
The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise
Interactions in High Dimensions

Raj Agrawal 1 Jonathan H. Huggins 2 Brian L. Trippe 1 Tamara Broderick 1

Abstract
Discovering interaction effects on a response of
interest is a fundamental problem faced in biol-
ogy, medicine, economics, and many other sci-
entific disciplines. In theory, Bayesian meth-
ods for discovering pairwise interactions enjoy
many benefits such as coherent uncertainty quan-
tification, the ability to incorporate background
knowledge, and desirable shrinkage properties. In
practice, however, Bayesian methods are often
computationally intractable for even moderate-
dimensional problems. Our key insight is that
many hierarchical models of practical interest ad-
mit a particular Gaussian process (GP) representa-
tion; the GP allows us to capture the posterior with
a vector of O(p) kernel hyper-parameters rather
than O(p2) interactions and main effects. With
the implicit representation, we can run Markov
chain Monte Carlo (MCMC) over model hyper-
parameters in time and memory linear in p per
iteration. We focus on sparsity-inducing models
and show on datasets with a variety of covariate
behaviors that our method: (1) reduces runtime
by orders of magnitude over naive applications
of MCMC, (2) provides lower Type I and Type II
error relative to state-of-the-art LASSO-based ap-
proaches, and (3) offers improved computational
scaling in high dimensions relative to existing
Bayesian and LASSO-based approaches.

1. Introduction
Many decision-making and scientific tasks require under-
standing how a set of covariates relate to a target response.
For example, in clinical trials and precision medicine, re-

1Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, MA 2Department
of Biostatistics, Harvard, Cambridge, MA. Correspondence to: Raj
Agrawal <r.agrawal@csail.mit.edu>.

Proceedings of the 36 th
International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

searchers seek to characterize how individual-level traits
impact treatment effects, and in modern genomic studies,
researchers seek to identify genetic variants that are risk
factors for particular diseases. While linear regression is a
default method for these tasks and many others due to its
ease of interpretability, its simplicity often comes at the cost
of failing to learn more nuanced information from the data.
A common way to increase flexibility, while still retaining
the interpretability of linear regression, is to augment the
covariate space. For instance, two genes together might
be highly associated with a disease even though individu-
ally they exhibit only moderate association; thus, an analyst
might want to consider the multiplicative effect of pairs of
covariates co-occurring.

Unfortunately, augmenting the covariate space by includ-
ing all possible pairwise interactions means the number of
parameters to analyze grows quadratically with the number
of covariates p. This growth leads to many statistical and
computational difficulties that are only made worse in the
high-dimensional setting, where p is much larger than the
number of observations N . And p � N is often exactly
the case of interest in genomic and medical applications. To
address the statistical challenges, practitioners often enforce
a sparsity constraint on the model, reflecting an assumption
that only a small subset of all covariates affect the response.
The problem of identifying this subset is a central problem
in high-dimensional statistics and many different LASSO-
based approaches have been proposed to return sparse point
estimates. However, these methods do not address how
to construct valid confidence intervals or adjust for multi-
ple comparisons1 (Bien et al., 2013; Lim & Hastie, 2015;
Nakagawa et al., 2016; Shah, 2016; Wu et al., 2009).

Fortunately, hierarchical Bayesian methods have a shrink-
age effect, naturally handle multiplicity, can provide better
statistical power than multiple comparison corrections (Gel-
man et al., 2012), and can leverage background knowledge.
However, naive approaches to Bayesian inference are com-
putationally intractable for even moderate-dimensional prob-

1While the knockoff filter introduced in Barber & Candès
(2015) is a promising way to control the false discovery rate, such
a method has not been evaluated theoretically or empirically for
interaction models.

Fast Bayesian Inference of Pairwise Interactions

lems. This intractability has two sources. The first source
can be seen even in the simple case of conjugate linear re-
gression with a multivariate Gaussian prior. Let X̃ denote
the augmented data matrix including all pairwise interac-
tions, ⌃ the multivariate Gaussian prior covariance on pa-
rameters, and �2 the noise variance. Given N observations,
computing the posterior requires inverting ⌃�1 + 1

�2 X̃T X̃ ,
which takes O(p2N2+N3) time. The second source is that
reporting on O(p2) parameters simply has O(p2) cost.

We propose to speed up inference in Bayesian linear regres-
sion with pairwise interactions by addressing both problems.
In the first case, we show how to represent the original model
using a Gaussian process (GP). We use the GP kernel in our
kernel interaction sampler to take advantage of the special
structure of interactions and avoid explicitly computing or
inverting ⌃�1 + X̃T X̃ . In the second case, we develop
a kernel interaction trick to compute posterior summaries
exactly for main effects and interactions between selected
main effects to avoid the full O(p2) reporting cost. In sum,
we show that we can recover posterior means and variances
of regression coefficients in O(pN2 + N3) time, a p-fold
speed-up. We demonstrate the utility and efficacy of our
general-purpose computational tools for the sparse kernel
interaction model (SKIM), which we propose in Section 6
for identifying sparse interactions. In Section 7 we empiri-
cally show (1) improved Type I and Type II error relative to
state-of-the-art LASSO-based approaches and (2) improved
computational scaling in high dimensions relative to existing
Bayesian and LASSO-based approaches. Our methods ex-
tend naturally beyond pairwise interactions to higher-order
multi-way interactions, as detailed in Appendix A.

2. Preliminaries and Related Work
Suppose we observe data D = {(x(n), y(n))}Nn=1 with co-
variates x(n) 2 Rp and responses y(n) 2 R. LetX 2 RN⇥p

denote the design matrix and Y 2 RN denote the vector of
responses. Linear models assume that each y(n) is a (noisy)
linear function of the covariates x(n). A common strategy
to increase the expressivity of linear models is to augment
the original covariates x(n) with their pairwise interactions

�T
2 (x) := [1, x1, · · · , xp, x1x2, · · · , xp�1xp, x

2
1, · · · , x2

p].

That is, for a parameter ✓ 2 Rp(p+1)/2 and zero-mean i.i.d.
errors ✏(n), we assume the data are generated according to

y(n) = ✓T�2(x
(n)) + ✏(n). (1)

Our goal is to identify which interaction terms have a signif-
icant effect on the response. Detecting such interactions is
important for many applications. For example, in genomics,
two-way interaction terms are needed to detect possible epis-
tasis between genes (Aschard, 2016; Slim et al., 2018) and

to appropriately account for the site- and sample-specific ef-
fects of GC content on genomic and other types of sequenc-
ing data (Benjamini & Speed, 2012; Risso et al., 2011). In
economics and clinical trials, pairwise interactions between
covariates and treatment are used to estimate the hetero-
geneous effect a treatment has across different subgroups
(Lipkovich et al., 2017, Section 6). Unfortunately, having
O(p2) parameters creates statistical and computational chal-
lenges when p is large.

To address the statistical issues, practitioners often assume
that ✓ is sparse (i.e., contains only a few non-zero values),
and that ✓ satisfies strong hierarchy. That is, an interaction
effect ✓xixj is present only if both of the main effects ✓xi

and ✓xj are present, where ✓xixj and ✓xi are the regres-
sion coefficients of the variables xixj and xi respectively
(Bien et al., 2013; Lim & Hastie, 2015; Nakagawa et al.,
2016; Wu et al., 2009). By assuming such low-dimensional
structure, inference tasks such as parameter estimation and
variable selection become more tractable statistically. How-
ever, sparsity constraints create computational difficulties.
For example, finding the maximum-likelihood estimator
(MLE) subject to k✓k0 s requires searching over ⇥(p2s)
active parameter subsets. To avoid the combinatorial is-
sues resulting from an L0 penalty, recent works (Bien et al.,
2013; Lim & Hastie, 2015) have instead used L1 penalties
to encourage parameter sparsity for interaction models; L1

penalties have a long history in high-dimensional linear re-
gression (Candes & Tao, 2007; Chen et al., 1998; Tibshirani,
1994),

Maximizing the likelihood with an added L1 penalty is a
convex problem. But each iteration of a state-of-the-art
solver for methods given by Bien et al. (2013) and Lim &
Hastie (2015) still takes O(Np2) time. To handle larger
p, Nakagawa et al. (2016); Shah (2016); Wu et al. (2009)
have proposed various pruning heuristics for finding locally
optimal solutions. However, since these methods do not
provide an exact solution to the optimization problem, any
statistical guarantees (such as the statistical rate at which
these estimators converge to the true parameter as a function
of N and p) are weaker than those for exact methods.

