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ABSTRACT

Scientific applications often run for long periods of time, and as
aresult, frequently save their internal states to storage media in
cases of unexpected interruptions (e.g., hardware failures). Emerg-

ing non-volatile memory (NVRAM) can write up to 49 faster

than traditional mechanical storage devices, providing an attractive
medium for this purpose. This paper investigates the implications of
transitioning a scientific application, Fluidanimate, to use NVRAM
for faulttolerance. In particular, we evaluate the performance im-
plications and ease-of-use of four fault-tolerance approaches: 1)
logging through transactions, 2) multi-versioning through copy-on-
write operations, and 3) checkpointing through 10 operations (e.g.,
fwrite) on a direct access (DAX) filesystem and 4) checkpointing
with a DRAM cache. Our study results in three key findings. First,
additional changes to the application are required to take advantage
of the increase in 10 speed provided by NVRAM. Second, the perfor-
mance scalability of the approaches lack when considering a single
process. Third, NVRAM can increase reliability in a distributed
computing environment by allowing individual nodes to error and
automatically recover before the rest of the system notices.
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and simulation; * Computer systems organization — Processors
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1 INTRODUCTION

Scientific applications are often compute and data intensive, and
as a result, frequently run for long periods of time. For example,
simulations in computational fluid dynamics (CFD), a branch of
study heavily used to model fluid flows, e.g, the air flow within
variousstructures[19], can often take monthsto complete. Onthe
otherhand, asmodernarchitectures evolve toinclude anincreas-
ingly larger number of cores to support larger scales of computing,
hardware failures can frequently occur to disrupt the normal exe-
cution oflong-running applications, requiring these applications
to periodically save their internal states in persistent memories so
that they can more readily recover from unexpected interruptions
(e.g., hardware failures).

One of the biggest challenges faced by persisting scientific ap-
plications is the large amount of data to save, specifically to copy
from DRAM to a more persistent storage such as hard drives or
network-based storage, as the run-time cost of such data copying is
oftentoo steep forapplications to use lightly, except when saving
results from long important durations of computation. Emerging
non-volatile memory (NVRAM) technology offers a persistent stor-
agewithahigh capacity for storinglarge amounts ofdataand with

access speeds comparable to that of DRAM (up to 4C¢ faster than

traditional mechanical storage devices), providing an attractive al-
ternative to allow scientificapplications to transparently survive
the various hardware errors (e.g., a power failure).

Figure 1 compares these two approaches to further illustrate the
potential benefit of replacing traditional hard drive with NVRAM
for more efficient software persistence. Traditionally, illustrated in
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Figure 1: The comparison of saving an application state us-
ing (a) a traditional hard disk drive approach, and (b) a non-
volatile RAM based approach.

Figure 1(a), software applications operate in DRAM as the computa-
tionrequires byte-addressability and low access latency — typically
at 10ns [13], where the access speed of RAM is the length of time
it takes for data to be transferred to/from RAM to the CPU [6].
To persist the application’s internal state, it must copy data from
the DRAM to a hard disk drive (HDD), which has a typical access
latency of 5,000ns [6]. The access speed of an HDD is the average
length of time it takes to transfer data to/from the disk drive [6].
Alternatively, as shown in Figure 1(b), an application can operate
directly within NVRAM because it is byte-addressable and can work
similarly to DRAM. Data persistence requires less runtime overhead
because NVRAM has a typical access latency of only 20ns [22].

This paperinvestigates using NVRAM to support transitioning
scientific applications for transparent fault tolerance of hardware
failures. Using a scientific benchmark, Fluidanimate, from PAR-
SEC [16], we perform a case study to evaluate the performance
implications of using four different approaches: 1) logging through
transactions, 2) multi-versioning through copy-on-write operations
3) checkpointing through 10 operations (e.g., fwrite) on a direct
access (DAX) filesystemand 4) checkpointingwitha DRAM cache,
to periodically save the internal data of the application so that it
can transparently recover from any hardwarefailures.

Our main technical contributions include:

« We study the performance implications of using NVM to
supportinstantfaulttolerance and recovery forascientific
application, Fluidanimate fromthe PARSEC3.0[16] bench-
mark suite. We observe that a rudimentary transition to
using NVM to support the fault tolerance of applications
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does not necessarily lead to any significant increase in [0
throughput (2.2%). Weshow thatadditional data structure
changes are necessary to make full use of the NVRAM'’s
performance advantages.

« Wecomparethe fourdifferent NVRAM faulttolerance tech-
niques: 1) logging using transactions, 2) multi-versioning
through copy-on-write operations, 3) checkpointing through
10 operations on a direct access (DAX) filesystem, and 4)
checkpointing with a DRAM cache. We show an inverse
relationship between the complexity to implement an ap-
proach and the overhead incurred to perform fault tolerance
related tasks. Additionally, we show that when using only
asingle process, the performance scalability of the applica-
tion can significantly decrease when periodically saving the
application internal data.

« Westudy the effectiveness of using the various NVM per-
sistence techniques to supporttransparenterror recovery
inadistributed multi-process setting that uses aheartbeat
mechanism [54] to supporterror detection. Our results show
that NVRAM based fault tolerance can increase reliability in
a distributed computing environment by allowing individual
nodestoerrorand automatically restore such thatno other
nodes in the system notice the error.

The remainder of this paper is organized as follows. Section 2 intro-
duces background of using NVRAM to support fault tolerance in
scientific applications. Section 3 describes how we have integrated
the use of NVRAM into a scientific application. Section 3 presents
our experimental study and discusses the implications of using
NVRAM to supportfaulttolerantapplications.Section 5 discusses
related works. Finally Section 6 concludes the paper.

2 BACKGROUND

Alarge class of scientific applications seek to model or simulate
real world phenomenon as a function of time. This process typically
consists ofthree steps. First,aphysical problemisdiscretized into
aninitial state, which typically represents a set of particles or bodies
as a mesh. Second, the state is progressed through various circum-
stances, e.g.forcesortemperatures, viaiteratingthroughanouter
time loop. Lastly, the application ends when the state converges
within a desired threshold[57].

