
Transitioning Scientific Applications to using NVM for Resilience MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA
	

×

×

Transitioning Scientific Applications to using Non-Volatile

Memory for Resilience

Brandon	Nesterenko	
bnestere@uccs.edu	

University	of	Colorado	Colorado	

Springs	

Colorado	Springs,	Colorado	

Xiao	Liu	
xiszishu@ucsd.edu	

University	of	California,	San	Diego	

La	Jolla,	California	

Qing	Yi	
qyi@uccs.edu	

University	of	Colorado	Colorado	

Springs	

Colorado	Springs,	Colorado	

	

	

	

	

ABSTRACT

Jishen	Zhao	
jzhao@eng.ucsd.edu	

University	of	California,	San	Diego	

La	Jolla,	California	

Jiange	Zhang	
jzhang3@uccs.edu	

University	of	Colorado	Colorado	

Springs	

Colorado	Springs,	Colorado	

ACM Reference Format:

Scientific	applications	often	run	for	long	periods	of	time,	and	as	

a	result,	frequently	save	their	internal	states	to	storage	media	in	

cases	of	unexpected	interruptions	(e.g.,	hardware	failures).	Emerg-	

ing	 non-volatile	memory	 (NVRAM)	 can	write	 up	 to	40 faster	

than	traditional	mechanical	storage	devices,	providing	an	attractive	

medium	for	this	purpose.	This	paper	investigates	the	implications	of	

transitioning	a	scientific	application,	Fluidanimate,	to	use	NVRAM	

for	fault	tolerance.	In	particular,	we	evaluate	the	performance	im-	

plications	and	ease-of-use	of	four	fault-tolerance	approaches:	1)	

logging	through	transactions,	2)	multi-versioning	through	copy-on-	

write	operations,	and	3)	checkpointing	through	IO	operations	(e.g.,	

fwrite)	on	a	direct	access	(DAX)	filesystem	and	4)	checkpointing	

with	a	DRAM	cache.	Our	study	results	in	three	key	findings.	First,	

additional	changes	to	the	application	are	required	to	take	advantage	

of	the	increase	in	IO	speed	provided	by	NVRAM.	Second,	the	perfor-	

mance	scalability	of	the	approaches	lack	when	considering	a	single	

process.	Third,	NVRAM	can	increase	reliability	in	a	distributed	

computing	environment	by	allowing	individual	nodes	to	error	and	

automatically	recover	before	the	rest	of	the	system	notices.	

	

CCS CONCEPTS

• Software and its engineering → Software fault tolerance;	

Software performance;	• Computing methodologies → Modeling

and simulation;	• Computer systems organization → Processors

and memory architectures.	

KEYWORDS

fault	tolerance,	software	performance,	scientific	applications	

	

Permission	to	make	digital	or	hard	copies	of	all	or	part	of	this	work	for	personal	or	
classroom	use	is	granted	without	fee	provided	that	copies	are	not	made	or	distributed	
for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	and	the	full	citation	
on	the	first	page.	Copyrights	for	components	of	this	work	owned	by	others	than	ACM	
must	be	honored.	Abstracting	with	credit	is	permitted.	To	copy	otherwise,	or	republish,	
to	post	on	servers	or	to	redistribute	to	lists,	requires	prior	specific	permission	and/or	a	
fee.	Request	permissions	from	permissions@acm.org.	

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

© 2019	Association	for	Computing	Machinery.	

ACM	ISBN	978-1-4503-7206-0/19/09.	.	.$15.00	
https://doi.org/10.1145/3357526.3357563	

Brandon	Nesterenko,	Xiao	Liu,	Qing	Yi,	Jishen	Zhao,	and	Jiange	Zhang.	

2019.	Transitioning	Scientific	Applications	to	using	Non-Volatile	Memory	

for	 Resilience.	 In	 Proceedings of the International Symposium on Memory

Systems (MEMSYS ’19), September 30-October 3, 2019, Washington, DC, USA.

ACM,	New	York,	NY,	USA,	13	pages.	https://doi.org/10.1145/3357526.3357563	

ACKNOWLEDGMENTS

This	paper	is	supported	in	part	by	NSF	grants	CCF-1421443,	1829524,	

1829525,	1817077,	and	SRC/DARPA	Center	for	Research	on	Intelli-	

gent	Storage	and	Processing-in-memory.	

1 INTRODUCTION

Scientific	applications	are	often	compute	and	data	intensive,	and	

as	a	result,	frequently	run	for	long	periods	of	time.	For	example,	

simulations	in	computational	fluid	dynamics	(CFD),	a	branch	of	

study	heavily	used	to	model	fluid	flows,	e.g,	the	air	flow	within	

various	structures[19],	can	often	take	months	to	complete.	On	the	

other	hand,	as	modern	architectures	evolve	to	include	an	increas-	

ingly	larger	number	of	cores	to	support	larger	scales	of	computing,	

hardware	failures	can	frequently	occur	to	disrupt	the	normal	exe-	

cution	of	long-running	applications,	requiring	these	applications	

to	periodically	save	their	internal	states	in	persistent	memories	so	

that	they	can	more	readily	recover	from	unexpected	interruptions	

(e.g.,	hardware	failures).	

One	of	the	biggest	challenges	faced	by	persisting	scientific	ap-	

plications	is	the	large	amount	of	data	to	save,	specifically	to	copy	

from	DRAM	to	a	more	persistent	storage	such	as	hard	drives	or	

network-based	storage,	as	the	run-time	cost	of	such	data	copying	is	

often	too	steep	for	applications	to	use	lightly,	except	when	saving	

results	from	long	important	durations	of	computation.	Emerging	

non-volatile	memory	(NVRAM)	technology	offers	a	persistent	stor-	

age	with	a	high	capacity	for	storing	large	amounts	of	data	and	with	

access	speeds	comparable	to	that	of	DRAM	(up	to	40 faster	than	

traditional	mechanical	storage	devices),	providing	an	attractive	al-	

ternative	to	allow	scientific	applications	to	transparently	survive	

the	various	hardware	errors	(e.g.,	a	power	failure).	

Figure	1	compares	these	two	approaches	to	further	illustrate	the	

potential	benefit	of	replacing	traditional	hard	drive	with	NVRAM	

for	more	efficient	software	persistence.	Traditionally,	illustrated	in	

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA B. Nesterenko et al.
	

×

	

	

	
	

Figure 1: The comparison of saving an application state us-

ing (a) a traditional hard disk drive approach, and (b) a non-

volatile RAM based approach.

Figure	1(a),	software	applications	operate	in	DRAM	as	the	computa-	

tion	requires	byte-addressability	and	low	access	latency	—	typically	

at	10ns	[13],	where	the	access	speed	of	RAM	is	the	length	of	time	

it	takes	for	data	to	be	transferred	to/from	RAM	to	the	CPU	[6].	

To	persist	the	application’s	internal	state,	it	must	copy	data	from	

the	DRAM	to	a	hard	disk	drive	(HDD),	which	has	a	typical	access	

latency	of	5,000ns	[6].	The	access	speed	of	an	HDD	is	the	average	

length	of	time	it	takes	to	transfer	data	to/from	the	disk	drive	[6].	

Alternatively,	as	shown	in	Figure	1(b),	an	application	can	operate	

directly	within	NVRAM	because	it	is	byte-addressable	and	can	work	

similarly	to	DRAM.	Data	persistence	requires	less	runtime	overhead	

because	NVRAM	has	a	typical	access	latency	of	only	20ns	[22].	

This	paper	investigates	using	NVRAM	to	support	transitioning	

scientific	applications	for	transparent	fault	tolerance	of	hardware	

failures.	Using	a	scientific	benchmark,	Fluidanimate,	from	PAR-	

SEC	[16],	we	perform	a	case	study	to	evaluate	the	performance	

implications	of	using	four	different	approaches:	1)	logging	through	

transactions,	2)	multi-versioning	through	copy-on-write	operations	

3)	checkpointing	through	IO	operations	(e.g.,	fwrite)	on	a	direct	

access	(DAX)	filesystem	and	4)	checkpointing	with	a	DRAM	cache,	

to	periodically	save	the	internal	data	of	the	application	so	that	it	

can	transparently	recover	from	any	hardware	failures.	

Our	main	technical	contributions	include:	

We	study	the	performance	implications	of	using	NVM	to	

support	instant	fault	tolerance	and	recovery	for	a	scientific	

application,	Fluidanimate	from	the	PARSEC	3.0	[16]	bench-	

mark	suite.	We	observe	that	a	rudimentary	transition	to	

using	NVM	to	support	the	fault	tolerance	of	 applications	

does	not	necessarily	lead	to	any	significant	increase	in	IO	

throughput	(2.25).	We	show	that	additional	data	structure	

changes	are	necessary	to	make	full	use	of	the	NVRAM’s	
performance	advantages.	

We	compare	the	four	different	NVRAM	fault	tolerance	tech-	

niques:	1)	logging	using	transactions,	2)	multi-versioning	

through	copy-on-write	operations,	3)	checkpointing	through	

IO	operations	on	a	direct	access	(DAX)	filesystem,	and	4)	

checkpointing	with	a	DRAM	cache.	We	show	an	 inverse	

relationship	between	the	complexity	to	implement	an	ap-	

proach	and	the	overhead	incurred	to	perform	fault	tolerance	

related	tasks.	Additionally,	we	show	that	when	using	only	

a	single	process,	the	performance	scalability	of	the	applica-	

tion	can	significantly	decrease	when	periodically	saving	the	

application	internal	data.	

We	study	the	effectiveness	of	using	the	various	NVM	per-	

sistence	techniques	to	support	transparent	error	recovery	

in	a	distributed	multi-process	setting	that	uses	a	heartbeat	

mechanism	[54]	to	support	error	detection.	Our	results	show	

that	NVRAM	based	fault	tolerance	can	increase	reliability	in	

a	distributed	computing	environment	by	allowing	individual	

nodes	to	error	and	automatically	restore	such	that	no	other	

nodes	in	the	system	notice	the	error.	