L1-based methods face a number of additional challenges:
constructing valid confidence intervals, incorporating back-
ground knowledge, and controlling for the issue of multiple
comparisons when testing many parameters for statistical
significance. In many applications such as genome-wide
association studies, controlling for multiplicity is critical to
prevent wasting resources on false discoveries. Moreover,
since dim(�2) = p(p + 1)/2, ✓ can be very high dimen-
sional even when p is moderately large. Hence, there will
typically be nontrivial uncertainty when attempting to esti-
mate ✓. Fortunately, hierarchical Bayesian methods have (1)
a natural shrinkage or regularization effect such that mul-

Fast Bayesian Inference of Pairwise Interactions

tiple testing corrections are no longer necessary, (2) better
statistical power than using multiple comparison correction
terms such as Bonferroni (Gelman et al., 2012), and (3) nat-
urally provide calibrated uncertainties. Bayesian methods
can also incorporate expert information.

Though they offer desirable statistical properties, Bayesian
approaches are computationally expensive. Previous efforts
(Chipman, 1996; Griffin & Brown, 2017) have focused on
developing hierarchical sparsity priors that promote strong
hierarchy, analogous to the LASSO-based approaches (Bien
et al., 2013; Lim & Hastie, 2015; Nakagawa et al., 2016;
Wu et al., 2009). But these methods do not address the
computational intractability of inference for even moderate-
dimensional problems.

We address the computational challenges of inference by
developing the kernel interaction trick (Section 5), which
allows us to access posterior marginals of ✓ without ever
representing ✓ explicitly. Note that while some previous
works have used a degree-two polynomial kernel to implic-
itly generate all pairwise interactions (Morota & Gianola,
2014; Su et al., 2012; Weissbrod et al., 2016), those works
have focused on prediction or effect-size estimation rather
than our present focus on inference.

3. Bayesian Models with Interactions
Our goal is to estimate and provide uncertainties for the pa-
rameter ✓ 2 Rdim(�2). To take a Bayesian approach, we en-
code the state of knowledge before observing the data D in
a prior ⇡0(✓). We express the likelihood as L(Y | ✓, X) =QN

n=1 L(y(n) | ✓, x(n)). Applying Bayes’ theorem yields
the posterior distribution ⇡(✓ | D) / L(Y | ✓, X)⇡0(✓),
which describes the state of knowledge about ✓ after ob-
serving the data D. For a function f of interest, we wish to
compute the posterior expectation

E⇡(✓|D)[f(✓)] =

Z
f(✓)⇡(✓ | D)d✓. (2)

Typically, f(✓) = ✓j or f(✓) = ✓2j , which together allow us
to compute the posterior mean and variance of each ✓j .

Generative model. Going forward, we model ✓ as being
drawn from a Gaussian scale mixture prior to encode de-
sirable properties such as sparsity and strong hierarchy (cf.
Carvalho et al., 2009; Chipman, 1996; George &McCulloch,
1993; Griffin & Brown, 2017; Piironen & Vehtari, 2017).
These priors have also been used beyond sparse Bayesian
regression (cf. Choy & Chan, 2003; Hamdan et al., 2005;
Wainwright & Simoncelli, 1999). A Gaussian scale mixture
is equivalent to assuming that there exists an auxiliary ran-
dom variable ⌧ ⇠ p(⌧) such that ✓ is conditionally Gaussian
given ⌧ . Let ⌃⌧ denote the covariance matrix for p(✓ | ⌧).
Also, let �2 be the latent noise variance in the likelihood;

Table 1. Per-iterationMCMC runtime and memory scaling of meth-
ods for sampling two-way interactions. NAIVE refers to explicitly
factorizing ⌃N,⌧ to compute p(D | ⌧,�2), WOODBURY refers
to using the Woodbury identity and matrix determinant lemma to
compute p(D | ⌧,�2), and FULL refers to jointly sampling ✓ and
⌧ . The third column provides the number of parameters sampled.

METHOD TIME MEMORY #

OUR METHOD O(pN2 +N
3) O(pN +N

2) O(p)
NAIVE O(p6 + p

2
N) O(p4 + p

2
N) O(p)

WOODBURY O(p2N2 +N
3) O(p2N +N

2) O(p)
FULL O(p2N) O(p2N) ⇥(p2)

since it is typically unknown, we treat it as random and put
a prior on it as well. Hence, the full generative model can
be written

⌧ ⇠ p(⌧)

�2 ⇠ p(�2)

✓ | ⌧ ⇠ N (0,⌃⌧)

y(n) | x(n), ✓,�2 ⇠ N (✓T�2(x
(n)),�2).

(3)

Computational challenges of inference. Again, our main
goal is to tractably compute expectations of functions under
the posterior ⇡(✓ | D) / L(Y | ✓, X)⇡0(✓). Since there are
⇥(p2) parameter components, direct numerical integration
over each of these components is only feasible when p
is at most 3 or 4. As a result we turn to Monte Carlo
integration. Two natural Monte Carlo estimators one might
use to approximate E⇡(✓|D)[f(✓)] are

1. 1
T

PT
t=1 f(✓

(t)) with ✓(t)
iid⇠ ⇡(✓ | D) or

2. 1
T

PT
t=1 E⇡(✓|D,⌧ (t))[f(✓)] with ⌧ (t)

iid⇠ p(⌧ | D).

For the first estimator, we can use Markov chain Monte
Carlo (MCMC) techniques to sample each ✓(t) approx-
imately independently from ⇡(✓ | D) since the poste-
rior is available up to a multiplicative normalizing con-
stant. Computing the prior p(✓), however, may be ana-
lytically intractable because it requires marginalizing out ⌧ .
We could instead additionally sample ⌧ . To use gradient-
based MCMC samplers, sampling ⌧ would require com-
puting the pdfs (and gradients) of the likelihood terms
L(y(n) | x(n), ✓,�2) and the prior terms p(✓ | ⌧) and p(⌧).
So the cost would be O(p2N + dim(⌧)) time per iteration.
Even for p moderately large, the ⇥(p2 + dim(⌧)) num-
ber of parameters might require many MCMC iterations to
properly explore such a large space (Beskos et al., 2013;
MacKay, 1998; Pillai et al., 2012); see also Fig. 2 for an
empirical demonstration.

Fast Bayesian Inference of Pairwise Interactions

To explore a smaller space, and hence potentially reduce the
number of MCMC iterations required for the chains to mix,
we might take the second approach: sampling from p(⌧ |
D) by marginalizing out the high-dimensional parameter ✓.
Sampling each ⌧ requires computing

p(D | ⌧,�2) =

Z
p(D | ✓,�2)dp(✓ | ⌧). (4)

Since p(✓ | ⌧) is a multivariate Gaussian density function,
p(D | ⌧,�2) equals

(1/
p
2⇡�2)N det(2⇡⌃N,⌧)

1
2 exp

�
� 1

2�2Y TY
�

det(2⇡⌃⌧)
1
2 exp

�
� 1

2�4Y T�2(X)⌃N,⌧�2(X)TY
� (5)

where ⌃�1
N,⌧ := ⌃�1

⌧ + 1
�2�2(X)T�2(X). Unfortunately,

computing Eq. (5) naively takes prohibitive O(p6 + p2N)
time – or O(p2N2 + N3) time when using linear algebra
identities; see Table 1 and Appendix E for details.

4. The Kernel Interaction Sampler
Our kernel interaction sampler (KIS) provides a recipe for
efficiently sampling from p(⌧,�2 | D) usingMCMC. Recall
from the last section that the computational bottleneck for
sampling ⌧ was computing p(D | ⌧,�2), so we focus on
that problem here. We achieve large computational gains
(Table 1) by using the special model structure and a kernel
trick to avoid the factorization of ⌃N,⌧ in Eq. (5). To that
end, KIS has three main parts: (1) we re-parameterize the
generative model given in Eq. (3) using a Gaussian process
(GP); (2) we show how to cheaply compute the GP kernel;
and (3) we show how these steps translate into computation
of p(D | ⌧,�2) in time linear in p. In Appendix A we extend
to the case of higher-order interactions.