From a storage perspective, scientific applications often require
immense amounts of data to be stored in memory. The high mem-
ory demand also makes these applications good candidates for
distributed computing. In particular, a memory grid can be cre-
ated that spans across multiple compute nodes, where each node
stores a subset of the discretized mesh. Additionally, each node
is responsible for operating on its subset of the mesh, typically
through performing multi-threaded calculations. It is therefore im-
portant to maintain scalability both at the distributed multi-process
level, as well as on a single node at the multi-thread level. In this
paper, multi-threading refers to the practice of mapping a com-
putation onto multiple threads, the smallest unit of execution on
a shared-memory computer, owned by a single process [1]. Dis-
tributed computing refers to the practice of leveraging multiple
different computer nodes on a network, without any sharing of
memory [14].
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Asmodernarchitectures evolve and distributed computing ca-
pabilities increase, hardware failures are expected to happen more
frequently [29]. This places faulttoleranceasanimportantaspect
of scientific applications, as it will allow them to recover more
quickly from these failures. Non-volatile memory is an emerging
technology with the potential to improve the time to recover these
applications after hardware errors occur. The remainder of this
section provides background for our study of using NVRAM to sup-
portfaulttolerance in scientific applications. We first summarize
existingapproaches to supportfaulttolerance. Wethen elaborate
on the various aspects of incorporating NVRAM into a scientific
application.

2.1 Supporting Fault Tolerance

Traditionally, fault tolerance is supported by directly saving the
internal state of an application to a disk drive through system
support for checkpointing, logging, or copy-on-write operations.
These methods, however, present large difficulties when scaling to
the demands of large scientific applications due to the immense
overhead induced.

Checkpointing is one of the most prominent fault tolerance
techniques forscientificworkloads [53]. This method designates
certainareas of code as checkpointsto save theapplication’s data
into permanent storage; the program can reload this data anytime
later to resume from this checkpoint after a crash. This method
typically imposes blocking [25], where the normal execution of the
process is stopped by both saving or loading all data into or from
permanent storage, respectively.

Logging maintains a collection of idempotent operations that, in
ordertoreverttoaprevious program state, need tobe un-done,in
the case of an undo log, or re-done, in the case of a redo log. The
logging processis performed via four states: steady, active, ready,
and abort. A process initially starts in the steady state, which indi-
catesthataprocesshasnotlogged any operationsinthelog. When
an operation has been added to the log, the process goes into the
active state, indicating it is currently modifying data and logging
all updates. While in the active state, the process can change into
either the abort state to indicate it will reject the current changes in
thelogfile, or the ready state to indicate it will accept the changes.
Toreject the changes, the operations in the log file are applied in
backwards order, the log file is deleted, and the state is set back
to steady. To accept the changes, the log file is deleted and the
state is set back to steady [66]. When considering blocking time,
operationsare added individually to the log, reducing an up-front
block time to save an applications state; however, when restoring
data, the application blocks to apply all operations.

Copy-on-write creates a copy of the data, or a shadow copy, to
be modified on writes, and replaces all references of the original
copy to the shadow copy once all modificationsare complete [67].
This mechanism allows for fast recovery, as the versions of data
are typically maintained via links via fopen [9] and unlink [4],
where an application state can be quickly restored by linking to
a previous version, or a snapshot. Copy-on-write allows for the
ability to snapshot data at multiple levels of granularity, where
further optimization can create shadow copiesatthe pagelevelto
reduce overhead [46, 67, 72].
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2.2 Using NVRAM In Scientific Computing

Non-volatile RAM (NVRAM) is an emerging storage technology
that presents a promising opportunity to mitigate fault tolerant
induced overhead. With the requirement of guaranteeing its data
being retrievable during a power outage, NVRAM can be supported
via a number of technologies, including Phase Change Memory
(PCM), Spin-Transfer Torque magnetic Memory (STT-RAM), and
Resistive Memory (ReRAM). For example, PCM uses the two states
(crystalline and amorphous) of the chalcogenide material to repre-
sent0and 1.Similarin structure to DRAM, all types of NVRAM are
byte-addressable and can be accessed through the memory bus as
aDIMM (dualin-line memorymodule) [42]. NVRAM technologies
can not only offer performance comparable in latency and band-
widthto thatofthe DRAM, itcanalso achieve high storage density,
which makes terabyte size memory feasible for a single computa-
tional node [58]. As Intel and Micron have released 3DXpoint as
a commercial product, NVRAM technology is ready to fill the gap
between DRAM and SSD [49].

Despite dataon NVRAM surviving power failures, systems that
uses NVRAM as main memory do not naturally guarantee data
persistence, which requires that all the data must be recoverable
toapointin time before a power outage. For example, the system
may use volatile memories such as SRAM as a transparent cache
in the memory hierarchy, and as the SRAM cache may reorder
write and read operations as performance optimizations, atthe
time of a power outage, part of a program’s data may potentially
still reside in the SRAM cache while the rest have been written
to the NVRAM, resulting in inconsistency. To provide better data
persistence support, the x86 instruction setarchitecture (ISA) offers
hardware-level instructions, e.g., (mfence and sfence), and write back
instructions, e.g., (wbinvd and clflush), to allow applications to force
ordering of stores to specific memory locations and thus guarantee
the stores reach NVRAM after these instructions are successfully
evaluated. Intel also expanded the ISA and added c/wb to allow cache
line write-back without invalidation [2]. Existing research also
proposed multiple architectural designs to optimize the ordering
and write-back process to better support persistentmemory [41,
45, 51], including various designs based on logging [12, 35, 47, 55],
checkpointing [59] and shadow paging [24, 60]. To support more
efficient use of NVRAM, the Linux operating system has added
direct access (DAX) features to allow applications bypass all the
system buffers for the file system, specifically ext4, xfs,and brtfs[10].
When NVRAM is mounted with DAX file system, using NVRAM
as amemory mapped device can fully explore its performance.

