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Abstract: Water-use efficiency (WUE) is a critical variable describing the interrelationship between
carbon uptake and water loss in land ecosystems. Different WUE formulations (WUEs) including
intrinsic water use efficiency (WUE;), inherent water use efficiency (IWUE), and underlying water
use efficiency (WWUE) have been proposed. Based on continuous measurements of carbon and
water fluxes and solar-induced chlorophyll fluorescence (SIF) at a temperate forest, we analyze
the correlations between SIF emission and the different WUESs at the canopy level by using linear
regression (LR) and Gaussian processes regression (GPR) models. Overall, we find that SIF emission
has a good potential to estimate IWUE and uWUE, especially when a combination of different SIF
bands and a GPR model is used. At an hourly time step, canopy-level SIF emission can explain as
high as 65% and 61% of the variances in IWUE and uWUE. Specifically, we find that (1) a daily time
step by averaging hourly values during daytime can enhance the SIF-IWUE correlations, (2) the
SIF-IWUE correlations decrease when photosynthetically active radiation and air temperature exceed
their optimal biological thresholds, (3) a low Leaf Area Index (LAI) has a negative effect on the
SIF-IWUE correlations due to large evaporation fluxes, (4) a high LAI in summer also reduces the
SIF-IWUE correlations most likely due to increasing scattering and (re)absorption of the SIF signal,
and (5) the observation time during the day has a strong impact on the SIF-IWUE correlations and
SIF measurements in the early morning have the lowest power to estimate INUE due to the large
evaporation of dew. This study provides a new way to evaluate the stomatal regulation of plant-gas
exchange without complex parameterizations.

Keywords: solar-induced chlorophyll fluorescence; water use efficiency; leaf area index; observation
time; regression analysis

1. Introduction

Ecosystem water use efficiency (WUE), typically defined as the ratio between gross primary
productivity (GPP) and evapotranspiration (ET), is typically used to indicate tradeoff between carbon
uptake and water losses in land ecosystems. Many studies have shown that changes in WUE are related
to variations in a variety of environmental factors including aerosol loading [1], land use change [2,3],
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climate change [4], and nitrogen deposition [5]. When transpiration (T) dominates ET, variations in
WUE reflect how plants regulate carbon-water exchange processes through stomata. However, WUE
also varies with vapor pressure deficit (VPD) [6,7], which complicates correlations between WUE
and plant conditions. Recently, more physiologically meaningful formulations have been proposed
to quantify the interrelationship between carbon and water cycles. Intrinsic WUE (WUE;), which
is defined as the ratio between GPP and surface conductance (Gs), was introduced [8,9]. Gs that is
used to represent water loss from ecosystems is usually estimated by inverting the Penman—-Monteith
equation [10,11] (hereinafter referred to as P-M equation). Studies have shown that WUE; is more
appropriate to describe the capacity of different plants to regulate how much water is lost per unit
carbon acquired [12,13], because Gs implicitly considers the impacts of related environmental factors.
However, it is hard to estimate WUE;, especially at a large spatial scale, because a large number
of difficultly measured variables are needed to calculate Gs. Furthermore, Gs also contains the
effects of canopy architecture, which is not related to stomatal closure. After some simplifying
assumptions, Beer et al. [14] proposed a much more simplified formulation called inherent water use
efficiency (IWUE) as a proxy for the WUE;. INUE, which is defined as the product of VPD and WUE,
significantly removes obscurities induced by variations in VPD. IWUE is more reflective of carbon and
water exchanges via stomata [14] than WUE, and it has been wildly used to quantify the responses of
plants to environmental controls including drought stress [15], nitrogen deposition [16], and rising CO,
concentration [17]. Note that IWUE was developed by assuming the ratio of inner leaf over ambient
partial pressure of CO, (C;/C,) to be constant. However, studies have shown that VPD may change
Ci/C, [6,18]. To account for the effect of VPD on C;/C,, Katul et al. [19] proposed underlying water
use efficiency (uWWUE), which is defined as uWUE = GPP*VPD%5 /ET and they showed that uWUE is
more related to plant physiological regulation of carbon uptake and water losses at the sub-daily time
scale [20].

