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Abstract

This paper has double scope. In the �rst part we study the limiting eigenvalue distribution
of a n� n symmetric matrix with dependent entries. For a class of generalized martingales we
show that the asymptotic behavior of the empirical spectral distributions depends only on the
covariance structure. Applications are given to strongly mixing random �elds. The technique
is based on a blend of blocking procedure, martingale techniques and multivariate Lindeberg�s
method. This means that, for this class, the study of limiting eigenvalue distribution is reduced
to the Gaussian case. The second part of the paper contains a survey of several old and
new asymptotic results for the eigenvalue distributions for Gaussian processes, which can be
combined with our universality results.

1 Introduction.

The distribution of the eigenvalues of random matrices is useful in many �elds of science such as
statistics, physics and engineering. The celebrated paper by Wigner (1958) deals with symmet-
ric matrices having i.i.d entries below the diagonal. Wigner proved a global universality result,
showing that, asymptotically and with probability one, the empirical distribution of eigenvalues
is distributed according to the semicircle law (see Chapter 2 in Bai and Silverstein (2010) for
more details). The only parameter of this law is the variance of an entry. This result was ex-
panded in various directions. The �rst generalization was to decrease the degree of stationarity
by replacing the condition of equal variance by weaker assumptions of the Lindeberg�s type.
Another direction of generalization deals with weakening the hypotheses of independence by
considering various notions of weak dependence. For symmetric Gaussian matrices with corre-
lated entries, works of Khorunzhy and Pastur (1994), Boutet de Monvel et al. (1996), Boutet
de Monvel and Khorunzhy (1999), Chakrabarty et al. (2016), Peligrad and Peligrad (2016)
showed that the limiting distribution of the symmetric matrix depends only on the covariance
structure of the underlying Gaussian process. The limiting distribution is rather complicated
and the best way to describe it is by specifying an equation satis�ed by its Stieltjes transform.

A way to symmetrize a matrix is to multiply it with its transpose. These matrices, known
under the name of Gram matrices or sample covariance matrices, play an important role in
statistical studies of large data sets. The spectral analysis of large-dimensional sample covariance
matrices has been actively studied starting with the seminal work of Marcenko and Pastur
(1967) who considered independent random samples from an independent multidimensional
vector. A big step forward was the study of the dependent case represented in numerous papers.
Basically, the entries of the matrix were allowed to be linear combinations of an independent
sequence. The �rst paper where such a model was considered is by Yin and Krishnaiah (1983)
followed by important contributions by Yin (1986), Silverstein (1995), Silverstein and Bai (1995),
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Hachem et al. (2005), Pfa¤el and Schlemm (2011), Yao (2012), Pan et al. (2014), Davis et al.
(2014), among many others. Another type of model was considered by Bai and Zhou (2008)
based on independent columns. The dependence type-condition imposed to the colums is in
particular satis�ed for isotropic vectors with log-concave distribution (see Pajor and Pastur
(2009)) but may be hard to verify for non linear time series (such that ARCH models) or
requires rate of convergence of mixing coe¢ cients. Let us also mention the recent papers by
Yaskov (2016-a, 2016-b) where a weaker version of the Bai-Zhou�s dependence type condition
has been introduced.

In two recent papers Banna et al. (2015) and Merlevède-Peligrad (2016), have shown that,
for two situations, namely for symmetric matrices whose entries are functions of independent
and identically distributed random �elds or for large sample covariance matrices generated
by random matrices with independent rows, the limiting distribution of eigenvalues counting
measure always exists and can be described via an equation satis�ed by its Stieltjes transform.

Even if many models encountered in time series analysis can be rewritten as functions
of an i.i.d. sequence, this assumption is not completely satisfactory since many stationary
processes, even with trivial left sigma �eld, cannot be in general represented as a function of
an i.i.d sequence, as shown for instance in Rosenblatt (2009). Moreover, the assumption of
independence of the rows or of the columns generating the large sample covariance matrices
may be too restrictive.

The main goal of our paper is then to continue the study the asymptotic behavior of the
empirical eigenvalue distribution of symmetric matrices and large sample covariance matrices
associated with random �elds when the variables are not necessarily functions of an i.i.d. se-
quence or when the rows (or columns) are not necessarily independent. In the �rst part of the
paper we shall show that the universality results hold for both symmetric and symmetrized
random matrices when the dependence is controlled by the projective coe¢ cients. These coef-
�cients are easy to estimate in terms of weak strong mixing coe¢ cients. By "universality" we
mean that the limiting distribution of the eigenvalues counting measure depends only of the
process�covariance structure. Therefore our result reduces the study of the limiting spectral
distribution (LSD) to the case of a Gaussian �eld with the same covariance structure. In the
second part of the paper we survey old and new results for the Gaussian case, which one can
combine with the universality theorems, for obtaining the existence and the characterization of
LSD.

