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Abstract

This paper has double scope. In the first part we study the limiting eigenvalue distribution
of a n X n symmetric matrix with dependent entries. For a class of generalized martingales we
show that the asymptotic behavior of the empirical spectral distributions depends only on the
covariance structure. Applications are given to strongly mixing random fields. The technique
is based on a blend of blocking procedure, martingale techniques and multivariate Lindeberg’s
method. This means that, for this class, the study of limiting eigenvalue distribution is reduced
to the Gaussian case. The second part of the paper contains a survey of several old and
new asymptotic results for the eigenvalue distributions for Gaussian processes, which can be
combined with our universality results.

1 Introduction.

The distribution of the eigenvalues of random matrices is useful in many fields of science such as
statistics, physics and engineering. The celebrated paper by Wigner (1958) deals with symmet-
ric matrices having i.i.d entries below the diagonal. Wigner proved a global universality result,
showing that, asymptotically and with probability one, the empirical distribution of eigenvalues
is distributed according to the semicircle law (see Chapter 2 in Bai and Silverstein (2010) for
more details). The only parameter of this law is the variance of an entry. This result was ex-
panded in various directions. The first generalization was to decrease the degree of stationarity
by replacing the condition of equal variance by weaker assumptions of the Lindeberg’s type.
Another direction of generalization deals with weakening the hypotheses of independence by
considering various notions of weak dependence. For symmetric Gaussian matrices with corre-
lated entries, works of Khorunzhy and Pastur (1994), Boutet de Monvel et al. (1996), Boutet
de Monvel and Khorunzhy (1999), Chakrabarty et al. (2016), Peligrad and Peligrad (2016)
showed that the limiting distribution of the symmetric matrix depends only on the covariance
structure of the underlying Gaussian process. The limiting distribution is rather complicated
and the best way to describe it is by specifying an equation satisfied by its Stieltjes transform.

A way to symmetrize a matrix is to multiply it with its transpose. These matrices, known
under the name of Gram matrices or sample covariance matrices, play an important role in
statistical studies of large data sets. The spectral analysis of large-dimensional sample covariance
matrices has been actively studied starting with the seminal work of Marcenko and Pastur
(1967) who considered independent random samples from an independent multidimensional
vector. A big step forward was the study of the dependent case represented in numerous papers.
Basically, the entries of the matrix were allowed to be linear combinations of an independent
sequence. The first paper where such a model was considered is by Yin and Krishnaiah (1983)
followed by important contributions by Yin (1986), Silverstein (1995), Silverstein and Bai (1995),



Hachem et al. (2005), Pfaffel and Schlemm (2011), Yao (2012), Pan et al. (2014), Davis et al.
(2014), among many others. Another type of model was considered by Bai and Zhou (2008)
based on independent columns. The dependence type-condition imposed to the colums is in
particular satisfied for isotropic vectors with log-concave distribution (see Pajor and Pastur
(2009)) but may be hard to verify for non linear time series (such that ARCH models) or
requires rate of convergence of mixing coefficients. Let us also mention the recent papers by
Yaskov (2016-a, 2016-b) where a weaker version of the Bai-Zhou’s dependence type condition
has been introduced.

In two recent papers Banna et al. (2015) and Merlevéde-Peligrad (2016), have shown that,
for two situations, namely for symmetric matrices whose entries are functions of independent
and identically distributed random fields or for large sample covariance matrices generated
by random matrices with independent rows, the limiting distribution of eigenvalues counting
measure always exists and can be described via an equation satisfied by its Stieltjes transform.

Even if many models encountered in time series analysis can be rewritten as functions
of an ii.d. sequence, this assumption is not completely satisfactory since many stationary
processes, even with trivial left sigma field, cannot be in general represented as a function of
an ii.d sequence, as shown for instance in Rosenblatt (2009). Moreover, the assumption of
independence of the rows or of the columns generating the large sample covariance matrices
may be too restrictive.

The main goal of our paper is then to continue the study the asymptotic behavior of the
empirical eigenvalue distribution of symmetric matrices and large sample covariance matrices
associated with random fields when the variables are not necessarily functions of an i.i.d. se-
quence or when the rows (or columns) are not necessarily independent. In the first part of the
paper we shall show that the universality results hold for both symmetric and symmetrized
random matrices when the dependence is controlled by the projective coefficients. These coef-
ficients are easy to estimate in terms of weak strong mixing coefficients. By "universality" we
mean that the limiting distribution of the eigenvalues counting measure depends only of the
process’ covariance structure. Therefore our result reduces the study of the limiting spectral
distribution (LSD) to the case of a Gaussian field with the same covariance structure. In the
second part of the paper we survey old and new results for the Gaussian case, which one can
combine with the universality theorems, for obtaining the existence and the characterization of
LSD.

Our paper is organized as follows. Section 2 contains the notations and the universality
results. In Section 3 we apply our results to classes of strongly mixing random fields. Then,
Section 4 is dedicated to LSD results for Gaussian random fields. All the proofs are given in
Section 5. Several auxiliary results needed in the proofs are given in Section 6.

Here are some notations used all along the paper. The notation [x] is used to denote the
integer part of a real . The notation 0, ; means a matrix of size px g, (p,q) € N? with entries 0.
For a matrix A, we denote by A” its transpose matrix, by Tr(A) its trace. We shall also use the
notation || X||, for the L"-norm (r > 1) of a real valued random variable X. For two sequences
of positive numbers (a,) and (by,) the notation a,, < b, means that there is a constant C' such
that a, < Cb, for all n € N. We use bold small letters to denote an element of Z?, hence
u = (u1,uz) € Z2. For u = (uy,uz) and v = (v1,v2) in Z2, the following notations will be used:
|lu — v| = max(Ju; — v1], |ug — v2|) and w A v = (ug A ug, v Avg) (where us A ug = min(ug, us)).



2 Results

Let (Xu)uen2 be a real-valued random field defined on a probability space (§2, F,P). We
consider the symmetric n X n random matrix X,, such that, for any ¢ and j in {1,...,n}

(Xp)ij = X;j for i >j and (1)
(Xp)ij = Xji fori<j.

Denote by A} <--- < AT the eigenvalues of

1

and define its spectral distribution function by

P (f) = - > I <),

1<k<n
where I(A) denotes the indicator of an event A. The Stieltjes transform of X,, is given by
1 1
§5n(z) = / AFF () = TTr(X, — 21,) (3)

r—z

where z = u+iv € C* (the set of complex numbers with positive imaginary part), and I,, is the
identity matrix of order n. In particular, if the random field is an array of i.i.d. random variables
with zero mean and variance o2 > 0, then Wigner (1958) proved that, with probability one,
and for any z € C*, S%(2) converges to S(z), which satisfies the equation 6252 + S+ 2~1 = 0.

Its solution
S(z) = —(z — V22 — 402)(20%) 7t (4)

is the well-known Stieltjes transform of the semicircle law, which has the density

g(x) = ! Vido? — 22I(|z] < 20).

2mo?

Note that it is not necessary for the random variables to have the same law for this result to
hold. Indeed, if the random field (Xy)ycz2 is an array of independent centered random variables
with common positive variance o2, which satisfies the Lindeberg’s condition given in Condition
1 below, then for all z € C*, S%7(z) converges almost surely to the Stieltjes transform of the
semicircle law with parameter o2 (see for instance Theorem 2.9 in Bai and Silverstein (2010)).
Note that the necessity of the Lindeberg’s condition has been stated in Girko’s book (1990).
Another way to state the Wigner’s result is to say that the Lévy distance between the
distribution function F*» and G, defined by G(z) = ffoo g(u)du, converges to zero almost
surely. Recall that the Lévy metric d between two distribution functions F' and G, defined by

d(F,G)=inf{e >0 : Flx—¢)—e<G(zx) < F(z+e¢e)+e,VzeR}.