Although IWUE and uWUE are relatively simple and have a potential to describe mechanisms
controlling carbon and water exchanges through stomata, their estimation at large spatial scales
is still challenging. At regional or global scales, both GPP and ET are estimated from either
processed-based or semi-empirical models, which use remotely sensed and /or meteorological variables
as inputs [21,22]. However, their performances may suffer from uncertainties in assumptions, inputs,
and parameters. For example, it is common that estimated ET has an error greater than 50% [22-24].
Satellite-based estimates typically capture less than 60% of the variance in WUE even at sites with
accurate measurements [25]. Thus, efforts on pursing other efficient ways in estimating large scale
WUE are highly needed.

More recently, studies have shown that solar-induced chlorophyll fluorescence (SIF) emission has
a close correlation with carbon assimilation [26-29]. Plants convert captured incoming solar radiation
into three different pathways: assimilating carbon from the atmosphere into organic compounds
(i.e., photosynthesis), heat dissipation (i.e., non-photochemical quenching (NPQ), and SIF emission. SIF
emission is in the range of 640-850 nm and has two peaks: one in the red spectral region (640-700 nm)
and the other in the near infrared region (700-850 nm). Recent satellite-based studies [30,31] showed
that SIF emission has good performance in assessing the impacts of water stress on photosynthetic
activities. The field-based study [32] also confirmed that SIF emission estimated T with better accuracy
than processed-based approaches such as the P-M and the Priestley-Taylor equation [33]. Considering
good performance of SIF in predicting both GPP and T, one would expect SIF may have a potential
to estimate WUE, WUE;, IWUE, and uWUE (hereinafter referred to as WUEs) when ET is mainly
determined by T.

By using continuous measurements of SIF emission, carbon exchange, and latent heat in a
temperate deciduous forest, we aim to evaluate the ability of SIF emission in tracking WUEs under
different environmental conditions. We implemented this study in the following aspects: (1) analyzing
correlations between SIF emission and WUEs at the hourly and daily time steps by using the linear and
nonlinear regression analysis, (2) exploring whether multi-bands SIF have more powerful capacity to
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estimate WUESs, and (3) investigating how SIF-WUEs correlations respond to variations in the different
environmental conditions including VPD, solar radiation, air temperature, leaf area index (LAI), and
observation time.

2. Materials and Methods

2.1. Site Description

The experiment site is located in the Harvard Forest, Petersham, Massachusetts, USA
(42°32'07.2""N 72°11'23.4""W). The forest has a mean canopy height of 22 m and a mean stand age
of about 80 years. The dominant forest types are American beech (Fagus grandifolia Ehrh.), red oak
(Quercus rubra), and red maple (Acer rubrum L.). The forests have four distinct seasons: leaves initiate
in spring, maintain green in summer, change color in autumn, and fall off in the winter. The climate is
characterized by a cool and moist temperate. The mean daily air temperature (T,;,) was 6.8 °C in 2014
when this study was implemented. The precipitation (Prcp) in 2014 was 1283 mm, which was higher
than the mean average of 1050 mm during 1950-2015. Accordingly, VPD remained at a relatively low
level. The mean daily daytime VPD was 0.66 kPa in 2014; VPD had higher values in the period from
June to August, showing an increase in demand for water in summer.

2.2. Instrumentations and Datasets

Canopy-level SIF is measured by using a spectrometer (HR2000+, OceanOptics, Inc., Dunedin,
FL, USA) mounted 5 m above the forest top. This spectrometer has a spectral resolution of 0.13 nm
over the range from 679.6-775.6 nm and it had a field of view (FOV) of 5 m on top of the canopy. The
spectrometer is linked with two fiber optics with a shutter (FOS-2x2-TTL, OceanOptics, Inc.). One fiber
collects downwelling incident solar irradiance (I) and the other collects canopy upwelling radiance (L).
I and L were measured every 5 min during the growing season (May—-September). Note that upwelling
radiance contains contributions from both reflected solar energy and SIF emission. The previous
studies [26,34] showed that these two components can be described by some simple mathematical
functions at absorption lines. In this study, we used the three absorption lines including O,-B at 687
nm, water vapor at 720 nm, and O;-A at 761 nm. Reflectance and SIF emission at these three lines are
expressed by the second order Taylor polynomials. Theoretically, it requires at least six measurements
of L and I to retrieve a single instantaneous SIF emission. Please see Supplementary Materials for the
details. Instantaneous SIF measurements in the selected bands are then aggregated to hourly values.
SIF emission at the three absorption lines are referred to as SIFggy, SIF7), and SIFyg;, respectively.