Our paper is organized as follows. Section 2 contains the notations and the universality
results. In Section 3 we apply our results to classes of strongly mixing random �elds. Then,
Section 4 is dedicated to LSD results for Gaussian random �elds. All the proofs are given in
Section 5. Several auxiliary results needed in the proofs are given in Section 6.

Here are some notations used all along the paper. The notation [x] is used to denote the
integer part of a real x. The notation 0p;q means a matrix of size p�q; (p; q) 2 N2 with entries 0.
For a matrix A, we denote by AT its transpose matrix, by Tr(A) its trace. We shall also use the
notation kXkr for the Lr-norm (r � 1) of a real valued random variable X. For two sequences
of positive numbers (an) and (bn) the notation an � bn means that there is a constant C such
that an � Cbn for all n 2 N. We use bold small letters to denote an element of Z2, hence
u = (u1; u2) 2 Z2. For u = (u1; u2) and v = (v1; v2) in Z2, the following notations will be used:
ju� vj = max(ju1 � v1j; ju2 � v2j) and u^ v = (u1 ^ u2; v1 ^ v2) (where u1 ^ u2 = min(u1; u2)).
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2 Results

Let (Xu)u2N2 be a real-valued random �eld de�ned on a probability space (
;F ;P). We
consider the symmetric n� n random matrix Xn such that, for any i and j in f1; : : : ; ng

(Xn)ij = Xij for i � j and (1)

(Xn)ij = Xji for i < j :

Denote by �n1 � � � � � �nn the eigenvalues of

Xn :=
1

n1=2
Xn (2)

and de�ne its spectral distribution function by

FXn(t) =
1

n

X
1�k�n

I(�k � t) ;

where I(A) denotes the indicator of an event A. The Stieltjes transform of Xn is given by

SXn(z) =

Z
1

x� z dF
Xn(x) =

1

n
Tr(Xn � zIn)�1 ; (3)

where z = u+ iv 2 C+ (the set of complex numbers with positive imaginary part), and In is the
identity matrix of order n. In particular, if the random �eld is an array of i.i.d. random variables
with zero mean and variance �2 > 0, then Wigner (1958) proved that, with probability one,
and for any z 2 C+, SXn(z) converges to S(z), which satis�es the equation �2S2+S+ z�1 = 0.
Its solution

S(z) = �(z �
p
z2 � 4�2)(2�2)�1 (4)

is the well-known Stieltjes transform of the semicircle law, which has the density

g(x) =
1

2��2

p
4�2 � x2I(jxj � 2�) :

Note that it is not necessary for the random variables to have the same law for this result to
hold. Indeed, if the random �eld (Xu)u2Z2 is an array of independent centered random variables
with common positive variance �2, which satis�es the Lindeberg�s condition given in Condition
1 below, then for all z 2 C+, SXn(z) converges almost surely to the Stieltjes transform of the
semicircle law with parameter �2 (see for instance Theorem 2.9 in Bai and Silverstein (2010)).
Note that the necessity of the Lindeberg�s condition has been stated in Girko�s book (1990).

Another way to state the Wigner�s result is to say that the Lévy distance between the
distribution function FXn and G, de�ned by G(x) =

R x
�1 g(u)du, converges to zero almost

surely. Recall that the Lévy metric d between two distribution functions F and G, de�ned by

d(F;G) = inff" > 0 : F (x� ")� " � G(x) � F (x+ ") + " ; 8x 2 Rg :

The aim of this paper is to specify a class of random �elds for which the limiting behavior
of FXn(t) depends only on the covariances of the random variables (Xu)u2N2 and not on the
structural dependence structure. In other words, we shall show that the limiting distribution of
FXn(t) can be deduced from that one of FYn(t) where Yn is a Gaussian matrix with the same
covariance structure as Xn: Since the estimate of the Lévy distance between FXn and FYn can
be given in terms of their Stieltjes transforms (see, for instance, Theorem B.12 and Lemma B.18
in Bai and Silverstein (2010) or Proposition 2.1 in Bobkov et al. (2010)), we shall compare their
Stieltjes transforms.

Our �rst result compares the Stieltjes transform of a matrix satisfying martingale-like pro-
jective conditions with the Stieltjes transform of a matrix with Gaussian independent entries.
We shall assume that Xn is de�ned by (2), and satis�es the Lindeberg�s condition below:
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Condition 1. (i) The variables (Xij)i;j are centered at expectations.
(2) There exists a positive constant C such that, for any positive integer n,

1

n2

X
n�i�j�1

E(X2
ij) < C:

(iii) For every " > 0,

Ln(") =
1

n2

X
n�i�j�1

E(X2
ijI(jXij j > "n1=2))! 0:

Clearly the items (ii) and (iii) of this condition are satis�ed as soon as the family (X2
ij)

is uniformly integrable or the random �eld is stationary and in L2 (recall that a random �eld
(Xu)u2Z2 is said to be (strictly) stationary if the law of (Xu+v)u2Z2 does not depend on v 2 Z2).

