized electromag-
netic strength tensor and k3 = k3 + k3.
The four-vectors (6) satisfy the relations

(a) 7 (a)
Z bﬂ (jbz = G — kﬂ]zcv , (7)
a=1 (b ) k
LA )
— (b(a))z uv*

The polarization tensor is a second-rank Lorentz tensor
transverse to kﬂ (i.e., gauge invariant), which is also P and C
invariant. As a consequence, it is diagonal and can be given
in momentum space in terms of the orthogonal vectors (6)
as [30,31],

bl(lu) b,(/a)
(b))

H;w(k’B) = ina(hB) (9)
a=1

The coefficients I1,(k, B) are scalars that depend on the
momentum and magnetic field. As follows from (9),

and the orthogonality of the eigenvectors b,(,a), the four-
vectors (6) are the eigenvectors of the polarization operator
with corresponding eigenvectors I, (k, B),

I (k, B)bY") = 11, (k, B)b". (10)

The inverse propagator for the Maxwell theory in a
covariant gauge and including the radiative correction
associated with the polarization operator is then given by

1
D;y‘ (k,B) = —kzgw + (1 —E)kﬂky +l‘[w(k, B), (11)

where £ is the gauge-fixing parameter. Taking into account
the relations (7) and (9), the inverse propagator can be
written as

4 b’(la)bl(/a)
Dy)(k.B) =Y _D;'(k.B) o (12
a=1
with coefficients
M,(k,B)—k*, a=1,2,3,
D;l(k,B):{[ ( ) ] a (13)
kz/f, a=4.

By using the orthogonality conditions of the eigenvec-
tors (6) and the relation (8), the photon propagator includ-
ing the radiative corrections can be easily found from

D, (k,B)D™(k,B) = &, (14)
to be given as
4 bl(f)b,(,a)
D;w(ka) = ;Da(ka) (b(a))2 ’ (15)
where
I,(k, B) — k*]7!, =1,2,3,
Da(k,B)z{[ JkB) =R, a »
E/k2, a=4.

It can be noticed that in the Feynman gauge, £ = 0, the
tensor structure of the photon propagator (15) reduces to
that of the polarization operator (9).

Hence, from (5), (13) and (15) we have,

62 / e—ik-xd3k
@n? ] I -TL(0.3. k)]

Ux) = (17)
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Since only the contribution a = 2 in (16) is different
from zero for Dy, (0, k), we see that the Coulomb potential
energy is gauge independent (i.e., it does not depend on ¢).

The coefficient of the polarization operator entering
in (17), I,(0,k, B), depends on the approximation. In
the following, we will consider the polarization operator
in the one-loop approximation taken in the two extreme
values of the magnetic field.

A. Strong-field approximation

The coefficient I1,(0, k, B), in the strong-field approxi-
mation (eB > m?, k?), was originally calculated in [30,31]
to be given in the leading approximation by

-2
Hg‘)(ko =0, m? < ki, k% < eB) = T o, (18)
/]
s k2leB K2
Hg)(ko =0, ki,k% <m? < eB) = 0(0—|e| o7 (19)
’ 3zm

It is important to stress that these coefficients were
calculated in Refs. [30,31] using the Schwinger proper-time
approach [32], where the contribution of the different
Landau levels is not apparent. Nevertheless, if we use
the Ritus’s approach [33], where the Landau level con-
tribution becomes explicit, we can show (see Appendix)
that the strong-field values (18) and (19) are obtained
directly working in the LLL limit. This is an evidence that
the fermions contributing to the Coulomb potential energy
in this limit are confined to (1 + 1)-dimensions.

Taking into account the results (18) and (19), we obtain
respectively for the Coulomb potential energy (17) in the
LLL approximation

Qo

U) (k)= =
k |:1 4 2a0leB| 2a0|eB\ eZcB:|

, m?*<ki,k3<eB, (20)

Qo

K2 |:1 +a(,k eB|€2LB:|

K3, kK3<m*<eB, (21)

B. Weak-field approximation

In the weak-field approximation (eB < m? k?) the
coefficient I, if found in Appendix in two different regions
[see Egs, (A41) and (A46)],

") (eB < ki ki <m?)

R E )] @

1" (eB < m* < kF.k3)

B D) o

Then, as in the strong-field case, from (22) and (23) we
obtain respectively for the Coulomb potential energy (17)
in the weak-field approximation

U™ (k) = o
K2 K2 a ’
21+ g (223 +5) ~ ]
eB < ki, k3 <m?, (24)
and
U™ (k) = %
a e k k3 g ’
2|1+ g GRP (3 +5) = 32 n()
eB <m?> < ki, k3. (25)

III. THE RUNNING OF THE FINE-STRUCTURE
CONSTANT WITH B

The field dependent fine-structure constant, @ggp,
can be obtained from the Coulomb potential energy (17)
written as

1 [e4)) .
U _ —zk'dek
(x) 2ﬂ2/k2[1 —LTL(0,2,k2)] ¢
1 agep(k, B)
= W Te kXd3k (26)

Taking into account that the coefficient I, (k, B) has two
different asymptotic behaviors, i.e., at strong and weak
magnetic fields respectively, as follows we find the fine-
structure constant in those two limits.