NVRAM brings opportunities to the scientificapplication from
several perspectives, including its high storage density, which al-
lows larger memory space, and its memory bus accessibility, which
provides more flexibility than disk’s I/0 connection. In contrast to
traditional DRAM memory, which supportsaslarge as 128GB per
DIMM [11], NVRAM is able to support 512GB per DIMM, making
terabyte level memory feasible. In contrast to saving an application
on an SSD or HDD, which requires using file-system commands
to access and save files, NVRAM offers the ability for applications
toleverage byte-addressability. For example, applications canre-
tain pointersin NVRAM when saving/restoring application state,
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Figure 2: Original workflow of Fluidanimate.

This allows applications to more readily persist large complex data
structures by storing the entire working setdirectly into NVRAM.

3 MODIFYING SCIENTIFIC APPLICATIONS
TO USE NVRAM

A number of different methods can be used to incorporate NVRAM-
based fault tolerance into an application. To investigate the pros
and cons of each, we have manually modified Fluidanimate, a com-
putational fluid dynamics (CFD) benchmark from the PARSEC
3.0 [16], to use four of these methods: logging through transactions,
multi-versioning through copy-on-write operations, checkpointing
through file 0 operations, and checkpointing by using DRAM asa
cache. Because the Fluidanimate benchmark is data-intensive, the
main challenge in makingitfaulttolerantishowto efficiently save
andrestore the large amountofdata [33]. The computation struc-
ture of the applicationisillustrated in Figure 2, which s typical of
many scientific applications (e.g. finite difference method and finite
element method based applications [57]). Therefore, we expect our
observations in making Fluidanimate fault tolerant can similarly
apply to a large number of other scientificapplications.

The following first describes how we modified the Fluidanimate
application to support fault tolerance. We then compares four differ-
ent approaches we have adopted to use NVRAM to save and restore
data for the application. Finally, we discuss how to extend the ca-
pabilities enabled by our modifications to support instant recovery
ofindividual processes in a distributed memory environment.

3.1 Modifying Fluidanimate

Shown in Figure 2, the original code structure of Fluidanimate
consists of two levels of control-flow. The firstlevel uses aloop to
spawn a reconfigurable number (n¢) of threads in the main function.
The second level uses aloop to perform the actual CFD computation
for each thread. The AdvanceFrames function serves as the entry
point for each thread. The original code does not guarantee cor-
rectnessagainstany failure, and therefore the process terminates
itself as default action upon detecting a SIGBUS signal.

Tosupport fault tolerance, the following pieces of information
from the original code of Fluidanimate need to be saved periodically
to NVRAM to allow instant restart on memory errors.

(1) thread_args stands for arguments specific to each thread.
Theargumentsare stored asanarray, where each threadis
allocated an element in the array to store its thread-specific
information, represented by the fards parameter in Advance-
Frames(void *targs).
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Figure 3: Restructured workflow of Fluidanimate.

(2) previous_iteration represents the previous iteration completed
in the computation loop. (i in the for loop of AdvanceFrames)

(3) final_iteration stands for the end condition to quit the com-
putation loop (# in the for loop ofAdvanceFrames).

(4) heap_datarepresentsthedataallocatedintheheapusedin

the computation of AdvanceFrame().

Figure 3 shows ourmodified code structure of Fluidanimate. First,
we add NVRAM, anew shared memory region, to save the afore-
mentioned pieces of information periodically as the application pro-
gresses. Second, we modify the AdvanceFrames function to store its
thread specificargumentsinto NVRAM before invoking the actual
computation. Third, we assign a new function - ComputePoint1 -
for the computation. We make the ComputePoint1 function param-
eterless so it can automatically restore the application to the latest
version of data in NVRAM before continuing. More specifically,
this function first fetches all the needed data from the NVRAM
region and then adapts the computation defined in the original
code; this procedure ensures that the internal results after each
iteration of the outermost loop are periodically saved into NVRAM
before the next iteration. Finally, we introduce a SIGBUS signal
handler - ResilientHandler - to deal with any detected memory
errors. The handler synchronizes all threads within the process to
ensureall ofthem are aware of the error,and each thread will then
restart itself by invoking the ComputePoint1() function.

32 Using NVRAM

1:int vals[32];2

:vals[3]=5;
Listing 1: Unmodified code version to be extended with
other NVRAM implementation strategies

Wehave explored four different APIs to support writing data into
the NVM abstractionin Figure 3 as well as correctly extracting the
previously written data. The following discusses each API in more
depth, whileusingasimplisticexampleinlisting 1 toillustrate the
technical details. The pros and cons of each API are then discussed.
3.2.1 Transaction-based Logging. The Intel Persistent Memory De-
velopment Kit (PMDK) [12] provides a C++ API that supports an
application to group its instructions that modify NVRAM into trans-
actions, where if the application successfully reached beyond the
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end of a transaction, all instructions inside the transaction are guar-
anteed to have been carried out correctly; on the other hand, if
theapplication execution breaks down before reaching the end of
the transaction, all modifications to NVRAM will be aborted, and
NVRAM is guaranteed to return to its previous state before the
beginningofthe transaction. Internally, PMDKuses an objectpool
data structure to record the location and type of each variable in
the NVRAM. The object poolis structured as atree, where the root
node is used as an initial reference point that all other NVRAM
variables mustattach. Inside a transaction, PMDK uses logging to
record which variables are modified so that all modifications can
be cohesively applied together.

1: struct _root_data_t { int vals[32]; };

2 :PMEMobjpool * pool =pmemobj_open (

3: "/mnt /nvm /pool ",...);

4: TOID(struct _root_data_t) root = POBJ_ROOT(pool,
5: struct _root_data_t);

6: TX_BEGIN (pool ) {

7: pmemobj_tx_add_range (root.oid, 0,

8: sizeof(int* 32));

9: int * my_vals =D RW(root)>wvals;

10: my_vals [3]=5;

11:} TX_END

Listing 2: Extending listing 1 with PMDK transaction API.