For the moment, suppose that we could construct a covari-
ance function k⌧ such that the generative model in Eq. (3)
could be re-parameterized as:

⌧ ⇠ p(⌧)

g | ⌧ ⇠ GP (0, k⌧)

�2 ⇠ p(�2)

y(n) | g, x(n),�2 ⇠ N (g(x(n)),�2),

(6)

where GP (0, k⌧) denotes a Gaussian process (GP) with
mean function zero. Defining the kernel matrix (K⌧)ij :=
k⌧ (x(i), x(j)), we can conclude that (see Rasmussen &
Williams, 2006, Eq. 2.30)

log p(D | ⌧,�2) = �1

2
Y T↵� trace(logL)� N

2
log 2⇡,

(7)
where L equals the Cholesky decomposition ofK⌧ + �2IN
and ↵ := LT (L�1Y)�1. Let Tk denote the time it takes

to evaluate k⌧ on a pair of points. The computational bot-
tleneck of Eq. (7) is computing and factorizingK⌧ , which
take O(N2Tk) and O(N3) time, respectively. Hence, as
long as Tk is O(p), we can compute p(D | ⌧,�2) in time
linear in p. To achieve this scaling, we first show (in the
next result) that any generative model in the form of Eq. (3)
can be rewritten in the form of Eq. (6). We then show how
k⌧ can be evaluated in O(p) time for the models of interest.

Proposition 4.1. (Gaussian process representation) Let Y
and Ỹ be response vectors generated according to the mod-

els in Eq. (3) and Eq. (6) respectively for design matrix

X 2 RN⇥p
. Let k⌧ (x(i), x(j)) = �2(x(i))>⌃⌧�2(x(j)).

Then, Y | X d
= Ỹ | X , where

d
= denotes equality in distri-

bution. Moreover, for every draw g | ⌧ ⇠ N (0, k⌧), there
exists some ✓ 2 Rdim(�2) such that g(·) = ✓T�2(·).

The proof follows directly by considering the weight-space
view of a GP (Rasmussen & Williams, 2006, Chapter 2);
see Appendix B for details.

Next, we need to show that k⌧ can be evaluated in O(p)
time for models of interest. This fact is not obvious; com-
puting k⌧ on a pair of points naively still requires explicitly
computing the high-dimensional feature maps �2 and prior
covariance matrix ⌃⌧ . To compute k⌧ efficiently, we rewrite
it as a weighted sum of polynomial kernels of the form

kcpoly,d(x, x̃) :=
⇣
xT x̃+ c

⌘d
,

which each take O(p) time to compute. Below we define
two-way interaction kernels as particular linear combina-
tions of these polynomial kernels. Then we provide a result
motivating this class; namely, we show that any diagonal
⌃⌧ prior can be written as a two-way interaction kernel.
Fortunately, to the best of our knowledge, all previous high-
dimensional Bayesian regression models assume ⌃⌧ is di-
agonal (cf. Carvalho et al., 2009; Chipman, 1996; George
& McCulloch, 1993; Griffin & Brown, 2017; Piironen &
Vehtari, 2017). Hence, this restriction on ⌃⌧ is mild.
Definition 4.2. (Two-way interaction kernel) We call the
kernel k a two-way interaction kernel if for some choice
of M1,M2 2 N, ↵, ,�(m) 2 Rp

+ (m = 1, . . . ,M1),
⌫(m) 2 R+ (m = 1, . . . ,M2), 1 im < jm p (m =
1, . . . ,M2), and A 2 R, the kernel k(x, x̃) is equal to
M1X

m=1

k1poly,2(�
(m) � x,�(m) � x̃) +

M2X

m=1

⌫(m)ximxjm x̃im x̃jm

+ kApoly,1(↵� x,↵� x̃) + k0poly,1(� x� x, � x̃� x̃),

where � is the entrywise product.
Theorem 4.3 (1-to-1 correspondence with diagonal ⌃⌧).
Suppose k is a two-way interaction kernel. Then

k(x, x̃) = �2(x)
>S�2(x̃), (8)

Fast Bayesian Inference of Pairwise Interactions

where the induced prior covariance matrix S is diagonal.

The entries of S are given by

diag(S)(i) = ↵2
i + 2

M1X

m=1

h
�(m)
i

i2

diag(S)(ij) = 2
M1X

m=1

h
�(m)
i �(m)

j

i2
+

M2X

k:ik=i,jk=j

⌫(m)

diag(S)(ii) = 2
i +

M1X

m=1

h
�(m)
i

i4

diag(S)(0) = M1 +A,

where diag(S)(i), diag(S)(ij), diag(S)(ii), and diag(S)(0)
denote the prior variances of the main effect ✓xi , interaction

effect ✓xixj , quadratic effect ✓x2
i
, and intercept ✓0, respec-

tively. Furthermore, for any diagonal covariance matrix

S 2 Rdim(�2)⇥dim(�2), there exists a two-way interaction

kernel that induces S as a prior covariance matrix.

Theorem 4.3 (proof in Appendix B.2) and Proposition 4.1
imply that two-way interaction kernels induce a space of
models in 1-to-1 correspondence with models in the form of
Eq. (3) when ⌃⌧ is constrained to be diagonal. Since most
models of practical interest have⌃⌧ diagonal, we can readily
construct the two-way interaction kernel corresponding to
⌃⌧ by solving the system of equations

diag(S)(i) = diag(⌃⌧)(i) diag(S)(ij) = diag(⌃⌧)(ij)
diag(S)(ii) = diag(⌃⌧)(ii) diag(S)(0) = diag(⌃⌧)(0)

(9)

Each of the M1 + 2 polynomial kernels takes O(p) time
to compute, and each of the M2 product terms takes O(1)
time. Therefore, we want to selectM1 andM2 small so that
k⌧ can be computed quickly. Since there are more degrees
of freedom (i.e., free variables) available to solve Eq. (9)
asM1 andM2 increase, eventually a solution will exist as
we show in Appendix B.2. But Theorem 4.3 does not tell
us how large M1 and M2 have to be for an arbitrary model.
In Appendix C, we solve Eq. (9) for a variety of models
of practical interest and show that in these cases, M1 and
M2 can be set very small (between one and three). Thus k⌧
can be computed in O(p) time, and so the kernel matrixK⌧

can be computed in O(N2p) time. Finally, then, we may
compute the likelihood p(D | ⌧,�2) in O(N2p+N3) time.

5. The Kernel Interaction Trick: Recovering
Posterior Marginals

Even if we are able to sample ⌧ much faster using KIS, the
problem of computing Ep(✓|D,⌧)[f(✓)] remains unresolved.
In this section, we show that, givenK⌧ , any such expecta-
tion can be recovered in O(1) time by evaluating the GP
posterior at certain test points.

To provide the main intuition for our solution, suppose we
would like to compute the posterior mean of the main effect
✓xi . Let ei 2 Rp denote the ith unit vector. Since g = ✓T�2

by Proposition 4.1, we have

g(ei) = ✓xi + ✓x2
i

g(�ei) = �✓xi + ✓x2
i

g(ei)� g(�ei)

2
= ✓xi .

(10)

Since g is a Gaussian process, the distribution of Zg :=
(g(ei), g(�ei)) | D, ⌧ is multivariate Gaussian and can be
computed in closed form by appropriate matrix multipli-
cations of the kernel matrix K⌧ ; see Theorem 5.1 below
for details. Then, by consulting Eq. (10), one can recover
✓xi | D, ⌧ as the linear combination [1/2,�1/2]TZg | D, ⌧ ,
which is univariate Gaussian. While we have focused on
a particular instance here, this example provides the main
insight for the general formula to compute Ep(✓|D,⌧)[f(✓)]
fromK⌧ .

Theorem 5.1. (The kernel interaction trick) Let H⌧ :=
(K⌧ + �2IN)�1

and

Aij := [ei,�ei, ej , ei + ej]
T 2 R4⇥p.

Let K⌧ (Aij , X) = K⌧ (X,Aij)T be the 4 ⇥ N matrix

formed by taking the kernel between each row of Aij with

each row of X . For a row-vector a 2 R4
, define the scalars

µa := aK⌧ (Aij , X)H⌧Y and

�2
a := a

⇥
K⌧ (Aij , Aij)�K⌧ (Aij , X)H⌧K⌧ (X,Aij)

⇤
aT .

Then the distributions of ✓xi | ⌧, D and ✓xixj | ⌧, D are

given by N (µa,�2
a) with, respectively, a = (1/2,�1/2, 0, 0)

and a = (�1/2, 1/2,�1, 1).