A. Weak-field limit

In the weak-field limit the fine-structure constant can be
obtained from (24) and (25) respectively as

(w) %o
aQED(k, B) = “ B 2 kz k% 4a B ’
g (L) (5 +5) -1 (%)
leB| < k3, k3 < m?, (27)
and
(w) %o
aoep(k, B) =
QEDA™ o e 2712 : a ’
i D ()
leB| < m? < k%, k3. (28)
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FIG. 1. In these figures we plot the relative change of a™)(k, B) [see Eq. (29)] vs the magnetic field. (a) Coupling constant given by
Eq. (27) as a function of eB/m? for fixed values of ky/m =k, /m = 0.5and ay = 1/137. (b) Coupling constant given by Eq. (28) as a
function of eB/m? for fixed values of m/ky=m/k, =0.5 and ay = 1/137.

In expression (28), we can notice the existence of the so
called Landau pole [17]. That is, the negative logarithmic
term in the denominator can produce for large enough
momentum a pole that rises the coupling constant to an
infinite value. Since this result is obtained through pertur-
bative one-loop calculations, it is indicating that the pole is
merely a sign of the breaking of the perturbative approxi-
mation at strong coupling. Going beyond perturbative
calculations with Lattice gauge theory it was obtained that
the QED charge at B # 0 is completely screened for an
infinite cutoff [34]. We call attention that in (28) the
magnetic field contribution enters with opposite sign to
the logarithmic momentum dependent term. Thus, its effect
is to counteract the divergency, although in this approxi-
mation (JeB| < k?) it is not enough to avoid the pole.

To quantify the magnetic field effect on the coupling
constant, let us introduce the relative change of o) (k, B)
with respect to a)(k,0) as

Ag) = (X(W)(k’ B) —aW) (k, 0) (29)
x1071°
-1.0 e
s-12r - -
<
L]
I
4 5 . : p 9 o2
k/m
(a)

As the plots of Figs. 1 and 2 show, the coupling constant
in all cases decreases with the magnetic field and parallel
momentum, while increases with the transverse momen-
tum. Thus, we find that the behavior of the fine-structure
constant with the magnetic field is similar to that of the
strong coupling constant as reported in [26]. We can also
observe that, in the weak-field approximation, there is a
small anisotropy with respect to the directions along and
transverse to the magnetic field.

B. Strong-field limit

From (20) and (21), the coupling constant in the strong-
field limit becomes respectively

[0
agpp (k. B) = O mP <K K <eB],

2agleB| g
l+=¢
(30)
and
x1071°
08 @ e - —
P ~
-1.0 Vi
/
S -12r,
s -4
g
S 16t
18}
ool T
10 102 108
k/m
(b)

FIG. 2. (a) Coupling constant given by Eq. (27) for eB/m? = 10~ and oy = 1/137. Black dotted line: Shows the relative change of
the coupling constant as a function of k|| /m for k, /m = 0.03. Red dashed line: Shows the relative change of the coupling constant as a
function of k, /m for k/m = 0.03. (b) Coupling constant given by Eq. (28) for eB/m* =103 and a, = 1/137. Black dotted line:
Shows the relative change of the coupling constant as a function of k|| /m for k; /m = 2. Red dashed line: Shows the relative change of
the coupling constant as a function of k /m for k| /m = 2.
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(s) % 2 g2 2
aQED(k’B) 7, kJ_y k3 <m- < |€B|-
agk?|eB] ﬁ
I+ 3am?k2 € :

(31)

We should notice that the Landau pole [17], that appears
for k? > m? in the weak-field case (28), is absent in the
strong field result (30). Although the coupling constant
continues increasing with the momentum (no-asymptotic
free theory) the strong effect of the magnetic field removes
the singularity. As we pointed out above, at zero magnetic
field the Landau pole is removed in a nonperturbative
approach [34]. Nevertheless, although we are working in
the one-loop approximation here, a nonperturbative expan-
sion in the magnetic field is present in the strong-field limit
(30). The nonperturbative magnetic-field interaction results
sufficient to produce a finite coupling constant for all values
of the momentum smaller than the natural scale in the

strong-field limit /|eB].
The fine-structure constant in the first limit (30)

decreases with the magnetic field at a fixed momentum.