Turbulent fluxes of latent heat (AE) were measured using the eddy covariance (EC) method [35]
at the Environmental Measurement Station (EMS) site, which is close (about 1.4 km) to the SIF
measurements site. The original AE was converted into hourly ET (kg HyO/m?/hour). Hourly GPP (g
C/m? /hour) was obtained from the EMS tower in 2014 via the Harvard Forest Long-Term Ecological
Research program. LAI was collected by using a LAI-2000 Plant Canopy Analyzer (LI-COR, Lincoln,
NE, USA). We measured LAI daily during spring season (May and June) and autumn senescence
(September and October) periods in 2014, and monthly in the mature period (July—August). Other
meteorological variables, including VPD (kPa), rain fall (Prcp, mm/hour), friction velocity (UST, m/s),
net radiation (Rn, W/m?), air temperature (1,;,, Celsius degree °C), wind speed (U, m/s), and air
pressure (P, kPa), were also measured at an hourly time step. Because forest at the site has a dense
canopy, we assume ET is dominated by transpiration during the growing season [36]. To reduce the
influence of evaporation from the intercepted rainfall, we excluded data when precipitation exceeded
1 mm/hour and 72 h after these events. We also removed measurements with sun zenith angle larger
than 60 degree [37]. From hourly ET, GPP, and VPD data, we calculated ecosystem-level hourly WUE,
IWUE, and uWUE. To estimate hourly WUE;, Gs was calculated by inverting the P-M equation. Daily
daytime SIF emission, WUE, WUE;, INUE, uWUE, and other related meteorological variables were
aggregated into daily values by averaging half-hourly or hourly values measured between 7:00 a.m.
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and 5:00 p.m. local time. The daily values were excluded from the analysis if more than 4 hourly
values were missed in one day. We used the moving average approach to remove outliers in the related
time series. Specifically, values that deviated from the mean of a 5-point moving window by more
than 25% were excluded and missing values were replaced by an inverse distance weighting method
using adjacent “clean” points in time series.

2.3. Regression Models

We use two types of regression models to calculate correlations between SIF emission and WUEg,
One is the linear regression (LR) model and the other is the adaptive, nonlinear regression called the
Gaussian process regression (GPR) model [38]. The regression analyses were implemented on the
hourly and daily time series. The coefficient of determination (R?) was used to quantify the strength
of SIF emission in predicting WUEs. For all analysis, statistically significant differences were set at
p <0.05. All the statistical and regression analyses are made using Matlab Statistics Toolbox 2016b
(The Math Works, Inc., Natick, MA, USA).

In addition to these single SIF bands retrieved at the three absorption lines (SIFgg7, SIF750 and
SIF7¢1), both recent model-based [39] and field-based studies [32,40] showed that combinations of
SIF bands tend to enhance SIF-GPP/T correlations. Therefore, we added the following two SIF band
combinations to the analysis: (1) SIF emission at the O,-B and O,-A absorption lines (hereinafter
referred to as SIFggy and SIFye;), and (2) SIF emission at the three main absorption lines including O,-B,
water vapor, and O,-A (hereinafter SIF4g7, SIF750, and SIF74).

3. Results

3.1. Temporal Patterns of WUEs and SIF Emission

The mean of summer (June to August, three months) daytime WUE, WUE;, IWUE, and uWUE
were 0.14 g C/kg H,0O, 13.45 umol C/mmol H,0O, 0.14 g C hPa/kg H,O and 0.13 g C hPa/kg H,O,
respectively (Figure 1), which were much higher than their values in the spring/winter seasons. It
suggested that plants became more efficient in using water resources when they were water stressed.
Among the four formulations, INUE and uWUE demonstrated a stronger seasonal pattern, as both of
them showed a rapid increase in late April and May, maintained a high value for about two months
in summer, and started to decline in September (Figure 1c,d). Compared to IWUE, uWUE showed a
relatively smaller range and variability in summer (Figure 1d), most likely due to the use of the square
root of VPD. In contrast, WUE and WUE; showed less substantial changes in the spring and autumn
seasons and had a longer plateau of high values (Figure 1a,b). Note that WUE; contained more missing
values, reflecting additional difficulties in estimating WUE; (Figure 1b).