Corollary 5.2. GivenK⌧ , the distributions of ✓xi and ✓xixj

take O(1) additional time and memory to compute.

We prove Theorem 5.1 and Corollary 5.2 in Appendix B.
In Appendix B.5, we generalize Theorem 5.1 by showing
how to obtain the joint posterior distribution of any sub-
set of parameters contained in ✓. Hence, we can compute
Ep(✓|D,⌧)[f(✓)] for an arbitrary f using the kernel interac-
tion trick.

Note that if we would like to obtain the posterior mean of
all ⇥(p2) parameters, then clearly a linear time algorithm
in p is impossible. Instead, we can adopt a lazy evalua-
tion strategy where we compute the posterior of one of the
⇥(p2) parameters only when it is needed. This approach
is effective in the many applications where we do not need
to look at all the interactions. In particular, we might first
find the top k main effects. After selecting these variables,
we could examine their interactions. The number of inter-
actions among the main effects (which is ⇥(k2)) is much

Fast Bayesian Inference of Pairwise Interactions

smaller than the total number of possible interactions (which
is ⇥(p2)) if k ⌧ p. Such a strategy is natural if we believe
that ✓ satisfies the (commonly assumed) strong hierarchy
restriction.

6. SKIM: Sparse Kernel Interaction Model
To demonstrate the utility and efficacy of the kernel inter-
action sampler and kernel interaction trick, we choose a
particular model that we call the sparse kernel interaction
model (SKIM). In what follows, we first detail SKIM, which
we will see promotes sparsity and strong hierarchy. Then,
by observing that SKIM is a special case of the general
model in Eq. (3), we can show that SKIM induces a two-
way interaction kernel via Theorem 4.3 and Eq. (9). We
will see that this kernel has only 3 components and thus
takes only O(p) time to evaluate. By Corollary B.3, we can
compute the distribution of interaction terms from SKIM in
O(1) time once we have computed the kernel matrix. Hence,
the final computation time for discovering main effects and
interaction effects with SKIM will be O(N2p+N3) by the
discussion at the end of Section 5.

SKIM is given in full detail, together with discussion of hy-
perparameter selection and intepretation, in Appendix D.1.
It is a particular instance of a general class of hierarchical
sparsity priors (cf. Chipman, 1996; George & McCulloch,
1993; Griffin & Brown, 2017) that have the following form:

 ⇠ p() ⌘ ⇠ p(⌘) c2 ⇠ p(c2)

✓xi | , ⌘ ⇠ N (0, ⌘21
2
i)

✓xixj | , ⌘ ⇠ N (0, ⌘22
2
i

2
j)

✓x2
i
| , ⌘ ⇠ N (0, ⌘23

4
i)

✓0 | c2 ⇠ N (0, c2),

(11)

where ✓0 is the intercept term and every ⌘i or j is a scalar.

We next show that any prior in the form of Eq. (11) in-
duces a O(p) two-way interaction kernel. The proof is in
Appendix B.6.

Proposition 6.1. Taking ⌧ := (⌘,, c2), the generative

model in Eq. (11) is equivalent to using the following kernel
in Eq. (6):

k⌧ (x, x̃) =
⌘22
2
k1
poly,2(� x,� x̃)

(⌘23 �
⌘22
2
)k0

poly,1(� x� x,� x̃� x̃)

+
⇣
⌘21 � ⌘22

⌘
k0
poly,1(� x,� x̃) + c2 � ⌘22

2
.

(a) Runtime complexity (b) Memory complexity

Figure 1. Empirical evaluation of (a) time and (b) memory scaling
with dimension of marginal likelihood computation. Woodbury
and Naive refer to the baselines in Section 3.

7. Experiments
Time and memory cost versus Bayesian baselines. We
first assess the computational advantages of our kernel in-
teraction sampler (KIS) by comparing it with each baseline
Bayesian method in Table 1. We start by profiling the time
and memory cost of computing p(D | ⌧,�2), which we have
seen is a computational bottleneck for sampler option 2 in
Section 3. In Fig. 1, we depict the time and memory cost
of p(D | ⌧,�2) computation for conjugate linear regression
with an isotropic Gaussian prior on synthetic datasets with
N = 50. We vary p but not N because we are interested
primarily in the high-dimensional case when p is large rela-
tive toN . Fig. 1 shows that KIS yields orders-of-magnitude
speed and memory improvements over the baseline methods
for computing p(D | ⌧,�2).

We next compare inference for SKIM using KIS, which
marginalizes out ✓ and samples ⌧ , to jointly sampling (✓, ⌧)
(denoted FULL).2 We implemented KIS and FULL in Stan
(Carpenter et al., 2019) and used the NUTS algorithm (Hoff-
man & Gelman, 2014) for sampling (4 chains with 1,000
iterations per chain). As shown in Fig. 2(a), KIS is or-
ders of magnitude faster even for lower values of p. In
Section 3 we remarked that since FULL explores a much
higher-dimensional space, there might be issues with mix-
ing. To explore this possibility empirically, we check the
Gelman–Rubin statistic (R̂) values of the output from both
KIS and FULL. We found that, for FULL, the R̂ values
were greater than 1.05, with some reaching as high as 1.5
(indicating poor mixing), while for KIS all R̂ values were
less than 1.05 (suggesting good mixing).

Comparison to LASSO: synthetic data. Having demon-
strated the considerable computational savings over baseline
Bayesian approaches, we next demonstrate the advantage of
our method over frequentist approaches such as the LASSO.
In particular, we consider the common case when the true
high-dimensional parameter ✓ is assumed to be sparse and
satisfies the requirement of strong hierarchy. To the best
of our knowledge, there has not been an extensive empiri-

2See the discussion of sampler option 1 in Section 3.

Fast Bayesian Inference of Pairwise Interactions

(a) NUTS runtimes (b) LASSO runtime comparisons

Figure 2. The left-hand figure indicates the time to complete four
parallel chains of 1000 iterations of NUTS for the SKIM model
proposed in Section 6 using KIS (denoted as SKIM-KIS) and
FULL. For each point, KIS had R̂ < 1.05 while FULL always
had R̂ > 1.05. The right-hand figure compares the runtime of
inference for SKIM-KIS versus fitting LASSO-based methods.

cal comparison between sparse Bayesian interaction mod-
els and sparse frequentist interaction models. The likely
reason is that each MCMC iteration for sampling ⌧ takes
O(N2p2 + N3) time using the Woodbury matrix method.
The per-iteration cost of the iterative optimization solver
for the LASSO and the hierarchical LASSO, on the other
hand, is O(Np2), which is much faster when N is even
moderately large. Fortunately, SKIM admits a cheap-to-
compute kernel function such that each MCMC iteration
takes O(N2p+N3) time, which is faster than the LASSO-
style approaches in cases when p is large relative to N .

We benchmark SKIM against generating all pairwise inter-
actions and running the LASSO (denoted pairs LASSO)
and the hierarchical LASSO (Lim & Hastie, 2015), which
constrains the fitted parameters to satisfy strong hierar-
chy. We generate 36 different synthetic datasets, which
differ in the number of observations, dimension, and
signal-to-noise ratio. The covariates X are drawn from
N (0,�2Ip) for different choices of �. Here, � controls
the signal-to-noise ratio; when � is larger, the signal is
stronger. We consider N 2 {50, 100, 200} observations,
p 2 {50, 100, 200, 500} dimensions (which translates into
between roughly 1.25⇥103 and 1.25⇥105 total interaction
parameters), and � 2 {1, 2, 5}. In each dataset, we select
five variables (and their pairwise interactions) to affect y,
and we allow the rest of the variables to lead to spurious cor-
relations with the response y. We set the magnitudes of all
non-zero effects to 1. Finally, y | x, ✓⇤ ⇠ N (0,�2), where
the noise variance �2 equals the largest �2 value, namely
25, to mimic the realistic case when the noise variance is
large relative to the signal. We compare each method in
terms of variable selection quality and mean-squared error
(MSE) between the fitted and true parameter. For variable
selection, we select a parameter only if the 99% posterior
credible interval does not contain zero. For the hierarchi-
cal LASSO and pairs LASSO, the variables selected are
those with non-zero coefficients, and we use 5-fold cross-
validation to find the strength of the L1 penalties. We fit

(a) Main effects (b) Main effects differences

(c) Pairwise effects (d) Pairwise effects differences

Figure 3. Variable selection performance of each method for the
36 synthetic datasets. Each point in each plot indicates one of
these datasets for a particular method. The green regions in the
second and last plot indicate where our method in strictly better
than the other two in terms of variable selection, while the red
region indicates the datasets for which our method is strictly worse.
In the first and last figures, better performance occurs when moving
right and/or down.

the hierarchical LASSO using the glinternet package
in R and pairs LASSO using sklearn in python. We
implemented KIS is Stan (4 chains with 1,000 iterations
each). The R̂ values for each dataset were less than 1.05.