The	remainder	of	this	paper	is	organized	as	follows.	Section	2	intro-	

duces	background	of	using	NVRAM	to	support	fault	tolerance	in	

scientific	applications.	Section	3	describes	how	we	have	integrated	

the	use	of	NVRAM	into	a	scientific	application.	Section	3	presents	

our	experimental	study	and	discusses	the	implications	of	using	

NVRAM	to	support	fault	tolerant	applications.	Section	5	discusses	

related	works.	Finally	Section	6	concludes	the	paper.	

	

2 BACKGROUND

A	large	class	of	scientific	applications	seek	to	model	or	simulate	

real	world	phenomenon	as	a	function	of	time.	This	process	typically	

consists	of	three	steps.	First,	a	physical	problem	is	discretized	into	

an	initial	state,	which	typically	represents	a	set	of	particles	or	bodies	

as	a	mesh.	Second,	the	state	is	progressed	through	various	circum-	

stances,	e.g.	forces	or	temperatures,	via	iterating	through	an	outer	

time	loop.	Lastly,	the	application	ends	when	the	state	converges	

within	a	desired	threshold[57].	

From	a	storage	perspective,	scientific	applications	often	require	

immense	amounts	of	data	to	be	stored	in	memory.	The	high	mem-	

ory	demand	also	makes	these	applications	good	candidates	for	

distributed	computing.	In	particular,	a	memory	grid	can	be	cre-	

ated	that	spans	across	multiple	compute	nodes,	where	each	node	

stores	a	subset	of	the	discretized	mesh.	Additionally,	each	node	

is	responsible	for	operating	on	its	subset	of	the	mesh,	typically	

through	performing	multi-threaded	calculations.	It	is	therefore	im-	

portant	to	maintain	scalability	both	at	the	distributed	multi-process	

level,	as	well	as	on	a	single	node	at	the	multi-thread	level.	In	this	

paper,	multi-threading	refers	to	the	practice	of	mapping	a	com-	

putation	onto	multiple	threads,	the	smallest	unit	of	execution	on	

a	shared-memory	computer,	owned	by	a	single	process	[1].	Dis-	

tributed	computing	refers	to	the	practice	of	leveraging	multiple	

different	computer	nodes	on	a	network,	without	any	sharing	of	

memory	[14].	

•

•

•

Transitioning Scientific Applications to using NVM for Resilience MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA
	

	

As	modern	architectures	evolve	and	distributed	computing	ca-	

pabilities	increase,	hardware	failures	are	expected	to	happen	more	

frequently	[29].	This	places	fault	tolerance	as	an	important	aspect	

of	scientific	applications,	as	it	will	allow	them	to	recover	more	

quickly	from	these	failures.	Non-volatile	memory	is	an	emerging	

technology	with	the	potential	to	improve	the	time	to	recover	these	

applications	after	hardware	errors	occur.	The	remainder	of	this	

section	provides	background	for	our	study	of	using	NVRAM	to	sup-	

port	fault	tolerance	in	scientific	applications.	We	first	summarize	

existing	approaches	to	support	fault	tolerance.	We	then	elaborate	

on	the	various	aspects	of	incorporating	NVRAM	into	a	scientific	

application.	

	

2.1 Supporting Fault Tolerance

Traditionally,	fault	tolerance	is	supported	by	directly	saving	the	

internal	state	of	an	application	to	a	disk	drive	through	system	

support	for	checkpointing,	logging,	or	copy-on-write	operations.	

These	methods,	however,	present	large	difficulties	when	scaling	to	

the	demands	of	large	scientific	applications	due	to	the	immense	

overhead	induced.	

Checkpointing	is	one	of	the	most	prominent	fault	tolerance	

techniques	for	scientific	workloads	[53].	This	method	designates	

certain	areas	of	code	as	checkpoints	to	save	the	application’s	data	

into	permanent	storage;	the	program	can	reload	this	data	anytime	

later	to	resume	from	this	checkpoint	after	a	crash.	This	method	

typically	imposes	blocking	[25],	where	the	normal	execution	of	the	

process	is	stopped	by	both	saving	or	loading	all	data	into	or	from	

permanent	storage,	respectively.	

Logging	maintains	a	collection	of	idempotent	operations	that,	in	

order	to	revert	to	a	previous	program	state,	need	to	be	un-done,	in	

the	case	of	an	undo	log,	or	re-done,	in	the	case	of	a	redo	log.	The	

logging	process	is	performed	via	four	states:	steady,	active,	ready,	

and	abort .	A	process	initially	starts	in	the	steady state,	which	indi-	

cates	that	a	process	has	not	logged	any	operations	in	the	log.	When	

an	operation	has	been	added	to	the	log,	the	process	goes	into	the	

active state,	indicating	it	is	currently	modifying	data	and	logging	

all	updates.	While	in	the	active state,	the	process	can	change	into	

either	the	abort state	to	indicate	it	will	reject	the	current	changes	in	

the	log	file,	or	the	ready state	to	indicate	it	will	accept	the	changes.	

To	reject	the	changes,	the	operations	in	the	log	file	are	applied	in	

backwards	order,	the	log	file	is	deleted,	and	the	state	is	set	back	

to	steady.	To	accept	the	changes,	the	log	file	is	deleted	and	the	

state	is	set	back	to	steady [66].	When	considering	blocking	time,	

operations	are	added	individually	to	the	log,	reducing	an	up-front	

block	time	to	save	an	applications	state;	however,	when	restoring	

data,	the	application	blocks	to	apply	all	operations.	

Copy-on-write	creates	a	copy	of	the	data,	or	a	shadow copy,	to	

be	modified	on	writes,	and	replaces	all	references	of	the	original	

copy	to	the	shadow	copy	once	all	modifications	are	complete	[67].	

This	mechanism	allows	for	fast	recovery,	as	the	versions	of	data	

are	 typically	maintained	 via	 links	 via	 f open [9]	 and	unlink [4],	

where	an	application	state	can	be	quickly	restored	by	linking	to	

a	previous	version,	or	a	snapshot.	Copy-on-write	allows	for	the	

ability	to	snapshot	data	at	multiple	levels	of	granularity,	where	

further	optimization	can	create	shadow	copies	at	the	page	level	to	

reduce	overhead	[46,	67,	72].	

2.2 Using NVRAM In Scientific Computing

Non-volatile	RAM	(NVRAM)	is	an	emerging	storage	technology	

that	presents	a	promising	opportunity	to	mitigate	fault	tolerant	

induced	overhead.	With	the	requirement	of	guaranteeing	its	data	

being	retrievable	during	a	power	outage,	NVRAM	can	be	supported	

via	a	number	of	technologies,	including	Phase	Change	Memory	

(PCM),	Spin-Transfer	Torque	magnetic	Memory	(STT-RAM),	and	

Resistive	Memory	(ReRAM).	For	example,	PCM	uses	the	two	states	

(crystalline	and	amorphous)	of	the	chalcogenide	material	to	repre-	

sent	0	and	1.	Similar	in	structure	to	DRAM,	all	types	of	NVRAM	are	

byte-addressable	and	can	be	accessed	through	the	memory	bus	as	

a	DIMM	(dual	in-line	memory	module)	[42].	NVRAM	technologies	

can	not	only	offer	performance	comparable	in	latency	and	band-	

width	to	that	of	the	DRAM,	it	can	also	achieve	high	storage	density,	

which	makes	terabyte	size	memory	feasible	for	a	single	computa-	

tional	node	[58].	As	Intel	and	Micron	have	released	3DXpoint	as	

a	commercial	product,	NVRAM	technology	is	ready	to	fill	the	gap	

between	DRAM	and	SSD	[49].	

Despite	data	on	NVRAM	surviving	power	failures,	systems	that	

uses	NVRAM	as	main	memory	do	not	naturally	guarantee	data	

persistence,	which	requires	that	all	the	data	must	be	recoverable	

to	a	point	in	time	before	a	power	outage.	For	example,	the	system	

may	use	volatile	memories	such	as	SRAM	as	a	transparent	cache	

in	the	memory	hierarchy,	and	as	the	SRAM	cache	may	reorder	

write	and	read	operations	as	performance	optimizations,	at	the	

time	of	a	power	outage,	part	of	a	program’s	data	may	potentially	

still	reside	in	the	SRAM	cache	while	the	rest	have	been	written	

to	the	NVRAM,	resulting	in	inconsistency.	To	provide	better	data	

persistence	support,	the	x86	instruction	set	architecture	(ISA)	offers	

hardware-level	instructions,	e.g.,	(mfence and	sfence),	and	write	back	

instructions,	e.g.,	(wbinvd and	clflush),	to	allow	applications	to	force	

ordering	of	stores	to	specific	memory	locations	and	thus	guarantee	

the	stores	reach	NVRAM	after	these	instructions	are	successfully	

evaluated.	Intel	also	expanded	the	ISA	and	added	clwb to	allow	cache	

line	write-back	without	invalidation	[2].	Existing	research	also	

proposed	multiple	architectural	designs	to	optimize	the	ordering	

and	write-back	process	to	better	support	persistent	memory	[41,	

45,	51],	including	various	designs	based	on	logging	[12,	35,	47,	55],	

checkpointing	[59]	and	shadow	paging	[24,	60].	To	support	more	

efficient	use	of	NVRAM,	the	Linux	operating	system	has	added	

direct	access	(DAX)	features	to	allow	applications	bypass	all	the	

system	buffers	for	the	file	system,	specifically	ext4,	xfs,	and	brtfs[10].	

When	NVRAM	is	mounted	with	DAX	file	system,	using	NVRAM	

as	a	memory	mapped	device	can	fully	explore	its	performance.	

NVRAM	brings	opportunities	to	the	scientific	application	from	

several	perspectives,	including	its	high	storage	density,	which	al-	

lows	larger	memory	space,	and	its	memory	bus	accessibility,	which	

provides	more	flexibility	than	disk’s	I/O	connection.	In	contrast	to	

traditional	DRAM	memory,	which	supports	as	large	as	128GB	per	

DIMM	[11],	NVRAM	is	able	to	support	512GB	per	DIMM,	making	

terabyte	level	memory	feasible.	In	contrast	to	saving	an	application	

on	an	SSD	or	HDD,	which	requires	using	file-system	commands	

to	access	and	save	files,	NVRAM	offers	the	ability	for	applications	

to	leverage	byte-addressability.	For	example,	applications	can	re-	

tain	pointers	in	NVRAM	when	saving/restoring	application	state,	

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA B. Nesterenko et al.
	