To introduce our martingale-like projective conditions (6) and (7) below as well as our
regularity-type condition (8), we need to introduce the �ltrations we shall consider:

For any non-negative integer a, let us introduce the following �ltrations:

Fai;1 = �(Xuv : 1 � u � i� a ; v � 1) if i > a and Fai;1 = f
; ;g otherwise (5)

Fa1;j = �(Xuv : u � 1 ; 1 � v � j � a) if j > a and Fa1;j = f
; ;g otherwise
Faij = Fai;1 [ Fa1;j :

Note that Xij is adapted to F0
ij . We are now in position to state our �rst result.

Theorem 2. Assume that Xn satis�es Condition 1 and, as n!1,

sup
i�j

kE(Xij jFnij)k2 ! 0 (6)

and
n2 sup kE(XijXabjFni^a;j^b)� E(XijXab)k1 ! 0; (7)

where the supremum is taken over all pairs (i; j) 6= (a; b) with i � j and a � b: In addition
assume that

sup
i�j

kE(X2
ij jFnij)� E(X2

ij)k1 ! 0 as n!1: (8)

Then for all z 2 C+

SXn(z)� SYn(z)! 0 in probability as n!1; (9)

where Yn is a Gaussian matrix of centered random variables with the same covariance structure
as Xn and independent on Xn and Yn = Yn=

p
n.

Comments 3. Conditions (6) and (7) can be viewed as a generalization of the martingale
condition given in Basu and Dorea (1979) which is E(Xij jF1

i;j) = 0 a.s. for any i � j � 1. Both
conditions (6) and (7) are obviously satis�ed for this type of martingale random �eld, and then,
the conditions of Theorem 2 are reduced just to Condition 1 and (8). Results for other type
of martingale random �elds based on the lexicographic order can be found in Merlevède et al.
(2015).
Note also that Condition (8) is a regularity condition. For instance, in case where F1ij =T
n�0Fnij is the trivial �-�eld, then this condition is automatically satis�ed. Let us also mention

that the conditions (6), (7) and (8) are natural extensions of projective criteria used for obtaining
various limit theorems for sequences of random variables. As in the case of random sequences,
the conditions (6), (7) and (8) can be handled either with the help of "physical measure of
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dependence" as developed in El Machkouri et al. (2013) for functions of i.i.d. random �elds or
by using mixing coe¢ cients (see Section 3.1).
We should also mention that we can allow for dependence of n of the variables in Xn. The
conditions in the theorem below have to be then generalized in a natural way. For instance,
conditions (6) and (7) should become

lim
m!1

sup
n�1

sup
i�j

kE(Xij;njFmij;n)k2 = 0

and
lim
m!1

m2 sup
n�1

sup
(i;j) 6=(a;b)

kE(Xij;nXab;njFmi^a;j^b;n)� E(Xij;nXab;n)k1 = 0 :

Based on the above theorem we shall treat two special cases of symmetric random matrices,
namely X +XT and the covariance matrix given in de�nition (17).

We consider �rst the symmetric n� n matrix Zn = [Zij ]ni;j=1 with Zij = Xij +Xji and we
set

Zn :=
1p
2n
Zn : (10)

This type of symetrization is important since it leads to a symmetric covariance structure. If
(Xij)(i;j)2Z2 is L2-stationary meaning that, for any (i; j) 2 Z2, E(Yij) = m and

cov(Xu;v; Xk+u;`+v) = cov(X0;0; Xk;`) = ck;` ;

for any integers u; v; k; `, we get that (Zij)(i;j)2Z2 is also a L2-stationary random �eld satisfying

cov(Zi;j ; Zk;`) = b(k � i; `� j) + b(k � j; `� i) with b(u; v) = 
u;v + 
v;u :

Notice then that b(u; v) = b(v; u). This symmetry condition on the covariances is used for
instance in Khorunzhy and Pastur (1994, Theorem 2) to derive the limiting spectral distribution
of symmetric matrices associated with a stationary Gaussian random �eld when the series of
the covariances is absolutely summable.

Our next Theorem 4 shows that a similar conclusion as in Theorem 2 holds for Zn de�ned
above. However, due to the structure of each of the entries, the sequence (Xij) has to satisfy the
conditions of Theorem 2 but with the conditional expectations taken with respect to a larger
�ltration. Roughly speaking the �ltrations in Theorem 2 are the union of two half planes,
whereas in Theorem 4 they are de�ned as the sigma-algebras generated by all the variables
outside the union of two squares. More precisely these latter �ltrations are de�ned as follows:
for any non-negative integer a,eFaij = ��Xuv : (u; v) 2 Z2 such that max(ji� uj; jj � vj) � a

�
: (11)

Note that Xij is adapted to eF0
ij .