While, in the second limit (31), we can see that a(Sl)ED

exhibits a significant anisotropy in the directions parallel
and transverse to the magnetic field,

agl)zD(k3 =0,B), ~a, ki <m? < leB], (32)
K} Q
aEQBED(kL =0,B), szO'eB‘, ki <m?® <leB|. (33)
3zm?

Notice that in this infrared limit, while in the transverse
direction the charge has a negligible screening, in the
parallel direction, at a large distance from the charge, the
effective charge decreases with the magnetic field strength
(see Fig. 3). In this case, for |eB| > i—z m?, we have that the
effective charge is independent of the original coupling
constant «;, only depending on the screening effect
produced by the magnetic field,

10 L T T T TA
0.8f
S 06F
o
S 04r
0.2f
00 L 1 1 1 1
10? 10° 10* 10°
eB/m?
FIG. 3. Coupling constant given by Eq. (33) as a function of

eB/m? for k| /m =0 and k;/m = 0.5.

s 3am?
agin (ki =0.B)j ="

3
o5 B > m?. (34)
e

Qp

It is easy to check that considering a, = 1/137 and
m = 0.511 MeV, for the electron mass, we obtain that
the value of the critical field to produce this effect is
eB, ~ 10'® G, which is a value several orders smaller than
that reached in off-central heavy-ion collisions [2], and also
smaller than the one estimated for the inner core of neutron
stars [35].

Here, we should mention that our results differ from
those found years ago in Refs. [4,5], where the fine-
structure constant was obtained from the Schwinger effec-
tive action in the presence of a magnetic field [32]. In
Ref. [5], it was found that in the strong-field approximation,
agep moderately increases with the magnetic field, while in
Ref. [4] it was reported an anisotropic behavior, with agpp
increasing, both at strong and weak fields, in the plane
perpendicular to the magnetic field and decreasing in the
direction of the field. The increase of the coupling constant
in those references is found to be related with the structure
F,,F ph 9w appearing in their photon propagator Dy, while
the decrease of the coupling was associated with a structure
similar to our structure b5 /(b?)? in Eq. (15). In our
case, only the second structure is present, since the first one
cannot appear in the photon polarization operator because
it is not transverse with respect to k,. This is why in the
Coulomb potential energy (17) we have only one coef-
ficient (i.e., I1,) instead of two. We point out that, as we
showed in Sec. II, the structures of the polarization operator
and photon propagator are the same in he Feynman gauge,
while the Coulomb potential energy is gauge independent.
Nor in Ref. [4], neither in [5], a physical explanation of the
different behavior of aggp with the magnetic field was
given. Also, because the approach in [4,5] makes use of
the k-independent Schwinger effective action the reported
fine-structure constants do not depend on the momenta.

IV. MAGNETIC FIELD DEPENDENCE
OF THE ELECTRON MASS

In the massive QED case, where the electron has a finite
physical mass, m, the magnetic field can modify it through
radiative corrections. As follows, we analyze how a weak
and a strong magnetic field can affect the physical mass by
taking into account its effect on the fine-structure constant.

A. Massive QED in a weak magnetic field

In the weak-field approximation, the field-dependent
electron mass is known to be given as [36]

m(B) zmo{ —Z—O (@ﬂ (35)

T m%
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1075 107 1073 1072 107"

eB/ mé

FIG. 4. Dynamical mass given by Eq. (36) as a function of
eB/mg for ki /m = 0.5, kj/m = 0.5 and ay = 1/137.

It is important to notice that this expression is only valid

for magnetic-field values satisfying 1 > 2 (%), as has
0

been pointed out in different contexts in Refs. [7,37]. For
constant, the mass decreases with the magnetic field. With
the substitution of @ by (27), which is in the free-Landau-
pole momentum region (|eB| < k3 , k3 < m3), we obtain

m(B) ~mg |1 -

27 leB| 2712 k_z day [ k2
4”[”6,&12 (—0) (?“F% ~ 751 2
<|eB|>
X\
my

In Fig. 4 we plot m(B) vs |eB|/m} for fixed values
of momenta. We can notice that, increasing the magnetic
field with values within the allowed region (|eB| < k2,
k3 < m3), m(B) decreases.

B. Massive QED in a strong magnetic field

The one-loop correction in the high-magnetic-field

limit (m§ << kf, k7 < |eB|) and under the supposition that

1.035 T
1.030
1.025
1.020

1.015F

m(k,eB) | my

1.010 F

1.005 |

1.000 f, ) )
10* 10° 108 107
eB/ mg

(@)

FIG. 5.

k/mq = 0.5, ky/my = 0.1. Both with ay = 1/137.

(ap/4m) In?(|2eB|/m3) < 1 to ensure the perturbative
expansion in ¢, was calculated in Ref. [7],

m(B) = [1 +4—1 2<|2;%B>}

Considering a field independent fine-structure constant,
we see from (37) that the mass increases with the magnetic
field Nevertheless if we make the replacement oy —

(B) where a'*)(B) is given in Eq. (30), we obtain in
the my < ki, k7 < |eB| region

m(k,B):mO[lJr o 1n2<|2€129|>} (38)
4r(1 + 20leBly mg

7k?