	

	
	

Figure 2: Original workflow of Fluidanimate.

This	allows	applications	to	more	readily	persist	large	complex	data	

structures	by	storing	the	entire	working	set	directly	into	NVRAM.	

3 MODIFYING SCIENTIFIC APPLICATIONS

TO USE NVRAM

A	number	of	different	methods	can	be	used	to	incorporate	NVRAM-	

based	fault	tolerance	into	an	application.	To	investigate	the	pros	

and	cons	of	each,	we	have	manually	modified	Fluidanimate,	a	com-	

putational	fluid	dynamics	(CFD)	benchmark	from	the	PARSEC	

3.0 [16],	to	use	four	of	these	methods:	logging	through	transactions,	

multi-versioning	through	copy-on-write	operations,	checkpointing	

through	file	IO	operations,	and	checkpointing	by	using	DRAM	as	a	

cache.	Because	the	Fluidanimate	benchmark	is	data-intensive,	the	

main	challenge	in	making	it	fault	tolerant	is	how	to	efficiently	save	

and	restore	the	large	amount	of	data	[33].	The	computation	struc-	

ture	of	the	application	is	illustrated	in	Figure	2,	which	is	typical	of	

many	scientific	applications	(e.g.	finite	difference	method	and	finite	

element	method	based	applications	[57]).	Therefore,	we	expect	our	

observations	in	making	Fluidanimate	fault	tolerant	can	similarly	

apply	to	a	large	number	of	other	scientific	applications.	

The	following	first	describes	how	we	modified	the	Fluidanimate	

application	to	support	fault	tolerance.	We	then	compares	four	differ-	

ent	approaches	we	have	adopted	to	use	NVRAM	to	save	and	restore	

data	for	the	application.	Finally,	we	discuss	how	to	extend	the	ca-	

pabilities	enabled	by	our	modifications	to	support	instant	recovery	

of	individual	processes	in	a	distributed	memory	environment.	

3.1 Modifying Fluidanimate

Shown	in	Figure	2,	the	original	code	structure	of	Fluidanimate	

consists	of	two	levels	of	control-flow.	The	first	level	uses	a	loop	to	

spawn	a	reconfigurable	number	(nt)	of	threads	in	the	main function.	

The	second	level	uses	a	loop	to	perform	the	actual	CFD	computation	

for	each	thread.	The	AdvanceFrames function	serves	as	the	entry	

point	for	each	thread.	The	original	code	does	not	guarantee	cor-	

rectness	against	any	failure,	and	therefore	the	process	terminates	

itself	as	default	action	upon	detecting	a	SIGBUS	signal.	

To	support	fault	tolerance,	the	following	pieces	of	information	

from	the	original	code	of	Fluidanimate	need	to	be	saved	periodically	

to	NVRAM	to	allow	instant	restart	on	memory	errors.	

(1) thread_args stands	for	arguments	specific	to	each	thread.	

The	arguments	are	stored	as	an	array,	where	each	thread	is	

allocated	an	element	in	the	array	to	store	its	thread-specific	

information,	represented	by	the	tarдs parameter	in	Advance-

Frames(void *targs).	

	

	

	

	
Figure 3: Restructured workflow of Fluidanimate.

(2) previous_iteration represents	the	previous	iteration	completed	

in	the	computation	loop.	(i in	the	for	loop	of	AdvanceFrames)	

(3) final_iteration stands	for	the	end	condition	to	quit	the	com-	

putation	loop	(n in	the	for	loop	of	AdvanceFrames).	

(4) heap_data represents	the	data	allocated	in	the	heap	used	in	

the	computation	of	AdvanceFrame().	

Figure	3	shows	our	modified	code	structure	of	Fluidanimate.	First,	

we	add	NVRAM,	a	new	shared	memory	region,	to	save	the	afore-	

mentioned	pieces	of	information	periodically	as	the	application	pro-	

gresses.	Second,	we	modify	the	AdvanceFrames function	to	store	its	

thread	specific	arguments	into	NVRAM	before	invoking	the	actual	

computation.	Third,	we	assign	a	new	function	–	ComputePoint 1 –	

for	the	computation.	We	make	the	ComputePoint 1 function	param-	

eterless	so	it	can	automatically	restore	the	application	to	the	latest	

version	of	data	in	NVRAM	before	continuing.	More	specifically,	

this	function	first	fetches	all	the	needed	data	from	the	NVRAM	

region	and	then	adapts	the	computation	defined	in	the	original	

code;	this	procedure	ensures	that	the	internal	results	after	each	

iteration	of	the	outermost	loop	are	periodically	saved	into	NVRAM	

before	the	next	iteration.	Finally,	we	introduce	a	SIGBUS	signal	

handler	–	ResilientHandler –	to	deal	with	any	detected	memory	

errors.	The	handler	synchronizes	all	threads	within	the	process	to	

ensure	all	of	them	are	aware	of	the	error,	and	each	thread	will	then	

restart	itself	by	invoking	the	ComputePoint 1() function.	

3.2 Using NVRAM

1	:	int v	a	l	s	[3	2]	;	2	

:	v	a	l	s	[3]	=	5	;	

Listing 1: Unmodified code version to be extended with

other NVRAM implementation strategies

We	have	explored	four	different	APIs	to	support	writing	data	into	

the	NVM	abstraction	in	Figure	3	as	well	as	correctly	extracting	the	

previously	written	data.	The	following	discusses	each	API	in	more	

depth,	while	using	a	simplistic	example	in	listing	1	to	illustrate	the	

technical	details.	The	pros	and	cons	of	each	API	are	then	discussed.	

3.2.1 Transaction-based Logging. The	Intel	Persistent	Memory	De-	

velopment	Kit	(PMDK)	[12]	provides	a	C++	API	that	supports	an	

application	to	group	its	instructions	that	modify	NVRAM	into	trans-

actions,	where	if	the	application	successfully	reached	beyond	the	

Transitioning Scientific Applications to using NVM for Resilience MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA
	

−

−

−

− −

− −

()

	

end	of	a	transaction,	all	instructions	inside	the	transaction	are	guar-	

anteed	to	have	been	carried	out	correctly;	on	the	other	hand,	if	

the	application	execution	breaks	down	before	reaching	the	end	of	

the	transaction,	all	modifications	to	NVRAM	will	be	aborted,	and	

NVRAM	is	guaranteed	to	return	to	its	previous	state	before	the	

beginning	of	the	transaction.	Internally,	PMDK	uses	an	object	pool	

data	structure	to	record	the	location	and	type	of	each	variable	in	

the	NVRAM.	The	object	pool	is	structured	as	a	tree,	where	the	root	

node	is	used	as	an	initial	reference	point	that	all	other	NVRAM	

variables	must	attach.	Inside	a	transaction,	PMDK	uses	logging	to	

record	which	variables	are	modified	so	that	all	modifications	can	

be	cohesively	applied	together.	

1	:		 s t r u c t _	r	o	o	t	_	d	a	t	a	_	t				{			 int v	a	l	s	 [3	2]	;			 }	;	

2	:	PMEMobjpool	∗ pool	=	pmemobj_open	(

3	:	 "	/	mnt	/	nvm	/	pool	"	,	.	.	.)	;	

4	:		TOID	(s t r u c t _	r	o	o	t	_	d	a	t	a	_	t)			 r	o	o	t			=		 POBJ_ROOT	(pool	 ,	

5	:	 s t r u c t _	r	o	o	t	_	d	a	t	a	_	t)	;	

6 :	TX_BEGIN	(pool)	{	

7 :	 pmemobj_tx_add_range	(r	o	o	t	.	oid	,	0	,	

8	:	 	 s i z e o f (int ∗ 3	2))	;	

9	:	 int ∗ my_vals	=	D_RW(r	o	o	t)	>	v	a	l	s	;	

1	0	:	 my_vals	[3]	=		5	;	

1	1	:	}	 TX_END	

Listing 2: Extending listing 1 with PMDK transaction API.

To	illustrate,	Listing	2	shows	the	result	of	extending	the	code	

from	listing	1	to	use	Intel	PMDK	transactions.	Here	line	1	defines	

the	layout	for	the	root	node	in	the	object	pool,	located	in	a	file-	

system	directory	that	is	mapped	to	a	chunk	of	NVRAM	address	

space.	The	memory	pool	is	then	initialized	at	lines	2-5,	with	the	

root	object	initialized	at	lines	4-5.	The	transaction	starts	at	line	6	

and	ends	at	line	11.	Inside	the	transaction,	Line	7	invokes	a	func-	

tion	pememobj_tx_add_range to	notify	the	library	which	area	of	

memory	will	be	modified	during	this	transaction,	before	lines	9-10	

proceeding	with	the	actual	read	and	write	operations.	

3.2.2 Multi-versioning. PMDK[12]	also	provides	another	interface	

to	support	atomic	operations	on	ranges	of	memory.	In	this	interface,	

the	persisted	data	is	stored	in	the	same	object	pool	structure	as	

the	transaction-based	approach.	We	use	this	interface	to	create	

a	multi-versioning	approach	to	extend	Fluidanimate	with	fault	

tolerance	by	associating	these	memory	ranges	with	snapshots	of	

the	application’s	state.	In	particular,	we	create	two	versions:	one	

labeled	as	the	working	version,	which	the	application	uses	during	

computation,	and	the	other	labeled	as	the	shadow	version,	which	is	

used	as	the	snapshot.	Certain	points	in	the	code	are	designated	to	

back	up	the	data	from	the	working	version	into	the	shadow	version.	

To	recover	state,	the	application	needs	only	to	switch	the	labels	on	

the	two	versions,	where	it	can	immediately	start	using	the	snapshot	

as	the	working	set,	as	the	byte-addressability	of	NVRAM	allows	

pointers	to	stay	consistent	across	the	two	versions.	
	

