Persistent Memory Workload Characterization: A
Hardware Perspective

Xiao Liu! Bhaskar Jupudi?
'University of California, San Diego
H{x1liu, jzhao} @ucsd.edu

Abstract—Persistent memory is a new tier of memory that
functions as a hybrid of traditional storage systems and main
memory. It combines the advantages of both: the data per-
sistence property of storage with the byte-addressability and
fast load/store interface of memory. As such, persistent memory
provides direct data access without the performance and energy
overhead of secondary storage access. Being at early stages of
development, most previous persistent memory system designs
are motivated and evaluated by software-based performance
profiling and characterization. Yet by attaching on the processor-
memory bus, persistent memory is managed by both system
software and hardware control units in processors and memory
devices. Therefore, understanding the hardware behavior is
critical to unlocking the full potential of persistent memory.
In this paper, we explore the performance interaction across
applications, persistent memory system software, and hardware
components, such as caching, address translation, buffering, and
control logic in processors and memory systems. Based on our
characterization results, we provide a set of implications and
recommendations that can be used to optimize persistent memory
system software and hardware designs.

Index Terms—Persistent memory, Characterization, Hardware
metrics

I. INTRODUCTION

Deploying byte-addressable = nonvolatile = memories
(NVRAMs) on memory bus enable a new data storage
concept, called “persistent memory” [1]. Representative
NVRAMs include spin-transfer torque RAM [2], phase-
change memory [3], resistive RAM [4], battery-backed
DRAM [5], and 3D XPoint™ memory that is announced by
Intel and Micron [6])! — They combine the benefits of both
worlds: the byte-addressability and fast load/store interface
of memory with the data persistence of storage. As such,
NVRAM allows applications to directly load and store data
in the main memory. Due to this game-changing feature,
NVRAMs are poised to radically improve data manipulation
performance and energy efficiency. NVRAM also motivates a
new concept — persistent memory, which guarantees that data
is recoverable (consistent and durable) through power outages
and system crashes; persisting data through slow storage I/O
interface is no longer required.

Traditional computer systems manage data persistence by
software mechanisms of file systems and databases [8, 9]. Yet
main memory access is manipulated by both system software
and hardware control units, such as CPU caches, buffers, and
memory controllers. As such, to fully exploit the potential of

I These devices are already or are expected to be available on the market in 2019 [6, 7].

Jishen Zhao!
3Samsung Electronics

Pankaj Mehra3
2Cohesity

3pankaj.mehra@samsung.com

persistent memory, it is beneficial to design system software

and applications with the awareness of hardware details.

However, most previous persistent memory systems are mo-
tivated and evaluated by software-based performance profiling
and characterization [10, 11, 12]. These profiling schemes
provide system performance implications in terms of operation
throughput, software request latency, and software events (e.g.,
context switches and system calls). But they treat hardware
components, such as CPU cache hierarchy and TLBs, as a
black box. As a result, very little information about hardware
components is available for persistent memory software.

In this paper, we intend to provide implications on opti-
mizing persistent memory system designs from a hardware
perspective. We analyze the performance and hardware behav-
iors of persistent memory systems by running various storage
workloads with a variety of configurations (e.g., read/write
intensity, file size, and number of threads) on traditional and
persistent memory file systems. To examine the performance
impact of persistent memory systems and workload config-
urations, we profile the statistics of a variety of software
events and hardware performance counters available in modern
processors. As a result, we find the following implications
and recommendations that might benefit persistent memory
software designs:

e We identify that persistent memory system performance is
more closely correlated to the configurations and behaviors
of several particular hardware components, such as last-
level cache (LLC) access, and instruction and data trans-
lation look-aside buffers (TLBs) access, than others. As
such, persistent memory system designers may prioritize
the optimizations on the access to the hardware components
with larger correlation than others.

e We show that the recently-introduced direct access (DAX)
support in Linux essentially enhances file systems to benefit
from the speed of NVRAMs. But the current DAX can be
susceptible for the limitations on flexibility and performance
offered to applications.

e Whereas NVRAM devices do not require row buffers (a
set of sense amplifiers and latches that temporarily store
data values) as DRAM does, buffers, if present on NVRAM
chips, can significantly mitigate the performance penalties
of long latency, low bandwidth, and asymmetric read/write
latency in NVRAM access. As such, system software and
applications with high memory access locality can exploit
such buffers to optimize system performance.

