
Persistent Memory Workload Characterization: A

Hardware Perspective

Xiao Liu1 Bhaskar Jupudi2 Pankaj Mehra3 Jishen Zhao1

1University of California, San Diego 2Cohesity 3Samsung Electronics
1{x1liu, jzhao}@ucsd.edu 3pankaj.mehra@samsung.com

Abstract—Persistent memory is a new tier of memory that
functions as a hybrid of traditional storage systems and main
memory. It combines the advantages of both: the data per-
sistence property of storage with the byte-addressability and
fast load/store interface of memory. As such, persistent memory
provides direct data access without the performance and energy
overhead of secondary storage access. Being at early stages of
development, most previous persistent memory system designs
are motivated and evaluated by software-based performance
profiling and characterization. Yet by attaching on the processor-
memory bus, persistent memory is managed by both system
software and hardware control units in processors and memory
devices. Therefore, understanding the hardware behavior is
critical to unlocking the full potential of persistent memory.
In this paper, we explore the performance interaction across
applications, persistent memory system software, and hardware
components, such as caching, address translation, buffering, and
control logic in processors and memory systems. Based on our
characterization results, we provide a set of implications and
recommendations that can be used to optimize persistent memory
system software and hardware designs.

Index Terms—Persistent memory, Characterization, Hardware
metrics

I. INTRODUCTION

Deploying byte-addressable nonvolatile memories

(NVRAMs) on memory bus enable a new data storage

concept, called “persistent memory” [1]. Representative

NVRAMs include spin-transfer torque RAM [2], phase-

change memory [3], resistive RAM [4], battery-backed

DRAM [5], and 3D XPoint™ memory that is announced by

Intel and Micron [6])1 – They combine the benefits of both

worlds: the byte-addressability and fast load/store interface

of memory with the data persistence of storage. As such,

NVRAM allows applications to directly load and store data

in the main memory. Due to this game-changing feature,

NVRAMs are poised to radically improve data manipulation

performance and energy efficiency. NVRAM also motivates a

new concept – persistent memory, which guarantees that data

is recoverable (consistent and durable) through power outages

and system crashes; persisting data through slow storage I/O

interface is no longer required.

Traditional computer systems manage data persistence by

software mechanisms of file systems and databases [8, 9]. Yet

main memory access is manipulated by both system software

and hardware control units, such as CPU caches, buffers, and

memory controllers. As such, to fully exploit the potential of

1These devices are already or are expected to be available on the market in 2019 [6, 7].

persistent memory, it is beneficial to design system software

and applications with the awareness of hardware details.

However, most previous persistent memory systems are mo-

tivated and evaluated by software-based performance profiling

and characterization [10, 11, 12]. These profiling schemes

provide system performance implications in terms of operation

throughput, software request latency, and software events (e.g.,

context switches and system calls). But they treat hardware

components, such as CPU cache hierarchy and TLBs, as a

black box. As a result, very little information about hardware

components is available for persistent memory software.

In this paper, we intend to provide implications on opti-

mizing persistent memory system designs from a hardware

perspective. We analyze the performance and hardware behav-

iors of persistent memory systems by running various storage

workloads with a variety of configurations (e.g., read/write

intensity, file size, and number of threads) on traditional and

persistent memory file systems. To examine the performance

impact of persistent memory systems and workload config-

urations, we profile the statistics of a variety of software

events and hardware performance counters available in modern

processors. As a result, we find the following implications

and recommendations that might benefit persistent memory

software designs:

• We identify that persistent memory system performance is

more closely correlated to the configurations and behaviors

of several particular hardware components, such as last-

level cache (LLC) access, and instruction and data trans-

lation look-aside buffers (TLBs) access, than others. As

such, persistent memory system designers may prioritize

the optimizations on the access to the hardware components

with larger correlation than others.

• We show that the recently-introduced direct access (DAX)

support in Linux essentially enhances file systems to benefit

from the speed of NVRAMs. But the current DAX can be

susceptible for the limitations on flexibility and performance

offered to applications.

• Whereas NVRAM devices do not require row buffers (a

set of sense amplifiers and latches that temporarily store

data values) as DRAM does, buffers, if present on NVRAM

chips, can significantly mitigate the performance penalties

of long latency, low bandwidth, and asymmetric read/write

latency in NVRAM access. As such, system software and

applications with high memory access locality can exploit

such buffers to optimize system performance.



TABLE I
PROFILED SOFTWARE AND HARDWARE EVENTS. (S) REPRESENTS

SOFTWARE EVENTS. THE REST ARE HARDWARE EVENTS.