The three SIF time series also demonstrated a clear seasonal pattern. Among the three SIF bands,
SIFgsy showed less variation in both spring and autumn seasons (Figure 2a) and remained roughly
stable, with values around 0.14 mW/m?/sr/nm from the late spring to early autumn. In contrast, the
dynamics of SIF7;g and SIFzs; in 2014 showed a stronger seasonal pattern, as they increased very fast
in spring, maintained stability in the mature period, and dropped rapidly in autumn (Figure 2b,c).
Among these three SIF bands, SIF74; had the most pronounced emission, as its hourly emission peak
reached about 1.6 mW/m?/sr/nm, which was about 5 times higher than the emission peak of SIFsgy
(Figure 2a,c). The number of SIFsgy observations is less than that of SIF74;, which indicates that strong a
(re)absorption effect and weak emitted energy in red SIF may cause additional difficulties in retrieving
SIFcgy.
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All datasets have an hourly time step and are from between 7 a.m. and 5 p.m. local time.

WUE WUE; IWUE uWUE
SIF bands

LR GPR LR GPR LR GPR LR GPR
SIF¢gy 0.09 0.14 0.07 0.12 0.13 0.17 0.02 0.05
SIF75 0.00 0.08 0.11 0.14 0.42 0.48 0.23 0.36
SIF7¢1 0.00 0.08 0.14 0.17 0.44 0.52 0.25 0.34

SIF¢g7, SIF7¢; 0.24 0.44 0.15 0.20 0.49 0.62 0.39 0.55
SIFeg7, SIF70, SIF76;  0.23 0.46 0.15 0.28 0.59 0.65 0.36 0.61

Our results confirm that the SIF band combinations provide better predictive power than the single
SIF bands when they are used individually. Both of the two combinations have the best performance
in estimating IWUE. The LR results show that the combination of SIFsg; and SIF74; account for 49%
variability in hourly IWUE (Table 1). The more SIF bands are used in the combination, the greater
the likelihood of yielding a stronger predictive power. The combination of SIFggy, SIF7), and SIF74;
produces further improvement, which governs about 50% variability in IWUE (Table 1). Both of the
two R? values are better than that provided by SIF;;, which is the best single SIF band. Also, the GPR
models further enhance the predictive power of the band combinations. When the GPR models are
used, the two combinations can determine 62% and 65% of the INUE variances, respectively (Table 1).
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In fact, the band combinations also produce considerable improvements in R? with the other three
WUEs over using the single SIF bands (Table 1). For example, the combination of SIFeg7, SIF7y, and
SIFy4; achieves R? of 0.46, 0.28, and 0.61, with WUE, WUE;, and uWUE, respectively, whereas single
SIF7¢ yields R? of 0.08, 0.17 and 0.34 for these three WUEs (Table 1).

3.2.2. Performance in Predicting Daily WUEs

Longer time steps, such as daily, are more suitable in many applications. A recent model-based
study [41] showed that SIF-GPP correlations were enhanced at both leaf and canopy scales when
longer time steps were considered. Therefore, we also calculated SIF-WUEs’ correlations at a daily
time scale by using the LR and GPR models. Because the number of valid daily observations is much
smaller, we used a cross-validation to test for possible overfit in the regressions. Specifically, all daily
measurements (55) were randomly split into two groups: (a) a training group containing 60% of all
daily measurements, used to develop the regression models, and (b) a testing group containing the
other 40% that were used to test the performance of the predictions. We did not find an obvious
difference in the R? from the two groups (see the Supplementary Materials), which confirms no
overfitting in building the regression models. The below results, describing the relationships between
SIF and WUEs at a daily time step, were derived from all the daily measurements.

Overall, our results show that all the SIF-WUEs’ correlations are enhanced after aggregating from
hourly to daily scale (Table 2). SIFggy is still the weakest predictor for all the four WUESs, and its best
R?,0.41, is achieved when it is used to predict daily IWUE (Table 2). It shows this negative effect due
to the (re)absorption in red SIF emission, which is still strong at a daily time step. In contrast, SIF,
and SIF74; exhibit much higher correlations with the WUESs after the temporal aggregation, especially
when the GPR models are used (Table 2). Again, SIFys; produces the strongest correlations with the
WUESs among the three single SIF bands, as it captures 62% and 65% variance in daily IWUE for the LR
and GPR, respectively (Table 2). SIFys; can also explain 44%, 47%, and 57% of the variance in daily
WUE, WUE;, and uWUE, respectively (Table 2). Although SIFyy is not as strong a predictor as SIF4,
it is still superior to SIFsg;. For example, SIF7po accounts for 53% and 62% of the variability in daily
IWUE by using the LR and GPR models, respectively (Table 2).