TABLE I
PROFILED SOFTWARE AND HARDWARE EVENTS. (S) REPRESENTS
SOFTWARE EVENTS. THE REST ARE HARDWARE EVENTS.

Cache L1 data cache loads/stores/prefetches,
Events L1 data cache load/store/prefetch misses,
LLC loads/stores/prefetch,

LLC load/store/prefetch misses
TLB dTLB loads/stores/prefetches,
Events dTLB load/store/prefetch misses, iTLB loads/miss
Other Page faults (S), context switches (S), CPU
Events migrations (S), branch loads, branch load misses

II. METHODOLOGY

To investigate representative file systems and storage work-
loads, we choose one popular traditional file system, two latest
persistent memory file system implementations, and exercise
them with six widely-used storage benchmarks running on a
workstation configured with an emulated NVRAM.

A. System Platforms

To perform our measurements, we use a workstation
equiped with Intel Xeon CPU E5-2620 v3 processor. The
processor contains six 2.4GHz two-way multithreaded cores.
Each core has the private 32KB 8-way set associative L1 data
and instruction caches. All cores share a private 256KB 8-way
set associative L2 cache and a 15MB 20-way set associative
LLC. To access hardware performance counters, we use Linux
perf utility [13] to profile various hardware events (and also
software events) as listed in Table I. We ran each workload for
multiple times, calculated the mean and the standard deviation
of each counted software and hardware event.

The workstation runs Ubuntu with 4.4.0 Linux kernel.
The workstation has four DDR4 DRAMs at 2133MHz. We
emulated 12GB of NVRAM on the DRAM. To configure
the NVRAM partition, we use memmap GRUB (boot loader)
parameter to mark the specific 12GB range of DRAM as the
persistent memory.

B. File Systems

Our evaluation includes three file systems. Two of them are
variants of ext4, and the last is a state-of-the-art persistent
memory file system [12].

Ext4. Ext4 [9] is a popular file system used in Linux.
Ext4 is an extent-based file system with reduced metadata
overhead. It supports three journaling modes, which provide
different levels of atomicity for data and metadata. 1) The
Data-writeback mode does not perform any data jour-
naling, 2) the Data-ordered mode only records metadata
in the journal, and 3) the Data-journal mode writes both
metadata and data into the journal.

Ext4-DAX. Latest persistent memory file systems can by-
pass the page cache allocated in DRAM and directly access
NVRAM via loads/stores using a technique called Direct
Access (DAX) [14]. DAX maps storage components directly

into userspace. Note that ext4-DAX uses journaling to persist
metadata updates only; it does not support data journaling.
To ensure a fair comparison between ext4 and ext4-DAX, we
configured both in the data-ordered mode, where only
metadata is journaled.

NOVA. NOn-Volatile memory Accelerated log-structured file
system (NOVA) is one of the latest DAX-supported persistent
memory file systems [12]. NOVA is a log-structured file sys-
tem (LFS), which naturally logs the data updates. Therefore,
it only journals metadata to ensure data persistence.

C. Storage Workloads

We select and use representative storage workloads for our
experiments. They include three workloads from filebench
suite [15], and two microbenchmarks — file compres-
sion/decompression, and FFSB [16]. Before each experiment,
we exercise the DRAM and persistent memory partitions by
writing, appending, and deleting files of various sizes.