(37)

While in the second region (kj, k7 < mj < [eB|) we

have

m(k, B) ~ m,

2¢B
1+ A 1n2<| - |> . (39)
47z(1+‘;0”3e ) mj

212
mgk

We can see from Fig. 5 that in both cases m(k, B) will
then decrease with the magnetic field for a fixed k value.
In Fig. 5 we took the external momentum in the mass shell
for (a) k/mgy = 10 and (b) k/mg = 0.5 and k3/my = 0.1.

C. Massless QED and inverse magnetic catalysis

In massless QED, the electron cannot gain a mass by
radiative corrections because the chiral symmetry of the
massless theory is preserved against a possible perturbative
breaking. In this case, only nonperturbative corrections can
generate a dynamical mass. In the presence of a magnetic
field, no important how weak it can be, if it is larger than
the particle momenta, it can catalyze the chiral symmetry
breaking through a phenomenon that is known in the
literature as the MSySB [9-15]. The phenomenon of
MSySB in massless QED is based on the physical idea

1.040
1.085 -

1.030 -
£1.025
o 1.020 -
N
<1015+
g

1.010 +

1.005 -

1000 VA 1 1 1
10% 10° 108 107
eB/ m¢

(b)

Dynamical mass of Egs. (38) and (39) as a function of eB/ mg are respectively plotted in: (a) for k/my = 10 and in (b) for
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that a magnetic field stronger than the particle momenta
confines the electrons to the LLL, hence facilitating the
formation of the particle/antiparticle pairs, since in the
infrared region there is no gap between the LLL and
the Dirac sea. As known, the condensation of this pairs
endow the system quasiparticles with a dynamical mass and
for those in higher Landau levels, also with an anomalous
magnetic moment [13,14].

The dimensional reduction of the LLL also contributes
to the formation of the chiral condensate, since the
reduction of the spatial dimension produces the strengthen
of the interaction, that in this case is only carried out by
longitudinal photons. Nevertheless, as we have demon-
strated in this paper, a strong magnetic field produces the
weakness of the coupling constant through an increase of
the charge screening. If the second effect wins over the first
one, then the IMC effect will be also present in this case.

The electron dynamical mass generated through the
MCySB has been calculated by several methods. One
approach [10] is by solving the Schwinger-Dyson (SD)
equation that in the presence of a magnetic field can be
written as [38,39],

Z(x.y) = 4z’ [ Gl (.3 D (' LR LY
(40)

Here, Z(x,x) is the field dependent fermion self-energy
operator, D, (x — x') is the full photon propagator, G (x, x’)
is the full fermion propagator, and I'V(x’, p’,y’) is the full
amputated vertex, which are operators depending on the
dynamically induced quantities and the magnetic field.

It can be proved [14], that using the Ritus eigenfunctions
[33], E%(x), the fermion self-energy can be diagonalized in
momentum space as

= (22)*8Y (p - p NI (). (41)

with £/ in the zero Landau level (I = 0) given by the
structures,

2(p)

2B+ 0Py + mand, (42)

where the four-momentum in a magnetic field is given
by p* = (p°,0,—v2eBI, p?), Zﬂ, 78 and myy, are field
depending parameters, and / is the unit matrix.

To calculate the dynamical mass it was first used the SD
equation [10] in the quenched ladder approximation, where
in (40) it is taken the free photon propagator and bare
vertex. We should notice however that the ladder approxi-
mation is not gauge invariant. But as known, if the Ward-
Takahashi identities are satisfied by the solution of the SD

equation in some approximation in a certain gauge, one can
use the gauge transformation law for the Green’s functions
[40] to rewrite the SD equations in an arbitrary gauge. The
transformation law guarantees that the Ward-Takahashi
identities are satisfied by the solutions of the SD equation
in all other gauges, although the approximation on which
the SD equation is solved may change. In the case of the
ladder approximation in a magnetic field the gauge invari-
ance of the induced chiral mass was proved through the
Ward-Takahashi identities for he SD approach in the LLL
limit and in the Feynman gauge in Ref. [11]. But all this
means that if we change the approximation going beyond
the ladder, we will have to find of course what is the
appropriate gauge where the Ward-Takahashi identities are
satisfied by the solution of the SD equation. This was
precisely the case in [41], when considering an improved
ladder approximation where the photon propagator in (40)
was also taken full, but keeping still the bare vertex. There,
it was needed a nonlocal gauge condition.