Theorem 4. Assume that Zn is de�ned by (10) where the variables Xij satisfy condition 1. In
addition assume that

sup
i�j

kE(Xij j eFnij)k2 ! 0 as n!1; (12)

n2 sup kE(XijXabj eFnij \ eFnab)� E(XijXab)k1 ! 0 as n!1; (13)

where the supremum is taken over all pairs (i; j) 6= (a; b). In addition assume that

sup
(i;j)

kE(X2
ij j eFnij)� E(X2

ij)k1 ! 0 as n!1: (14)

Then, for all z 2 C+,

SZn(z)� SWn(z)! 0 in probability as n!1; (15)

whereWn = [Wij ]
n
i;j=1 with Wij = Yij+Yji, (Yij) being a real-valued Gaussian centered random

�eld with the same covariance structure as Xn and independent on Xn, and Wn =Wn=
p
2n.
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Let (Xu)u2Z2 be a random �eld of real-valued square integrable variables and (Yu)u2Z2 be
a real-valued Gaussian random �eld with the same covariances. Let N and p be two positive
integers and consider the N � p matrices

XN;p =
�
Xij
�
1�i�N;1�j�p ; �N;p =

�
Yij
�
1�i�N;1�j�p : (16)

De�ne now the symmetric matrices BN and GN of order N by

BN =
1

N
XN;pX TN;p ; GN =

1

N
�N;p�

T
N;p: (17)

The matrix BN is usually referred to as the sample covariance matrix associated with the
process (Xu)u2Z2 . It is also known under the name of Gram random matrix. In particular, if
the random �eld (Xu)u2Z2 is an array of i.i.d. random variables with zero mean and variance
�2, then the famous Marcenko and Pastur (1967) theorem states that, if p=N ! c 2 (0;1),
then, for all z 2 C+, SBN (z) converges almost surely to S(z) = S; which is the unique solution
with ImS(z) � 0 of the quadratic equation: for any z 2 C+,

z�2S2 + (z � c�2 + �2)S + 1 = 0 : (18)

This means that P(d(FGN ; Fc)! 0) = 1; where Fc is a probability distribution function of the
so-called Marchenko-Pastur distribution with parameter c > 0. That is Fc has density

gc(x) =
1

2�x�2

p
(x� a)(b� x)I(a � x � b)

and a point mass 1 � c at the origin if c < 1, where a = �2(1 �
p
c)2 and b = �2(1 +

p
c)2:

Note that this result still holds if the random �eld (Xu)u2Z2 is an array of independent centered
random variables with common positive variance �2, which satis�es the Lindeberg�s condition
1 (see Pastur (1972)). Moreover, in this situation, the Lindeberg�s condition is necessary as
shown in Girko (1995, Theorem 4.1, Chapter 3) (see also Corollary 2.3 in Yaskov (2016-b)).

When we relax the independence assumption, the following result holds.

Theorem 5. Assume (Xu)u2Z2 is as in Theorem 2. Then, if p=N ! c 2 (0;1), for all z 2 C+,

SBN (z)� SGN (z)! 0 in probability, as N !1.

All our results can be easily reformulated for random matrices with entries from a stationary
random �eld. For some applications it is interesting to formulate su¢ cient conditions in terms
of the conditional expectation of a single random variable. For this case it is natural to work
with the extended �ltrations.

Let now (Xij) be a stationary real-valued random �eld. For any non-negative integer a, let
us introduce the following �ltrations:

Fai;1 = �(Xuv : u � i� a; v 2 Z );
Fa1;j = �(Xuv : v � j � a; u 2 Z); Faij = Fai;1 [ Fa1;j :

We call the random �eld regular if for any u 2 Z2; E(X0XujF1u^0) = E(X0Xu) a.s.

Theorem 6. Assume that Xn is de�ned by (2) where (Xij) is a stationary, centered and regular
random �eld. Assume the couple of conditionsX

u2V0

EjXuE(X0jF juj0 )j <1 (19)

and
p2 sup

u2V0:juj>p
EjXuE(X0jFp0)j ! 0; as p!1;

where V0 = fu = (u1; u2) 2 Z2 : u1 � 0 or u2 � 0g. Then the conclusions of Theorems 2 and
5 hold.
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Condition (19) implies that
P

u2Z2 jcov(X0; Xu)j <1 and is in the spirit of condition (2.3)
given in Dedecker (1998) to derive a central limit theorem for stationary random �elds. As we
shall see in Section 3.1, when applied to stationary strongly mixing random �elds, the conditions
of Theorem 6 require a rate of convergence of the strong mixing coe¢ cient with only one point
in the future whereas the conditions of Theorems 2 and 5 require a rate of convergence of the
strong mixing coe¢ cient with two points in the future.

Combining Theorem 6 with Theorem 11 concerning Gaussian covariance matrices, the fol-
lowing corollary holds:

Corollary 7. Let BN be de�ned by (17). Under the assumptions of Theorem 6 and if p=N !
c 2 (0;1), d(FBN ; F ) ! 0 in probability where F is a nonrandom distribution function whose
Stieltjes transform S(z), z 2 C+ is uniquely de�ned by the spectral density of (Xij) and satis�es
the equation stated in Theorem 11.