Table 2. The correlation coefficient (R2) between the SIF bands and daily water use efficiency (WUE),
intrinsic water use efficiency (WUE;), inherent water use efficiency (IWUE), and underlying water use
efficiency (uWWUE) by using linear regression analysis (LR) and Gaussian processes regression (GPR),
respectively. The daily values were aggregated from hourly measurements between 7 a.m. and 5 p.m.

local time.
WUE WUE; IWUE uWUE
SIF bands
LR GPR LR GPR LR GPR LR GPR
SIFgg7 0.00 0.00 0.08 0.00 0.21 0.41 0.11 0.37
SIF75g 0.17 0.38 0.30 0.34 0.53 0.62 043 0.47
SIF7¢1 0.17 0.44 0.37 0.47 0.62 0.65 0.49 0.57
SIF¢g7, SIF7¢1 0.19 0.51 0.51 0.53 0.64 0.65 0.52 0.60
SIFgg7, STF7o0, SIF7¢1 0.24 0.58 0.52 0.65 0.67 0.70 0.58 0.63

At a daily time step, the band combinations demonstrate further improvements in their
correlations with the WUEs. The combination of SIFsg7 and SIFys; can explain more than 50% variance
in all WUEs when the GPR models were used (Table 2), and can also explain more than 60% of the
variance in IWUE and uWUE, respectively (Table 2). The combination using all the three single SIF
bands provided modest improvements, as it can explain 70% and 63% of the variance in daily IWUE
and uWUE with the GPR models (Table 2). Also, the combination of SIFsgy, SIF720, and SIFy; is a fairly
good predictor of daily WUE and WUE;, which provides R? of 0.58 and 0.65, respectively (Table 2).
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3.3. Responses of the SIF-IWUE Relationship to the Environmental Factors

Both model-based and field-based studies [39—41] have shown that SIF-GPP correlations may
deteriorate when solar radiation, VPD, and air temperature exceed their optimal biological thresholds.
Furthermore, the recent study [32] indicated that the performance of SIF emission in predicting T was
also dependent on a variety of environmental, biogeophysical, and biogeochemical factors. Therefore, it
is critical to investigate how SIF-WUEs relationship changes under different environmental conditions.
Because SIF emission produces the strongest correlations with IWUE (Tables 1 and 2), we analyze how
the SIF-IWUE relationships respond to changes in the different environmental factors including VPD,
solar radiation, air temperature, LAI, and observation time.

3.3.1. Effects of VPD on Correlations between IWUE and SIF Emission

VPD is typically used to represent water stress on plants [21]. Strong water stress may weaken
the link between photosynthesis activities and SIF emission [30,31]. Further, one important motivation
to develop the different WUE formulations is to remove the nonlinear effect of VPD on T. Thus,
it is essential to assess whether the SIF-IWUE relationship is still affected by VPD. To do so, we
calculated the R? between SIF emission and IWUE at an hourly time step under three VPD levels:
(1) low: VPD < 0.5 kPa, (2) medium: 0.5 kPa < VPD < 1.0 kPa, and (3) high: VPD > 1.0 kPa.

The results from the LR models indicate that VPD has no clear negative impact on the SIF-IWUE
correlations (Figure 3a). For example, SIF74; has almost the same performance by explaining 25%, 17%,
and 25% of the variance in IWUE under these three VPD levels, respectively (Figure 3a). Further, VPD
also has no obvious influence on the performance of the SIF band combinations. The combination
of SIFgg7, SIF7, and SIF74; determines 44% and 41% of the variance in IWUE under the low and
intermediate VPD levels and its performance only decreases slightly to 39% under high VPD values
(Figure 3a). Again, the results from the GPR models show that the SIF-IWUE correlations have a
relatively low sensitivity to VPD (Figure 3b). For instance, SIF;4; determines 39% of variability in
IWUE when VPD values are high, and the counterparts decrease to 37% and 22% when VPD values
are low and medium (Figure 3b). The predictive power of combined SIF bands for IWUE shows a
moderate improvement under the high VPD level. The R? of the combination of SIFgg;, SIFes7, and
SIF76 shows a correlation of R? = 0.69 against IWUE for the high VPD level, while it decreases to 0.62
and 0.53 under the low and intermediate VPD levels, respectively (Figure 3b).
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3.3.3. Effects of Air Temperature on INWUE-SIF Correlations