1	:	
2	:	

s t r u c t _	v	e	r	s	i	o	n	_	t	{	int [3	2]	v	a	l	s	;	}	;	
s t r u c t _	r	o	o	t	_	d	a	t	a	_	t	{	

3	:	 TOID	(s t r u c t _	v	e	r	s	i	o	n	_	t)	v1	;	

4	:	 TOID	(s t r u c t _	v	e	r	s	i	o	n	_	t)	v2	;	

5	:	 }	;	

6	:	 PMEMobjpool	∗ pool	=	pmemobj_open	(

7	:	 "	/	mnt	/	nvm	/	pool	"	,	.	.	.)	;	

8	:	 TOID	(s t r u c t _	r	o	o	t	_	d	a	t	a	_	t)	r	o	o	t	=	POBJ_ROOT	(pool	,	

9	:	 s t r u c t _	r	o	o	t	_	d	a	t	a	_	t)	;	

1	0	:	 TOID	(s t r u c t _	v	e	r	s	i	o	n	_	t)	cur_	v	=	

	
1	1	:	 D_RW(r	o	o	t)	>	v1	;	

1	2	:		int ∗ my_vals		=		D_RW(cur_	v)			>	v	a	l	s	;	1	3	

:	my_vals	[3]	=	5	;	

1	4	:	pmemobj_memcpy_persist	(pool	,	

1	5	:	 D_RW(D_RW(r	o	o	t)		>	v2)		>	v	a	l	s	 ,	

1	6	:	 D_RW(D_RW(r	o	o	t)		>	v1)		>	v	a	l	s	 ,	

1	7	:	 s i z e o f (int)	∗ 3	2)	;	

Listing 3: Extending listing 1 with PMDK Atomic API.

To	illustrate,	Listing	3	shows	the	result	of	extending	the	code	in	

listing	1	to	use	the	PMDK	atomic	API.	Here	Line	1	defines	a	new	data	

structure	to	hold	all	data	that	will	be	persisted	in	a	single	version.	

Lines	2-5	define	the	root	data	structure	that	holds	the	two	versions.	

The	persistent	memory	object	pool	and	its	root	data	are	initialized	

at	Lines	6-9.	Lines	10-13	then	perform	the	variable	modification	to	

the	current	version	(v1),	which	is	then	propagated	into	the	next	

version	(v2)	at	Lines	14-17	by	invoking	pmemobj_memcpy_persist,	

which	guarantees	that	either	all	of	the	data	are	copied	correctly,	

or	none	is	carried	out,	so	that	if	an	error	occurred,	the	application	

data	are	simply	collectively	reverted	to	the	previous	version.	

3.2.3 File System API. Here	application	checkpointing	is	supported	

through	IO	operations	(e.g.	fwrite/fread)	of	a	Direct	Access	(DAX)	

file	system.	DAX	bypasses	the	operating	system’s	block	layer	to	ac-	

cess	the	underlying	NVRAM	directly.	By	mapping	NVRAM	sections	

onto	a	DAX	filesystem,	an	application	can	use	fwrite/fread	opera-	

tions	to	directly	store	and	retrieve	data	periodically	into	NVRAM.	

This	API	allows	the	application	to	operate	within	DRAM,	while	

checkpointing	data	to	files	backed	by	NVRAM.	This	strategy,	how-	

ever,	requires	the	developer	to	organize	application	data	into	pre-	

defined	continuous	region	of	checkpoint	data,	without	taking	ad-	

vantage	of	the	byte-addressability	property	of	NVRAM.	

1	:	int v	a	l	s	[3	2]	;	2	

:	v	a	l	s	[3]	=	5	;	

3	:	f	w	r	i	t	e	(&	v	a	l	s	,	s i z e o f (int)	,	FILE_SIZE_INT	,	f	i	l	e)	;	

Listing 4: Code sample extending code from listing 1 with

Filesystem checkpoint call.

To	illustrate,	Listing	4	extends	the	code	from	listing	1	to	use	the	

filesystem	API.	Here	only	a	single	line	is	appended	at	the	end	of	

the	original	code,	so	that	the	f write operation	is	invoked	to	write	

the	data	directly	into	a	file.	

3.2.4 Using DRAM as Cache[39]. Here	 the	 idea	 is	 to	provide	 a	

hybrid	DRAM/NVRAM	approach,	where	DRAM	acts	as	a	cache	

in	front	of	NVRAM.	NVRAM	then	acts	as	a	fast	disk,	where	the	

checkpoint	from	DRAM	to	NVRAM	is	done	in	a	similar	manner	

as	the	file	system	API.	We	extend	the	interface	from	[39],	which	

provides	a	similar	hybrid	DRAM/NVRAM	checkpointing	library,	

to	support	the	storage	and	restoration	of	pointer	data	structures,	

where	our	API	is	shown	in	table	1.	

1 :	int v	a	l	s	[3	2]	;	

2 :	 c	k	p	t	_	c	o	n	t	e	x	t	 ∗ c	t	x	=	 i	n	i	t	_	c	k	p	t	_	c	o	n	t	e	x	t	 ()	;	

3 :		 r	e	g	_	r	e	g	i	o	n	(ctx	 ,		&	v	a	l	s	[0]	 ,			 s i z e o f (int)			 ∗ 3	2)	;	

4	:	v	a	l	s	[3]	=	5	;	

5	:	d	o	_	c	h	e	c	k	p	o	i	n	t	(c	t	x)	;	

Listing 5: Extending listing 1 with our DRAM cache API

To	illustrate,	listing	5	extends	the	code	from	listing	1	to	use	

DRAM	as	cache	for	NVRAM	via	our	API.	Here	line	2	is	inserted	

into	the	original	code	to	create	a	checkpoint	context,	ctx,	for	the	

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA B. Nesterenko et al.
	

()

	
	

Function	 Description	

ckpt_ctx*	init_backup_context()	 Allocates	a	new	checkpoint	context,	which	maintains	the	locations	of	memory	regions	and	

pointers	to	be	checkpointed	

void	register_region(ctx,	dram_base,	size)	 Register	a	new	memory	region	from	within	DRAM	at	dram_base with	size to	store	 into	

the	checkpoint	context	ctx

void	register_pointer(ctx,	from,	to)	 Register	a	pointer	into	the	checkpoint	context	ctx,	where	both	f rom and	to are	addresses	

that	exist	in	DRAM	

void	do_backup(ctx)	 Performs	the	backup	of	the	data	in	DRAM	maintained	by	the	checkpoint	context	ctx into	

NVRAM	

ckpt_ctx*	do_restore()	 Restores	the	persisted	data	from	NVRAM	into	DRAM	and	returns	a	checkpoint	context	for	

future	checkpointing	demands	

Table 1: Our DRAM cache API extending the interface from [39].

application,	which	will	keep	track	of	memory	regions	and	pointers	

to	checkpoint.	Line	3	registers	the	vals array	as	a	new	memory	

region	to	be	checkpointed	in	the	context	of	ctx.	Line	5	performs	

the	checkpoint	of	the	data	in	DRAM	maintained	by	ctx,	the	vals

array,	into	NVRAM.	

3.2.5 Comparing The APIs. Table	2	compares	varying	aspects	of	

these	APIs,	including	1)	the	location	of	the	working	set,	2)	which	

information	is	saved	on	a	checkpoint,	3)	which	information	is	re-	

stored	on	a	restart,	and	4)	summary	comments	to	highlight	the	

advantages	or	disadvantages	of	a	particular	strategy.	

Working Set. A	working	set	in	NVRAM	induces	more	overhead	

than	DRAM,	as	the	interface	has	slightly	more	overhead	to	access	

this	data,	and	the	access	time	is	slightly	larger.	The	logging	and	

multi-versioning	approaches	have	their	working	set	in	NVRAM	

and	the	filesystem	and	DRAM	cache	version	have	their	working	

set	in	DRAM.	

Checkpointed Info. The	 checkpointed	 information	 consists	 of	 all	

information	saved	when	saving	an	application	state.	All	approaches	

must	to	store	the	data	required	for	computation	in	the	checkpoint	

file;	however,	depending	on	how	the	checkpoint	is	created,	pointers	

do	not	have	to	be	persisted.	The	filesystem	approach	read/writes	

data	structures	in	a	particular	order	and	does	not	need	to	persist	

pointers,	whereas	all	other	approaches	do.	This	provides	the	filesys-	

tem	approach	with	the	ability	to	incur	less	checkpointing	overhead	

as	it	saves	less	data.	

Restored Info. The	restored	info	consists	of	all	information	copied	

back	into	the	working	set	of	an	application	in	order	to	get	it	to	load	

the	state	at	the	last	taken	checkpoint.	The	logging	and	DRAM	cache	

approaches	copy	back	all	data	and	pointers	and	induce	the	most	

overhead.	The	multi-versioning	approach	only	reverts	pointers	to	

link	to	the	previous	snapshot	version,	and	incurs	the	least	overhead.	

The	filesystem	approach	only	reverts	the	data,	and	has	overhead	

in-between	the	other	approaches.	

Summary Comments. To	summarize	each	NVRAM	approach,	the	

logging	and	DRAM	cache	approaches	are	the	easiest	to	incorporate,	

but	incur	the	most	data	transfer	overhead	when	saving	and	restoring	

data.	The	multi-versioning	approach	has	the	fastest	restoration	time	

at	the	cost	of	it	being	harder	to	implement	into	an	application.	The	

filesystem	approach	has	the	least	amount	of	data	storage	overhead	

incurred	at	the	cost	of	it	being	the	hardest	to	implement.	

	

3.3 Using NVRAM In Distributed Computing

Most	scientific	applications	need	to	use	multiple	processes	that	

are	distributed	across	different	nodes	connected	by	networks	of	

varying	speeds.	In	this	distributed	setting,	when	any	of	the	pro-	

cesses	encounters	an	irrecoverable	error,	the	other	processes	will	

be	affected	and	need	to	recover	collectively.	Therefore,	if	a	process	

can	self-recover	from	a	disruptive	error,	it	is	imperative	that	the	

recovery	is	sufficiently	fast	so	that	the	other	processes	will	not	

notice	the	lapse	and	enter	into	recovery	mode	unnecessarily.	There-	

fore,	we	investigate	whether	using	NVRAM	can	support	the	instant	

recovery	of	each	process	so	that	the	overall	application	execution	

is	not	disrupted	by	minor	soft	errors	encountered	by	individual	

processes.	