3 Examples

3.1 Strongly mixing random �elds

Let us �rst recall the de�nition of the strongly mixing coe¢ cient of Rosenblatt (1956): For any
two �-algebras A and B de�ne the strongly mixing coe¢ cient �(A;B) is de�ned by:

�(A;B) = supfjP(A \B)� P(A)P(B)j;A 2 A and B 2 Bg :

An equivalent de�nition is:

2�(A;B) = supfjE(jP(BjA)� P(B)j) : B 2 Bg ;

and, according to Bradley (2007), Theorem 4.4, item (a2), one also has

4�(A;B) = supfkE(Y jA)k1 : Y B-measurable, kY k1 = 1 and E(Y ) = 0g : (20)

For a random �eld X = (Xu)u2Z2 , let

�1;X(n)= sup
i;j
�(Fnij ; �(Xij)) and �2;X(n)= sup

(i;j) 6=(a;b)
�(Fni^a;j^b; �(Xij ; Xab)) :

Note that �1;X(n) � �2;X(n). For a bounded centered random �eld the mixing condition
required by Theorem 2 (or by Theorem 5) is

n2�2;X(n)! 0 :

while for Theorem 6, provided the random �eld is stationary, we need the couple of conditions:

�2;X(n)! 0 and
X
n�1

n�1;X(n) <1 :

If for some � > 0 we have supu kXuk2+� < 1 and the random �eld is centered then, by the
properties of the mixing coe¢ cients, applying, for instance, Lemma 4 in Merlevède and Peligrad
(2006) (see also Bradley (2007) and Annex C in Rio (2017)), we infer that the conclusions of
Theorems 2 and 5 are implied by

n2(�2;X(n))
�=(2+�) ! 0 :

Moreover, if we assume stationarity of the random �eld, Theorem 6 requires the couple of
conditions:

�2;X(n)! 0 and
X
n�1

n1+4=��1;X(n) <1 :
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Slightly more general results can be given in terms of the quantiles functions of jXuj (see Rio
(2017)).

We refer to the monograph by Doukhan (1994) for examples of strong mixing random �elds.
Let us also mention the paper by Dombry and Eyi-Minko (2012) where, for max-in�nitely di-
visible random �elds on Zd, upper bounds of the strong mixing coe¢ cients are given with the
help of the extremal coe¢ cient function (examples such as the Brown-Resnick process and the
moving maxima process are considered). Strong mixing coe¢ cients can also be controlled in
the case of bounded spin systems. For instance, in case where the family of Gibbs speci�cations
satis�es the weak mixing condition introduced by Dobrushin and Shlosman (1985), the coef-
�cient �2;n decreases exponentially fast. This is then the case for Ising models with external
�elds in the regions where the temperature is strictly larger than the critical one (we refer to
Dedecker (2001, Section 2.3) and to Laroche (1995) for more details).

Below, is another example of a random �eld for which the strong mixing coe¢ cients can be
handled.
Example: Functions of two independent strong mixing random �elds. Let us consider two real-
valued independent processes U = (Uij ; i; j 2 Z) and V = (Vij ; i; j 2 Z) such that, setting
U(j) = (Uij ; i 2 Z), the processes U(j), j 2 Z, are mutually independent and have the same
law as (Ui; i 2 Z) and, setting V(i) = (Vij ; j 2 Z), the processes V(i), i 2 Z are also mutually
independent and have the same law as (Vj ; j 2 Z). For any measurable function h from R2 to
R, let

Xij = h(Uij ; Vij)� E(h(Uij ; Vij)); (21)

provided the expectation exists. Note that the random �eld X = (Xij ; i; j 2 Z) does not have
independent entries across the rows nor the columns (except if we have that for any j �xed,
the r.v.�s Uij , i 2 Z are mutually independent as well as the r.v.�s Vij , j 2 Z, for any i �xed).
Hence, the results in Merlevède and Peligrad (2016) do not apply. Let FUk = �(U`; ` � k) and
FVk = �(V`; ` � k), and de�ne

�1;U(n)= sup
i
�(FUi�n; �(Ui)) , �2;U(n)= sup

i;j : j>i
�(FUi�n; �(Ui; Uj))

and
�1;V(n)= sup

i
�(FVi�n; �(Vi)) , �2;V(n)= sup

i;j : j>i
�(FVi�n; �(Vi; Vj)) :

Due to the de�nition of the strong mixing coe¢ cients, it follows that

�1;X(n) � �1;U(n) + �1;V(n) and �2;X(n) � �2;U(n) + �2;V(n) :