Too high air temperature reduces the activation of RuBISCO and thus photosynthesis rates.
Under heat stress, plants tend to release more absorbed energy by NPQ, which may weaken SIF
emission and photosynthesis activities [32]. Also, water loss through transpiration may increase to
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3.3.4. Effects of LAI on IWUE-SIF Correlations

An increase in LAI may result in more loss of SIF emission due to reabsorption and scattering
processes [29], which may deteriorate relationships between SIF and WUEs. Our previous studies
have shown that a dense canopy tends to negatively affect SIF-GPP/T relationships at a canopy level
[32,40]. Therefore, it is important to evaluate how different LAI values affect linkage between SIF
signals and IWUE. For this purpose, we calculated the SIF-IWUE correlations from hourly data under
three different LAI groups: (1) low: 0 < LAI<2.0, (2) medium: 2.0 < LAI<4.5, and (3) high: LAI > 4.5.
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They have the following different overpass times: 09:30 a.m. for GOME-2, 10:00 for SCIAMACHY,

12:00 for GOAST, and 13:30 for OCO-2. Also, both WUEs and SIF emission have strong diurnal cycles

(Figures 1 and 2). For an appropriate use of remotely-sensed SIF data for retrieving WUEs at a large

scale, it is particularly important to assess the impact of observation time of day on the SIF-IWUE



Remote Sens. 2018, 10, 796 13 of 19

shows the best correlations with INUE with R? of 0.49 and 0.58 for the LR and GPR, respectively
(Figure 6a,b).

3.3.5. Effects of Observation Time on IWUE-SIF Correlations

SIF emission has successfully been retrieved from measurements provided by spaceborne
spectrometer such as GOSAT [44], GOME-2 [45], SCanning Imaging Absorption SpectroMeter for
Atmospheric CHartographY (SCIAMACHY) [46], and Orbiting Carbon Observatory 2 (OCO-2) [47].
They have the following different overpass times: 09:30 a.m. for GOME-2, 10:00 for SCIAMACHY,
12:00 for GOAST, and 13:30 for OCO-2. Also, both WUEs and SIF emission have strong diurnal cycles
(Figures 1 and 2). For an appropriate use of remotely-sensed SIF data for retrieving WUEs at a large
scale, it is particularly important to assess the impact of observation time of day on the SIF-IWUE
relationship. To do so, we separate hourly SIF emission and IWUE into three different groups: morning
(7-10), midda sgsozo}és )b andeafisraoem, (15-17). 13019
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Overall, we find that SIF emission has the potential to predict the carbon-water exchange process
through stomata. Among the four different WUE formulations, SIF emission shows a good
performance in estimating IWUE and uWUE. The likely explanation is that the consideration of VPD
in IWUE and uWUE largely remove the nonlinear effect of VPD on T. In contrast, SIF emission shows
weaker correlations with WUE and WUE;, especially at an hourly time step. Because variations in the
traditional WUE (ET/GPP) still contain impacts of VPD, which cannot be tracked by SIF, the
correlations between WUE and SIF are typically low. Although WUEi is derived from the physical-
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4. Discussion

Overall, we find that SIF emission has the potential to predict the carbon-water exchange
process through stomata. Among the four different WUE formulations, SIF emission shows a good
performance in estimating IWUE and uWUE. The likely explanation is that the consideration of VPD
in IWUE and uWUE largely remove the nonlinear effect of VPD on T. In contrast, SIF emission shows
weaker correlations with WUE and WUE;, especially at an hourly time step. Because variations
in the traditional WUE (ET/GPP) still contain impacts of VPD, which cannot be tracked by SIF,
the correlations between WUE and SIF are typically low. Although WUE,; is derived from the
physical-based model, it involves numerous not-easily measured environmental variables, which
makes it difficult to use at a large scale. Also, the simplification assumptions needed in inverting the
P-M equation likely bring strong noises in its time series, which tends to undermine the performance
of SIF emission in predicting WUE;. When the daily daytime data are used, SIF emission demonstrates
a more powerful predictive capability of all these four WUEs. The recent studies [32,41] have shown
that SIF emission has a better performance in estimating both GPP and T at a longer time step. More
field- and model-based works are needed to analyze the reason for stronger SIF-IWUE correlations
under a longer temporal resolution.