The aim of this paper is to specify a class of random fields for which the limiting behavior
of F*(t) depends only on the covariances of the random variables (Xy)yen2 and not on the
structural dependence structure. In other words, we shall show that the limiting distribution of
F%n(t) can be deduced from that one of F¥(t) where Y,, is a Gaussian matrix with the same
covariance structure as X,,. Since the estimate of the Lévy distance between F¥» and FY» can
be given in terms of their Stieltjes transforms (see, for instance, Theorem B.12 and Lemma B.18
in Bai and Silverstein (2010) or Proposition 2.1 in Bobkov et al. (2010)), we shall compare their
Stieltjes transforms.

Our first result compares the Stieltjes transform of a matrix satisfying martingale-like pro-
jective conditions with the Stieltjes transform of a matrix with Gaussian independent entries.
We shall assume that X,, is defined by (2), and satisfies the Lindeberg’s condition below:



Condition 1. (i) The variables (X;;); j are centered at expectations.
(2) There exists a positive constant C' such that, for any positive integer n,

1 2
—~ Y EX}) <C.

n2i>j>1
(i1i) For every e > 0,
1 2 1/2
Lo(e) =3 > BEGI(Xy|>en'/?) — 0.
n>i>j>1

Clearly the items (ii) and (iii) of this condition are satisfied as soon as the family (XZQJ)
is uniformly integrable or the random field is stationary and in L2 (recall that a random field
(Xu)ueze is said to be (strictly) stationary if the law of (Xytv)uezz does not depend on v € Z2).

To introduce our martingale-like projective conditions (6) and (7) below as well as our
regularity-type condition (8), we need to introduce the filtrations we shall consider:
For any non-negative integer a, let us introduce the following filtrations:

Filoo=0Xuw:1<u<i—a,v>1)ifi>aand 77 = {Q,0} otherwise (5)
Fooj=0(Xuw:u>1,1<v<j—a)if j >aand Fy ; = {Q,0} otherwise
Fir=FloUFs -
Note that X;; is adapted to ]-"g We are now in position to state our first result.

Theorem 2. Assume that X,, satisfies Condition 1 and, as n — oo,
sup [|B(Xi;|7)ll2 — 0 (6)
i>j
and
n? sup |B(Xij Xap| Fiha i) — B(Xij Xap) |1 — 0, (7)

where the supremum is taken over all pairs (i,7) # (a,b) with i > j and a > b. In addition
assume that

$1>1p ||E(Xz2j\]:;;) — E(X%)Hl — 0 as n — oo. (8)
i>]
Then for all z € C*

S%n(z) — §¥n(2) — 0 in probability as n — oo, 9)

where Y, is a Gaussian matriz of centered random variables with the same covariance structure
as X, and independent on X, and Y, =Y, /\/n.

Comments 3. Conditions (6) and (7) can be viewed as a generalization of the martingale
condition given in Basu and Dorea (1979) which is E(X”U-"le) =0 a.s. for any ¢ > j > 1. Both
conditions (6) and (7) are obviously satisfied for this type of martingale random field, and then,
the conditions of Theorem 2 are reduced just to Condition 1 and (8). Results for other type
of martingale random fields based on the lexicographic order can be found in Merlevéde et al.
(2015).

Note also that Condition (8) is a regularity condition. For instance, in case where Fiy =
nnzo Fi; is the trivial o-field, then this condition is automatically satisfied. Let us also mention
that the conditions (6), (7) and (8) are natural extensions of projective criteria used for obtaining
various limit theorems for sequences of random variables. As in the case of random sequences,
the conditions (6), (7) and (8) can be handled either with the help of "physical measure of



dependence" as developed in El Machkouri et al. (2013) for functions of i.i.d. random fields or
by using mixing coefficients (see Section 3.1).

We should also mention that we can allow for dependence of n of the variables in X,,. The
conditions in the theorem below have to be then generalized in a natural way. For instance,
conditions (6) and (7) should become

lim supsup ||E(X;,,

mM—=00 1 >4

Fijn)llz2 =0

and
lim m?sup  sup  [|E(XijnXabnl Fira jnbn) — B(XijnXapn)lt =0.
MO0 21 (ig)#(asb)
Based on the above theorem we shall treat two special cases of symmetric random matrices,
namely X + X7 and the covariance matrix given in definition (17).
We consider first the symmetric n x n matrix Z, = [Z;;]?._; with Z;; = X;; + X; and we
set

n.
/L?]:
o, . (10)

This type of symetrization is important since it leads to a symmetric covariance structure. If
(Xij) (i jyeze 18 L2-stationary meaning that, for any (4,5) € Z?2, E(Y;;) = m and

oV (Xu,vs Xktuerv) = cov(Xoo, Xke) = cre,
for any integers u, v, k, £, we get that (Zij)(i,j)622 is also a L2-stationary random field satisfying
cov(Zij, Zie) = b(k — i, — j) + b(k — j,¢ — i) with b(u,v) = Yuo + Yo,u -

Notice then that b(u,v) = b(v,u). This symmetry condition on the covariances is used for
instance in Khorunzhy and Pastur (1994, Theorem 2) to derive the limiting spectral distribution
of symmetric matrices associated with a stationary Gaussian random field when the series of
the covariances is absolutely summable.

Our next Theorem 4 shows that a similar conclusion as in Theorem 2 holds for Z,, defined
above. However, due to the structure of each of the entries, the sequence (X;;) has to satisfy the
conditions of Theorem 2 but with the conditional expectations taken with respect to a larger
filtration. Roughly speaking the filtrations in Theorem 2 are the union of two half planes,
whereas in Theorem 4 they are defined as the sigma-algebras generated by all the variables
outside the union of two squares. More precisely these latter filtrations are defined as follows:
for any non-negative integer a,

.7?% =0 (Xuy : (u,v) € Z? such that max(|i — ul,[j —v[) > a). (11)
Note that X;; is adapted to fg

Theorem 4. Assume that Zy, is defined by (10) where the variables X;; satisfy condition 1. In
addition assume that

sup |E(X;|F75)]|l2 — 0 as n — oo, (12)
(2]
n? sup [|E(Xj X FL 0 Fiy) — B(XijXap)ll1 — 0 as n — oo, (13)
where the supremum is taken over all pairs (i,7) # (a,b). In addition assume that
sup HE(X%\%Z) — E(XEJ)Hl — 0 as n — oo. (14)
(4,9)
Then, for all z € CT,
SZn(z) — SWn(2) — 0 in probability as n — oo, (15)

where W,, = [Wijmjzl with Wi; = Yi;+ Y}, (Yij) being a real-valued Gaussian centered random
field with the same covariance structure as X, and independent on X,,, and W, = W, //2n.



Let (Xu)uezz be a random field of real-valued square integrable variables and (Yy)uczz be
a real-valued Gaussian random field with the same covariances. Let N and p be two positive
integers and consider the N x p matrices

Xnp = (Xij)1§¢§N,1§jgpv Pnp = (Yij)1§i§N,1§j§p' (16)

Define now the symmetric matrices By and Gy of order N by

1 T 1 T
NXvaXN,p’ GN = NFN’pFN’p' (17)

The matrix By is usually referred to as the sample covariance matrix associated with the
process (Xy)uezz. It is also known under the name of Gram random matrix. In particular, if
the random field (Xy)yucz2 is an array of i.i.d. random variables with zero mean and variance
o2, then the famous Marcenko and Pastur (1967) theorem states that, if p/N — ¢ € (0, 00),
then, for all z € C*, SBN(2) converges almost surely to S(z) = S, which is the unique solution
with ImS(z) > 0 of the quadratic equation: for any z € C*,

By =

20282 + (2 —co® +0%)S +1=0. (18)

This means that P(d(F®~, F.) — 0) = 1, where F, is a probability distribution function of the
so-called Marchenko-Pastur distribution with parameter ¢ > 0. That is F,. has density

o) = —

- 2nwo?
and a point mass 1 — ¢ at the origin if ¢ < 1, where a = 0%(1 — v/c)? and b = o%(1 + /¢)2.
Note that this result still holds if the random field (Xy)4ez2 is an array of independent centered
random variables with common positive variance o2, which satisfies the Lindeberg’s condition
1 (see Pastur (1972)). Moreover, in this situation, the Lindeberg’s condition is necessary as
shown in Girko (1995, Theorem 4.1, Chapter 3) (see also Corollary 2.3 in Yaskov (2016-b)).
When we relax the independence assumption, the following result holds.