A	common	method	for	multi-node	systems	to	track	errors	is	to	

employ	the	heartbeat	mechanism	[54];	it	is	a	designated	process	

(the	heartbeat	monitor)	that	tests	the	well-being	of	the	application	

by	periodically	sending	a	communication	to	all	live	processes,	and	

specifying	a	timeout	for	each	process	to	respond	before	the	whole	

application	is	plumped	into	error	mode.	

Figure	4	shows	two	additional	modifications	to	our	fault-tolerant	

version	of	Fluidanimate	in	Figure	3	to	use	NVRAM	in	the	distributed	

computing	setting.	First,	we	add	a	new	standalone	process,	the	

heartbeat monitor,	which	uses	MPI	to	indefinitely	wait	to	receive	

messages	from	nodes	with	a	preconfigured	timeout.	Second,	we	

extend	the	computation	loop	in	ComputePoint 1 to	signal	a	heart-	

beat	message	via	MPI	after	every	iteration.	If	the	heartbeat	monitor	

does	not	receive	a	message	before	its	timeout	expires,	the	node	is	

considered	dead.	The	goal	of	this	modification	is	to	study	whether	

our	integration	of	NVRAM	into	the	Fluidanimate	application	can	

allow	the	computation	to	be	distributed	into	multiple	nodes,	with	

each	node	offering	instant	recovery	capability	such	that	minor	

soft	errors	(e.g.,	memory	corruption)	will	not	disrupt	the	overall	

progression	of	the	distributed	application.	

	
4 EXPERIMENTAL STUDY

By	modifying	Fluidanimate	to	use	NVRAM	to	support	fault	toler-	

ance,	the	purpose	of	this	study	is	to	answer	the	following	questions.	

Transitioning Scientific Applications to using NVM for Resilience MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA
	

	

Approach	 Working	Set	Stored	In	 Checkpointed	Info	 Restored	Info	 Summary	Comments	

Logging	 NVRAM	 Data	+	Pointers	 Data	+	Pointers	 High	Overhead,	Easy	to	Incorporate	

Multi-versioning	 NVRAM	 Data	+	Pointers	 Pointers	Only	 Fast	Restore,	Harder	to	Incorporate	

Filesystem	 DRAM	 Data	Only	 Data	Only	 Customizable,	Hardest	to	Incorporate	

DRAM	Cache	 DRAM	 Data	+	Pointers	 Data	+	Pointers	 High	Overhead,	Easy	to	Incorporate	

Table 2: Comparing different APIs to use NVRAM.

 CPU	 Intel(R)	Xeon(R)	CPU	E5-2420	1.90	GHz,	12	Cores	

Cache	

L1-Data	 32	KBytes	

L1-Instruction	 32	KBytes	

L2-Private	 256	KBytes	

L3-Shared	 15360	KBytes	

Main	Memory	 16	GiB	

Operating	System	 CentOS	6.6	

Figure 4: Our heartbeat monitor extension to the fault-

tolerant version of Fluidanimate in Figure 3.

What is the complexity of modifying an existing sci-

entific application to use NVRAM to support resiliency

against hardware failures? Our	 experience	 shows	 that	

modifying	Fluidanimate	is	relatively	straightforward,	as	long	

as	a	relatively	high	level	API	is	provided	to	consistently	store	

and	extract	application	data	into	NVRAM.	

What is the runtime overhead incurred by the differ-

ent APIs of using NVRAM? We	have	 experimented	with	

four	of	these	APIs,	summarized	in	Section	3.2.	Our	exper-	

imental	results	show	that	the	overhead	incurred	by	using	

these	APIs	vary	significantly,	and	generally	higher-level	in-	

terfaces	also	are	associated	with	higher	overhead.	

Does the speed advantage of NVRAM over traditional

hard drive translate immediately to the shorter time

required when saving and extracting application data?

Our	answer	to	this	question	is	no.	In	particular,	we	found	that	

the	memory	layout	of	the	data	being	saved	and	extracted	

play	a	significant	role,	to	the	extent	that	unless	the	data	

layout	is	re-organized,	sometimes	no	performance	benefit	

may	be	gained	by	using	NVRAM	over	the	traditional	hard	

drive.	

Table 3: Machine configuration.

Is NVRAM based technology sufficient to support re-

silient scientific applications, in the sense that if an ap-

plication process encounters any hardware-level fail-

ure, the process can self-recover fast enough so that

other dependent processes won’t notice the failure?

To	this	end,	we	have	studied	the	performance	scalability	

of	using	the	varying	NVRAM	technologies	in	the	scientific	

application	in	both	multi-thread	and	multi-process	settings.	

We	show	that	when	using	a	heartbeat	mechanism	to	moni-	

tor	distributed	processes,	existing	NVRAM	technologies	are	

sufficient	to	serve	this	purpose.	

We	performed	our	experiments	on	a	machine	with	an	Intel	E5-	

2420	processor	with	12	cores	running	CentOS	6.6.	Table	3	shows	the	

full	machine	configuration.	The	use	of	NVRAM	on	this	machine	was	

supported	by	DRAM	emulation,	by	extending	the	Linux	kernel	4.6.0	

in	CentOS	6.6	with	ext4	file	system	with	DAX	enabled,	configured	

by	following	the	pmem	guide	[30].	The	modified	Fluidanimate	

application	is	evaluated	by	using	its	given	native	input	(the	input	

with	the	largest	size).	The	application	was	compiled	using	g++	with	

the	-O3 compiler	optimization	flag.	The	timings	were	recorded	by	

inserting	calls	to	the	C++	chrono	utilities	library	[7]	inside	the	

source	code.	The	measurements	are	the	average	of	a	total	of	four	

runs,	with	an	average	standard	deviation	of	2.3%.	

4.1 Runtime Overhead of NVRAM APIs

To	compare	the	runtime	overhead	incurred	by	the	various	APIs	of	

using	NVRAM,	specifically	logging,	multi-versioning,	filesystem,	

and	DRAM	cache;	we	measure	the	time	it	takes	to	perform	three	ac-	

tions:	1)	store	the	application	state	once,	checkpoint time;	2)	restore	

the	application	state	after	a	memory	error	occurs,	restore time,	

and	3)	compute	a	single	iteration	in	the	fluid	dynamics	main	loop,	

computation time.	To	measure	these	actions,	we	place	timing	calls	

before	and	after	the	appropriate	code	section	in	the	source	code.	

The	baseline	computation	time	of	a	single	iteration	in	Fluidanimate	

without	any	fault	tolerance	support	was	770ms.	

Table	4	reports	the	runtime	overhead	of	using	each	NVRAM	API	

to	restart,	compute,	and	save	the	result	of	a	single	iteration	of	the	

top-level	computation	in	Fluidanimate.	Here	the	transactional	API,	

•

•

•

•

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA B. Nesterenko et al.
	

	

	

3.5

3

2.5

2

1.5

1

Time Between Checkpoints Timeout

Logging Multi-versioning Filesystem DRAM Cache

Fault Tolerance Strategy

5.5

5

4.5

4

3.5

3

2.5

Time Between Checkpoints Timeout

Logging Multi-versioning Filesystem DRAM Cache

Fault Tolerance Strategy

Figure 11: Whether the four NVRAM APIs allows instant

restart within the heartbeat timeout (goal, 1.7s).

The	heartbeat	timeout	is	therefore	the	addition	of	the	above	values,	

1, 694ms.	

In	order	to	consider	Fluidanimate	sufficiently	resilient,	it	needs	

to	be	able	to	perform	a	checkpoint	(saving	data	into	NVRAM),	

computation,	and	restart	(recovering	data	from	NVRAM)	all	within	

the	timeout	period.	So	the	following	equation	must	hold.	

Tcheckpoint + Trestart + Tcompute < Ttimeout (2)	

Here	Tcheckpoint is	 the	time	 it	 takes	 to	perform	a	checkpoint,	

Trestart is	the	time	it	takes	to	revert	the	data	and	restart	the	process	
to	the	last	checkpoint,	Tcompute is	the	time	it	takes	to	compute	a	

single	iteration,	and	Ttimeout is	the	heartbeat	timeout.	

Figure	11	shows	the	time	it	takes	for	Fluidanimate	to	restart	and	

progress	to	the	next	iteration,	when	using	each	of	the	four	NVRAM	

APIs.	Here	using	the	logging,	multi-versioning,	file-system,	and	

DRAM	cache	APIs	took	3,255	ms,	1,652	ms,	1,235	ms,	and	2,648	

ms,	respectively.	With	the	timeout	being	1,694	ms,	the	logging	and	

DRAM	cache	APIs	were	not	fast	enough;	whereas	the	two	harder-	

to-use	APIs,	multi-versioning	and	file-system	APIs,	did	meet	the	

time	constraint.	

In	order	for	the	Fluidanimate	application	to	continue	using	the	

logging	and	DRAM	cache	APIs,	its	timeout	strategy	must	be	mod-	

ified	to	allow	a	lower	frequency	of	checkpointing	(data	saving	

and	recovery).	Here	we	define	a	variable,	resiliency_interval ,	as	

the	modified	application	checkpoints	data	only	when	its	iteration	

count	satisfies	i%resiliency_interval == 0.	This	changes	the	time-	

out	equation	to:	

Ttimeout = (Thm + Ti + Tr + Tw) ∗ resiliency_interval (3)	

Figure	12	compares	the	time	it	takes	for	the	four	NVRAM	APIs	

used	by	Fluidanimate	to	support	instant	restart	with	a	resiliency	

interval	of	3x,	thereby	scaling	the	timeout	to	5,082	ms.	Here	the	

logging,	multi-versioning,	filesystem,	and	DRAM	cache	approaches	

take	5,029	ms,	3,236	ms,	2,840	ms,	and	4,199	ms,	respectively.	By	

changing	the	frequency	of	checkpoint	and	heartbeat	calls,	all	four	

APIs	are	able	to	support	restart	within	the	modified	timeout.	