Filebench. Filebench [15] is a benchmark suite designed for
evaluating file systems. It can generate various workloads to
emulate a variety of real-world applications. We generate three
different workloads, include fileserver, webproxy, and varmail,
to emulate the typical file system access patterns of the file,
web proxy, and email servers.

e Fileserver emulates the basic file server access pattern,
including a sequence of creates, deletes, appends, reads,
writes, and metadata operations. These operations are per-
formed by multiple “user” threads.

o Webproxy emulates a plain web proxy server. This workload
is characterized by a fairly flat namespace hierarchy with a
directory width of 1,000,000. We create 10,000 files with
an average size of 1MB in the directory. We employ 100
threads to perform a mix of create, append, read, and delete
operations over these files with a 5:1 read/write ratio.

e Varmail emulates the access pattern of a mail server.
The operations of this workload include create-append-
synchronization, read-append-synchronization, read, and
delete. We configure a directory that stores 1000 files with
a median file size of 100MB. This workload has 16 threads
with a 1:1 read/write ratio.

File Compression and Decompression. We employ z1ip, and
unzip to investigate the performance of file compression
and decompression in persistent memory systems. The zip
operation compresses the archives, while the unzip operation
extracts the archives. We use them to compress and decom-
press two MPEG-4 files; each has a size of 2.3GB.

FFSB. The Flexible File System Benchmark (FFSB) [16]
generates customizable workloads to measure file system
performance. It employs pthreads to support multiple groups
of threads that can access multiple files simultaneously. We
employ 20 threads to perform random read and write opera-
tions over 110 files, the size of a single file is 100MB.

III. THE IMPACT OF NVRAM ACCESS LOCALITY

In this section, we examine the performance impact of
adopting hardware buffers in NVRAM components in per-

=)
= C
5 0
20
=}
22
B
=
= DRAM 4Kb 2K 1Kb 512b 256b
Fig. 1. System throughput over the DRAM and the NVRAMs with row

buffer sizes ranges from 256b to 4Kb. The workload has 60% sequential read
operations.

sistent memory. Row buffer is the cache for memory rows
in DRAM. In the future NVRAM, there will be a similar
structure, we name it “buffer” in this paper. Like row buffer
in the DRAM, buffer acts as a cache to the NVRAM rows.
The size of NVRAM'’s buffer could be different from DRAM
row buffer size because of the different write powers [17].
Therefore we conduct two studies to explore the impacts of
the buffer size and the buffer hit rate on the performance.

Buffer size. We present result of a sensitivity study of buffer
size in Figure 1. We estimate the performance based on
the NVRAM architecture in [17]. We evaluate with various
memory models with the fileserver workload. Our evaluation
configures the fileserver with 60% sequential read operations.

We make two observations from the result. First, the
throughput increases with the row buffer size. When buffer
size increases, random memory accesses have a higher chance
of hitting the address range within a buffer size. Hence, the
buffer hit rate increases with the buffer size. The increased
buffer hit rate reduces the memory access cycles and results
in a higher throughput. Second, the shrunk row buffer size
could potentially hurt the NVRAM performance in the future.
The throughput drops 2% when the buffer size shrinks 50%.
For the future NVRAM, the buffer size might be 1/2 or 1/8
of the row buffer size in DRAM [17], which could lead to a
2%—-8% performance loss. NVRAM customized eviction and
prefetch strategies could compensate for this performance loss.

Buffer hit rate. We present the result of a sensitivity study of
buffer hit rate in Figure 2. We use the same performance model
from the buffer size study. The result includes two baselines:
DRAM and classic NVRAM. The classic NVRAM ignores
the existence of buffer. We studied the buffer hit rate ranges
from 50% to 90%; the row buffer size is set to 2Kb across the
experiment.

We make two observations from the results. First, the
system throughput increases rapidly as the buffer hit rate
increases. Each time hit rate increases 10%, NOVA throughput
increases 1.9% while ext4 and ext4-DAX throughput increase
1.4%. Second, the NVRAM with 90% buffer hit rate has a
minor performance difference to the DRAM performance. We
discover that the performance difference between the DRAM
and the NVRAM with 90% buffer hit rate are within 2%
among all the file systems.