(x—a)(b—x)I(a <z <b)

Theorem 5. Assume (Xy)yeze is as in Theorem 2. Then, if p/N — c € (0,00), for all z € CT,
SBN (2) — SCN(2) — 0 in probability, as N — occ.

All our results can be easily reformulated for random matrices with entries from a stationary
random field. For some applications it is interesting to formulate sufficient conditions in terms
of the conditional expectation of a single random variable. For this case it is natural to work
with the extended filtrations.

Let now (X;;) be a stationary real-valued random field. For any non-negative integer a, let
us introduce the following filtrations:

Filow=0Xuw u<i—a, veEL);
Fooj =0(Xuw:v<j—a, u€Z) F;=F'UF,,.
We call the random field regular if for any u € Z2, B(XoXu|FXe) = E(XoXu) a.s.

Theorem 6. Assume that X,, is defined by (2) where (X;;) is a stationary, centered and regular
random field. Assume the couple of conditions

3" EIXuE(Xo|Fg!)| < o0 (19)
uclp

and
p2 sup E|XUE(X0|J’:£)| — 0, asp — o0,
ucVp:ju|>p
where Vo = {u = (u1,us) € Z% : u; < 0 or ug < 0}. Then the conclusions of Theorems 2 and
5 hold.



Condition (19) implies that ) .2 |cov(Xo, Xy)| < 0o and is in the spirit of condition (2.3)
given in Dedecker (1998) to derive a central limit theorem for stationary random fields. As we
shall see in Section 3.1, when applied to stationary strongly mixing random fields, the conditions
of Theorem 6 require a rate of convergence of the strong mixing coefficient with only one point
in the future whereas the conditions of Theorems 2 and 5 require a rate of convergence of the
strong mixing coefficient with two points in the future.

Combining Theorem 6 with Theorem 11 concerning Gaussian covariance matrices, the fol-
lowing corollary holds:

Corollary 7. Let By be defined by (17). Under the assumptions of Theorem 6 and if p/N —
c € (0,00), d(FBN, F) — 0 in probability where F is a nonrandom distribution function whose
Stieltjes transform S(z), z € CT is uniquely defined by the spectral density of (X;;) and satisfies
the equation stated in Theorem 11.

3 Examples

3.1 Strongly mixing random fields

Let us first recall the definition of the strongly mixing coefficient of Rosenblatt (1956): For any
two o-algebras A and B define the strongly mixing coefficient «(.A4, B) is defined by:

a(A,B) =sup{|P(ANB) —P(A)P(B)|;A€ Aand B € B}.
An equivalent definition is:
2a(A, B) = sup{|E(|P(B|A) —P(B)|) : B € B},
and, according to Bradley (2007), Theorem 4.4, item (a2), one also has
4a(A, B) = sup{||E(Y|A)||1 : Y B-measurable, ||Y|lcc =1 and E(Y) =0} . (20)
For a random field X = (Xy)uez2, let

alyx(n)zsup a(Fi;,0(Xi5)) and ag,x(n):( s),uI() )a(]-}”AaJ/\b,a(Xij,Xab)).
%,] 4,7)#(a,b

Note that a;x(n) < azx(n). For a bounded centered random field the mixing condition
required by Theorem 2 (or by Theorem 5) is

nasx(n) — 0.
while for Theorem 6, provided the random field is stationary, we need the couple of conditions:

azx(n) — 0 and ZnaLx(n) < 00.
n>1

If for some § > 0 we have sup, || Xull2+5 < oo and the random field is centered then, by the
properties of the mixing coefficients, applying, for instance, Lemma 4 in Merlevéde and Peligrad
(2006) (see also Bradley (2007) and Annex C in Rio (2017)), we infer that the conclusions of
Theorems 2 and 5 are implied by

’I’LQ(CMQ’X(’IL))(S/Q—HS) 0.

Moreover, if we assume stationarity of the random field, Theorem 6 requires the couple of
conditions:
azx(n) — 0 and Zn1+4/5a1,x(n) < 00.
n>1

7



Slightly more general results can be given in terms of the quantiles functions of | Xy| (see Rio
(2017)).

We refer to the monograph by Doukhan (1994) for examples of strong mixing random fields.
Let us also mention the paper by Dombry and Eyi-Minko (2012) where, for max-infinitely di-
visible random fields on Z%, upper bounds of the strong mixing coefficients are given with the
help of the extremal coefficient function (examples such as the Brown-Resnick process and the
moving maxima process are considered). Strong mixing coefficients can also be controlled in
the case of bounded spin systems. For instance, in case where the family of Gibbs specifications
satisfies the weak mixing condition introduced by Dobrushin and Shlosman (1985), the coef-
ficient ag, decreases exponentially fast. This is then the case for Ising models with external
fields in the regions where the temperature is strictly larger than the critical one (we refer to
Dedecker (2001, Section 2.3) and to Laroche (1995) for more details).

Below, is another example of a random field for which the strong mixing coefficients can be
handled.
Ezample: Functions of two independent strong mizing random fields. Let us consider two real-
valued independent processes U = (Ujj,4,j € Z) and V = (Vj;,1,j € Z) such that, setting
Ul = (Uij,% € Z), the processes UWY), j € Z, are mutually independent and have the same
law as (U;,i € Z) and, setting V ;) = (Vj5,7 € Z), the processes V;), i € Z are also mutually
independent and have the same law as (Vj,j € Z). For any measurable function h from R? to
R, let
Xij = h(Usj, Vij) — B(h(Usj, Vij)), (21)

provided the expectation exists. Note that the random field X = (Xj;,7,j € Z) does not have
independent entries across the rows nor the columns (except if we have that for any j fixed,
the r.v.’s Ujj, i € Z are mutually independent as well as the r.v.’s Vj;, j € Z, for any i fixed).
Hence, the results in Merlevéde and Peligrad (2016) do not apply. Let FY = o(Uy, ¢ < k) and
FY =0(Vy, £ < k), and define

aru(n)=supa(FL,,o(Uy) , azu(n)= sup a(F2,,a(UsU)))

1—n? .. B . 1—n?
7 1,7 :>1
and
apy(n)=sup (FY,,0(V;) , agv(n)= sup a(FY,,0(V;, V).
1 1,7 :)>1

Due to the definition of the strong mixing coefficients, it follows that

Oél7x(’rL) < aLU(n) + a17v(n) and a27x(n) < 0427U(TL) + 0427\/(77,) .

(See for instance Theorem 6.2 in Bradley (2007)). So, if we assume for instance that the function
h is bounded and that n?(asuy(n) + azv(n)) — 0, then Theorem 2 applies. Moreover if we
assume in addition that the sequences (U;;,% € Z) and (V;;,j € Z) are stationary and that

Z n(az,u(n) + azv(n)) < oo,
n>1

then, according to Corollary 7, we derive that, if p/N — ¢ € (0,00), for all z € C*,
SBN (z) — S(2) in probability as N — oo,

where By is the Gram random matrix defined by (17) and S is defined in Theorem 11.



3.2 A convolution example

Let U = (Ujj,1,j € Z) be a stationary centered regular martingale difference random field in
L2, meaning that sup; ; [|Uijll2 < oo and that, setting Gj; = o(Vie, k <i—aor £ <j—a),

E(Ui|Gi;) = 0 as. and [|E(U3|Gg) — E(UG)|l1 — 0 as n — oo.