First, we examine how well each method selects main ef-
fects and pairwise effects. Each point in Fig. 3(a) shows the
number of main effects selected and number of incorrect
main effects selected for a given synthetic dataset. In this
plot, it is clear that our method has better false discovery
rate (FDR) control over the other two methods on average.
Fig. 3(c) shows the FDR performance for pairwise effects.
To compare the methods at the dataset level, in Fig. 3(b,d)
we consider the difference in the number of correct and in-
correct main effects selected by our method and the LASSO
methods for each dataset. The green shaded regions indicate
the datasets for which our method simultaneously selects
more correct main effects and has fewer incorrect main ef-
fects, i.e., is strictly better than the other two methods for
any variable selection metric. Finally, in Fig. 4 we look
at the difference in MSE to ✓⇤, broken down in terms of
the error for estimating main and pairwise effects. Again,
we see for the great majority of the datasets, KIS outper-
forms the LASSO based approaches. In Fig. 2(b) we see
that SKIM-KIS has competitive runtimes relative to pairs
LASSO and hierarchical LASSO.

Fast Bayesian Inference of Pairwise Interactions

(a) MSE difference (main) (b) MSE difference (pairwise)

Figure 4. Each red cross denotes the difference in MSE of the
hierarchical LASSO and KIS from the true main effects (left) and
pairwise effects (right) for a given synthetic dataset. When the
MSE difference is larger than 0 (i.e., the green shaded region), then
our method is closer to the true effect sizes in terms of Euclidean
distance. Similarly, each blue x equals the difference in MSE of
all-pairs LASSO and our method.

Table 2. Building dataset results. MAIN (PAIR) MSE refers to
total error in estimating main (pairwise) effects. The main and
pairwise MSE added together yield the total MSE. The second and
fourth columns show (# of effects correctly selected) : (# of incor-
rect effects selected) for main and pairwise effects, respectively.
Larger green values are better while larger purple values are worse.

METHOD MAIN MSE # MAIN PAIR MSE # PAIR

SKIM 0.1 3 : 0 7.0 3 : 0
PLASSO 5.0 2 : 5 9.3 3 : 21
HLASSO 1.5 3 : 19 7.8 3 : 18

Comparison to LASSO: synthetic data, real covariates.
To understand the impact of the geometry of the covariates
on performance, we took the Residential Building Data Set
from the UCI Machine Learning Repository and simulated
responses as in our previous synthetic experimental setup.
In particular, we randomly chose 5 variables and their 10
pairwise interactions to have non-zero effects. In this case,
the covariates are highly correlated (the first 20 out of 109
principal components capture over 99% of the variance
in the data). In Table 2, we see that SKIM significantly
outperforms the LASSO-based methods for recovering main
and pairwise effects.

Comparison to LASSO: cars miles per gallon dataset.
We conclude by comparing the methods on the Auto MPG
dataset, from the UCI Machine Learning Repository, which
contains N = 398 samples and p = 8 variables. We con-
sider only the 6 numerical variables (cylinders, displace-
ment, horsepower, weight, acceleration, model year) and
standardize the data by subtracting the mean and dividing
by the standard deviation. To compare the methods, we
first fit SKIM and the LASSO-based methods (via 5-fold
cross-validation) on these 6 features. Our method selects

Table 3. Auto MPG dataset results. Each column represents the (#
of original effects selected) : (# of fake effects selected). A selected
main (pairwise) effect is an “original” effect if it corresponds to one
of the original 6 features (15 interactions). Main100 (Pairwise100)
and Main200 (Pairwise200) denote when 100 and 200 random
noise covariates are added to the original 6 features, respectively.
Larger purple values are worse.

METHOD MAIN100 MAIN200 PAIR100 PAIR200

SKIM 3 : 0 3 : 0 1 : 0 1 : 0
PLASSO 4 : 1 4 : 0 4 : 99 2 : 78
HLASSO 5 : 4 6 : 46 5 : 2 4 : 38

three main effects (weight, horsepower, acceleration) and
one interaction (weight ⇥ horsepower). The hierarchical
LASSO selects all six main effects and 8 out of the 15 pos-
sible pairwise interactions. Pairs LASSO selects 5 main
effects and 8 interactions.

Since there is no ground truth, and all of the main and pair-
wise interactions could a priori affect miles per gallon, it
is difficult to compare the methods. To better assess the
methods, we instead append random noise covariates and
refit each model. In particular, we draw additional covari-
ates from a N (0, Im), for m = 100, 200 and add these
noise variables to the original 6 features. The total num-
ber of main and pairwise regression coefficients grows to
5,671 and 21,321 for m = 100, 200 respectively, making
the regression task very high-dimensional. The results are
summarized in Table 3. All methods are able to pick up
some main effects and pairwise effects from the original
dataset. Beyond that observation, we cannot compare which
main and interaction effects from the original data are real.
However, we do know that all noise effects are fake. We see
that even with more noise directions, our method selects the
same main effects and pairwise effects as the noiseless co-
variate case; that is, it does not pick up any fake effects. The
two LASSO-based methods, on the other hand, incorrectly
select many noise variables as interactions.

Conclusion. Through our kernel interaction sampler we
have demonstrated that Bayesian interaction models can
offer both competitive computational scaling relative to
LASSO-based methods and improved Type I and II error
rates. While our method runs in time linear in p per iteration,
the cubic dependence on N still makes inference computa-
tionally challenging. Fortunately, there is a wide GP liter-
ature that deals precisely with reducing this cubic timing
dependence through inducing points (Quiñonero Candela &
Rasmussen, 2005; Titsias, 2009) or novel conjugate-gradient
techniques (Gardner et al., 2018). An interesting future di-
rection will be to empirically and theoretically understand
the statistical penalty of using these inducing point methods
to scale SKIM to the setting of both large N and large p.

Fast Bayesian Inference of Pairwise Interactions

Acknowledgements
This research is supported in part by an NSF CAREER
Award, an ARO YIP Award, DARPA, a Sloan Research Fel-
lowship, IBM, and ONR. BLT is supported by NSF GRFP.
We thank Martin Jankowiak for helpful comments.

References
Aschard, H. A perspective on interaction effects in genetic
association studies. Genetic Epidemiology, 2016.

Barber, R. F. and Candès, E. J. Controlling the false discov-
ery rate via knockoffs. The Annals of Statistics, 43(5):
2055–2085, 10 2015.

Benjamini, Y. and Speed, T. P. Summarizing and correct-
ing the GC content bias in high-throughput sequencing.
Nucleic Acids Research, 40(10), 2012.

Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J., and
Stuart, A. Optimal tuning of the hybrid Monte Carlo
algorithm. Bernoulli, 19(5A):1501–1534, 11 2013.

Bien, J., Taylor, J., and Tibshirani, R. A Lasso for hier-
archical interactions. The Annals of Statistics, 41(3):
1111–1141, 2013.

Candes, E. and Tao, T. The Dantzig selector: Statistical
estimation when p is much larger than n. The Annals of
Statistics, pp. 2313–2351, 2007.

Carpenter, B., Lee, D., Brubaker, M. A., Riddell, A., Gel-
man, A., Goodrich, B., Guo, J., Hoffman, M., Betancourt,
M., and Li, P. Stan: A probabilistic programming lan-
guage, 2019.

Carvalho, C., Polson, N., and Scott, J. Handling sparsity via
the horseshoe. In International Conference on Artificial
Intelligence and Statistics, 2009.

Chen, S., Donoho, D., and Saunders, M. Atomic decom-
position by basis pursuit. SIAM Journal on Scientific

Computing, pp. 33–61, 1998.

Chipman, H. Bayesian variable selection with related pre-
dictors. The Canadian Journal of Statistics, 24(1):17–36,
1996.