5 RELATED WORK

This	work	is	among	the	first	in	studying	the	use	of	NVRAM	in	

supporting	the	fault	tolerance	of	scientific	workload	[21,	27,	43].	

Li	et	al.	[43]	and	Caulfield	et	al.	[21]	considered	using	NVRAM	as	

replacement	of	DRAM	but	without	the	guarantee	of	data	persistence.	

	

Figure 12: Whether the four NVRAM APIs allow instant

restart with the modified heartbeat timeout (goal, 2.4s).

Elnawawy	et	al.	[27]	developed	a	persistent	matrix	multiplication	

kernel	using	clflushopt and	sfence instructions.	So	far,	there	lacks	a	

more	comprehensive	study	of	using	persistent	memory	in	scientific	

applications	to	support	fault	tolerance.	

Fault	tolerance	of	scientific	applications	is	traditionally	sup-	

ported	via	checkpointing	either	through	magnetic	storage	sys-	

tems	[17]	or	over	the	network	[75].	These	checkpointing	methods	

can	be	classified	into	system-level	and	application-level.	System-	

level	checkpointing	methods,	e.g.,	BLCR	[32],	Condor	[44]	and	

Cao	[20],	automatically	save	internal	memory	of	the	application	

periodically	without	requiring	any	modification	to	the	applica-	

tion.	On	the	other	hand,	application-level	checkpointing	requires	

modification	to	the	source	code	[5,	18,	26,	28,	63].	Our	work	uses	

the	application-level	checkpointing	methods	to	minimize	the	over-	

head	of	data	saving	and	recovery.	Our	work	considers	the	use	of	

DIMM-based	NVRAM	in	scientific	workload	and	studies	various	

implications	brought	about	by	this	new	type	of	storage.	

Application-level	checkpointing	can	be	incorporated	at	different	

levels.	For	example,	algorithm-based	fault	tolerance	(ABFT)	requires	

applications	to	be	restructured	at	the	algorithmic	level	[34].	Such	

algorithmic	revisions	are	used	by	Wu	and	Chen	[68]	to	allow	vari-	

ous	linear	algebra	routines	to	correct	data	errors	on-line.	Beguelin	

et	al.	[15]	developed	a	C++	programming	model	and	library	to	allow	

developers	to	use	their	data	structures	and	checkpoint	invocations,	

and	the	framework	will	automatically	checkpoint,	load	balance,	and	

restart	applications	to	the	previous	checkpoint.	Our	modification	

of	the	Fluidanimate	benchmark	does	not	involve	any	algorithm	or	

programming	model	revisions,	and	is	thus	more	straightforward	to	

integrate.	

Additional	work	has	been	done	to	automate	the	changing	of	an	

application	to	incorporate	fault	tolerance.	Rodríguez	et	al.	[61]	de-	

veloped	an	open	source	checkpointing	library,	CPPC,	which	uses	a	

compiler	to	automatically	insert	checkpoint	calls	into	an	application.	

Bronevetsky	et	al.	[17]	created	a	compiler	to	insert	non-blocking	

checkpointing	into	MPI	programs.	

Checkpointing	can	also	be	supported	internally	at	the	hard-	

ware	level,	transparent	to	the	software.	For	example,	error	mask-	

ing	is	a	technique	that	uses	circuitry	to	provide	fault	tolerance	

through	redundancy,	e.g.,	through	triple	modular	redundancy	[48]	

and	quadded	logic	[36].	Mills	et	al.	[50]	introduced	an	optimization	

to	error	masking,	shadow computing,	which	reduces	the	amount	of	

T
im

e
 (

s
e

c
o

n
d

s
)

T
im

e
 (

s
e

c
o

n
d

s
)

Transitioning Scientific Applications to using NVM for Resilience MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA
	

×

	

computational	redundancy	by	running	process	clones	on	separate	

nodes	at	reduced	processor	speeds	to	decrease	power	consumption.	

A	significant	drawback	in	traditional	fault	tolerance	mechanisms	

is	the	performance	overhead	induced.	A	study	by	Gupta	et	al.	[31]	

showed	that	the	parallel	ocean	CFD	application	could	only	perform	

a	checkpoint	once	every	eight	minutes	in	order	to	keep	7%	of	total	

application	execution	time	to	be	spent	on	fault	tolerance.	When	

considering	a	distributed	computing	environment	hosting	a	CFD	

application,	nodes	frequently	communicate	once	per	time	step	[40],	

where	a	single	time	step	usually	won’t	exceed	a	minute	[69].	A	large	

amount	of	communication	take	place	within	that	eight-minute	gap,	

thus	requiring	complicated	restart	procedures.	Since	NVRAM	offers	

over	40 speed	up	to	the	magnetic	disks,	this	eight-minute	gap	can	

potentially	be	reduced	significantly	to	allow	a	single	node	to	overlap	

checkpoints	with	system	communications.	

NVRAM	can	be	viewed	as	a	hardware	option	for	supporting	low	

overhead	fault	tolerance.	NVRAM	has	been	integrated	in	persis-	

tent	memory	designs	through	hardware	software	co-designs	[37,	

55,	65,	74]	and	as	a	new	type	of	file	system	[56,	70].	The	use	of	

NVRAM	is	supported	via	various	library	APIs	[12,	23,	35,	62,	64,	73]	

and	have	been	used	to	support	databases	[38]	and	persistent	data	

structure	[52,	71].	In	this	paper,	we	used	the	Intel	PMDK	[12]	to	

implement	data	persistence	for	scientific	workload.	

6 CONCLUSION

This	paper	studies	the	software	development	and	performance	im-	

plications	of	using	non-volatile	memory	(NVRAM)	to	support	fault	

tolerance	in	scientific	applications.	We	extend	a	computational	fluid	

dynamics	benchmark,	Fluidanimate,	with	four	different	APIs	to	sup-	

port	NVM-based	fault	tolerance:	1)	logging	through	transactions,	

2)	multi-versioning	through	copy-on-write	operations,	3)	check-	

pointing	through	IO	operations	on	a	DAX	filesystem,	and	4)	check-	

pointing	with	a	DRAM	cache.	We	discover	that	simple	extensions	

of	the	computation	does	not	take	full	advantage	of	the	increased	

IO	speeds	provided	by	NVRAM,	and	additional	data	structure	mod-	

ifications	are	often	needed	to	make	full	use	of	the	speeds.	We	show	

that	when	using	a	single	process,	the	performance	scalability	of	the	

original	application	degrades	significantly	when	using	existing	tech-	

niques,	which	support	only	single-threaded	checkpointing.	Finally,	

we	demonstrate	that	NVRAM	based	fault	tolerance	can	be	used	in	

a	heartbeat-based	distributed	computing	environment	to	support	

instant	recovery	of	individual	processes	when	hardware	failures	

occur,	without	affecting	the	progress	of	other	active	processes.	

REFERENCES
[1] 2011.	 Nuts	 	 and	 	 Bolts	 	 of	 	 Multithreaded	 	 Programming	 	 |	 	 Intel® Soft-		

ware.	 https://software.intel.com/en-us/articles/nuts-and-bolts-of-multithreaded-	
programming.	

[2] 2016.	 Intel	64	and	IA-32	Architectures	Software	Developer’s	Manual.	
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-	ia-
32-architectures-software-developer-instruction-set-reference-manual-	
325383.pdf.	

[3] 2017.	perf(1)	-	Linux	manual	page.	http://man7.org/linux/man-pages/man1/perf.	
1.html.	

[4] 2017.	unlink(2)	-	Linux	manual	page.	http://man7.org/linux/man-pages/man2/	
unlink.2.html.	

[5] .	2018.	CRIU:	CheckpointRestore	In	Userspace.	 https://criu.org/Main_Page	
[6] 2019.	access	time	Definition	from	PC	Magazine	Encyclopedia.	https://www.	

pcmag.com/encyclopedia/term/37400/access-time.	
[7] 2019.	Date	and	time	utilities	-	cppreference.com.	https://en.cppreference.com/w/	

cpp/chrono.	

	
[8] 2019.	dd(1)	-	Linux	manual	page.	http://man7.org/linux/man-pages/man1/dd.1.	

html.	
[9] 2019.	fopen(3)	-	Linux	manual	page.	http://man7.org/linux/man-pages/man3/	

fopen.3.html.	
[10] 2019.	https://www.kernel.org/doc/Documentation/filesystems/dax.txt.	 https:	

//www.kernel.org/doc/Documentation/filesystems/dax.txt.	
[11] 2019.	Intel	Optane	DC	Persistent	Memory.	 https://www.intel.com/content/	

www/us/en/architecture-and-technology/optane-dc-persistent-memory.html.	
[12] 2019.	PMDK:	Persistent	Memory	Development	Kit.	https://github.com/pmem/	

pmdk/.	
[13] 2019.	What	is	Access	Time?	Webopedia	Definition.	https://www.webopedia.	

com/TERM/A/access_time.html.	
[14] 2019.	 What		is		distributed		computing.	 https://www.ibm.com/support/	

knowledgecenter/en/SSAL2T_8.1.0/com.ibm.cics.tx.doc/concepts/c_wht_is_	
distd_comptg.html.	

[15] Adam	Beguelin,	Erik	Seligman,	and	Peter	Stephan.	1997.	Application	level	fault	
tolerance	in	heterogeneous	networks	of	workstations.	J. Parallel and Distrib.

Comput. 43,	2	(1997),	147–155.	
[16] Christian	Bienia.	2011.	Benchmarking Modern Multiprocessors.	Ph.D.	Dissertation.	

Princeton	University.	
[17] Greg	Bronevetsky,	Daniel	Marques,	Keshav	Pingali,	and	Paul	Stodghill.	2003.	