(See for instance Theorem 6.2 in Bradley (2007)). So, if we assume for instance that the function
h is bounded and that n2(�2;U(n) + �2;V(n)) ! 0, then Theorem 2 applies. Moreover if we
assume in addition that the sequences (Uij ; i 2 Z) and (Vij ; j 2 Z) are stationary and thatX

n�1

n
�
�2;U(n) + �2;V(n)) <1 ;

then, according to Corollary 7, we derive that, if p=N ! c 2 (0;1), for all z 2 C+,

SBN (z)! S(z) in probability as N !1 ;

where BN is the Gram random matrix de�ned by (17) and S is de�ned in Theorem 11.
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3.2 A convolution example

Let U = (Uij ; i; j 2 Z) be a stationary centered regular martingale di¤erence random �eld in
L2, meaning that supi;j kUijk2 <1 and that, setting Gaij = �(Vk`; k � i� a or ` � j � a),

E(Uij jG1ij) = 0 a.s. and kE(U2
0 jGn0 )� E(U2

0)k1 ! 0 as n!1 :

Let " = ("ij ; i; j 2 Z) be an iid centered random �eld in L1, independent of U and (ak`; k; ` 2
N) be a double indexed sequence of real numbers such that

P
k;`2N(k

2 + `2)jak;`j < 1. Set
Vij =

P
k;`2Z ak;`"i�k;j�` and de�ne the stationary centered random �eld X = (Xu)u2Z2 in L2

by setting Xij = Uij + Vij . It is easy to see that X satis�es the conditions of Theorem 6.

4 LSD for stationary Gaussian random �elds

In this section we survey several old and new results for stationary Gaussian random �elds that
could be combined with our universality results in order to decide that the LSD exists and to
characterize it. Relevant to this part is the notion of spectral density. We consider a centered
stationary Gaussian random �eld (Yij)(i;j)2Z2 , meaning that for any (i; j) 2 Z2, E(Yij) = 0 and

cov(Yu;v; Yk+u;`+v) = cov(Y0;0; Yk;`) = 
k;` ;

for any integers u; v; k; `. According to the Bochner-Herglotz representation (see for instance
Theorem 1.7.4 in Sasvári (2013)), since the covariance function is positive de�nite, there exists
a unique spectral measure such that

cov(Y0;0; Yk;`) =

Z
[0;1]2

e2�i(ku+`v)F (du; dv); for all k; ` 2 Z :

If F is absolutely continuous with respect to the Lebesgue measure �
 �; we have


k;` := cov(Y0;0; Yk;`) =

Z
[0;1]2

e2�i(ku+`v)f(u; v)dudv; for all k; ` 2 Z : (22)

Khorunzhy and Pastur (1994) and Boutet de Monvel and Khorunzhy (1999) treated a class
of Gaussian �elds with absolutely summable covariances,X

k;`2Z
j
k;`j <1 ; (23)

and a certain symmetry condition. They described the limiting distribution via an equation
satis�ed by the Stieltjes transform of the limiting distribution. Since the covariance structure
is determined by the spectral density, this limiting distribution can be expressed in terms of
spectral density which generates the covariance structure. More precisely, if we consider the
n� n random matrix Yn with entries Yk;` and the symmetric matrix

Wn =
1p
2n
(Yn +Y

T
n ) ; (24)

Theorem 2 in Khorunzhy and Pastur (1994) (see also in Theorem 17.2.1. in Pastur and
Shcherbina (2011)) gives the following:

Theorem 8. Let (Yk;`)(k;`)2Z2 be a centered stationary Gaussian random �eld with spectral
density f(x; y): Denote b(x; y) = 2�1(f(x; y) + f(y; x)): Assume that (23) holds. Let Wn be
de�ned by (24). Then P(d(FWn ; F ) ! 0) = 1, where F is a nonrandom distribution function
whose Stieltjes transform S(z) is uniquely determined by the relations:

S(z) =

Z 1

0
g(x; z)dx ; z 2 C+ ; (25)
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g(x; z) = �
�
z +

Z 1

0
g(x; y)b(y; z)dy

��1
; (26)

where for any z 2 C+ and any x 2 [0; 1), g(x; z) is analytic in z and

Im g(x; z) � Im z > 0 ; jg(x; z)j � (Im z)�1 ;

and is periodic and continuous in x.

For the symmetric matrix Wn de�ned by (24) and constructed from a stationary Gaussian
random �eld, Chakrabarty, Hazram and Sarkar (2016) proved the existence of its limiting spec-
tral distribution provided that the spectral density of the Gaussian process exists. Their result
goes then beyond the condition (23) requiring that the covariances are absolutely summable.
It was completed recently by C. Peligrad and M. Peligrad (2016) who obtained a characteriza-
tion of the limiting empirical spectral distribution for symmetric matrices with entries selected
from a stationary Gaussian �eld under the sole condition that its spectral density exists. Their
theorem 2 is the following:

Theorem 9. Let (Yk;`)(k;`)2Z2 be a centered stationary Gaussian random �eld with spectral
density f(x; y): Let Wn be de�ned by (24). Then, P(d(FWn ; F ) ! 0) = 1, where the Stieltjes
transform S(z) of F is uniquely de�ned by the relation (25) where for almost all x; g(x; z) is a
solution of the equation (26).