Let € = (g45,1,7 € Z) be an iid centered random field in L.*°, independent of U and (aye, k, ¢ €
N) be a double indexed sequence of real numbers such that ZWeN(kQ + 0%)|ak¢| < co. Set
Vij = Zk,ﬁez ae€i—k,j—¢ and define the stationary centered random field X = (Xy)yeze2 in L2
by setting X;; = U;; + V;;. It is easy to see that X satisfies the conditions of Theorem 6.

4 LSD for stationary Gaussian random fields

In this section we survey several old and new results for stationary Gaussian random fields that
could be combined with our universality results in order to decide that the LSD exists and to
characterize it. Relevant to this part is the notion of spectral density. We consider a centered
stationary Gaussian random field (Y;)(; j)ez2, meaning that for any (7, j) € 7% E(Y;5) = 0 and

COV<YU,U7 Yk+u,£+v) = COV(YO,07 Yk,f) = Ykl 5

for any integers w,v, k, . According to the Bochner-Herglotz representation (see for instance
Theorem 1.7.4 in Sasvari (2013)), since the covariance function is positive definite, there exists
a unique spectral measure such that

cov(Yp,0, Vi) = /[ . ?mikutto) Py, dv), for all k, 0 € Z.
0,1

If F' is absolutely continuous with respect to the Lebesgue measure A ® A, we have

Vi := cov(Yo 0, Yie) = / 2mikutto) £y v)dudv, for all k, £ € Z. (22)
[0,1]2
Khorunzhy and Pastur (1994) and Boutet de Monvel and Khorunzhy (1999) treated a class
of Gaussian fields with absolutely summable covariances,

> el < 00, (23)

kLEZ

and a certain symmetry condition. They described the limiting distribution via an equation
satisfied by the Stieltjes transform of the limiting distribution. Since the covariance structure
is determined by the spectral density, this limiting distribution can be expressed in terms of
spectral density which generates the covariance structure. More precisely, if we consider the
n X n random matriz 'Y, with entries Y; ; and the symmetric matrix
1 T

W,, = E(Yn +Y,), (24)
Theorem 2 in Khorunzhy and Pastur (1994) (see also in Theorem 17.2.1. in Pastur and
Shcherbina (2011)) gives the following:

Theorem 8. Let (Yk7g)(k7g)622 be a centered stationary Gaussian random field with spectral
density f(z,y). Denote b(z,y) = 271(f(x,y) + f(y,x)). Assume that (23) holds. Let W,, be
defined by (24). Then P(d(FWn,F) — 0) = 1, where F is a nonrandom distribution function
whose Stieltjes transform S(z) is uniquely determined by the relations:

1
S(z) = /0 g(z,2)dz, z€ CT, (25)

9



-1

o) =~ (=4 [ ot ) (26)

where for any z € CT and any z € [0,1), g(z, 2) is analytic in z and

Img(z,2)-Imz >0, |g(z,2)] < (Imz)"t,

and is periodic and continuous in x.

For the symmetric matrix W,, defined by (24) and constructed from a stationary Gaussian
random field, Chakrabarty, Hazram and Sarkar (2016) proved the existence of its limiting spec-
tral distribution provided that the spectral density of the Gaussian process exists. Their result
goes then beyond the condition (23) requiring that the covariances are absolutely summable.
It was completed recently by C. Peligrad and M. Peligrad (2016) who obtained a characteriza-
tion of the limiting empirical spectral distribution for symmetric matrices with entries selected
from a stationary Gaussian field under the sole condition that its spectral density exists. Their
theorem 2 is the following:

Theorem 9. Let (Yi¢)xoecz2 be a centered stationary Gaussian random field with spectral
density f(x,y). Let W, be defined by (24). Then, P(d(FW~,F) — 0) = 1, where the Sticltjes
transform S(z) of F is uniquely defined by the relation (25) where for almost all z, g(x, z) is a
solution of the equation (26).

If the spectral density has the structure f(z,y) = u(z)u(y), the equation (25) simplifies as

S() = — (14 %(),

where v(z) is solution of the equation

o(z) = — ! u(y)dy - +
R A T

with v(z) analytic, Imv(z) > 0 and |v(2)] < (Im 2) 7| Yo,0l|2-

In particular, if the random field is an array of i.i.d. random variables with zero mean and
variance o2, then u(z) is constant and S(z) satisfies the equation (4).

The following new result, gives the existence of LSD for large covariance matrices associ-
ated with a stationary Gaussian random field. Its proof is based on the method of proof in
Chakrabarty et al. (2016).

Proposition 10. Let (Yz‘j)(i,j)eZ2 be a stationary real-valued Gaussian process with mean zero.
Assume that this process has a spectral density on [0,1]? denoted by f. Let N and p be two
positive integers and consider I, the N x p matrixz defined by I'y , = (Y;'j)1<i<N,1<j<p' Let
also Gy = %FNﬁpF?\ﬂ,,p. Then, when p/N — ¢ € (0,00), there exists a deterministic probability
measure iy determined solely by ¢ and the spectral density f, and such that the spectral empirical
measure g, converges weakly in probability to .

For the case when the covariance are absolutely summable we cite the following result which
is Theorem 2.1 in Boutet de Monvel et al. (1996). It allows to characterize the LSD p¢ of Gy
via an equation satisfied by its Stieltjes transform.

Theorem 11. Assume that the assumptions of Proposition 10 and that condition (23) holds.
Then, when p/N — ¢ € (0,00), P(d(FEN,F) — 0) = 1 where F is a nonrandom distribution
function whose Stieltjes transform S(z), z € CT is uniquely defined by the relations:

S(z) = /01 Wz, 2)dz |
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where h(z,z) is a solution of the equation

_ ! f(J}? 3) -1
e, 2) = (_ : +C/O 1+ fol f(u, s)h(u, z)dud8> ’

with f(x,y) the spectral density given in (22).

When we assume that the entries of 'y, is a sequence of i.i.d., mean zero and with variance
o2 then S(z) satisfies the equation (18) of the Marcenko and Pastur distribution. In view
of Proposition 10 and of Theorem 11, it is still an open question if, without imposing the
summability condition (23) on the covariances, one could still characterize the LSD of Gy.

5 Proofs

The notation V,} = {(i,);4 > j with 4 and j in {1,...,n}} will be often used along the proofs.

5.1 Proof of Theorem 2

The proof is based on a Bernstein-type blocking procedure for random fields and the Lindeberg’s
method. The blocking argument, originally introduced by Bernstein (1927) in order to prove
an extension of the central limit theorem to r.v.’s satisfying dependent conditions, consists of
making "big blocks" interlaced by "small blocks" which have a negligible behavior compared to
the one of the "big blocks". In the context of random fields, this blocking argument can also be
used (see for instance Tone (2011), where the asymptotic normality of the normalized partial
sum of a Hilbert-space valued stationary and mixing random field is proved with the help of
a blocking procedure). In our context, the "big" blocks, called B; ; in the figure below, are of
size p (with p depending on n and such that p/n — 0) and the "small" blocks will consist of
bands of width K with entries which are zero and with K negligible with respect to p. As we
shall see below, this blocking procedure can be efficiently done because, roughly speaking, the
limiting spectral density distribution is not affected by changing a number of o(n?) variables.

Now the Lindeberg’s method will consist of replacing one by one each of the "big" blocks
with blocks of the same size but whose entries are those of a Gaussian random field having the
same covariance structure as the initial process.