Combining different SIF bands provides stronger correlations with IWUE than those when single
SIF bands were used individually. SIF emission at different spectra contains information on the
physiological status of plants. For example, most of red SIF emission comes from the photosystem II
(PSII) [48]. SIF emission in the near-infrared region contains contributions from both PSI and PSII [49]
and it was found to be closely correlated with GPP at both global [50,51] and local scales [52]. Thus, SIF
band combination should contain more complete information on plant physiological conditions. In this
study, we only used the combination of SIF emission at the three absorption lines. Full exploitation
of the complete SIF spectrum may provide further better performance of SIF emission in predicting
WUEs [32,39]. It is important to note that the performance of the full SIF spectrum depends on: (1) the
accuracy of the sensor, and (2) the approach used to reconstruct full SIF emission. Our spectrometer is
not the newest. Furthermore, the SCOPE model [39], which is currently used to build full SIF, may
not be the best option. More efforts are highly needed in better extracting the potential of full SIF. The
combinations of different SIF bands may bring more nonlinear behaviors. Also, our results show that
IWUE-SIF correlations show more non-linear behaviors when plants are under stressful conditions.
In both cases, nonlinear regression models such as GPR should be used.

We find that a variety of physiological and environmental factors affect SIF-IWUE relationships.
The interactions of these factors further complicate the link between SIF emission and IWUE. Among
them, VPD is found to have less of an effect on the SIF-IWUE correlations (Figure 3). The stable
SIF-IWUE correlations under different VPD values show that (1) incorporation of VPD into IWUE
largely removes impacts of VPD on GPP and T, and (2) VPD in 2014 showed no clear negative effect on
SIF-GPP and SIF-T correlations. However, it is important to note that the precipitation at the study site
in 2014 was higher than the multi-year average precipitation. The relatively wet condition in 2014 did
not allow us to fully analyze variations in SIF-IWUE relationships under severe water stress. SIF-IWUE
correlations may further deteriorate when more severe drought conditions occur. Thus, more field
experiments are needed to evaluate SIF-IWUE relationships under stronger water stress.

Our results show too high or too low LAI values that tend to deteriorate SIF-IWUE correlations.
Under low LAI values, more evaporation from bare soil should enhance nontranspiration flux, which
may weaken SIF-IWUE correlations. High LAI values have both positive and negative effects on
SIF-IWUE correlations. On the one hand, canopy closure reduces solar radiation received by the
ground and thus results in less contribution from soil evaporation, which tends to enhance SIF-IWUE
correlations. On the other hand, a dense canopy at high LAls leads to more (re)absorption in red SIF
and stronger scattering in near infrared SIF, both of which decouple the link between SIF emission
and latent energy measured at top of the canopy. Our results show that the negative effect associated
with high LAls is more pronounced when LAl is higher than 4.5. It suggests that a canopy radiation
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transfer model [53] may be needed to account for SIF losses due to scattering/absorption processes,
especially when SIF is used to estimate IWUE in ecosystems with dense canopy.

Previous studies have shown that observation time in the day has a limited impact on both
SIF-GPP and SIF-T correlations [32,40,41]. However, SIF-IWUE correlations vary as a function of
the observation time during the day and they are strongest in the afternoon. This phenomenon can
be explained by variations in evaporation of dew present in the canopy and soil. Specifically, the
SIF-IWUE correlation is considerably weakened in the morning, particularly in the early morning [54],
when evaporation of dew, a nontranspiration flux, contributes a large fraction of latent flux measured
at the top of canopy. Our results suggest that SIF-IWUE correlations derived from remotely sensed
SIF data, with an early morning overpass time such as GOME-2, may contain large uncertainties.
A model [55], which predicts occurrence and duration of dew events may be needed. When the
simulated dew is high, SIF emission may be not suitable for predicting IWUE.