Automated	application-level	checkpointing	of	MPI	programs.	In	ACM Sigplan

Notices,	Vol.	38.	ACM,	84–94.	
[18] Greg	Bronevetsky,	Daniel	Marques,	Keshav	Pingali,	Peter	Szwed,	and	Martin	

Schulz.	2004.	Application-level	Checkpointing	for	Shared	Memory	Programs.	SIG-
PLAN Not. 39,	11	(Oct.	2004),	235–247.	https://doi.org/10.1145/1037187.1024421	

[19] Stewart	Cant.	2002.	High-performance	computing	in	computational	fluid	dy-	
namics:	progress	and	challenges.	Philosophical Transactions of the Royal Society

of London. Series A: Mathematical, Physical and Engineering Sciences 360,	 1795	
(2002),	1211–1225.	

[20] J.	Cao,	K.	Arya,	R.	Garg,	S.	Matott,	D.	K.	Panda,	H.	Subramoni,	J.	Vienne,	and	
G.	Cooperman.	2016.	System-Level	Scalable	Checkpoint-Restart	for	Petascale	
Computing.	 In	2016 IEEE 22nd International Conference on Parallel and Distributed

Systems (ICPADS).	932–941.	https://doi.org/10.1109/ICPADS.2016.0125	
[21] Adrian	M.	Caulfield,	Joel	Coburn,	Todor	Mollov,	Arup	De,	Ameen	Akel,	Jiahua	

He,	Arun	Jagatheesan,	Rajesh	K.	Gupta,	Allan	Snavely,	and	Steven	Swanson.	
2010.	Understanding	the	Impact	of	Emerging	Non-Volatile	Memories	on	High-	
Performance,	 IO-Intensive	Computing.	 In	Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage

and Analysis (SC ’10).	 IEEE	 Computer	 Society,	Washington,	 DC,	 USA,	 1–11.	
https://doi.org/10.1109/SC.2010.56	

[22] Huai-Yu	Cheng,	M	BrightSky,	S	Raoux,	CF	Chen,	PY	Du,	JY	Wu,	YY	Lin,	TH	Hsu,	
Y	Zhu,	S	Kim,	et	al.	2013.	Atomic-level	engineering	of	phase	change	material	
for	novel	fast-switching	and	high-endurance	PCM	for	storage	class	memory	
application.	In	2013 IEEE International Electron Devices Meeting.	IEEE,	30–6.	

[23] Joel	Coburn,	Adrian	M.	Caulfield,	Ameen	Akel,	Laura	M.	Grupp,	Rajesh	K.	Gupta,	
Ranjit	Jhala,	and	Steven	Swanson.	2011.	NV-Heaps:	Making	Persistent	Objects	
Fast	and	Safe	with	Next-generation,	Non-volatile	Memories.	SIGPLAN Not. 46,	3	
(March	2011),	105–118.	https://doi.org/10.1145/1961296.1950380	

[24] Jeremy	Condit,	Edmund	B.	Nightingale,	Christopher	Frost,	Engin	Ipek,	Ben-	
jamin	Lee,	Doug	Burger,	and	Derrick	Coetzee.	2009.	Better	I/O	Through	Byte-	
addressable,	Persistent	Memory.	In	Proceedings of the ACM SIGOPS 22Nd Sym-

posium on Operating Systems Principles (SOSP ’09).	 ACM,	New	York,	NY,	USA,	
133–146.	https://doi.org/10.1145/1629575.1629589	

[25] Camille	Coti,	Thomas	Herault,	Pierre	Lemarinier,	Laurence	Pilard,	Ala	Rezmerita,	
Eric	Rodriguezb,	and	Franck	Cappello.	2006.	Blocking	vs.	non-blocking	coordi-	
nated	checkpointing	for	large-scale	fault	tolerant	MPI.	In	SC’06: Proceedings of

the 2006 ACM/IEEE conference on Supercomputing.	IEEE,	18–18.	
[26] N.	 El-Sayed	 and	 B.	 Schroeder.	 2014.	 To	 checkpoint	 or	 not	 to	 checkpoint:	

Understanding	energy-performance-I/O	tradeoffs	in	HPC	checkpointing.	In	
2014 IEEE International Conference on Cluster Computing (CLUSTER).	 93–102.	
https://doi.org/10.1109/CLUSTER.2014.6968778	

[27] Hussein	Elnawawy,	Mohammad	Alshboul,	James	Tuck,	and	Yan	Solihin.	2017.	
Efficient	checkpointing	of	loop-based	codes	for	non-volatile	main	memory.	In	2017
26th International Conference on Parallel Architectures and Compilation Techniques

(PACT).	IEEE,	318–329.	
[28] M.	Gamell,	D.	S.	Katz,	H.	Kolla,	J.	Chen,	S.	Klasky,	and	M.	Parashar.	2014.	Ex-	

ploring	Automatic,	Online	Failure	Recovery	for	Scientific	Applications	at	Ex-	
treme	 Scales.	 In	 SC ’14: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis.	895–906.	https:	
//doi.org/10.1109/SC.2014.78	

[29] Al	Geist.	2016.	Supercomputing’s	monster	in	the	closet.	IEEE Spectrum 53,	3	
(2016),	30–35.	

[30] NVM	Programming	Technical	Work	Group.	2016.	pmem.io:	How	to	emulate	
Persistent	Memory.	https://pmem.io/2016/02/22/pm-emulation.html	

[31] Rinku	Gupta,	Harish	Naik,	and	Pete	Beckman.	2011.	Understanding	checkpointing	
overheads	on	massive-scale	systems:	Analysis	of	the	ibm	blue	gene/p	system.	The

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA B. Nesterenko et al.
	

International Journal of High Performance Computing Applications 25,	2	 (2011),	
180–192.	

[32] Paul	H	Hargrove	and	Jason	C	Duell.	2006.	Berkeley	lab	checkpoint/restart	(BLCR)	
for	Linux	clusters.	Journal of Physics: Conference Series 46	(sep	2006),	494–499.	
https://doi.org/10.1088/1742-6596/46/1/067	

[33] Vincent	Heuveline	and	Andrea	Walther.	2006.	Online	checkpointing	for	parallel	
adjoint	computation	in	PDEs:	Application	to	goal-oriented	adaptivity	and	flow	
control.	In	European Conference on Parallel Processing.	Springer,	689–699.	

[34] Kuang-Hua	Huang	and	Jacob	A	Abraham.	1984.	Algorithm-based	fault	tolerance	
for	matrix	operations.	IEEE transactions on computers 100,	6	(1984),	518–528.	

[35] Joseph	Izraelevitz,	Terence	Kelly,	and	Aasheesh	Kolli.	2016.	Failure-Atomic	
Persistent	Memory	Updates	via	JUSTDO	Logging.	SIGPLAN Not. 51,	4	(March	
2016),	427–442.	 https://doi.org/10.1145/2954679.2872410	

[36] Paul	A	Jensen.	1963.	Quadded	NOR	logic.	IEEE Transactions on Reliability 12,	3	
(1963),	22–31.	

[37] A.	Joshi,	V.	Nagarajan,	M.	Cintra,	and	S.	Viglas.	2018.	DHTM:	Durable	Hardware	
Transactional	 Memory.	 In	 2018 ACM/IEEE 45th Annual International Symposium

on Computer Architecture (ISCA).	 452–465.	 https://doi.org/10.1109/ISCA.2018.	
00045	

[38] Olzhas	Kaiyrakhmet,	Songyi	Lee,	Beomseok	Nam,	Sam	H.	Noh,	and	Young	ri	
Choi.	2019.	SLM-DB:	Single-Level	Key-Value	Store	with	Persistent	Memory.	
In	17th USENIX Conference on File and Storage Technologies (FAST 19).	USENIX	
Association,	Boston,	MA,	191–205.	 https://www.usenix.org/conference/fast19/	
presentation/kaiyrakhmet	

[39] Sudarsun	Kannan,	Ada	Gavrilovska,	Karsten	Schwan,	and	Dejan	Milojicic.	2013.	
Optimizing	checkpoints	using	nvm	as	virtual	memory.	In	2013 IEEE 27th Interna-

tional Symposium on Parallel and Distributed Processing.	IEEE,	29–40.	
[40] David	E	Keyes,	Dinesh	K	Kaushik,	and	Barry	F	Smith.	2000.	Prospects	for	CFD	on	

petaflops	 systems.	 In	Parallel Solution of Partial Differential Equations.	 Springer,	
247–277.	

[41] Aasheesh	Kolli,	Jeff	Rosen,	Stephan	Diestelhorst,	Ali	Saidi,	Steven	Pelley,	Sihang	
Liu,	Peter	M.	Chen,	and	Thomas	F.	Wenisch.	2016.	Delegated	Persist	Ordering.	
In	 The 49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-49).	IEEE	Press,	Piscataway,	NJ,	USA,	Article	58,	13	pages.	 http://dl.acm.	
org/citation.cfm?id=3195638.3195709	

[42] Benjamin	C.	Lee,	Engin	Ipek,	Onur	Mutlu,	and	Doug	Burger.	2009.	Architecting	
Phase	Change	Memory	As	a	Scalable	Dram	Alternative.	SIGARCH Comput. Archit.
News 37,	3	(June	2009),	2–13.	https://doi.org/10.1145/1555815.1555758	

[43] D.	Li,	J.	S.	Vetter,	G.	Marin,	C.	McCurdy,	C.	Cira,	Z.	Liu,	and	W.	Yu.	2012.	Identify-	
ing	Opportunities	for	Byte-Addressable	Non-Volatile	Memory	in	Extreme-Scale	
Scientific	Applications.	In	2012 IEEE 26th International Parallel and Distributed

Processing Symposium.	945–956.	https://doi.org/10.1109/IPDPS.2012.89	
[44] Michael	Litzkow,	Todd	Tannenbaum,	Jim	Basney,	and	Miron	Livny.	1997.	Check-

point and migration of UNIX processes in the Condor distributed processing system.	
Technical	Report.	University	of	Wisconsin-Madison	Department	of	Computer	
Sciences.	