The blocking procedure combined with the Lindeberg’s method does not seem very classical
in the context of random matrices. It has been however recently used in Banna et al. (2015)
and in Merlevede and Peligrad (2016), but in the context where the entries of the matrices are
functions of an i.i.d. random fields in the first mentioned paper, or in the context where the
rows or the columns of the matrix are independent, in the second one. These conditions are not
assumed in the context of the present paper. This makes the situation more delicate. Indeed,
concentration inequalities of the Stieltjes transform around its mean are not available, hence we
cannot restrict the study to the difference between the expectations of the Stieltjes transforms.
However, as we shall see, this issue can be bypassed by approximating the random matrix with
"big" blocks B(X,,) defined in figure (28) below, by another one where the "big" blocks will
have a certain martingale difference property. Hence, in particular, they are uncorrelated. This
new uncorrelated block matrix will be called B(X!)) in the proof below. A similar treatment will
be done to the matrices with the Gaussian field enties, having a suitable covariance structure.

We turn now to the details of the proof of Theorem 2, and first, to our blocking procedure,
which involves several steps. We then start by some preliminary considerations.
Let (p), (K), (c) be sequences of integers converging to oo such that p = c¢K. Assume that

K’ sup E(Xij Xab | Fikajne) — BIXijXap) |1 — 0 as K — oo. (27)
(i) #(a,b);i>G,0>b

11



This selection of (¢) is possible by (7).

We describe now the blocking procedure which is based on the known fact that the limiting
spectral density distribution is not affected by changing a number of o(n?) variables. We first
notice that, without restricting the generality we may and do assume that n = ¢(p+ K)+p where
q := gy is a sequence of positive integers depending on n, K and p. Indeed, if (n —p)/(p+ K) is
not an integer, we set n’ = q(p+ K) + p where ¢ = [(n — p)/(p+ K)| and we notice that, by the
Cauchy’s interlacing law (see for instance Relation (2.96) in Tao’s monograph (2012) for more
details),

!/
— K
|an_an,|<<” n<<p+ — 0 as n — oo.
n n

Therefore, we shall assume, from now on, that n = q(p + K) + p.
To introduce the big blocks, for a given symmetric matrix Z,, = {Zij }?j:1 we shall associate
the following checkerboard structure

Op.p

Okp Ok K

Bl,l Op,K Op,p

Okp Orkrkx Oxp Oxx

1
B(Zn) = ﬁ B2,1 Op, K B3,2 Op,K Op,p . (28)
Bqfl,l Op,K Bq71,2 Op,K Bq71,3 Op,p
Okp Oxkx Orxp Orxkx Okp ... Okrp Ogk
Bq,l Op,K Bq72 Op,K Bq,3 Bq-q Op,K Op,p

The rest of the matrix is completed by symmetry. Here each By, denotes a block matrix p x p
indexed by a set of indexes in & ¢ defined below, and whose entries are identical to the matrix
Z,,. To be more precise, we define

Eke ={(u,v) € By x Eg_1} where By = [l(p+ K)+1, {(p+ K)+p] NN. (29)

We shall order the blocks in the lexicographic order starting with the top of the matrix. To
soothe the notations all along the paper, we shall use the following convention: for any k& =
1,....,qpand any £ =1,... k,

B, = By, and I, = & where u = k(k — 1)/2 + £, (30)

To avoid confusion, when block matrices are constructed from different symmetric matrices, we
shall also use the notation B; = B;(Z,) to identify the variables in the block matrix. Note
that the "big" blocks B; are separated by bands of K rows and K columns. Variables in two
different blocks are separated by at least either K rows or K columns.

Using Lemma 14, Theorem A.43 in Bai and Silverstein (2010) and taking into account
Condition 1, straightforward computations lead to

E|$% — §BXn)12 0 as n — oco.
Similarly, we define B(Y,,), and one can prove that
E|SYn — SBY)|2 - 0 as n — oo.
We introduce a filtration
B, = 0(B1(X,),B2(X,),...,By(X,)) for u > 1 and By = {0, Q}. (31)
To introduce martingale structure, for 1 < u < ¢(¢+ 1)/2 and j € I,, define the variables

X,], = Xj - E(Xj|8u71)'

12



Then we define a new block matrix, say B(X,), with blocks B, = B;(X],) having a similar
structure as B(X,,) where the entries in these big blocks are Xj, j € I,. Note that by Lemma
14

/ 1
B(Xn B(X, . K
E| 570 — s8I 2 <« — §>1 IEGI:E|E(XJ|BU_1)|2 < ig?mm(x”mj)ﬁ
uzljcly -

which converges to 0 uniformly in n when K — oo by (6). Here and in the sequel we shall keep
in mind that the range for the index w is from 1 to ¢(q + 1)/2. For simplicity, we shall denote
the sum from v =1 to u = g(¢ + 1)/2 by a sum over u > 1.

We proceed similarly for the matrix B(Y,). We introduce the filtration

Hy, =0(B1(Y,),Ba(Yy),...,Bu(Yy,)) for w > 1 and Hy = {0, Q}, (32)
and for any j € I,, define the variables
Y] = ¥; — B(Yj[H.o).

Notice that (}fi’, 1<u<gq(qg+1)/2,j € 1l,) is also a Gaussian vector. In addition, by using the
properties of conditional expectation we can easily notice that the random vectors (YJ’ J € L)y
are orthogonal. Therefore (YJ' ,J € I,), are mutually independent. We shall also prove that for
jel,

[E(Y;[Hu-1)ll2 < [|B(Xj|Bu-1)][2- (33)

To prove the inequality above, it suffices to notice the following facts. Let
Vu=-5pan(1,(Yj, 1 <v<u,jel,))

and
Vi =span(l, (Xj,1<v<u,jel,)),

where the closure is taken in L2. Denote by IIy, (-) the orthogonal projection on V, and by
Iy () the orthogonal projection on V. Since (Yj’, 1 <u<q(g+1)/2,j€ I,) is a Gaussian
process,

E(Yj/Hu-1) =1y, , (¥;) as. and in L2.

Since (Yir)1<e<k<n has the same covariance structure as (Xg¢)1<s<k<n, We observe that
Iy, _, () ll2 = [Ty:_ (Xj) ]2

But,

Mye (X5) |2 < IE(XG]Bu-1) |2,

which proves (33). Then we define a new block matrix, say B(Y7,), with blocks T, = B;(Y},)

n
having a similar structure as B('Y,,) where the entries in these big blocks are Yj’ . Therefore, by

Lemma 14 and (33),

/ 1 1
BISP) — SEOWE <« 5 37 BB M) < 5 >0 Y BE(X|Bu)?

u>1jel, u>1jeL,
< sup BIB(X;|F5) P,
(2]

which converges to 0 as K — oo by (6), uniformly in n. The proof is reduced to showing that
E|SBXn) — §B(Yn)| 0 as n — oo, (34)

which we shall achieve at the end of several steps.

13



We write SB(X%) and SB(Y%) as function of the entries. So
SB(Xn) — S(B/l, ey B;(q+1)/2) and SIB(Yn) — S(F/l, e ,I‘;(q+1)/2) . (35)

We note that in our proofs the order in which we treat the blocks is critically important for
using the power of the martingale structure, but the location of a variable in a block is not
going to matter. With our functional notation we use the following decomposition:

SEX) — GBYR) = (B, Blgi1y2) — (D0 Ty ) (36)
:Zuzl <S( .. BI u+1,...,Fq(q+1)/2)—$( Il, u— 1,]:‘/ .. F/(q+1)/2>>
We also denote
Cu:( 3’..., {11—170'“7]:"/!14—1’7]:‘:]((]—‘,—1)/2)7

where 0,, is a null vector with p? entries 0. We shall use the Taylor expansion in Lemma 12,
applied for a fixed index u, to the function

s( .. B:L 1,B (Xl) u+17" F/(Q+1)/2)

where s is defined in (35). We can view this function simply as a function of a vector x =
(z3, we {l,...,q(g+1)/2 and i € I,). By using (36), Lemma 12 with A = 4en'/? and (60), we
obtain