Choy, S. and Chan, C. Scale mixtures distributions in insur-
ance applications. Journal of the IAA, 33:93–104, 2003.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and
Wilson, A. G. GPyTorch: Blackbox matrix-matrix Gaus-
sian process inference with GPU acceleration. In Ad-

vances in Neural Information Processing Systems. 2018.

Gelman, A., Hill, J., and Yajimam, M. Why we (usually)
don’t have to worry about multiple comparisons. Journal
of Research on Educational Effectiveness, pp. 189–211,
2012.

George, E. and McCulloch, R. Variable selection via Gibbs
sampling. Journal of the American Statistical Association,
88(423):881–889, 1993.

Griffin, J. and Brown, P. Hierarchical shrinkage priors for
regression models. Bayesian Analysis, 12:135–159, 2017.

Hamdan, H., Nolan, J., Wilson, M., and Dardia, K. Using
scale mixtures of normals to model continuously com-
pounded returns. Journal of Modern Applied Statistical

Methods, 2005.

Hoffman, M. and Gelman, A. The No-U-turn sampler:
Adaptively setting path lengths in Hamiltonian Monte
Carlo. Journal of Machine Learning Research, 15(1):
1593–1623, 2014.

Lim, M. and Hastie, T. Learning interactions via hierarchical
group-lasso regularization. Journal of Computational and
Graphical Statistics, 24(3):627–654, 2015.

Lipkovich, I., Dmitrienko, A., and D’Agostino, R. Tutorial
in biostatistics: data-driven subgroup identification and
analysis in clinical trials. Statistics in Medicine, 36:136–
196, 2017.

MacKay, D. Introduction to Monte Carlo Methods, pp.
175–204. Springer Netherlands, 1998.

Morota, G. and Gianola, D. Kernel-based whole-genome
prediction of complex traits: a review. Frontiers in Ge-

netics, 5:363, 2014.

Nakagawa, K., Suzumura, S., Karasuyama, M., Tsuda, K.,
and Takeuchi, I. Safe pattern pruning: An efficient ap-
proach for predictive pattern mining. In International

Conference on Knowledge Discovery and Data Mining,
2016.

Piironen, J. and Vehtari, A. Sparsity information and reg-
ularization in the horseshoe and other shrinkage priors.
Electronic Journal of Statistics, 11:5018–5051, 2017.

Pillai, N. S., Stuart, A. M., and Thiéry, A. H. Optimal
scaling and diffusion limits for the Langevin algorithm in
high dimensions. The Annals of Applied Probability, 22
(6):2320–2356, 12 2012.

Quiñonero Candela, J. and Rasmussen, C. E. A unifying
view of sparse approximate gaussian process regression.
Journal of Machine Learning Research, 6:1939–1959,
2005.

Fast Bayesian Inference of Pairwise Interactions

Rasmussen, C. E. and Williams, C. K. I. Gaussian Pro-

cesses for Machine Learning (Adaptive Computation and

Machine Learning). The MIT Press, 2006.

Risso, D., Schwartz, K., Sherlock, G., and Dudoit, S. Gc-
content normalization for rna-seq data. BMC Bioinfor-

matics, 12(1):480, Dec 2011.

Shah, R. Modelling interactions in high-dimensional data
with backtracking. Journal of Machine Learning Re-

search, 17(207):1–31, 2016.

Slim, L., Chatelain, C., Azencott, C., and Vert, J. Novel
methods for epistasis detection in genome-wide associa-
tion studies. bioRxiv:325993, 2018.

Su, G., Christensen, O. F., Ostersen, T., Henryon, M., and
Lund, M. S. Estimating additive and non-additive genetic
variances and predicting genetic merits using genome-
wide dense single nucleotide polymorphism markers.
PLOS ONE, 7(9):1–7, 09 2012.

Tibshirani, R. Regression shrinkage and selection via the
Lasso. Journal of the Royal Statistical Society, Series B,
pp. 267–288, 1994.

Titsias, M. K. Variational learning of inducing variables in
sparse gaussian processes. In International Conference on
Artificial Intelligence and Statistics, pp. 567–574, 2009.

Wainwright, M. and Simoncelli, E. Scale mixtures of Gaus-
sians and the statistics of natural images. In International
Conference on Neural Information Processing Systems,
1999.

Weissbrod, O., Geiger, D., and Rosset, S. Multikernel
linear mixed models for complex phenotype prediction.
Genome Research, 2016.

Wu, T., Chen, Y., Hastie, T., Sobel, E., and Lange, K.
Genome-wide association analysis by Lasso penalized
logistic regression. Bioinformatics, 25(6):714–721, 2009.

Fast Bayesian Inference of Pairwise Interactions

A. Modeling Multi-Way Interactions
In certain applications, we might expect that there are interactions of order greater than two. For example, suppose we are
trying to predict college admissions. Then, we might expect a three-way interaction between a candidate’s SAT score, GPA,
and extracurricular involvement. Individually, these variables might only exhibit moderate association but together they
could have a multiplicative effect. For example, we might expect that candidates who have high SAT scores, high GPAs, and
excellent extracurricular activities will be accepted with near certainty, while candidates who only possess one/two of these
qualities are borderline applicants.

We now show how to extend our results to handle such three-way, or more generally, r-way interactions.

Definition A.1. (r-way interactions) The r-way interactions of a covariate vector x 2 Rp are generated from the feature
map

�r(x) :=
rM

d=1

M

k:k1+···+kp=d

pY

j=1

x
kj

j , k 2 Np,

where
Lm

j=1 aj := (a11, · · · , a1k1 , · · · , am1, · · · , amkm) denotes the concatenation of vectors aj 2 Rkj .

To model r-way interactions, we must use degree r polynomial kernels to generate all the necessary interactions. Hence, we
recommend using the following generalized two-way interaction kernel, which we call the r-way interaction kernel.

Definition A.2. (r-way interaction kernel) A kernel k is called an r-way interaction kernel if for some choice of
M1,M2,M3 2 N, ↵, ,�(m) 2 Rp

+ (m = 1, . . . ,M1), ⌫(m) 2 R+ (m = 1, . . . ,M2), and r(m) 2 Rp
+ (k = 1, . . . ,M3)

it can be re-expressed as

M1X

m=1

k1poly,r(�
(m) � x,�(m) � y) +

M2X

m=1

⌫(m)

2

4
rY

s=1

xism

rY

s=1

yism

3

5+
M3X

m=1

kr�1(r(m) � x,r(m) � y),

where � is the Hadamard product and kr�1 is an r � 1 degree interaction kernel. The base case kernel (i.e., when r = 2) is
provided in Definition 4.2.

To select the weights for an r-way interaction kernel, we must solve a system of equations similar to Eq. (9), except for a
target prior covariance matrix ⌃⌧ 2 Rdim(�r)⇥dim(�r).

B. Proofs
B.1. Proof of Proposition 4.1

Let g(·) = ✓T�2(·) and ✓ | ⌧ ⇠ N (0,⌃⌧). Then, y(n) = g(x(n)) + ✏(n). The first claim follows by taking � = �2 and
f = g in Rasmussen & Williams (2006, Equation 2.12).

The second claim follows directly from the duality between the weight-space and function-space view of a GP (Rasmussen
& Williams, 2006, Chapter 2).

B.2. Proof of Theorem 4.3

The proof of Theorem 4.3 depends critically on Lemma B.1 below, which characterizes the relation between adding two
kernels and the resulting induced prior covariance matrix.

Lemma B.1. Let k1 and k2 be two kernels such that there exists vectors a(1), a(2) 2 Rdim(�2) for which ki(x, y) =
ha(i) � �2(x), a(i) � �2(y)i. Let k3(x, y) = k1(x, y) + k2(x, y). Then,

k3(x, y) = h⌃
1
2
3 �2(x),⌃

1
2
3 �2(y)i s.t. ⌃3 = diag(a(1) � a(1) + a(2) � a(2)). (12)

Fast Bayesian Inference of Pairwise Interactions

Proof. By the sum property of kernels,

k1(x, y) + k2(x, y) = h[a1 a2]� [�2(x) �2(x)], [a1 a2]� [�2(y) �2(y)]i
= ha(1) � �2(x), a

(1) � �2(y)i+ ha(2) � �2(x), a
(2) � �2(y)i

= ha(1) � a(1) � �2(x),�2(y)i+ ha(2) � a(2) � �2(x),�2(y)i
= ha(1) � a(1) � �2(x) + a(2) � a(2) � �2(x),�2(y)i
= h(a(1) � a(1) + a(2) � a(2))� �2(x),�2(y)i
= �T

2 (x) diag((a
(1) � a(1) + a(2) � a(2)) �2(y)

= k3(x, y).