To illustrate, Listing 2 shows the result of extending the code
from listing 1 to use Intel PMDK transactions. Here line 1 defines
the layout for the root node in the object pool, located in a file-
system directory that is mapped to a chunk of NVRAM address
space. The memory pool is then initialized at lines 2-5, with the
root object initialized atlines 4-5. The transaction starts atline 6
and ends atline 11. Inside the transaction, Line 7 invokes a func-
tion pememobj _tx_add_range to notify the library which area of
memory will be modified during this transaction, before lines 9-10
proceeding with the actual read and write operations.

3.2.2  Multi-versioning. PMDK][12] also provides another interface
to support atomic operations on ranges of memory. In this interface,
the persisted data is stored in the same object pool structure as
the transaction-based approach. We use this interface to create
a multi-versioning approach to extend Fluidanimate with fault
tolerance by associating these memory ranges with snapshots of
the application’s state. In particular, we create two versions: one
labeled as the working version, which the application uses during
computation, and the other labeled as the shadow version, which is
used as the snapshot. Certain points in the code are designated to
back up the data from the working version into the shadow version.
Torecoverstate, theapplicationneeds only toswitch thelabelson
the two versions, where it can immediately start using the snapshot
as the working set, as the byte-addressability of NVRAM allows
pointers to stay consistent across the two versions.
1: struct_version_t{int[32]vals;};

struct_root_data_t{

TOID (struct_version_t)vl;

TOID (struct_version_t)v2;
lil’VIEMobjpool * pool = pmemobj_open (

"/mnt/nvm /pool”,...);
TOID (struct_root_data_t)root=POBJ_ROOT (pool,

struct_root_data_t);
: TOID(struct_version_t)cur_v=

© O 0 N WwWN

[N
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11: DRW(root)}>vl;

12:int *my_vals = D RW(cur_v) >vals;13
:myvals[3]=5;

14 : pmemobj_memcpy_persist ( pool,

15: D RW(D_RW(root)->v2)->vals,
16: D RW(DRW(root)->vl)->vals,
17: sizeof (int )*32);

Listing 3: Extending listing 1 with PMDK Atomic API.

Toillustrate, Listing 3 shows the result of extending the code in
listing1tousethe PMDKatomicAPI.Here Line 1definesanewdata
structure to hold all data that will be persisted in a single version.
Lines 2-5 define the root data structure that holds the two versions.
The persistent memory object pool and its root data are initialized
at Lines 6-9. Lines 10-13 then perform the variable modification to
the current version (v1), which is then propagated into the next
version (v2) atLines 14-17 byinvokingpmemobj memcpy_persist,
which guarantees that either all of the data are copied correctly,
ornoneis carried out, so thatifan error occurred, the application
data are simply collectively reverted to the previous version.

3.2.3  FileSystem APL Here application checkpointing is supported
through IO operations (e.g. fwrite/fread) ofa Direct Access (DAX)
file system. DAX bypasses the operating system’s block layer to ac-
cess the underlying NVRAM directly. By mapping NVRAM sections
onto a DAX filesystem, an application can use fwrite/fread opera-
tions to directly store and retrieve data periodically into NVRAM.
This API allows the application to operate within DRAM, while
checkpointing datato files backed by NVRAM. This strategy, how-
ever,requires the developertoorganize applicationdatainto pre-
defined continuous region of checkpoint data, without taking ad-
vantage of the byte-addressability property of NVRAM.

1:int vals[32];2

:vals[3]=5;

3:fwrite(&vals,sizeof(int), FILE SIZE_INT, file);
Listing 4: Code sample extending code from listing 1 with
Filesystem checkpoint call.

Toillustrate, Listing 4 extends the code from listing 1 to use the
filesystem API. Here only a single line is appended at the end of
the original code, so that the fwrite(pperation is invoked to write
the data directly into a file.

3.24 Using DRAM as Cache[39]. Here the idea is to provide a
hybrid DRAM/NVRAM approach, where DRAM acts as a cache
in front of NVRAM. NVRAM then acts as a fast disk, where the
checkpoint from DRAM to NVRAM is done in a similar manner
as the file system API. We extend the interface from [39], which
provides a similar hybrid DRAM/NVRAM checkpointing library,
to support the storage and restoration of pointer data structures,
where our API is shown in table 1.

l1:intvals[32];

2: ckpt_context *ctx=init_ckpt_context ();

3: reg_region(ctx, &vals[0], sizeof(int) = 32);

4:vals[3]=5;

5:do_checkpoint(ctx);

Listing 5: Extending listing 1 with our DRAM cache API

To illustrate, listing 5 extends the code from listing 1 to use
DRAM as cache for NVRAM via our API. Here line 2 is inserted
into the original code to create a checkpoint context, ctx, for the
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Function Description

ckpt_ctx* init_backup_context()

Allocates a new checkpoint context, which maintains the locations of memory regions and

pointers to be checkpointed

voidregister_region(ctx,dram_base, size)

Register a new memory region from within DRAM at dram_base with size to store into

the checkpoint context ctx

voidregister_pointer(ctx, from, to)
that exist in DRAM
void do_backup(ctx)
NVRAM
ckpt_ctx*do_restore()

Register a pointer into the checkpoint context ctx, where both from and to are addresses
Performs the backup of the data in DRAM maintained by the checkpoint context ctx into

Restores the persisted data from NVRAM into DRAM and returns a checkpoint context for

future checkpointing demands

Table 1: Our DRAM cache API extending the interface from [39].

application, which will keep track of memory regions and pointers
to checkpoint. Line 3 registers the vals array as a new memory
region to be checkpointed in the context of ctx. Line 5 performs
the checkpoint of the data in DRAM maintained by ctx, the vals
array, into NVRAM.