The response of the SIF-IWUE correlations to air temperature shows they are affected by
confounding factors. Theoretically, both SIF-GPP and SIF-T correlations [32,41] degrade under heat
stress due to more energy release through heat dissipation. Although higher air temperature in the
afternoon may cause lower SIF-GPP and SIF-T correlations, we find that the benefit, due to less dew
evaporation in the afternoon, may largely counteract these negative effects. However, it is important
to note that the study site had no strong heat stress in 2014 such that further experiments are needed to
evaluate SIF-IWUE correlations in high air temperature. Furthermore, relatively cool air temperature
in the morning may enhance both SIF-GPP and SIF-T correlations [32,41], while more evaporation of
dew tends to weaken the capability of SIF to predict T.

Our results show that the intensity of PAR has a limited negative effect on SIF-IWUE correlations.
Nonlinear models such as GPR should be used when solar radiation is close to the saturation. Also,
the band combinations, especially the one using SIFg7, SIF7,0, and SIF74;, provide stable performance
under the PAR saturation. We also find that a clear sky condition, which may be used to select
good-quality satellite observations, has a marginal impact on SIF-IWUE correlations. It confirms that
remotely sensed SIF datasets can be used to derive SIF-IWUE correlations. Data with k>0.8 are more
likely measured under the PAR saturation condition. Our results show that the intensity of PAR has a
limited negative effect on the SIF-IWUE correlations such that these correlations tend to have a limited
decrease under different sky clearness conditions.

The authors are aware of several limitations in this study. Compared to new spectrometers such as
QE Pro spectrometer (OceanOptics, Inc, Dunedin, Florida), the signal-to-noise ratio (250:1) of our
spectrometer is relatively lower such that measurements of SIF emission may contain more noise,
especially in the red SIF emission. More important, recent studies [56,57] have shown that near-infrared
radiation such as SIFy¢; also contains information on canopy structure such that a directional effect may
lead to uncertainties in retrieving SIF signals. Also, SIF signals measured in this study are only part of
total SIF emission, while measurements of GPP and T contain contributions from the whole canopy.
SIF-IWUE relationships derived from total canopy SIF emission should be more robust, especially
under high LAI values. To reduce these uncertainties, a process-based radiation transfer model can be
used to separate physiologically and directionally induced changes in SIF emission [58,59]. Finally, it is
important to note that one important assumption in developing SIF-WUEs models is that transpiration
flux dominates ET. Therefore, SIF-IWUE correlations would be weaker in wetlands or irrigated lands
where nontranspiration flux may be significant.

5. Conclusions

By using continuous records of SIF measurements, carbon and latent heat fluxes, this study shows
that SIF emission can serve as a good predictor of IWNUE and uWUE, two WUE formulations with
consideration of VPD effect, in a temperate deciduous forest. However, SIF emission has weaker
correlations with WUE and WUE;. The predictive capability of SIF emission is dependent on a
variety of environmental, biogeophysical, and biogeochemical factors including solar radiation, LAI,
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observation time, and air temperature. In particular, we find that (1) the models using SIF band
combinations provide more a powerful capacity to estimate IWUE than the models using single SIF
bands, (2) a temporal aggregation to the daily scale can further enhance the SIF-IWUE correlations,
especially when SIF band combination and non-linear models are considered, (3) PAR saturation
shows a limited negative effect on the SIF-IWUE correlations, but more experiments are highly needed,
(4) too high LAIs largely reduce the SIF-IWUE correlations due to (re)absorption and scattering of
SIF emission, (5) large nontranspiration flux due to soil and dew evaporation significantly reduces
the SIF-IWUE correlations, and (6) it is desirable to use SIF emission measured in the afternoon for
retrieving IWUE when dew evaporation is low.

This study provides a new SIF application in understanding the nexus between carbon uptake
and transpiration loss in terrestrial ecosystems. In comparison to physical models that are inputs
demanding and complex, a SIF-based approach offers a simple but powerful way to investigate carbon
uptake and water loss in plants at a large spatial scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/5/796/
s1. Figure S1: The responses of hourly daytime (a) gross primary production (GPP, umol CO, m/s) and (b)
transpiration (T, mm/hour) to incident photosynthetically active radiation (PAR, umol photons/m?/s) during
the growing season in 2014. Figure S2: The hourly clearness index at the Harvard site in 2014. Table S1: The

correlation coefficient (R?) of the training and testing groups in predicting and daily WUEs by using the linear
regression analysis (LR) and Gaussian processes regression (GPR), respectively. This section also describes the
details in estimating SIF emission from irradiance and radiance measurements.
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