SEXn) — gBYW) = Rl + R, + R}, (37)
where
= Z Z(XJ/ - Yj/)ajs(cu)a
u>1jel,
1 2 2
= ,Z ZX-’&S — ZY-'@-S s(Cy)
)] J-) u
2u>1(<j€Iu ) (jelu ) )
and
Ryl <> |Rusl + ) |Ris
u>1 u>1
with :
|Ru3| < 2p2 Z X{)21 (X5 > 4en?) + en'/? 7P Z:(XJ')2
jely jely
and

IRl < zpzz Y21 |Y’|>45nl/2)+5n 5/2]942
jely j€ly

We treat first the term |R4|. By taking the expected value and considering condition 1, we
obtain

ZE[RU3| <<p Z E(|X] \ I(1X5;] > 4ent/?)) + ep?.
u>1 (z,j)EVl

Notice now the following fact: If U is a real-valued random variable and F is a sigma-field, then
setting V = U — E(U|F), the following inequality holds: for any m > 1 and any a > 0,

E([V|™I(|V] > 4a)) <3 x 2"E(|U[™I(|U| > a)). (38)
This implies that

E(|X[;[21(|X}| > 4en'/?)) < B(XZI(|Xy5| > ent/?)).
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Therefore

SEIRsl €55 3 BOGI(Xy| > e ) + o
u>1 (i,5)eV,}

= p2Ln(€) + ept.

We let first n — oo and take into account Condition 1 and then we let ¢ — 0. It follows that

lim Y E|Rys| = 0. (39)

n— oo
u>1

We handle now the quantity Z E|R!5|. Taking into account that E(Y;?) = E(X2), condition 1
and inequality (38), note ﬁrst that

ZE|R 3l < p Z E(Y;51(|Yi5] > ent/?)) + ep.

u>1 ( ij)evl

To treat the first term in the right-hand side, some computations are needed. Note first that if

N is a centered Gaussian random variable with variance o2,

B(N2I(|N| > en}/2)) = j;SﬁeEQ”/ (o) 4 G2p(|N| > /). (40)
™

Let now o2 i = E(X2). For any i > 0, we then have

ot P(|Yij| > evn) < P nP(|Yy;| > ev/n) + B(XSI(|Xy] > nen'/?))
<PR(Y;) + B(XGI(|Xi5] > nen'/?)) = ’B(XE) + B(XG1(1X55| > nen'/?)).

On another hand, let A be a positive real (greater than 1/2). Observe that, for any n > 0,
UijE\/ﬁeigzn/@Uz)I(Uij > 8\/ﬁ/A) < AO’%[(UZ']' > E\/E/A)

< AB(XZI(| Xy > nn'/?)) + Ani’ (035 > ev/n/A)
< AB(XZI(|X35] > qnt/?)) + n? A%02 /€2,

Moreover

O'ij6\/ﬁ€_€2n/(202)1(0'i]’ < 8\/’71/14) f %\5[\/» —e2n/(202) (U’LJ < 6\f/A) < fOZ — A2 /2‘
20

So, overall, taking into account the above considerations and (40), it follows that, for any € > 0,
any 1 > 0 and any A > 1/2,

By > en'?) < P°B(XE) + B(XGI(X;] > nen'?))
+AB(XBI(Xy] > /) + 2 4302 /22 + B(X3)e 412
Hence, taking into account condition 1, it follows that for any € > 0, any > 0 and any A > 1/2,

ZE\R 5| < ept + p*n® 4 p La(ne) + Ap®Ln(n) + p*n? A3 /& + peA/2,
u>1

Letting n — oo, then n — 0 and finally A — oo, it follows that

lim sup ZE|R 5| < ep?.
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Letting then ¢ — 0 and taking into account (39), it follows that E|R5| — 0, as n — oo.
We treat now the term R}, namely we compute E|R}|?. Let

D, = Z X;055(Cy) and D, = Z Y{955(Cu),
Jj€ly Jely

and note that B
E[R)> < 2B|> " Du|* +2E] Y D,/

u>1 u>1
Since the variables (Dy,),>1 are orthogonal as well as the variables <ﬁu)u217 we get

EIR? <2 E[D,>+2) E|D,

u>1 u>1

Therefore, by using Cauchy-Schwarz’s inequality, taking into account (60), the fact that E(Y;?) =
E(X2) and condition 1, it follows that

2 2
EIR|> < L > BXY) < r
n3 E n’

(1,4)EVa

which converges to 0 when n — oo.

Now we treat the term R, = > Ry2 where
u>1

Rus = (( 3 XJ.’aj)2 - (Z Yj’aj)Q)s(cu).

jely jel,

We write Ry2 as a sum of differences of the type (XJ.’Xi’ — Yj’Yi’) 0;0;5(Cy,) were 4,j € I,. To
introduce martingale structure we add and substract some terms
((X5Xi — B(XjX{|By-1)) + (B(XjX{|Bu-1) — B(X;X;))
+ (B(X;X;) — Y;’}g’))@@is(cu) =10 1@

uij uij uij "

(41)
Taking into account the properties of the conditional expectation, we obtain

E(X{X{|By-1) = B(X; Xi|Bu-1) — B(X;|Bu—1)E(Xi|By-1).-
Therefore

S <] S BOGXIBL ) — BXGX) 90k (Cu)
i,jel, i,jel,
+‘ 3" B(X;1Bu1)E(X;|B,—1)d50:5(C.)
i,jel,
=D+ To . (42)

Let us handle the term I3 ,. By Lemma 13,

4
Ira < RO Z [B(X:|Bu-1)3,

iel,

SE() < s 3 ST IBCGIBL I (43)

u>1 u>1i€el,
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Therefore, using the contractivity of conditional expectation, we get

- 2
Z Bl < 3 (%) PP sup BIB(X|F1)|” < sup BIE(Xy | 75)I"

Hence, by condition (6),
a(g+1)/2

hm lim sup Z E(l2,4) = 0.

K—00 np—oo
u=1

We handle now the term I, in (42). Using (60), we first write

1
B(l1) < = 3 [B(XXilBuo1) — B 1.
ijel,

By using the contractivity of conditional expectation, we then get

ZE(ILU < 72 Z E|E XX |Bu 1) ( )| (44)

u>1 u>11i,jel,
1 /n\2 4
< 2 (7) p sup E|E(X13X(lb| iAa ]/\b) E(Xinab)|
neAp (i.5)#(a,b);i>j,a>b

L /m\2 o 2| K 2
+ () P s BIBCXG |7 — BUX)

<<p2 sup E|E(X;; Xab|F, /\a]/\b) E(Xij Xab)|
(4,4)#(a,b);i>j,a>b

i>j

The first term converges to 0 by (27) and the second term is convergent to 0 by (8). Hence,

hm hmsupZE (I1,u) =0.

K—oo n—ooo
u>1

Overall, starting from (42) and taking into account the above considerations, we get

> B Ly

u>1 iel, jel,

We treat now the negligibility of the term >, ~; > e, 1(;3) in the following way. First we

truncate ~
X! = X{I(|X]] < 4n'/?) and X] = X]I(|X]| > 4n'/?)
and write

XiX{ — B(XjX{|Bu—1) = XjX{ — B(X{X{|By—1) + X;X{ — B(X]X{|By_1) .

Therefore, by the triangle inequality, the Cauchy-Schwarz inequality, the Minkowski’s inequali-
ties and the properties of conditional expectation we easily obtain

B 1< 5 > S I Kl

u>11j€el, u>11,jel,
HID Y IXX] — B(X[X{|By-1)]050:5(Cu)|,
u>11,jel,
=An+ [ DDyl
u>1
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By the fact that that the terms D), are orthogonal, by (60), the level of truncation and condition
1, we have

E)ZD; < —ZE( > IXX] - B(X]X]|Bu- 1)!>2

u>1 u>1  gjel,
< (S IxE) < *Z > X513
u>1 4,5€l, u>114,j€l,
0
SZZE <——>0asn—>oo
u>1]€1u

Also, by the Cauchy-Schwarz’s inequality and Condition 1,

. / - /
A= 3 S IR < 2530 S IR (5 S 1)

u>1 i,jelu U21j61u u>11i€l,

1 1/2
< p* (=3 YOBXPI(X]] > 4n'/?))

iev!
Using (38), we derive that A, < p? L}/ 2(1), which converges to 0 for any p fixed as n — oo.