[45] Mengxing	Liu,	Mingxing	Zhang,	Kang	Chen,	Xuehai	Qian,	Yongwei	Wu,	Weimin	
Zheng,	and	Jinglei	Ren.	2017.	DudeTM:	Building	Durable	Transactions	with	
Decoupling	for	Persistent	Memory.	In	Proceedings of the Twenty-Second Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’17).	ACM,	New	York,	NY,	USA,	329–343.	https:	
//doi.org/10.1145/3037697.3037714	

[46] Raymond	A	Lorie.	1977.	Physical	integrity	in	a	large	segmented	database.	ACM

Transactions on Database Systems (TODS) 2,	1	(1977),	91–104.	
[47] Youyou	Lu,	Jiwu	Shu,	and	Long	Sun.	2016.	Blurred	Persistence:	Efficient	Transac-	

tions	in	Persistent	Memory.	Trans. Storage 12,	1,	Article	3	(Jan.	2016),	29	pages.	
https://doi.org/10.1145/2851504	

[48] Robert	E	Lyons	and	Wouter	Vanderkulk.	1962.	The	use	of	triple-modular	redun-	
dancy	to	improve	computer	reliability.	IBM journal of research and development

6,	2	(1962),	200–209.	
[49] Micron.	2016.	3D	XPoint	Technology:	Breakthrough	Nonvolatile	Memory	Tech-	

nology.	 https://www.micron.com/products/advanced-solutions/3d-xpoint-	
technology	

[50] Bryan	Mills,	Taieb	Znati,	 and	Rami	Melhem.	2014.	Shadow	computing:	An	
energy-aware	 fault	 tolerant	 computing	model.	 In	2014 International Conference

on Computing, Networking and Communications (ICNC).	IEEE,	73–77.	
[51] Sanketh	Nalli,	Swapnil	Haria,	Mark	D.	Hill,	Michael	M.	Swift,	Haris	Volos,	and	

Kimberly	Keeton.	2017.	An	Analysis	of	Persistent	Memory	Use	with	WHISPER.	
SIGOPS Oper. Syst. Rev. 51,	 2	 (April	 2017),	 135–148.	 https://doi.org/10.1145/	
3093315.3037730	

[52] Moohyeon	Nam,	Hokeun	Cha,	Young	ri	Choi,	Sam	H.	Noh,	and	Beomseok	Nam.	
2019.	Write-Optimized	Dynamic	Hashing	for	Persistent	Memory.	In	17th USENIX

Conference on File and Storage Technologies (FAST 19).	 USENIX	 Association,	
Boston,	MA,	31–44.	https://www.usenix.org/conference/fast19/presentation/	
nam	

[53] Xiang	Ni,	Esteban	Meneses,	and	Laxmikant	V	Kalé.	2012.	Hiding	checkpoint	
overhead	in	HPC	applications	with	a	semi-blocking	algorithm.	In	2012 IEEE

International Conference on Cluster Computing.	IEEE,	364–372.	

[54] Ahmad	Shukri	Mohd	Noor	and	Mustafa	Mat	Deris.	2009.	Extended	heartbeat	
mechanism	for	 fault	detection	service	methodology.	 In	International Conference

on Grid and Distributed Computing.	Springer,	88–95.	
[55] M.	A.	 Ogleari,	 E.	 L.	Miller,	 and	 J.	 Zhao.	 2018.	 Steal	 but	No	 Force:	 Efficient	

Hardware	Undo+Redo	Logging	for	Persistent	Memory	Systems.	In	2018 IEEE

International Symposium on High Performance Computer Architecture (HPCA).	
336–349.	 https://doi.org/10.1109/HPCA.2018.00037	

[56] Jiaxin	Ou,	Jiwu	Shu,	and	Youyou	Lu.	2016.	A	High	Performance	File	System	for	
Non-volatile	Main	Memory.	 In	Proceedings of the Eleventh European Conference on

Computer Systems (EuroSys ’16).	ACM,	New	York,	NY,	USA,	Article	12,	16	pages.	
https://doi.org/10.1145/2901318.2901324	

[57] Joaquim	Peiró	and	Spencer	Sherwin.	2005.	Finite	difference,	finite	element	and	
finite	volume	methods	for	partial	differential	equations.	In	Handbook of materials

modeling.	Springer,	2415–2446.	
[58] Simone	Raoux,	Geoffrey	W	Burr,	Matthew	J	Breitwisch,	Charles	T	Rettner,	Yi-	

Chou	Chen,	Robert	M	Shelby,	Martin	Salinga,	Daniel	Krebs,	Shih-Hung	Chen,	
Hsiang-Lan	Lung,	et	al.	2008.	Phase-change	random	access	memory:	A	scalable	
technology.	IBM Journal of Research and Development 52,	4/5	(2008),	465.	

[59] J.	Ren,	J.	Zhao,	S.	Khan,	J.	Choi,	Y.	Wu,	and	O.	Mutiu.	2015.	ThyNVM:	Enabling	
software-transparent	crash	consistency	in	persistent	memory	systems.	In	2015

48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).	
672–685.	https://doi.org/10.1145/2830772.2830802	

[60] Ohad	Rodeh,	Josef	Bacik,	and	Chris	Mason.	2013.	BTRFS:	The	Linux	B-Tree	
Filesystem.	Trans. Storage 9,	3,	Article	9	(Aug.	2013),	32	pages.	https://doi.org/	
10.1145/2501620.2501623	

[61] Gabriel	Rodríguez,	María	J	Martín,	Patricia	González,	Juan	Tourino,	and	Ramón	
Doallo.	2010.	CPPC:	a	compiler-assisted	tool	 for	portable	checkpointing	of	
message-passing	 applications.	 Concurrency and Computation: Practice and Expe-

rience 22,	6	(2010),	749–766.	
[62] Haris	 Volos,	 Andres	 Jaan	 Tack,	 and	 Michael	 M.	 Swift.	 2011.	 Mnemosyne:	

Lightweight	Persistent	Memory.	SIGPLAN Not. 47,	4	(March	2011),	91–104.	
https://doi.org/10.1145/2248487.1950379	

[63] John	Paul	Walters	and	Vipin	Chaudhary.	2006.	Application-Level	Checkpointing	
Techniques	for	Parallel	Programs.	In	Distributed Computing and Internet Tech-

nology,	Sanjay	K.	Madria,	Kajal	T.	Claypool,	Rajgopal	Kannan,	Prem	Uppuluri,	
and	Manoj	Madhava	Gore	(Eds.).	Springer	Berlin	Heidelberg,	Berlin,	Heidelberg,	
221–234.	

[64] T.	Wang,	J.	Levandoski,	and	P.	Larson.	2018.	Easy	Lock-Free	Indexing	in	Non-	
Volatile	 Memory.	 In	 2018 IEEE 34th International Conference on Data Engineering

(ICDE).	461–472.	https://doi.org/10.1109/ICDE.2018.00049	
[65] T.	Wang,	S.	Sambasivam,	and	J.	Tuck.	2018.	Hardware	Supported	Permission	

Checks	on	Persistent	Objects	for	Performance	and	Programmability.	In	2018

ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).	
466–478.	 https://doi.org/10.1109/ISCA.2018.00046	

[66] Yi-Min	Wang,	Pi-Yu	Chung,	Yennun	Huang,	and	Elmootazbellah	N	Elnozahy.	
1997.	Integrating	checkpointing	with	transaction	processing.	In	Proceedings of

IEEE 27th International Symposium on Fault Tolerant Computing.	IEEE,	304–308.	
[67] Yi-Min	Wang,	Yennun	Huang,	Kiem-Phong	Vo,	Pe-Yu	Chung,	and	Chandra	Kin-	

tala.	 1995.	Checkpointing	 and	 its	 applications.	 In	Twenty-Fifth International

Symposium on Fault-Tolerant Computing. Digest of Papers.	IEEE,	22–31.	
[68] Panruo	Wu	and	Zizhong	Chen.	2014.	FT-ScaLAPACK:	Correcting	soft	errors	on-	

line	for	ScaLAPACK	Cholesky,	QR,	and	LU	factorization	routines.	In	Proceedings

of the 23rd international symposium on High-performance parallel and distributed

computing.	ACM,	49–60.	
[69] Ren	Xiaoguang,	Xu	Xinhai,	Tang	Yuhua,	and	Fang	Xudong.	2014.	The	Analysis	

of	Checkpoint	Strategies	for	Large-Scale	CFD	Simulation	in	HPC	System.	In	
2014 Fourth International Conference on Communication Systems and Network

Technologies.	IEEE,	1097–1101.	
[70] Jian	Xu	and	Steven	Swanson.	2016.	NOVA:	A	Log-structured	File	System	for	

Hybrid	Volatile/Non-volatile	Main	Memories.	 In	14th USENIX Conference on File

and Storage Technologies (FAST 16).	USENIX	Association,	Santa	Clara,	CA,	323–338.	
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu	

[71] Jun	Yang,	Qingsong	Wei,	Cheng	Chen,	Chundong	Wang,	Khai	Leong	Yong,	and	
Bingsheng	He.	2015.	NV-Tree:	Reducing	Consistency	Cost	for	NVM-based	Single	
Level	 Systems.	 In	13th USENIX Conference on File and Storage Technologies (FAST

15).	USENIX	Association,	Santa	Clara,	CA,	167–181.	 https://www.usenix.org/	
conference/fast15/technical-sessions/presentation/yang	

[72] Tatu	Ylönen.	1992.	Concurrent	shadow	paging:	A	new	direction	for	database	
research.	 (1992).	

[73] Lu	Zhang	and	Steven	Swanson.	2019.	Pangolin:	A	Fault-Tolerant	Persistent	
Memory	 Programming	 Library.	 CoRR abs/1904.10083	 (2019).	 arXiv:1904.10083	
http://arxiv.org/abs/1904.10083	

[74] J.	 Zhao,	 S.	 Li,	 D.	 H.	 Yoon,	 Y.	 Xie,	 and	 N.	 P.	 Jouppi.	 2013.	 Kiln:	 Closing	 the	
performance	gap	between	systems	with	and	without	persistence	support.	In	2013

46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).	
421–432.	

[75] Avi	Ziv	and	Jehoshua	Bruck.	1996.	Efficient	checkpointing	over	local	area	net-	
works.	In	Proceedings of IEEE Workshop on Fault-Tolerant Parallel and Distributed

Transitioning Scientific Applications to using NVM for Resilience MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA
	

Systems.	IEEE,	30–35.	