Certain types of workloads can achieve 90% buffer hit rates.
We conduct a further investigation with zip workload, a typical
stream application. We employ Pin [18] to measure the row

mext4 Oext4-DAX ENOVA

3 25000
5 520000
2 o
< 215000
3 & 10000
<= 2 5000
2

< DRAM classic 50% 60% 70% 80% 90%

NVM
Fig. 2. System throughput under various memory models. The y-axis

represents the throughput. The x-axis represents memory models, which
include DRAM, classic NVRAM with no buffer, and NVRAMs with buffer
that have the buffer hit rates range from 50% to 90%.

g ©dTLB miss BiTLB miss ALLC load miss XLLC store miss © Page fault

g 15

g

3 05 Highly.cc y [a

'5 . g "/ £ torrorwithin-8%): .‘
T Y- 1 1
3 4 -8 o] ® 4] B §l;
5-1.5

O Fileserver Webproxy Varmail Zip Unzip FFSB

Fig. 3. Correlation coefficients between workload performance and five

hardware metrics. The x-axis represents each benchmark. The y-axis is the
correlation coefficient between throughput and each metric.

buffer locality. Because of the similarity between the page
size and the buffer size, we use Pin measured page locality to
estimate the buffer hit rate. The result shows that the buffer hit
rates are above 98% across three file systems. When running
these workloads, we can expect similar performance behaviors
between NVRAM- and DRAM-based main memories.

IV. MICROARCHITECTURE ANALYSIS

Furthermore, we examine the relationship between persis-
tent memory system performance and various hardware and
software event counters. Our experiments across six workloads
identify that four hardware counters and one software event are
closely correlated to system throughput. Figure 3 plots the sta-
tistical correlation between throughput and these five metrics
across six benchmarks. We use measured results from multiple
continuous executions to calculate the correlation coefficient.
Because these metrics are usually considered as the major
source of performance overhead. We only consider metrics
that negatively correlate to the throughput are justifiable. We
make three observations from the results.

First, dTLB miss shows a high negative correlation with
the throughput among all the benchmarks. This indicates
that address cache miss contributes more to the performance
overhead than the data cache miss. Increase the size of the
TLB cache could provide performance gain for the persistent
memory system.

Second, the page fault is least correlated to the performance.
As the Figure 3 shows, the correlation between page fault
and throughput varies drastically among different workloads.
Higher page faults do not necessarily lead to bad performance.
The reason is that all the page faults collected by perf are
reported as minor page faults in the DAX featured file systems.
DAX generated page faults lead to a much less performance
penalty than non-DAX generated page faults.

Third, LLC load and store miss show an insignificant corre-
lation to the performance. This relates to the limitation of the
perf tool. All the LLC misses visit DRAM in a DRAM-only
main memory. However, LLC misses could access NVRAM
in a hybrid main memory. Even though we partition DRAM to
simulate the hybrid memory, the perf tool cannot distinguish
the LLC misses lead to NVRAM access or DRAM access.
Therefore, the perf tool measured LLC miss is not equal to
the NVRAM access. To make LLC load and miss usable for
persistent memory, the perf tool should be extended to support
profiling for the hybrid memory.

V. IMPLICATIONS ON PERSISTENT MEMORY SYSTEM
DESIGN

Based on our observations, we provide the following impli-
cations and recommendations for persistent memory design for
reaping the full potential of this new data storage component.

First, persistent memory system performance is highly cor-
related to the configuration and behavior of a small number of
hardware components. As shown in Section IV, across various
workloads, persistent memory system performance is always
closely related to the configuration and behavior of certain
hardware components, such as LLC and instruction/data TLBs.
The rationale behind is that these hardware components are the
most closely coupled with memory access among the compo-
nents in the processor. Recommendation: In order to fully
optimize persistent memory performance, system designers
may consider optimizing the access to these highly correlated
hardware components instead of others.