Overall, it follows that
(1)
DD
u>11ijel,

It remains only to treat the term containing the Gaussian random variables. With this aim, we
write 1C) = = Auij + By, where

uij
Auij = (B(X;X) — B(YY]))8;8i5(Cu)
and
Buij := (B(Y]'Y{) — Y{Y{)0;0i5(Cu).

We use the orthogonality of > . By;; and (60). This leads to

i,jel,

E[Y Y Byl < %ZH > BO7Y) - VY

u>1i,jel, u>1 ijely,

< (30 B0 - K le) < (X Il )

u>1 i,jel, u>1l 1ijel,

+ 2 43p6 A
< (D Ialvila)” < SRS ST il

u>1l ijel, u>1i€l,

Since the 1.v.’s Y; are Gaussian, ||Y;||] = 3||Yi||3 = 3||Xi||3. Therefore, for any € > 0,

6
B[y Y Bul” < 5> > IXill

u>11ijel, u>1iel,
6
<L S X+ Y S I > ey
u>1iely, u>1iely,
p6€2 2
<P S Il (o S0 IXBIIXG] > evlh)
(i.7)€Z4, (i.4)€V
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2

Letting n — oo and after ¢ — 0, and taking into account condition 1, it follows that E‘ Yous1 By|” —

0 as n — 0o. On the other hand, since

ijel,

E(Y{Y{) = B(Y3Yi) — B(B(YjHu-1)B(Yi[Hu-1))

and E(YjY;) = E(X;X;), we get, by the same arguments as those leading to (43),
4
B ) Auwgl < e DD B Hu-1)l3 -
u>11jel, u>1iel,
Hence, by (33) and the contractivity of conditional expectation,
E‘ Z Z Aul_]‘ < TL2 3 Z Z ||E X ‘BU 1 HQ < Sup ”E(X1]| )||27
u>1ijel, u>1iel,

which converges to 0 by condition (6). This completes the proof of the theorem. ¢

5.2 Proof of Theorem 4

The proof follows the lines of the proof of Theorem 2 with Z;; instead of X;; and with W;;
instead of Y;;. We point here the differences. The filtrations B, and H, respectively defined in
(31) and (32) have to be defined as follows. If u = k(k—1)/2+ ¢ with 1 </ <kand 1 <k <gq,
then

B, =B,V Bl foru>1and By = {0,Q} (45)
and
Hy = H,, vV Ho for uw > 1 and Hy = {0, Q}, (46)
where

B, =B, =0(Xa,(a,b) € Ui_ & or (a,b) € U] Ui, &),
BZ = Bg’g = O'(Xba , (CL, b) € U?:lgkj or (a, b) € U?:ll U;Zl 5@3) R

and H,, and H! defined, respectively, as Bl and B} with the X, (resp. Xp,) replaced by Yy
(resp. Y3,). According to the proof of Theorem 2, the proof will be achieved if we can show
that if u =k(k—1)/2+ ¢ with 1 </ <k and 1 <k < ¢, then for any (4,7) and (a,b) in & ¢

IE(Zij | Bu-)ll2 < IB(XilF) 12 + IBCGIFS) 12 (47)

and

[B(Zij Zap| Bu-1) — B Zij Zap) |l < |B(Xij X | FE O FL) — B(Xi;Xa) 1
+ IB( X35 Xoal F N Fips) — B(Xij Xoa) I + |B(XjiXa| Ty NFL) — B(XjiXap) 1
+ | B(X i Xoal Ffy N Fily) — B(XjiXpa)ll1- - (48)

To prove the inequalities above, we fix, all along the rest of the proof k and £ such that 1 < k <gq
and 1 < £ < k and also a (4,4) in E. We notice that if (u,v) belongs to UL &y then
j—v > K, and if (a, b) belongs to UFZ1 U | & theni—a > K. So H!,_ C }"K In addition,
if (a,b) belongs to USL Expy then i — b > p+ 2K and if (a,b) belongs to U 1 Erm then
i—b>2K +p. Therefore the distance between (7, ) and all the points (v, u) such that (a, b)
belongs either to UZ —1&km or to Uk 1 1 Ul —1 Erm is larger than K. This shows that B;,_; C .7-"

The two latter inclusions prove that B 1 C ]? K Let us prove now that H,_1 C }iff . If (a, b)
belongs to U Skm then a—j > K, and if (a, b) belongs to U 3 U —1Erm then i —b > 2K +p.
So H!,_, C ]:ff In addition, if (a,b) belongs to Um: Exm then j — b > K and if (a,b) belongs
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to UFZ1 U7 _; Emm then i —a > K. Therefore the distance between (4,7) and all the points (b, a)
such that (a,b) belongs to U’ Em or to UFZL UL | £,y is larger than K. Hence B!, C .7-"5
This ends the proof of B, 1 C ]—"ff Since B,_1 C Fff and B,_1 C Fff, (47) follows by
applying the tower lemma and using contraction. To prove (48), we use again the tower lemma
together with the contractivity of the norm for the conditional expectation and the fact that
the abovs inchisions imply Ehat fgr any (7,]) andN(a, b) ~belonging to Exy, Bu—1 C .7-'5 nrk,
B._1 g]:é(ﬂfblg, Bu-1 Q}'ffﬂ]ﬂfg and B,_1 Q}'ffﬂf,ﬁ O

5.3 Proof of Theorem 5

The proof is very similar to the proof of Theorem 9 from Merlevede and Peligrad (2016). We
give it here for completeness.
Let n = N + p and X,, the symmetric matrix of order n defined by

X o ]. ( ON’N XN,p >
S e .
" VN Xyp Opp

Notice that the eigenvalues of X2 are the eigenvalues of N~1X, N,pX]:\?p together with the eigen-
values of N *1?(]57]0}’( N,p- Assuming that N < p (otherwise exchange the role of Xy, and X g;’p
everywhere), the following relation holds: for any z € C*

By () = 512" gXno,1/2y VP
SPN(z) =z ZNS (%) + SNy

(See, for instance, page 549 in Rashidi Far et al. (2008) for additional arguments leading to the
relation above). Consider now a real-valued centered Gaussian random field (Yke) (s p)ez2 with
covariance function given by:

E(YieYi;) = B(XgeXi;) for any (k,£) and (i, 5) in Z?, (50)

(49)

and define the N X p matrix
Inp = (Yij)1§i§N,1§j§p'
Let Gy = %F N,pF% » and H,, be the symmetric matrix of order n defined by

Assuming that N < p, the following relation holds: for any z € C*

SN (z) = 2—1/2%51%(21/2) + % : (51)
In view of relations (49) and (51), to prove that for any 2 € C*,
’SBN (2) — SGN(Z)} — 0 in probability (52)
it suffices to prove that, for any z € CT,
|SX”(Z) — St (z)| — 0 in probability (53)

(since n/N — 14-c¢). Clearly (53) follows from the proof of Theorem 2 by noticing the following
facts. The entries x; ; and g; ; of the matrices n'/2X,, and n'/2H,, respectively, satisfy

Tij = Oéz(z)ij' s 9ij = Oégj?)in fl<j<i<nandzj=wj;,g0; =95 ifl1<j<i<n,
(n) _ nl/2

j

57;)) is a sequence of positive numbers defined by: «; ) = {57z 1n+1<i<nlicj<n. Hence
1/2 .