If the spectral density has the structure f(x; y) = u(x)u(y); the equation (25) simpli�es as

S(z) = �1
z
(1 + v2(z));

where v(z) is solution of the equation

v(z) = �
Z 1

0

u(y)dy

z + u(y)v(z)
, z 2 C+ ;

with v(z) analytic, Im v(z) > 0 and jv(z)j � (Im z)�1kY0;0k2.
In particular, if the random �eld is an array of i.i.d. random variables with zero mean and

variance �2, then u(x) is constant and S(z) satis�es the equation (4).

The following new result, gives the existence of LSD for large covariance matrices associ-
ated with a stationary Gaussian random �eld. Its proof is based on the method of proof in
Chakrabarty et al. (2016).

Proposition 10. Let (Yij)(i;j)2Z2 be a stationary real-valued Gaussian process with mean zero.
Assume that this process has a spectral density on [0; 1]2 denoted by f . Let N and p be two
positive integers and consider �N;p the N � p matrix de�ned by �N;p =

�
Yij
�
1�i�N;1�j�p. Let

also GN = 1
N �N;p�

T
N;p. Then, when p=N ! c 2 (0;1), there exists a deterministic probability

measure �f determined solely by c and the spectral density f , and such that the spectral empirical
measure �GN converges weakly in probability to �f .

For the case when the covariance are absolutely summable we cite the following result which
is Theorem 2.1 in Boutet de Monvel et al. (1996). It allows to characterize the LSD �f of GN
via an equation satis�ed by its Stieltjes transform.

Theorem 11. Assume that the assumptions of Proposition 10 and that condition (23) holds.
Then, when p=N ! c 2 (0;1), P(d(FGN ; F ) ! 0) = 1 where F is a nonrandom distribution
function whose Stieltjes transform S(z), z 2 C+ is uniquely de�ned by the relations:

S(z) =

Z 1

0
h(x; z)dx ;
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where h(x; z) is a solution of the equation

h(x; z) =
�
� z + c

Z 1

0

f(x; s)

1 +
R 1
0 f(u; s)h(u; z)du

ds
��1

;

with f(x; y) the spectral density given in (22).

When we assume that the entries of �N;p is a sequence of i.i.d., mean zero and with variance
�2 then S(z) satis�es the equation (18) of the Marcenko and Pastur distribution. In view
of Proposition 10 and of Theorem 11, it is still an open question if, without imposing the
summability condition (23) on the covariances, one could still characterize the LSD of GN .

5 Proofs

The notation V 1
n = f(i; j); i � j with i and j in f1; : : : ; ngg will be often used along the proofs.

5.1 Proof of Theorem 2

The proof is based on a Bernstein-type blocking procedure for random �elds and the Lindeberg�s
method. The blocking argument, originally introduced by Bernstein (1927) in order to prove
an extension of the central limit theorem to r.v.�s satisfying dependent conditions, consists of
making "big blocks" interlaced by "small blocks" which have a negligible behavior compared to
the one of the "big blocks". In the context of random �elds, this blocking argument can also be
used (see for instance Tone (2011), where the asymptotic normality of the normalized partial
sum of a Hilbert-space valued stationary and mixing random �eld is proved with the help of
a blocking procedure). In our context, the "big" blocks, called Bi;j in the �gure below, are of
size p (with p depending on n and such that p=n ! 0) and the "small" blocks will consist of
bands of width K with entries which are zero and with K negligible with respect to p. As we
shall see below, this blocking procedure can be e¢ ciently done because, roughly speaking, the
limiting spectral density distribution is not a¤ected by changing a number of o(n2) variables.

Now the Lindeberg�s method will consist of replacing one by one each of the "big" blocks
with blocks of the same size but whose entries are those of a Gaussian random �eld having the
same covariance structure as the initial process.

The blocking procedure combined with the Lindeberg�s method does not seem very classical
in the context of random matrices. It has been however recently used in Banna et al. (2015)
and in Merlevède and Peligrad (2016), but in the context where the entries of the matrices are
functions of an i.i.d. random �elds in the �rst mentioned paper, or in the context where the
rows or the columns of the matrix are independent, in the second one. These conditions are not
assumed in the context of the present paper. This makes the situation more delicate. Indeed,
concentration inequalities of the Stieltjes transform around its mean are not available, hence we
cannot restrict the study to the di¤erence between the expectations of the Stieltjes transforms.
However, as we shall see, this issue can be bypassed by approximating the random matrix with
"big" blocks B(Xn) de�ned in �gure (28) below, by another one where the "big" blocks will
have a certain martingale di¤erence property. Hence, in particular, they are uncorrelated. This
new uncorrelated block matrix will be called B(X0

n) in the proof below. A similar treatment will
be done to the matrices with the Gaussian �eld enties, having a suitable covariance structure.