The solution for the dynamical mass that is obtained in
the quenched ladder approximation is [9]

Magn = \/|B] exp {—g <i> 1/2] . (43)

2(10

In this approximation, as it is considered that « is
constant, it is evident from (43) that the dynamical mass
increases with the magnetic field. Nevertheless, if we
naively consider that the fine-structure constant depends
on the magnetic field and make in (43) the replacement
ay = agep(B, k), in the strong-field approximation

(30)—(31), we obtain,
)
0. B)y

P P
mdyn(k”, B) ~ +/|eB|exp {—5 (2 )

aQED(kJ_ =
(44)
with
Ok, =0,B)=—2 R <md, <l|eB
agep (kL = 0. B)y =—— . | < Mayn < |eBl.
1 + 3m?
dyn
(45)
o) (k. =0,B) O - m3, <k <|eB
QED\"*L — = 1 2ap|eB|’ dyn || ’
+ ﬂkﬁ
(46)

In (44)—(46) we took into account that in the LLL the
fermions only interchange longitudinal momentum with the
photon fields (i.e., k3 = 0).

To find how the dynamical-mass varies with the field, it
is necessary to solve the self-consistent system of coupled
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equations (44) and (45) for the region, kH < mdyn leB|,
and (44) and (46) for the region, mOlyn < kH < |eB|.
Substituting (45) into (44), it is easy to find that there is
no solution for the dynamical mass as a function of the
magnetic field. While if agl)ED(k . =0, B)H = a, it is found
that the mass is almost independent on the momentum
up to |k| < mgy,(k = 0), from where it begins to rapidly
decrease [12].

For the second parameter region, méyn

let us substitute (46) into (44) and normalize the resultant

equation with respect to the electron critical field B£e>,

|eB] 1/2
mayn (k) B) \eB w7 (el
. 2| 2a, K
V0eBE | y/leBY] e

(47)

In Fig. 6(a) we plot how the dynamical mass changes
with the field at a fixed value of the longitudinal momen-
tum, and in Fig. 6(b), how the dynamical mass changes
with the longitudinal momentum at a fixed value of the
applied field. Notice that the behavior of the dynamical
mass in this case is totally opposite to that obtained for a
constant coupling constant. Moreover, taking into account
that the critical temperature to regain the chiral symmetry in
the system, T, is proportional to the value of the electron
dynamical mass at zero temperature [24], we have that the
decrease of mgy, with the magnetic field will produce a
decrease of T'., which is the typical behavior of the IMC
phenomenon in QCD [25]. In the following section we give
a physical explanation for all these peculiar behaviors and
discuss the limitations of these results.

V. PHYSICAL DISCUSSION AND SUMMARY

As it is generally accepted, to understand the particle
dynamics in quantum field theory, it is necessary to
know how the different physical parameters, as particle

10710 E

10-30F

ky.€B) /| eBY)

- 10*50 E

mdyn

10-70F

1078 1072 107" 1
leBl/ 1B

(@)

FIG. 6. Dynamlcal mass behavior of Eq. (47): (a) as a function of eB/ |eB(e | with k \eB | 10~

/\eB |w1th eB/|eB£ | = 10"

momentum, temperature, electromagnetic fields, etc., affect
the coupling constants. In this paper we are in particular
interested in the effect of an applied uniform and constant
magnetic field in the fine-structure constant and conse-
quently into the electron mass in two cases: in normal QED,
where there is a different from zero electron mass that can
be affected by a magnetic field through radiative correc-
tions, and in massless QED, where the electron mass can be
dynamical generated by the so called MCySB phenomenon
[9-15]. In the second case, we are considering the dynami-
cal mass calculated in the rainbow approximation, as a first
look to the IMC phenomenon in QED.

We have found that contrary to other results previously
reported in the literature [4,5], the fine-structure constant
in massive QED decreases with the magnetic field in the
weak-field, as well as in the strong-field limits. To under-
stand why this is the physical result to be expected, let us
start by considering the zero-field situation. In this case, the
fine-structure constant decreases toward larger distances.
The decrease is produced by the vacuum polarization effect
due to the electron-positron pairs that can be continuously
created from the vacuum in faith of the Heisenberg
uncertainty principle. The pairs produce a screening effect
that increases with distance as the cloud of this virtual
particles increases. Now, when we apply a magnetic field,
the virtual particles redistribute in Landau levels, each of
which has a state degeneracy. As known, increasing the
field, the density of states of each Landau level to be
occupied by the virtual pairs increases, so the screening
corresponding to a fixed distance also increases, producing
the decrease of the coupling constant at that distance.

In making the physical analysis of the investigated
scenarios, we should take into account the three main
scales that are involved: the magnetic length, [, ~
1/+/|eB]|, which is associated with the radius of the
LLL; the Compton wavelength, /- ~ 1/m, which is asso-
ciated with the quantum field theory region where the
particle-antiparticle pairs are created; and the observation
length, [, ~ 1/|k|, from where we want to define the
charge effective value.