E(gke9i;) = a&)agz)E(XuXij), maxi<;j<i<n Mi,j = N = o™ and lim, . o™ = 1+ec.

¢

where («
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5.4 Proof of Theorem 6

The proof of this theorem follows all the steps of the proof of Theorem 2 (with the same
notations) with the exception of the treatment of terms which appear in (44). By stationarity

q(g+1)/2
1
X X BIECGNIB.) ~BOGX) < 5 3 BIECGNIA) - BOGX)),

= ijel, ije&p

where above and below &, = [1, p|2 N N2. For i fixed in &p, we shall divide the last sum in three
parts according to j € &, with [i—j| <dord <|i—j| < K or |[i—j| > K, where d is a positive
integer less than K. Since for this case F K flfA(J, by the properties of conditional expectations
and stationarity we have

Y BIEQGXIF) -BXGX) < ) BECGXIFY) - BXGX)

Jli—jl<d Jli—jl<d
= Y BE(XoX; | F i) — B(XoX;)|.
Therefore

1
= Y, BEXX|F) -BXGX)| < Y BlE(XoXulFine) — B(XoXu)l,

ijep li—jl<d u,|uf<d

which converges to 0 for d fixed as K — oo by the regularity condition of the random field.
Now we treat the part of the sum where j € &,, with d < |i — j| < K. For this case we

note that .7:({{ - ]:Jifﬂ and .7:({{ - ]—}'ifj'. By the properties of conditional expectation and
stationarity and some computations we infer that

Yo EEGXIF) -EXGX) <20 Y EXGE(X| AN,
Jd<fi-jl<K ueVp,|u|>d

where we recall that Vo = {u = (u1,us) € Z? : uy <0 or uz < 0}. It follows that

1 u
~ Y EEXGXIFD) -EXGX) <2 Y EXGE(Xl A,

P™ | jegy d<lizji<k ueVoul>d

which converges to 0 as d — oo uniformly in p and K by (19).
Finally, for the third sum where i,j € &, |i — j| > K we either have o(X;) C ]:jK or

0(Xj) C F. By the properties of conditional expectation, when o(X;) C ff we have
EE(XiXj|F ) — B(X;X:)| < 2B(IB(X:.X| 7)) = 2B(| Xi—;B(Xo| Fo )) -
When o(Xj) C FE, similarly, we have
E[E(XiXj|F ) — B(X;X:)| < 2B(|X;-E(Xo| 7)) -
Therefore

1
= Y, EBXXIFR) -BE(XGX) <2° sup E[XGE(XolFg ).

2
p ijeEn i K ueVp:|u|>K

Since we can take K close to p, the result follows by letting first p — oo followed by d — oc.

O
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5.5 Proof of Proposition 10

The proof uses similar arguments as those given in the proof of Theorem 2.1 in Chakrabarty et
al. (2016).
For any integers k and ¢ define

Che = / e 2k tty) | [ (2, y)dady .
[0,1]2

There are real numbers and satisfy Zk,zez C%e < 0o. Let now (Ujj)(; jyezz be ii.d. real-valued
random variables with law A(0,1). Then, without restricting the generality, we can write

Y= clUikjt- (54)
=

(See Fact 4.1 in Chakrabarty et al. (2016)).

The result will follow if we can prove that when N,p tend to infinity such that p/N — ¢,
then there exists a deterministic probability measure ;1y depending only on ¢ and f, and such
that for any € > 0,

P(d(pugy,pf) >¢) — 0 as N — oo. (55)

Clearly the identity (54) holds in distribution, hence to prove (55), without loss of generality,
we may and do assume from now on, that Yj; is given by (54). To prove (55), we shall use Fact
4.3 in Chakrabarty et al. (2016)) and first truncate the series (54). Hence we fix a positive

integer m and we define
m m
= Z Z ckeUi—k,j—0 -

k=—m{l=—m

Let I\ = (Y(m)) Define also G = I‘( )(F( )) By Theorem 2.1 in Boutet
N.p i) 1<i<NI<<p’ N Nop Y

de Monvel et al. (1996), we have that for any posmve 1nteger m, there exists a deterministic

probability measure m depending only on ¢ and on the complex-valued function x(™) defined

on [0,1]2 by x™ =37, ez B (YO((;n)Y( )) —2mi(kz+4y) - and such that for any e > 0,
]P’(d(pG(m),,um) >¢e) >0 as N — oo. (56)
N

Notice that

min(k+m,m)  min({+m,m)

E(Yo(gn)yk(gn)) = Z Z CuvCk—ub—v -

u=max(k—m,m) v=max({—m,m)

Since the cj’s depend only on f, it follows that x("™ depends only on m and f. Therefore p,
can be rewritten as ji,, r. Notice now that by Corollary A.42 in Bai and Silverstein (2010), for
any € > 0,

1
P(d(ney, tgem) > €) < ?E(dz(MGN,MGm))
V2
pVNe?

Therefore by the Cauchy-Schwarz’s inequality and simple algebra,

Bl o) > €) < 2 TH(E + o) 220 - o)) - T

< ( > ciz) 2

kLEZ: K|V |e|>m

[ Tet/2( Gi™ + Gy )Trl/Z((F(m) —FN,p)(F( —Tnp) )|
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This proves that, for any € > 0,

lim lim supP(d(uGN,uG(m)) >e)=0. (57)
N

m—o0 n—oo

Taking into account (56) and (57), Fact 4.3 in Chakrabarty et al. (2016) and the fact that the
space of probability measures on R is a complete metric space when equipped with the Lévy
distance, (55) follows. ¢

6 Useful technical lemmas

Below we give a Taylor expansion of a more convenient type for using Lindeberg’s method:

Lemma 12. Let f(-) be a function from R’ to C, three times differentiable, with continuous
third partial derivatives and such that

10,0, f(x)| < Lo and |9;0;0f(x)| < Ls for alli,j, k € {1,...,£} and x € R".

Then, for any a = (ay,...,a;) and b = (by,...,by) in R,
2 l l
f@) = f(b) =3 1> a;0)" = (D005 1f(0,...,0) + Ry
k=1""" j=1 j=1
where |R3| < R(a) + R(b), with

¢ y4
Rlc) < 4(L> 3" A0 > 4) +24L5( Y. &3),

J=1 Jj=1
where ¢ equals a or b.

This Lemma can be applied in conjunction with Stieltjes transform. Let A(x) be the matrix
defined by

(Ax)y =4 o =) (58)
J ﬁxﬁ 1<)

Let z € Ct and s := s, be the function defined from RY to C by

500 = STR(A) — 1)

(59)
where I, is the identity matrix of order n.

The function s, as defined above, admits partial derivatives of all orders. Next we give a
lemma concerning the derivatives of s(x) which is easily obtained by using the computations in
Chatterjee (2006) (see the proof of Lemma 12 in Merlevede and Peligrad (2016) for a complete
proof of its last inequality).

Lemma 13. Let z = u+iv € CT and let (aij)1<j<i<n and (bij)1<j<i<n be real numbers. There
exist universal positive constants c1,co and c3 depending only on the imaginary part of z such
that

10us| < —L | 18udys| < % and |8udyOws| < —>- (60)

n3/2’ ns/2 "
Furthermore there exists an universal positive constant c4 depending only on the imaginary part
of z such that for any subset I,, of {(i,j)}1<j<i<n and any x,

‘ > aubvauavsn(x)‘ < %( S a2y b%)l/z.

uez, vel, uel, vely,
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The following lemma is Lemma 2.1 in Gotze et al. (2012).
Lemma 14. Let A,, and B,, be two symmetric n x n matrices. Then, for any z € C\R,

1

19a,, (2) = B, (2)]? < 22 Tm(2)[*

Tr [(A, — B,)?],

where A,, = n~Y2A,, and B,, = n~/?B,,.
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