3.2.5  Comparing The APIs. Table 2 compares varying aspects of
these APIs, including 1) the location of the working set, 2) which
information is saved on a checkpoint, 3) which information is re-
stored on a restart, and 4) summary comments to highlight the
advantages or disadvantages of a particular strategy.

Working Set. A working set in NVRAM induces more overhead
than DRAM, as the interface has slightly more overhead to access
this data, and the access time is slightly larger. The logging and
multi-versioning approaches have their working set in NVRAM
and the filesystem and DRAM cache version have their working
setin DRAM.

Checkpointed Info. The checkpointed information consists of all
information saved when saving an application state. All approaches
mustto store the datarequired for computation in the checkpoint
file; however, depending on how the checkpoint is created, pointers
donothavetobe persisted. The filesystem approach read /writes
data structures in a particular order and does not need to persist
pointers, whereas all other approaches do. This provides the filesys-
tem approach with the ability to incur less checkpointing overhead
as it saves less data.

Restored Info. The restored info consists of all information copied
backinto the working setofanapplicationin orderto getittoload
thestateatthelasttaken checkpoint. Theloggingand DRAM cache
approaches copy back all data and pointers and induce the most
overhead. The multi-versioning approach only reverts pointers to
link to the previous snapshot version, and incurs the least overhead.
The filesystem approach only reverts the data, and has overhead
in-between the other approaches.

Summary Comments. To summarize each NVRAM approach, the
logging and DRAM cache approaches are the easiest to incorporate,
butincurthe mostdatatransfer overhead whensavingandrestoring
data. The multi-versioning approach has the fastestrestoration time
atthe costofitbeinghardertoimplementintoanapplication. The

filesystem approach has the least amount of data storage overhead
incurred at the cost of it being the hardest to implement.

3.3 Using NVRAM In Distributed Computing

Most scientific applications need to use multiple processes that
are distributed across different nodes connected by networks of
varying speeds. In this distributed setting, when any of the pro-
cesses encounters an irrecoverable error, the other processes will
be affected and need to recover collectively. Therefore, if a process
can self-recover from a disruptive error, it is imperative that the
recovery is sufficiently fast so that the other processes will not
notice the lapse and enter into recovery mode unnecessarily. There-
fore, we investigate whether using NVRAM can support the instant
recovery of each process so thatthe overall application execution
is not disrupted by minor soft errors encountered by individual
processes.

A common method for multi-node systems to track errors is to
employ the heartbeat mechanism [54]; itis a designated process
(the heartbeat monitor) that tests the well-being of the application
by periodically sending a communication to all live processes, and
specifyingatimeoutforeach processtorespondbeforethe whole
application is plumped into error mode.

Figure 4 shows two additional modifications to our fault-tolerant
version of Fluidanimate in Figure 3 to use NVRAM in the distributed
computing setting. First, we add a new standalone process, the
heartbeat monitor, which uses MPI to indefinitely wait to receive
messages from nodes with a preconfigured timeout. Second, we

extend the computation loop in ComputePoint() to signal a heart-

beat message via MPI after every iteration. If the heartbeat monitor
does notreceive amessage before its timeout expires, the node is
considered dead. The goal of thismodificationis to study whether
our integration of NVRAM into the Fluidanimate application can
allow the computation to be distributed into multiple nodes, with
each node offering instant recovery capability such that minor
soft errors (e.g., memory corruption) will not disrupt the overall
progression of the distributed application.

4 EXPERIMENTAL STUDY

By modifying Fluidanimate to use NVRAM to support fault toler-
ance, the purpose of this study is to answer the following questions.
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Approach Working Set Stored In Checkpointed Info Restored Info Summary Comments
Logging NVRAM Data + Pointers Data + Pointers High Overhead, Easy to Incorporate
Multi-versioning NVRAM Data + Pointers Pointers Only Fast Restore, Harder to Incorporate
Filesystem DRAM Data Only Data Only Customizable, Hardest to Incorporate
DRAM Cache DRAM Data + Pointers Data + Pointers High Overhead, Easy to Incorporate
Table 2: Comparing different APIs to use NVRAM.
Main() CPU Intel(R) Xeon(R) CPUE5-24201.90 GHz, 12 Cores
ror(t=0 to ) L1-Data 32 KBytes
or(t=U to ni): o
pthread_create(AdvanceFrames,targs[t]) Cache E;:g;si\t,ralégtlon zg 6K Eg‘;’is
o L3-Shared 15360 KBytes
void *targs n n
Main Memory 16 GiB
m AdvanceFrames(void *targs) Operating System Cent0S .6'6 -
N A Table 3: Machine configuration.
Initial SetupNVRAM(targs)
Data [ComputePoint1()
NVRAM Restart Computation
thread t i | .
 rovis feesiion SemputeRontt) . T T « Is NVRAM based technology sufficient to support re-
end fleration | jge [targs = GetThroadArgsNVRAMY) | gcaus silient scientific applications, in the sense that if an ap-
<heap data> Checkpom? |~ GetLaslheratlgnNVRAM() »|SyncThreads() . . .
??G;ttEnd)'teraﬂonNVRAMO ComputePoint() plication process encounters any hardware-level fail-
or(i=0 to n).
Updated | AdvanceFrame(targs) ure, the process can self-recover fast enough so that
DR | e reeatus) other dependent processes won’t notice the failure?
I To this end, we have studied the performance scalability
MPI Message . . . . . e
of using the varying NVRAM technologies in the scientific
Heartbeat Monitor application in both multi-thread and multi-process settings.
while True: Weshow that when using a heartbeat mechanism to moni-
Heartbeat_| (status, il t . . P .
parbest lrecu(statis, tmeodt) tor distributed processes, existing NVRAM technologies are

Figure 4: Our heartbeat monitor extension to the fault-
tolerant version of Fluidanimate in Figure 3.