10710 F T

1 0730 E

k.€B) /| eBe)

~ 10750 E

mdyn

1070k . :
107 107 10

K2 11eBE)

(b)

4. and (b) as a function of
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In the strong-field limit, the coupling constant becomes
significantly anisotropic. In the direction transverse to the
field, the coupling constant does not vary with the field
neither the momentum. In this case the virtual cloud is
confined to the LLL without any freedom to move in the
transverse direction by virtue of jumping between Landau
levels. For the coupling in the longitudinal direction, we
found in the infrared region, /), < I < [, that when the
field is strong enough |eB| > i—’gmz, the effective coupling

constant becomes independent of the original charge and of
the observation distance along the field direction. In this
case, there is a strong screening that only depends on the
magnetic field and particle mass. The decrease of the
effective coupling with the field can be seen here as a
consequence of the fact that since the magnetic length is
smaller than the Compton wavelength, the virtual pairs are
confined to the LLL. Then, by increasing the field, the
magnetic length decreases, and at the same time, the state
degeneracy increases. Hence, for any observation distance
along the magnetic field direction, which is larger than
the Compton wavelength, the screening is the same and the
net charge that is seen is almost zero due to the strong
screening.

As it is known, in perturbative QED at zero magnetic
field there exists a charge singularity at short distance that
is called the Landau pole [17]. This singularity hinders
perturbative QED at very short distances. Now, once a
magnetic field is applied, we have shown that even in the
weak-field limit (28), the effect of the magnetic field is to
counteract the singularity, although the magnetic field
strength in the weak-field case is not enough to remove
it. Nevertheless, at strong field, when the magnetic-field
nonperturbative contribution is taken into account in the
one-loop calculation of the fine-structure constant, the pole
disappears, as can be seen from (30) at [, < /. In this case,
when all the LLL states are populated at [, < [y, the
effective coupling is completely screened.

In the weak-field limit, /,; > [, it is regained the zero-
field limit of the coupling constant as the leading con-
tribution (27)-(28), while the magnetic field produces a
weak screening effect. In this case, the leading contribution
is coming from the virtual cloud that is smeared through out
the whole space since the separation between Landau levels
is so tiny that resembles a continue distribution.

When calculating the radiative effect of a magnetic field
on the electron mass, the field effect on the fine-structure
constant should be considered. In the case of massive QED,
the role of a strong magnetic field is important and the
screening effect in the coupling becomes significant.
Hence, the net effect of the applied magnetic field gives
a mass decrease with the field. In the weak-field limit, the
screening effect persists, but in a lower degree.

For massless QED the Compton wavelength becomes
a dynamical parameter, /¢ ~ 1/mgy,, that depends on the
magnetic field and becomes very large for a small mgy,.

Thus, the magnetic length is always smaller than the
Compton wavelength (/;; < Ic), and the states in the
Landau levels available for the virtual cloud should be
affected by the magnetic field, and consequently affecting
the screening. In the used approximation, we have found
that this screening effect results more important than the
strengthen of the interaction due to the spatial dimensional
reduction in the LLL and this is why the dynamical mass
decreases with the field as shown in Fig. 6. Consequently,
the critical temperature needed to regain the chiral sym-
metry decreases with the field, since it is proportional to the
dynamical mass. This is the distinctive signal of IMC in this
system. On the other hand, the dynamical mass increases
with the longitudinal momentum because the coupling
constant increases with the momentum as it is typical for a
theory without asymptotic freedom. However, the results
we are presenting here for the massless case only serve to
give a signal of the importance of the role the running
coupling can play in the field dependence of the dynami-
cally induced mass. This role is missing in the ladder and
improved ladder approximations considered up to now,
because there, it has been considered a bare vertex. But in
order to have a consistent treatment for this problem we
need to go beyond those approximations and considerer in
the SD equation (40) a full vertex together with the full
propagators that will all depend on the magnetic field and
dynamical mass. For this approximation to be reliable the
appropriate gauge condition that makes the SD solution to
satisfy the Ward-Takahashi identities should be found, what
is not a trivial task.
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APPENDIX: II, COEFFICIENT OF THE
ONE-LOOP PHOTON PROPAGATOR AT B #0

1. Strong-field limit

Our goal now is to find the one-loop polarization
operator in the strong-field limit. We will use the Ritus’s
method [33], where the Landau levels appear in an explicit
way. Then, for a weak coupled theory, the strong-field limit
prescription results in keeping only the LLL contribution,
since at a strong field the particles will be confined into
their lowest energy state (i.e., they will not have enough
energy to jump across the energy gap separating the Landau
leves that is proportional to /|eB|). We will show, that
working in this form, it is obtained the same result that was
found in [30] by using the Schwinger proper-time method
where the sum in all Landau levels was considered.