Cache L1 data cache loads/stores/prefetches,
Events L1 data cache load/store/prefetch misses,

LLC loads/stores/prefetch,
LLC load/store/prefetch misses

TLB dTLB loads/stores/prefetches,
Events dTLB load/store/prefetch misses, iTLB loads/miss

Other Page faults (S), context switches (S), CPU
Events migrations (S), branch loads, branch load misses

II. METHODOLOGY

To investigate representative file systems and storage work-

loads, we choose one popular traditional file system, two latest

persistent memory file system implementations, and exercise

them with six widely-used storage benchmarks running on a

workstation configured with an emulated NVRAM.

A. System Platforms

To perform our measurements, we use a workstation

equiped with Intel Xeon CPU E5-2620 v3 processor. The

processor contains six 2.4GHz two-way multithreaded cores.

Each core has the private 32KB 8-way set associative L1 data

and instruction caches. All cores share a private 256KB 8-way

set associative L2 cache and a 15MB 20-way set associative

LLC. To access hardware performance counters, we use Linux

perf utility [13] to profile various hardware events (and also

software events) as listed in Table I. We ran each workload for

multiple times, calculated the mean and the standard deviation

of each counted software and hardware event.

The workstation runs Ubuntu with 4.4.0 Linux kernel.

The workstation has four DDR4 DRAMs at 2133MHz. We

emulated 12GB of NVRAM on the DRAM. To configure

the NVRAM partition, we use memmap GRUB (boot loader)

parameter to mark the specific 12GB range of DRAM as the

persistent memory.

B. File Systems

Our evaluation includes three file systems. Two of them are

variants of ext4, and the last is a state-of-the-art persistent

memory file system [12].

Ext4. Ext4 [9] is a popular file system used in Linux.

Ext4 is an extent-based file system with reduced metadata

overhead. It supports three journaling modes, which provide

different levels of atomicity for data and metadata. 1) The

Data-writeback mode does not perform any data jour-

naling, 2) the Data-ordered mode only records metadata

in the journal, and 3) the Data-journal mode writes both

metadata and data into the journal.

Ext4-DAX. Latest persistent memory file systems can by-

pass the page cache allocated in DRAM and directly access

NVRAM via loads/stores using a technique called Direct

Access (DAX) [14]. DAX maps storage components directly

into userspace. Note that ext4-DAX uses journaling to persist

metadata updates only; it does not support data journaling.

To ensure a fair comparison between ext4 and ext4-DAX, we

configured both in the data-ordered mode, where only

metadata is journaled.

NOVA. NOn-Volatile memory Accelerated log-structured file

system (NOVA) is one of the latest DAX-supported persistent

memory file systems [12]. NOVA is a log-structured file sys-

tem (LFS), which naturally logs the data updates. Therefore,

it only journals metadata to ensure data persistence.

C. Storage Workloads

We select and use representative storage workloads for our

experiments. They include three workloads from filebench

suite [15], and two microbenchmarks – file compres-

sion/decompression, and FFSB [16]. Before each experiment,

we exercise the DRAM and persistent memory partitions by

writing, appending, and deleting files of various sizes.

Filebench. Filebench [15] is a benchmark suite designed for

evaluating file systems. It can generate various workloads to

emulate a variety of real-world applications. We generate three

different workloads, include fileserver, webproxy, and varmail,

to emulate the typical file system access patterns of the file,

web proxy, and email servers.

• Fileserver emulates the basic file server access pattern,

including a sequence of creates, deletes, appends, reads,

writes, and metadata operations. These operations are per-

formed by multiple “user” threads.

• Webproxy emulates a plain web proxy server. This workload

is characterized by a fairly flat namespace hierarchy with a

directory width of 1,000,000. We create 10,000 files with

an average size of 1MB in the directory. We employ 100

threads to perform a mix of create, append, read, and delete

operations over these files with a 5:1 read/write ratio.

• Varmail emulates the access pattern of a mail server.

The operations of this workload include create-append-

synchronization, read-append-synchronization, read, and

delete. We configure a directory that stores 1000 files with

a median file size of 100MB. This workload has 16 threads

with a 1:1 read/write ratio.

File Compression and Decompression. We employ zip, and

unzip to investigate the performance of file compression

and decompression in persistent memory systems. The zip

operation compresses the archives, while the unzip operation

extracts the archives. We use them to compress and decom-

press two MPEG-4 files; each has a size of 2.3GB.

FFSB. The Flexible File System Benchmark (FFSB) [16]

generates customizable workloads to measure file system

performance. It employs pthreads to support multiple groups

of threads that can access multiple files simultaneously. We

employ 20 threads to perform random read and write opera-

tions over 110 files, the size of a single file is 100MB.

III. THE IMPACT OF NVRAM ACCESS LOCALITY

In this section, we examine the performance impact of

adopting hardware buffers in NVRAM components in per-





Third, LLC load and store miss show an insignificant corre-

lation to the performance. This relates to the limitation of the

perf tool. All the LLC misses visit DRAM in a DRAM-only

main memory. However, LLC misses could access NVRAM

in a hybrid main memory. Even though we partition DRAM to

simulate the hybrid memory, the perf tool cannot distinguish

the LLC misses lead to NVRAM access or DRAM access.