Second, DAX substantially enhances file systems to leverage
the performance benefit of persistent memory, yet may not be
the only option. Our results show that file systems with DAX
(ext4-DAX and NOVA) provide much better performance than
traditional ext4 file system by bypassing the page cache.
However, current DAX design has limitations. DAX needs to
be configured as a global parameter of file systems, regardless
of the workload running on top of it. This can significantly
reduce the flexibility of DAX. Recommendations: Persistent
memory system design needs to provide a flexible interface
for workloads to enable/disable DAX. The performance and
flexibility of DAX design can also benefit from the automatic
tuning of system configurations.

Third, buffers on NVRAM devices can substantially impact
persistent memory system performance. Whereas NVRAM
devices do not require row buffers as DRAM does, the
performance of persistent memory systems can substantially
benefit from adopting buffers on NVRAM devices. Such buffer
can significantly mitigate the performance penalty of the long
latency, low bandwidth, and asymmetric read/write latency
in NVRAM access. Recommendations: NVRAM hardware
design can improve system performance by incorporating
buffers on NVRAM devices. System software and application
design can leverage such buffers by exploiting the locality in
data access at the granularity of the buffer size.

VI. ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-
back. This paper is supported in part by NSF grants 1829524,
1829525, 1817077, and SRC/DARPA Center for Research on
Intelligent Storage and Processing-in-memory.

REFERENCES

[1] P. Mehra et al., “Fast and flexible persistence: the magic
potion for fault-tolerance, scalability and performance in
online data stores,” in IPDPS, 2004.

[2] R. Patel et al., “Reducing switching latency and energy
in STT-MRAM caches with field-assisted writing,” IEEE
Transactions on VLSI, 2016.

[3] V. Sousa, “Phase change materials engineering for reset
current reduction,” in Workshop on Innovative Memory
Technologies, 2012.

[4] C. Cagli, “Characterization and modelling of electrode
impact in HfO2-based RRAM,” in Workshop on Innova-
tive Memory Technologies, 2012.

[5] T. C. Bressoud et al., “The design and use of persistent
memory on the DNCP hardware fault-tolerant platform,”
in DSN, 2001.

[6] “Intel Optane DC Persistent Memory,” 2019,
https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-dc-persistent-memory.html.

[7] HP, “SanDisk and HP Launch Partnership to
Create Memory-Driven =~ Computing Solutions,”
2015, https://www8.hp.com/us/en/hp-news/press-

release.html?id=2099577.

[8] C. Mohan et al, “ARIES: A Transaction Recovery
Method Supporting Fine-granularity Locking and Partial
Rollbacks Using Write-ahead Logging,” ACM TODS,
1992.

[9] “Ext4,” 2018, https://www.kernel.org/doc/

Documentation/filesystems/ext4.txt.

P. Sehgal et al., “An empirical study of file systems on

NVM,” in MSST, 2015.

Y. Zhang et al., “A study of application performance with

non-volatile main memory,” in MSST, 2015.

J. Xu et al., “NOVA: A Log-structured File System for

Hybrid Volatile/Non-volatile Main Memories,” in FAST,

2016.

13] “Perf wiki,” 2015, http://perf.wiki.kernel.org/.

M. Wilcox, “Add support for NV-DIMMs to ext4,” 2014,

https://lwn.net/Articles/613384/.

15] “Filebench,” 2014, http://filebench.sourceforge.net.

[16] “Flexible file system benchmark,”

https://sourceforge.net/projects/ffsb/.

B. C. Lee et al., “Architecting Phase Change Memory

As a Scalable DRAM Alternative,” in ISCA, 2009.

C.-K. Luk et al., “Pin: Building customized program

analysis tools with dynamic instrumentation,” in PLDI,

2005.

2013,