The photon polarization operator in the one-loop
approximation reads
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H;w(x7 y) = —4na Tr[yﬂG(x, y)va(y’x)] (Al)

where G(x, y) is the electron propagator, and y* the Dirac’s
gamma matrices.

Taking into account that in the momentum space the
electron propagator has the form

G(x,x') = j: (‘2[”’)’4 E, (x)I1(1) = !

in the Landau gauge A* = (0,0,Bx',0), the
4-momentum is p* = (p°.0,—v/2eBI, p*) and E,, are the
Ritus’s eigenfunctions matrices given by

where,

Here, D, (p) denotes the parabolic cylinder functions with
argument p = +/2|eB|(x' — p?/eB), normalization factor
N, = (4zeB)"/*/+/n!, and positive integer index

1
n=n(l, 6)—14-6; (AS)
The spin projector are defined as
I S )
Ao) = %. (A6)

Also, the factor II(/) = A(+) + A(=)(1 —8y;) and the
notation

= ZE (x)A(o (A3)
po 07,2
- dpdp*dp?
o==1
Yiag=y [Tt )
with
Ko+ py+par®) were introduced.
Epo(x) = N,e!\Portr v, (p). (A4) Then, Eq. (A1) in the momentum space reads
|
N 1 n—n'+i'—i)¢p ( ) ~ _( )
I, (k) = —2aeBe / Lo
w(k) ; 27) 2 n\n'\al\i') [p —mQM( k)? — m?]
x Tr[A(?f’)mA(?f)H(l)(P + m)A(G)nA(G’)H(l’)(I_f — -+ m)] (A8)
where {6} means sum over o, ¢/, 5 and &, and p — k* = (p° — k°,0, —v/2eBl', p* — k3).
In the derivation of Eq. (A8), we used the identities [42]
= ~ / l(’ +p3) n ”
[ v e B I () = @50 (01 4 K = ple ey LutEDCTE )y ate) (A9)
pge n'n'!
and
ikx e 4503)( i e~ Sy (k)T =
dx e*E i (x)y,E, (x) = (22)*60) (p' + k= p)e~Te2m Y e A(5),A(5). (A10)

where n=n(l,6), ' =n(l',6’), n=n(l,6) and @i’ =n(l',5")

with n given by Eq. (AS), and

min(n,n’)

Jnn’( = Z

with &, =k, /2eB.

In the low energy region or strong field limit, § < 1,
only those terms with smallest power in ¢, in J,,, and Jy;
contribute to the polarization operator. Then, in the leading
approximation

n'l’l/‘|lk ‘n+n —2m

m!(n—m)!(n' —m)!

(Al1)

Jow (@) = ns,, and Jy; — iléy;, (A12)

[
and taking [ = I’ = 0, the photon polarization operator in
the LLL approximation has the form

1), (k) = —2aeBe™0 /déoj)p
TripsA(H) (A + m)plA(+) (# = 1 + m)]

2 = n2][(p — k)2 — )
(A13)
where y’ﬁ = (¥°,0,0,7°) and p| = (p°,0,0, p?).
The trace over Dirac gamma matrices is straightforward
and we get
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Tripus () (7 +mIp A F = F -+ m)] = 2pu(p =B+ PU(p =B = gu(P! - (P =B =m?)).  (Al4)
Replacing Eq. (A14) in Eq. (A13), we obtain
o rdp2pl(p—k 5l — )l - I ol =
Ml (k) = —2ae3e—h/ P [Pu(p = k) P (P : )i g,wz(p 2( ) ) (A1)
(27) [PH —m?|[(p k)H m’
The integration over momenta can be easily carried out by using Feynman parametrization, it is
2
I, (k) = —2aeBe~* / / d l” 2 3 R0 = 2x(1 = x)kLK) = g (B + M = 2m?)] (A16)
HY ] gﬂ”
where [ = p} — (1 - x)k}| and M = —x(1 —x)kﬁ
By using dimensional regularization, we remove the logarithmic divergent part, and we obtain
! H k” Kl
I (k) = i | G 2 I1(k) (A17)
Il
with
2aeB - [1 1 —x)k?
(k) = - =% e—ki/ P 2 ”
z o —x(1- x)kH
[4m 2_ 2
2aeB R 2 2 —k k
S SH - L (A18)

T \/k2 kz

where the i factor in (A17) comes from the integration over
the momentum in the Minkowski space [43].
Since the tensor structure in Eq. (A17) can be written in

terms of bf,z)b(z) [see Eq. (6)] as

PN o
g/u/ k‘z‘ - (b(2>)2 ( )

with g,l,‘y = diag(1,0,0,—1), then, the coefficient I1(k) in
Eq. (A17) is no other than I, (k, B) in Eq. (9).
In the region k” < m? <« |eB|, II,(k, B) has the asymp-

totic behavior

ak§|eB| e_f(z

I, (k. B) = 5 (A20)

3zm

and for the region m? < k < |eB|, I, (k, B) behaves as

2aleB| _jp»
M, (k, B) = 2Bl i (A21)
T
These results coincide with those reported in

Refs. [30,31] where it was used the Schwinger proper-
time approach.