Therefore, the perf tool measured LLC miss is not equal to

the NVRAM access. To make LLC load and miss usable for

persistent memory, the perf tool should be extended to support

profiling for the hybrid memory.

V. IMPLICATIONS ON PERSISTENT MEMORY SYSTEM

DESIGN

Based on our observations, we provide the following impli-

cations and recommendations for persistent memory design for

reaping the full potential of this new data storage component.

First, persistent memory system performance is highly cor-

related to the configuration and behavior of a small number of

hardware components. As shown in Section IV, across various

workloads, persistent memory system performance is always

closely related to the configuration and behavior of certain

hardware components, such as LLC and instruction/data TLBs.

The rationale behind is that these hardware components are the

most closely coupled with memory access among the compo-

nents in the processor. Recommendation: In order to fully

optimize persistent memory performance, system designers

may consider optimizing the access to these highly correlated

hardware components instead of others.

Second, DAX substantially enhances file systems to leverage

the performance benefit of persistent memory, yet may not be

the only option. Our results show that file systems with DAX

(ext4-DAX and NOVA) provide much better performance than

traditional ext4 file system by bypassing the page cache.

However, current DAX design has limitations. DAX needs to

be configured as a global parameter of file systems, regardless

of the workload running on top of it. This can significantly

reduce the flexibility of DAX. Recommendations: Persistent

memory system design needs to provide a flexible interface

for workloads to enable/disable DAX. The performance and

flexibility of DAX design can also benefit from the automatic

tuning of system configurations.

Third, buffers on NVRAM devices can substantially impact

persistent memory system performance. Whereas NVRAM

devices do not require row buffers as DRAM does, the

performance of persistent memory systems can substantially

benefit from adopting buffers on NVRAM devices. Such buffer

can significantly mitigate the performance penalty of the long

latency, low bandwidth, and asymmetric read/write latency

in NVRAM access. Recommendations: NVRAM hardware

design can improve system performance by incorporating

buffers on NVRAM devices. System software and application

design can leverage such buffers by exploiting the locality in

data access at the granularity of the buffer size.

VI. ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-

back. This paper is supported in part by NSF grants 1829524,

1829525, 1817077, and SRC/DARPA Center for Research on

Intelligent Storage and Processing-in-memory.

REFERENCES

[1] P. Mehra et al., “Fast and flexible persistence: the magic

potion for fault-tolerance, scalability and performance in

online data stores,” in IPDPS, 2004.

[2] R. Patel et al., “Reducing switching latency and energy

in STT-MRAM caches with field-assisted writing,” IEEE

Transactions on VLSI, 2016.

[3] V. Sousa, “Phase change materials engineering for reset

current reduction,” in Workshop on Innovative Memory

Technologies, 2012.

[4] C. Cagli, “Characterization and modelling of electrode

impact in HfO2-based RRAM,” in Workshop on Innova-

tive Memory Technologies, 2012.

[5] T. C. Bressoud et al., “The design and use of persistent

memory on the DNCP hardware fault-tolerant platform,”

in DSN, 2001.

[6] “Intel Optane DC Persistent Memory,” 2019,

https://www.intel.com/content/www/us/en/architecture-

and-technology/optane-dc-persistent-memory.html.

[7] HP, “SanDisk and HP Launch Partnership to

Create Memory-Driven Computing Solutions,”

2015, https://www8.hp.com/us/en/hp-news/press-

release.html?id=2099577.

[8] C. Mohan et al., “ARIES: A Transaction Recovery

Method Supporting Fine-granularity Locking and Partial

Rollbacks Using Write-ahead Logging,” ACM TODS,

1992.

[9] “Ext4,” 2018, https://www.kernel.org/doc/

Documentation/filesystems/ext4.txt.

[10] P. Sehgal et al., “An empirical study of file systems on

NVM,” in MSST, 2015.

[11] Y. Zhang et al., “A study of application performance with

non-volatile main memory,” in MSST, 2015.

[12] J. Xu et al., “NOVA: A Log-structured File System for

Hybrid Volatile/Non-volatile Main Memories,” in FAST,

2016.

[13] “Perf wiki,” 2015, http://perf.wiki.kernel.org/.

[14] M. Wilcox, “Add support for NV-DIMMs to ext4,” 2014,

https://lwn.net/Articles/613384/.

[15] “Filebench,” 2014, http://filebench.sourceforge.net.

[16] “Flexible file system benchmark,” 2013,

https://sourceforge.net/projects/ffsb/.

[17] B. C. Lee et al., “Architecting Phase Change Memory

As a Scalable DRAM Alternative,” in ISCA, 2009.

[18] C.-K. Luk et al., “Pin: Building customized program

analysis tools with dynamic instrumentation,” in PLDI,

2005.