(13)

By Lemma B.1, it suffices to write out the feature map of each kernel in Definition 4.2. The induced feature maps of each
respective kernel term in Definition 4.2 are given by ai � �2(x), 1 i 4 for

a1 := ((�(m)
1)2, · · · , (�(m)

p)2,
p
2�(m)

1 �(m)
2 , · · · ,

p
2�(m)

p�1�
(m)
p ,

p
2�(m)

1 , · · · ,
p
2�(m)

p , 1)

a2 := (0, · · · , 0, 0, · · · , 0,↵1, · · · ,↵p,
p
A)

a3 := (1, · · · , p, 0, · · · , 0, 0, · · · , 0, 0)

a4 := (0, · · · , 0, 0, · · · , 0,
p

⌫(m), 0, · · · , 0, 0, · · · , 0, 0)

(14)

The first claim follows from Eq. (14) and Lemma B.1.

To prove the second claim, take an arbitrary diagonal prior covariance matrix S 2 Rdim(�2)⇥dim(�2). It suffices to show
that there exists a solution of,

diag(S)(i) = ↵2
i + 2

M1X

m=1

h
�(m)
i

i2

diag(S)(ij) = 2
M1X

m=1

h
�(m)
i �(m)

j

i2
+

K2X

m:im=i,jm=j

⌫(m)

diag(S)(ii) = 2
i +

M1X

m=1

h
�(m)
i

i4

diag(S)(0) = M2 +A.

for some choice of M1,M2 2 N, ↵, ,�(m) 2 Rp
+ (m = 1, . . . ,M1), ⌫(m) 2 R+ (m = 1, . . . ,M2), and A 2 R.

Take ↵2
i = diag(S)(i) and 2

i = diag(S)(ii), for i = 1, · · · , p. Take �(m) = 0. Let M2 = p(p�1)
2 and ⌫(1) =

diag(S)(12), · · · , ⌫(M2) = diag(S)((p�1)p). Finally, letting A = diag(S)(0) �M2 solves the system.
Remark. While we have shown one of the many ways to solve the above system for an arbitrary S, the strategy taken above
is not practically useful; computing the kernel in this fashion will take ⇥(p2) time becauseM2 = ⇥(p2). In practice, we
must leverage the polynomial kernels (i.e., those in the M1 sum) to avoid making M2 large. We show how such a strategy
works in Appendix C.

B.3. Proof of Theorem 5.1

Define g(Aij) := (g(ei), g(�ei), g(ej), g(eij)). Then,

g(Aij) | D, ⌧ ⇠ N (µgij ,⌃ij) s.t. µgij := K⌧ (A
ij , X)H⌧Y,

⌃ij :=
h
K⌧ (A

ij , Aij)�K⌧ (A
ij , X)H⌧K⌧ (X,Aij)

i
,

(15)

which follows directly from Rasmussen & Williams (2006, Equation 2.21). Notice that,

✓xi =
g(e1)

2
� g(�e1)

2
= aTi g(A

ij) and ✓xixj =
g(e1)

2
� g(�e1)

2
� g(ej) + g(eij) = aTijg(A

ij), (16)

Fast Bayesian Inference of Pairwise Interactions

where ai = (1/2,�1/2, 0, 0) and aij = (�1/2, 1/2,�1, 1). The proof follows from Eq. (15), Eq. (16), and recalling that an
affine transformation h : x 7! Ax of a multivariate Gaussian distribution Z ⇠ N (µ,⌃) is given by h(Z) ⇠ N (Aµ,A⌃AT).

B.4. Proof of Corollary 5.2

Corollary 5.2 follows immediately once we can show that K⌧ (Aij , X) takes O(1) time. It suffices to show k⌧ (x(n), ei)
and k⌧ (x(n), ei + ej) take O(1) time. Since k⌧ is a sum of polynomial kernels, k⌧ (x, y) only depends on x, y 2 Rp

through the inner product xT y. Hence, for vectors x̃, ỹ 2 RM , k⌧ (x̃, ỹ) is well-defined and just depends on x̃T ỹ. Now,
k⌧ (x(n), ei) = k⌧ (x

(n)
i , 1) and k⌧ (x(n), ei + ej) = k⌧ ((x

(n)
i , x(n)

j), (1, 1)). Since k⌧ (x
(n)
i , 1) and k⌧ ((x

(n)
i , x(n)

j), (1, 1))
do not depend on p, these terms each take O(1) time to compute.

B.5. The General Kernel Interaction Trick

In this section, we generalize the kernel interaction trick, namely show how to access the distribution of arbitrary components
of ✓. First, we require some new notation. For E ✓ {1, · · · , p}, |E| = M , define

✓E := (✓xi1
, · · · , ✓xiM

, ✓xi1xi2
, · · · , ✓xiM�1

xiM
), ij 2 E. (17)

We show how to compute ✓E | ⌧, D from the GP posterior predictive distribution. Without any lost of generality, we may
assume E = {1, · · · ,M} by relabeling the covariates.

Theorem B.2. (General kernel interaction trick) Let H⌧ := (K⌧ + �2IN)�1
and

AM := [e1,�e1, · · · eM ,�eM , e1 + e2, · · · , eM�1 + eM]T .

Let K⌧ (AM , X) = K⌧ (X,AM)T be the matrix formed by taking the kernel between each row of AM with each row of X .

Let

ai := (0, 0, · · · , 1/2,�1/2, · · · , 0, 0, · · · , 0) 2 R2M+M(M�1)
2

aij := (0, 0, · · · , 1/2,�1/2, · · · ,�1, · · · , 0, 0, · · · , 1, · · · , 0) 2 R2M+M(M�1)
2

(18)

for i < j. That is, ai has non-zero entries at ei and �ei and aij has non-zero entries at ei, �ei, �ej , and ei + ej . Let

RM := [a1 · · · aM a12 · · · a(M�1)M]T . (19)

Then, ✓E | ⌧, D is a multivariate Gaussian distribution with mean RMK⌧ (AM , X)H⌧Y and covariance matrix

RM

⇥
K⌧ (Aij , Aij)�K⌧ (Aij , X)H⌧K⌧ (X,Aij)

⇤
RT

M .

Proof. Following the proof of Theorem 5.1,

g(AM) | D, ⌧ ⇠ N (µgM ,⌃M) s.t. µgM := K⌧ (A
M , X)H⌧Y,

⌃M :=
h
K⌧ (A

M , AM)�K⌧ (A
M , X)H⌧K⌧ (X,AM)

i
.

(20)

Similar to Eq. (16),

✓xi =
g(e1)

2
� g(�e1)

2
= aTi g(A

M) and ✓xixj =
g(e1)

2
� g(�e1)

2
� g(ej) + g(eij) = aTijg(A

M). (21)

The proof follows from Eq. (20), Eq. (21), and recalling that an affine transformation h : x 7! RT
Mx of a multivariate

Gaussian distribution Z ⇠ N (µ,⌃) is given by h(Z) ⇠ N (RMµ,RM⌃RT
M).

Corollary B.3. GivenK⌧ , the distribution ✓E | ⌧, D takes O(M2) time and memory to compute.

Proof. The proof is identical to the one provided in Appendix B.4.

Fast Bayesian Inference of Pairwise Interactions

B.6. Proof of Proposition 6.1

See Appendix C.2.

C. Example Bayesian Interaction Models
In the following subsections, we show how to solve Eq. (9) for several classes of models.