 What is the complexity of modifying an existing sci-
entific application to use NVRAM to support resiliency
against hardware failures? Our experience shows that
modifying Fluidanimate is relatively straightforward, as long
as a relatively high level APl is provided to consistently store
and extract application data into NVRAM.
« What is the runtime overhead incurred by the differ-
ent APIs of using NVRAM? We have experimented with
four of these APIs, summarized in Section 3.2. Our exper-
imental results show that the overhead incurred by using
these APIsvary significantly, and generally higher-level in-
terfaces also are associated with higher overhead.
Does the speed advantage of NVRAM over traditional
hard drive translate immediately to the shorter time
required when saving and extracting application data?
Our answer to this question is no. In particular, we found that
the memory layout of the data being saved and extracted
play a significant role, to the extent that unless the data
layoutisre-organized, sometimes no performance benefit
may be gained by using NVRAM over the traditional hard
drive.

sufficient to serve this purpose.

Weperformed our experiments on a machine with an Intel E5-
2420 processor with 12 cores running CentOS 6.6. Table 3 shows the
full machine configuration. The use of NVRAM on this machine was
supported by DRAM emulation, by extending the Linux kernel 4.6.0
in CentOS 6.6 with ext4 file system with DAX enabled, configured
by following the pmem guide [30]. The modified Fluidanimate
application is evaluated by using its given native input (the input
with the largest size). The application was compiled using g++ with
the-O3 compiler optimization flag. The timings were recorded by
inserting calls to the C++ chrono utilities library [7] inside the
source code. The measurements are the average of a total of four
runs, with an average standard deviation of 2.3%.

4.1 Runtime Overhead of NVRAM APIs

Tocompare the runtime overhead incurred by the various APIs of
using NVRAM, specifically logging, multi-versioning, filesystem,
and DRAM cache; we measure the time it takes to perform three ac-
tions: 1) store the application state once, checkpoint time; 2) restore
the application state after a memory error occurs, restore time,
and 3) compute a single iteration in the fluid dynamics mainloop,
computation time. To measure these actions, we place timing calls
before and after the appropriate code section in the source code.
The baseline computation time of a single iteration in Fluidanimate
without any fault tolerance support was 770ms.

Table 4 reports the runtime overhead of using each NVRAM API
torestart, compute, and save the result of a single iteration of the
top-level computation in Fluidanimate. Here the transactional AP],
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Approach Complexity Checkpoint Time (ms) Restore Time (ms) Computation Time (ms)
Logging Low 896 1472 887
Multi-versioning High 860 1 792
Filesystem High 241 192 803
DRAM Cache Low 1230 643 775

Table 4: Comparing the NVRAM-based resiliency techniques by complexity of implementation vs performance (baseline com-

putation time = 770ms)

No FT
Logging
Multiversion

Filesystem

Fault Tolerance
Strategy

DRAM Cache

30%
LLC Miss Rate

0% 10%  20% 40%  50%

Figure 5: Cache miss rate of Fluidanimate when run under
each fault tolerant implementation compared to the origi-
nal version with no faulttolerance.

one of the least complicated to use, resulted in the high checkpoint
andrecovery times, at 896ms and 1.5s, respectively. On the other
hand, the multi-versioning API, which is more complicated touse,
although had a high checkpoint time, at 860ms, had the fastest
recovery time, at 1ms. The file-system API, which also has a high
implementation complexity, offers low checkpoint and restore time
at 241ms and 192ms, respectively. Finally, the DRAM cache AP],
one of the easiest to use, also resulted in low performance, with
1.2s and 643ms checkpoint and recovery times, respectively. With
the exception of the logging AP], the internal compute time of the
application did not change significantly.

To explain the variation in computation time using different
strategies, we use thelastlevel cache (LLC) missratio,as shownin
Figure 5, where these values were measured using Linux Perf [3].
The miss ratio for the original version with no fault tolerance
(NoFT) was 35%, where the miss ratios were 48%, 41%, 38%, and 35%
for the logging, multi-versioning, filesystem, and DRAM cache fault
tolerance strategies. The logging API, which added a 15% overhead
intotheapplication computationtime,alsoadded 13% additional
cache misses into the application run-time.

4.2 Performance Advantage of UsingNVRAM

In this study, we investigate whether the advantages of NVRAM
overtraditional magneticstorage systems are directly translated
to higher performance (lower runtime overhead) in supporting
fault tolerance in real applications. For this purpose, we compared
the performance of saving and recovering data for Fluidanimate
using our filesystem API for NVRAM, vs. using the same API but
savingand recovering data using three different storage systems: an
Ext4 hard disk drive (HDD),an emulated NVRAM disk file system,
and a DRAM mp file system. Figure 6 compares the maximum

®mMax Bandwidth ~ mFluidanimate Checkpoint
HDD Ext4

NVRAM Emulated

Filesystem

DRAM Tmp FS

0 500 1000

Write Speed (MB/s)

1500 2000

Figure 6: The bandwidth observed when saving/recovering
data for Fluidanimate compared to the maximum band-
width attainable for each storage system.

m Max Bandwidth ® Fluidanimate Checkpoint with Array
S HDD Ext4
2 NVRAM Emulated
@
it DRAM TmpFS
0 500 1000 1500 2000

Write Speed (MB/s)

Figure 7: The bandwidth observed when checkpointing the
modified version of Fluidanimate that uses arrays when
compared against the maximum bandwidth attainable for
a filesystem.