\/4m -

2. Weak-field limit

The general expression of the IT,(0,k, B) coefficient
was obtained from the one-loop polarization operator in the
proper-time approach in Ref. [44]. Considering a uniform
and constant magnetic field along the x5 direction it was
given by

1
Mk B) = -5 (85 +K35)  (A22)

with kj = k3 — kg, and k7 = k7 + k3. Notice in (A22) the

anisotropy introduced by the uniform magnetic field between

the longitudinal and transverse momentum components.
In (A22), the following notation was introduced,

T =z + 27, (A23)

Z(-l) :2_(1 —B.1/B gl<t> 1 dt
! 7 Jo sinh(r) 3t

2 =) 1 (t, M(t,
:_a e_B”t/Bdt/ d}76l( ’7) |:exp<_ki ( rl)

T Jo -1

— K2

sinh(¢) eB
1 2
T ) -1
I 4eB

(A24)

=?

(A25)
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where B, = m?/e and

a(t) = . Si;h(t) (sinht(Zt) B 2>7 () = cos:(t) 7
(A26)
— psin _2
m@w)zlznsggLIgm, oy (1) = =" cosh(r),
(A27)
M(t,n) = cosh(z) — cosh(y) (A28)

2 sinh(t)

Our goal now is to get the weak-field limit of (A22).
It is easy to check that for B../B > 1 all the integrands
in (A24)-(A25) are suppressed at high ¢ (+ > B/B,,)
due to the exponential damping =2/ Thus, the leading
contribution at weak-field is found in the region
0 <t<B/B. < 1. In this small ¢ region the asymptotic
behavior of the parameters are given by

(t~0) =t B im0 =il (A29)
I 371 P 376
oi(t~0,p) 1=1’
_ —1.2 A30
sinh(r~0) 4 = ' (A30)
1-— 2
M(t~0,n) =— "¢ (A31)

Plugging (A29)—(A31) into (A24) and (A25) we obtain

(1) 2a0 [B/Bs[1 /1 £ 1 )
>~ — - =4+— dt = B/B..)~,
! z Jo ¢ 3+15 3¢ 157:( /Ber)

(A32)

(1) 200 [B/Ber (1 t 1
2y ~— —F———dt B/B A33
2 Js 0 3t+6 3t 6]7,'( / CI’) ’ ( )

2 2o [B/F
T Jo

1= 2

>_q
/ !
X

n?)[Ei(=x0) = C = In(xo)]

(A34)

, Ei(x) is the exponential-integral
function and C h Euler constant. In (A34) we used the
formula [45]

In(xg). (A35)

X0 -1
/ dx & = Ei(~xy) - C —
0

X
To integrate (A34) in 77, we have to consider two cases:

(@ k/m<1
In this case we use the formula [45]

n
X0

Ei(—x¢) = C + In(xq) + i(—)” (A36)

nn!

to write (A34) as

Hence, the leading contribution is given by

2) 2) a k? 8a k2
= —— dn (1 - =
! 2 2nm? /_1 (1 =)’ 15z m?
(A38)

Substituting with (A32), (A33) and (A38) into
(A23) we obtain

(1) (2)  a (eB 8a k?
=2 X A39
: TR, ( > Bame AY)
(1) @ . eB 8a k?
=2 p) . A4
: * ~6r ( ) 152 m? (A40)

Now, plugging in (A22) the results (A39) and (A40)
we have

H< )(eB < kH,k2 <m?)

AR D28

(b) k/m>1
Here it is convenient to take in (A34) the asymptotic
expansion of the exponential-integral function [46]

- o]

n=0

Ei(-x) =

|xg| > 1. (A42)

Then, the leading term in (A34) is given by the
logarithm
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@ o _ 20 [t 1= (1=K
=X~ —— 1 —
‘ g Pl I S N

4al k
~——In|—).
3 m

Substituting with (A32), (A33) and (A43) into
(A23) we obtain

(1) @ a (eB\? 4a k
=X >V ~—|— ) ——In(— Ad4
: v 157 (m2> 37 \m (Add)

(A43)

B\2 4
5, =3 43P ~ 61 <6—> %I (5) (A45)
T

m? 3z \m
Finally, plugging in (A22) the results (A44) and
(A45) we have

I,(eB < m?* < kﬁ,ki)

:_1 @ ﬁ ? ﬁ_FILﬁ —4—ak21n E
2 |37 \m? 5 2 3 m)|

(A46)
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