C.1. Block-Degree Priors

Suppose we would like to set the prior variance of all terms with the same degree equal. That is, we would like to use a prior
of the form,

⌘ 2 R3 ⇠ p(⌘)

✓xi | ⌘ ⇠ N (0, ⌘21)

✓xixj | ⌘ ⇠ N (0, ⌘22)

✓x2
i
| ⌘ ⇠ N (0, ⌘23)

✓0 | ⌘ ⇠ N (0, c2)

(22)

To find the corresponding kernel, let � = (1
4p2

p
⌘2, · · · , 1

4p2

p
⌘2),M1 = 1 andM2 = 0. Then, diag(S)(ij) = ⌘22 . Setting

 2
i = ⌘23 � 1

2⌘
2
2 , implies that diag(S)(ii) = ⌘23 . Finally, letting ↵2

i = ⌧21 � 2⌘2p
2
and A = c2� 1 implies that diag(S)(i) = ⌘21

and diag(S)(0) = c2 as desired. We may equivalently re-write the induced kernel as,

kblock,⌘(x, y) =
⌘22
2
k1poly,2(x, y) + (⌘23 �

⌘22
2
)k0poly,1(x� x, y � y) +

⇣
⌘21 � ⌘22

⌘
k0poly,1(x, y) + c2 � ⌘22

2
. (23)

Hence, Eq. (22) admits a kernel that only takes O(p) time to compute.

C.2. Sparsity Priors

By Lemma B.1, the sparsity prior model provided in Eq. (11) equals kblock,⌘(� x,� y).

D. SKIMModel Details
The full hierarchal form of SKIM is provided below, which is based closely on the regularized horseshoe prior (Piironen &
Vehtari, 2017) and the model proposed in Griffin & Brown (2017):

m2 ⇠ InvGamma(↵1,�1) ⇠2 ⇠ InvGamma(↵2,�2)

� :=
s

p� s

�p
N

� ⇠ N+(0,↵3)

i =
m�ip

m2 + ⌘21�
2
i

�i ⇠ C+(0, 1)

⌘1 ⇠ C+(0,�) ⌘2 ⇠ ⌘21
m2

⇠

✓xi | ⌘, ⇠ N (0, ⌘21
2
i)

✓xj | ⌘, ⇠ N (0, ⌘21
2
j)

✓xixj | ⌘, ⇠ N (0, ⌘22
2
i

2
j)

✓0 | ⌘ ⇠ N (0, c2)

where s,↵i, and �i are user-specified hyperparameters, C+(0, 1) is a half-Cauchy distribution, and N+ is a half-normal
distribution. More details, such as selecting the hyperparameters, desirable properties, and interpretations of SKIM, are
provided below.

Fast Bayesian Inference of Pairwise Interactions

D.1. SKIM Details

Recall that we are primarily interested in the case when ✓ is sparse and satisfies strong-hierarchy. In order to promote
sparsity in the main effects, we require two ingredients: (1) a prior on the global shrinkage parameter ⌘1 and (2) a prior on
the local shrinkage parameters 2 Rp, which together express the prior variance of ✓xi as (Carvalho et al., 2009; Piironen
& Vehtari, 2017):

✓xi | , ⌘1 ⇠ N (0, ⌘21
2
i), i = 1, · · · , p. (24)

⌘1 controls the overall sparsity level of the model; in particular, the model becomes more sparse as ⌘1 decreases. If we
expect s non-zero main effects, then setting ⌘1 = s

p�s
�p
N

will yield an expected prior sparsity level of s by Piironen &
Vehtari (2017, Equation 3.12). However, we often do not know exactly how to select s. Hence, Piironen & Vehtari (2017)
instead suggest drawing,

� :=
s

p� s

�p
N

⌘1 ⇠ C+(0,�), (25)

to express our uncertainty of not knowing the true main effect sparsity level.

The prior variance of ✓xi is non-negligible only when i is large enough to escape the global shrinkage of ⌘1. Hence, we
want to draw i from a heavy-tailed distribution so that certain main effects can escape global shrinkage. Carvalho et al.
(2009) suggest drawing i from a half-Cauchy distribution since this distribution has fat tails. However, such a prior often
leads to undesirable numerical stability issues when using NUTS (Piironen & Vehtari, 2017). As a result, Piironen & Vehtari
(2017) instead propose using a regularized horseshoe prior which truncates the half-Cauchy distribution to have support
only on [0,m) instead of [0,1). This truncation (empirically) turns out to lead to better mixing properties, and is equivalent
to the following generative mechanism:

i =
m�ip

m2 + ⌘21�
2
i

�i ⇠ C+(0, 1) (26)

As �i ! 1, i ! m
⌘1
. Hence, as �i ! 1, the prior variance of ✓xi equals m. Since we might not know the scale m of the

non-zero main effects, we place a prior on m, namely,

m2 ⇠ InvGamma(↵1,�1) (27)

for hyperparameters ↵1 and ↵2.

Next, we model the interactions. If strong-hierarchy holds, sparsity comes for free; if there are only s ⌧ p non-zero
main effects, then there are at most s(s�1)

2 ⌧ p2 possible pairwise interactions. We must be careful, however, because
strong-hierarchy trivially holds; our main effect estimates will, with probability one, never equal zero because the prior
variances of the main effects are greater than 0 with probability one by Eq. (24) and our choice of priors. Instead, we aim for
a relaxed version of strong-hierarchy. Namely, that the prior variance of an interaction ✓xixj is large only if ✓xi and ✓xj are
both large. ✓xi and ✓xj are large only when i and j are large. Hence, it suffices to make the prior variance of ✓xixj large
only when i and j are both large. Let ̃2

i = ⌘2
1

m22
i . Then, 0 ̃2

i 1 and ̃i approaches 1 as �i ! 1. Since, ̃2
i and ̃2

i

are bounded by 1, ̃2
i ̃

2
i will only be close to 1 when each term is close to one. That is, when both �i and �j are large, or

equivalently when i and j are both large. Hence, it suffices to let

✓xixj | ⌘1, ⇠ N (0, ⇠2̃2
j ̃

2
j)

= N (0, ⌘22
2
i

2
j) for ⌘2 :=

⌘21
m2

⇠,
(28)

to promote strong-hierarchy, where ⇠ has the interpretation of the scale of the non-zero interaction effects; as �i and �j tend
to infinity, the prior variance of ✓xixj approaches ⇠2. Again, since we might not now this scale, we draw

⇠2 ⇠ InvGamma(↵2,�2), (29)

for some choice of hyperparameters ↵2 and �2.

Fast Bayesian Inference of Pairwise Interactions

E. Woodbury Identity and the Matrix Determinant Lemma
To compute the determinant in Eq. (5), one can perform a Cholesky decomposition of ⌃N,⌧ 2 Rdim(�2)⇥dim(�2), which
costs O(Np2 + p6) time and O(Np2 + p4) memory. This factorization can be avoided through the Woodbury matrix lemma
and matrix determinant lemma.

The Woodbury matrix identity implies that,

(A�1 + UUT)�1 = A�AU(IK + UTAU)�1UTA, (30)

where A 2 RM⇥M , U 2 RM⇥K , and IK is theK ⇥K identity matrix. The matrix determinant lemma implies that,

det(A�1 + UUT) = det(I + UTAU) det(A�1) (31)

Then, by the Woodbury identity,

⌃⌧,N = (⌃�1
⌧ +

1

�2
�2(X)T�2(X))�1 = ⌃⌧ � ⌃⌧�2(X)T (IN + �2(X)⌃⌧�2(X)T)�1�2(X)⌃⌧ . (32)

Computing p(D | ⌧) requires computing det(⌃⌧,N). By the matrix determinant lemma,

det(⌃⌧,N) = (det(IN + �2(X)⌃⌧�2(X)T) det(⌃�1
⌧))�1. (33)

When ⌃⌧ is diagonal, the determinant equals the product of the diagonal, and its inverse equals one over the diagonal. Both
of these quantities can be computed in O(p2) time. Hence, the time complexity for computing det(⌃⌧,N) is dominated by
computing det(IN + �2(X)⌃⌧�2(X)T), which takes O(N2p2 +N3) time and O(Np2) memory to store �2(X).

F. Standard Polynomial Kernel
The feature map induced by the standard degree two polynomial kernel is given by

�c
poly,2(x) := (x2

1, · · · , x2
p,
p
2x1x2, · · · ,

p
2xp�1xp,

p
2cx1, · · · ,

p
2cxp, c)

= apoly,2 � �2(x), apoly,2 := (1, · · · , 1,
p
2, · · · ,

p
2,
p
2c, · · · ,

p
2c, c).

(34)

Hence, Eq. (34) implies that
diag(⌃poly,2) = apoly,2 � apoly,2. (35)

Eq. (35) shows that the prior covariance of the interaction terms are given higher prior variance than the main effects
when c 1, which is often undesirable. Furthermore, this prior does not promote sparsity, which is typically expected in
high-dimensional problems.