bandwidth attained by using each storage system, benchmarked via
dd[8]. When using the HDD, the attained throughputis 37.2 MB/s,
46% ofits maximum throughputof79.7 MB/s. However, when using
our emulated NVRAM, the attained throughputis 82.8MB/s, only
13% of its maximum bandwidth of 632 MB/s. Taking the matter
further, using the DRAM tmp filesystem only attained 88 MB/s, 4.8%
of its maximum bandwidth of 1800 MB/s. Overall, using NVRAM or
even DRAM to replace a magnetic storage systemresulted in only
2.3x speedup in the time required to save/recover data. in spite of a
maximum speedup of 8x. Soin conclusion, the speed advantage of
NVRAM and its byte addressability does not necessarily translate
to performance savings when used in real-world applications.
When investigatingwhy Fluidanimate cannot fully take advan-
tage of NVRAM, we discovered that the low NVRAM usage effi-
ciency was because the use of linked data structures to store data
in the application, so that when saving and recovering data, each
individual element of a linked list must be saved and recovered
separately. This incurs significant overhead within the CPU, which
has to issue and wait for each write and read operation. To ad-
dress the problem, we replaced the linked list data structure with
anarray-based implementation. The resultingapplicationisthen
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Figure 8: The duration of time spent in saving/recovering
data in Fluidanimate when using a linked list vs an array.
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Figure 9: Extending Figure 8 to show the duration of time
taken to checkpoint Fluidanimate with a blocked array.

able to achieve the maximum bandwidth when using each of the
storage systems, shown in Figure 7. However, when comparing the
total run time of the two versions of the application, one using an
array to save its internal data while the other using a linked list,
the throughputincreases do not translate necessarily to application
speed. Shown in Figure 8, when using arrays, the overall time spent
in the application in saving and recovery data decreased only by
19%, in spite of the throughput increase of 7.6x. This discrepancy is
due to a much larger amount of data required to be managed by the
array-based version of the application, due to the simplistic data
structure transformation from the linked list to the array-based
implementation. In particular, the size of data saved by the linked
list was 225 MB, whereas the size of data from the array was 4.8
GB.

In summary, we observe that the layout of data in the original
application plays animportantrole in the overall efficiency of the ap-
plicationinusingfaststorage systems suchas NVRAM (or DRAM).
Tofurther validate this conclusion, we created a third data structure,
which organizes the elements of an array into smaller chunks to
reduce waste of space while still providing high bandwidth. The
new result of application performance is shown in Figure 9, where
the chunk size was 2MB. Here the application using the blocked
array to save data only took 0.3 seconds in saving and recovering
data from NVRAM, providing a 6.3x reduction in time.

4.3 Performance Scalability

Scientific applications place a high priority on performance scalabil-
ity. However, when supporting resilience against hardware failures,
a performance overhead must be paid to periodically save their
data to allow instant recovery. Figure 10 compares the performance
of the original Fluidanimate application when using 1, 2, 4,and 8
threads with that after the application is made resilient by using
each of the NVRAM APIs we selected. Here the original imple-
mentationranat2.06,2.76,4.79,and 6.98 GFLOPSwhen running
with 1, 2, 4, and 8 threads, respectively, showing close-to-linear
scalability. However, when using the NVRAM transactional API,
the performance dropped to 1.18,1.82,2.17,and 2.47 GFLOPS. The
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Figure 10: Performance scalability of the application when
using each NVRAM API to support resiliency.

performance of the application when the other APIs are similar

(multi-versioning at 1.17, 1.81, 2.22, and 2.33 GFLOPS; file-system
at1.41,2.05,2.6,and 2.75 GFLOPS; DRAM APl at1.23,2,2.08,and
2.46 GFLOPS). This significant performance degradation is because
the application is only allowed to use a single thread when saving
its data to NVRAM. So while the computation phase of Fluidani-
mate allows all threads to work concurrently, once the computation
phase ends and the checkpointing phase begins, only one thread is
active. and the other threads have to wait. Therefore, existing APIs
needtobe extended to supportingconcurrentread /write operations
to be used in large-scale scientific applications without significantly
compromising their scalability.

4.4 Supporting Instant Recovery

As large scientific applications often need to be distributed among
multiple nodes, a resilient application needs to be comprised of
processes that can quickly self-recover from hardware failures, so
that failures in an individual process does not translate to the whole
application enteringinto error-recovery mode. Section 3.3 presents
our extension of Fluidanimate to use a heartbeat mechanism to
monitor the well-being of its processes. According to Noor [54], the
heartbeattimeout, 7timeout, can be decomposed via the following
equation

Ttimeout = Thm+ Ti+Tr+Tw (1)
Here Ty is the time for a message to reach the heartbeat monitor
and is typically set based on the underlying network configuration,
Tjis the interval between sending heartbeat messages, 7 is the time
for the heartbeat monitor to realize it hasn’t received a message
from a node, and 7y is the wait time for the heartbeat monitor
to declare a node is dead. We defined the values in the heartbeat
timeout equation in Equation 1 as follows.

® Thm = Oms, because we run the heartbeat monitor on the
same machine as the Fluidanimate compute node, so no
network connection exists.

e Tj= 770ms because a single iteration takes 770 ms in the
original version of Fluidanimate, and our modified appli-
cation sends a heartbeat message at each iteration of the
computation.

* Tw= 770ms and is set to be the same value as 7}, as done
in [54].

e Tr= 154ms and is set to be g- * Tj, as done in [54].
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Figure 11: Whether the four NVRAM APIs allows instant
restart within the heartbeat timeout (goal, 1.7s).

The heartbeat timeout is therefore the addition of the above values,
1,694 ms.

In order to consider Fluidanimate sufficiently resilient, it needs
to be able to perform a checkpoint (saving data into NVRAM),
computation, and restart (recovering data from NVRAM) all within
the timeout period. So the following equation must hold.

Tcheckpoint + Trestart + Tcompute < Ttimeout (2)

Here Tcheckpoint is the time it takes to perform a checkpoint,
Trestart is the time it takes to revert the data and restart the process
to the last checkpoint, Tcompute is the time it takes to compute a
single iteration, and Ttimeout is the heartbeat timeout.

Figure 11 shows the time it takes for Fluidanimate to restart and
progresstothe nextiteration, whenusingeach ofthe four NVRAM
APIs. Here using the logging, multi-versioning, file-system, and
DRAM cache APIs took 3,255 ms, 1,652 ms, 1,235 ms, and 2,648
ms, respectively. With the timeout being 1,694 ms, the logging and
DRAM cache APIs were not fast enough; whereas the two harder-
to-use APIs, multi-versioning and file-system APIs, did meet the
time constraint.

In order for the Fluidanimate application to continue using the
logging and DRAM cache APIs, its timeout strategy must be mod-
ified to allow a lower frequency of checkpointing (data saving
and recovery). Here we define a variable, resiliency_interval, as
the modified application checkpoints data only whenitsiteration

count satisfies i%resiliency_interval == 0. This changes the time-
out equation to:

Ttimeout = (Thm + Tj+ Tr + Tw) *resiliency_interval  (3)

Figure 12 compares the time it takes for the four NVRAM APIs
used by Fluidanimate to support instantrestart with a resiliency
interval of 3x, thereby scaling the timeout to 5,082 ms. Here the
logging, multi-versioning, filesystem, and DRAM cache approaches
take 5,029 ms, 3,236 ms, 2,840 ms,and 4,199 ms, respectively. By
changingthe frequency of checkpointand heartbeat calls, all four
APIs are able to support restart within the modified timeout.

5 RELATED WORK

This work is among the first in studying the use of NVRAM in
supporting the fault tolerance of scientific workload [21, 27, 43].
Lietal. [43] and Caulfield et al. [21] considered using NVRAM as
replacementof DRAM but withoutthe guarantee of data persistence.

B. Nesterenko etal.
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Figure 12: Whether the four NVRAM APIs allow instant
restart with the modified heartbeat timeout (goal, 2.4s).

Elnawawy et al. [27] developed a persistent matrix multiplication
kernel using clflushopt and sfenceinstructions. So far, there lacks a
more comprehensive study of using persistent memory in scientific
applications to support fault tolerance.

Fault tolerance of scientific applications is traditionally sup-
ported via checkpointing either through magnetic storage sys-
tems [17] or over the network [75]. These checkpointing methods
can be classified into system-level and application-level. System-
level checkpointing methods, e.g., BLCR [32], Condor [44] and
Cao [20], automatically save internal memory of the application
periodically without requiring any modification to the applica-
tion. On the other hand, application-level checkpointing requires
modification to the source code [5, 18, 26, 28, 63]. Our work uses
the application-level checkpointing methods to minimize the over-
head of data saving and recovery. Our work considers the use of
DIMM-based NVRAM in scientific workload and studies various
implications brought about by this new type ofstorage.

Application-level checkpointing can be incorporated at different
levels.Forexample,algorithm-basedfaulttolerance (ABFT) requires
applications toberestructured at the algorithmiclevel [34]. Such
algorithmicrevisions are used by Wuand Chen [68] to allow vari-
ous linear algebra routines to correct data errors on-line. Beguelin
etal.[15] developed a C++ programming model and library to allow
developers to use their data structures and checkpoint invocations,
and the framework will automatically checkpoint, load balance, and
restartapplications to the previous checkpoint. Our modification
ofthe Fluidanimate benchmark doesnotinvolve any algorithm or
programming model revisions, and is thus more straightforward to
integrate.

Additional work has been done to automate the changing ofan
application to incorporate fault tolerance. Rodriguez et al. [61] de-
veloped anopensource checkpointinglibrary, CPPC,whichusesa
compilerto automatically insert checkpoint callsinto an application.
Bronevetsky etal. [17] created a compiler to insert non-blocking
checkpointing into MPI programs.

Checkpointing can also be supported internally at the hard-
warelevel, transparent to the software. For example, error mask-
ing is a technique that uses circuitry to provide fault tolerance
through redundancy, e.g., through triple modular redundancy [48]
and quadded logic [36]. Mills et al. [50] introduced an optimization
to error masking, shadow computing, which reduces theamount of
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computational redundancy by running process clones on separate
nodesatreduced processor speeds to decrease power consumption.

Assignificant drawback in traditional fault tolerance mechanisms
isthe performance overhead induced. A study by Gupta etal. [31]
showed that the parallel ocean CFD application could only perform
acheckpointonceevery eightminutesin ordertokeep 7% oftotal
application execution time to be spent on fault tolerance. When
considering a distributed computing environment hosting a CFD
application, nodes frequently communicate once per time step [40],
where a single time step usually won’t exceed a minute [69]. A large
amount of communication take place within that eight-minute gap,
thus requiring complicated restart procedures. Since NVRAM offers

over40¥speed up to the magnetic disks, this eight-minute gap can

potentially be reduced significantly to allow a single node to overlap
checkpoints with system communications.

NVRAM canbeviewed asahardware option for supportinglow
overhead fault tolerance. NVRAM has been integrated in persis-
tentmemory designs through hardware software co-designs [37,
55, 65, 74] and as a new type of file system [56, 70]. The use of
NVRAM is supported via various library APIs [12, 23, 35, 62, 64, 73]
andhavebeenusedtosupportdatabases[38] and persistentdata
structure [52, 71]. In this paper, we used the Intel PMDK [12] to
implement data persistence for scientific workload.

6 CONCLUSION

This paper studies the software development and performance im-
plications of using non-volatile memory (NVRAM) to support fault
tolerance in scientific applications. We extend a computational fluid
dynamics benchmark, Fluidanimate, with four different APIs to sup-
portNVM-based fault tolerance: 1) logging through transactions,
2) multi-versioning through copy-on-write operations, 3) check-
pointingthroughI0 operationsonaDAXfilesystem,and 4) check-
pointing with a DRAM cache. We discover that simple extensions
of the computation does not take full advantage of the increased
10 speeds provided by NVRAM, and additional data structure mod-
ificationsare often needed to make full use of the speeds. Weshow
that when using a single process, the performance scalability of the
original application degrades significantly when using existing tech-
niques, which support only single-threaded checkpointing. Finally,
we demonstrate that NVRAM based fault tolerance can be used in
a heartbeat-based distributed computing environment to support
instantrecovery of individual processes when hardware failures
occur, without affecting the progress of other active processes.
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