We turn now to the details of the proof of Theorem 2, and �rst, to our blocking procedure,
which involves several steps. We then start by some preliminary considerations.

Let (p); (K); (c) be sequences of integers converging to 1 such that p = cK: Assume that

c2K2 sup
(i;j) 6=(a;b);i�j;a�b

kE(XijXabjFKi^a;j^b)� E(XijXab)k1 ! 0 as K !1: (27)
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Therefore X
u�1

EjRu3j � p2
1

n2

X
(i;j)2V 1n

E(X2
ijI(jXij j > "n1=2)) + "p4

= p2Ln(") + "p
4:

We let �rst n!1 and take into account Condition 1 and then we let "! 0: It follows that

lim
n!1

X
u�1

EjRu3j = 0: (39)

We handle now the quantity
P
u�1
EjR0u3j. Taking into account that E(Y 2

u ) = E(X2
u), condition 1

and inequality (38), note �rst thatX
u�1

EjR0u3j � p2
1

n2

X
(i;j)2V 1n

E(Y 2
ijI(jYij j > "n1=2)) + "p4:

To treat the �rst term in the right-hand side, some computations are needed. Note �rst that if
N is a centered Gaussian random variable with variance �2,

E(N2I(jN j > "n1=2)) = 2�p
2�
"
p
ne�"

2n=(2�2) + �2P(jN j > "
p
n) : (40)

Let now �2ij = E(X2
u). For any � > 0, we then have

�2ijP(jYij j > "
p
n) � �2"2nP(jYij j > "

p
n) + E(X2

ijI(jXij j > �"n1=2))
� �2E(Y 2

ij) + E(X2
ijI(jXij j > �"n1=2)) = �2E(X2

ij) + E(X2
ijI(jXij j > �"n1=2)):

On another hand, let A be a positive real (greater than 1=2). Observe that, for any � > 0,

�ij"
p
ne�"

2n=(2�2)I(�ij > "
p
n=A) � A�2ijI(�ij > "

p
n=A)

� AE(X2
ijI(jXij j > �n1=2)) +An�2I(�ij > "

p
n=A)

� AE(X2
ijI(jXij j > �n1=2)) + �2A3�2ij="

2:

Moreover

�ij"
p
ne�"

2n=(2�2)I(�ij � "
p
n=A) =

p
2�2ij

"
p
np

2�ij
e�"

2n=(2�2)I(�ij � "
p
n=A) �

p
2�2ije

�A2=2:

So, overall, taking into account the above considerations and (40), it follows that, for any " > 0,
any � > 0 and any A � 1=2,

E(Y 2
ijI(jYij j > "n1=2))� �2E(X2

ij) + E(X2
ijI(jXij j > �"n1=2))

+AE(X2
ijI(jXij j > �n1=2)) + �2A3�2ij="

2 + E(X2
ij)e

�A2=2:

Hence, taking into account condition 1, it follows that for any " > 0, any � > 0 and any A � 1=2,X
u�1

EjR0u3j � "p4 + p2�2 + p2Ln(�") +Ap
2Ln(�) + p

2�2A3="2 + p2e�A
2=2:

Letting n!1, then � ! 0 and �nally A!1, it follows that

lim sup
n!1

X
u�1

EjR0u3j � "p4:
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Letting then "! 0 and taking into account (39), it follows that EjR03j ! 0, as n!1.
We treat now the term R01; namely we compute EjR01j2. Let

Du =
X
j2Iu

X 0
j@js(Cu) and eDu =X

j2Iu

Y 0j @js(Cu);

and note that
EjR01j2 � 2E

��X
u�1

Du
��2 + 2E��X

u�1

eDu��2:
Since the variables (Du)u�1 are orthogonal as well as the variables ( eDu)u�1, we get

EjR01j2 � 2
X
u�1

EjDuj2 + 2
X
u�1

Ej eDuj2:
Therefore, by using Cauchy-Schwarz�s inequality, taking into account (60), the fact that E(Y 2

u ) =
E(X2

u) and condition 1, it follows that

EjR01j2 �
p2

n3

X
(i;j)2V 1n

E(X2
ij)�

p2

n
;

which converges to 0 when n!1.
Now we treat the term R02 =

P
u�1
Ru2 where

Ru2 =
��X

j2Iu

X 0
j@j

�2
�
�X
j2Iu

Y 0j @j
�2�

s(Cu):

We write Ru2 as a sum of di¤erences of the type
�
X 0
jX

0
i � Y 0j Y 0i

�
@j@is(Cu) were i; j 2 Iu: To

introduce martingale structure we add and substract some terms�
(X 0

jX
0
i � E(X 0

jX
0
i jBu�1)) + (E(X 0

jX
0
i jBu�1)� E(XjXi))

+ (E(XjXi)� Y 0j Y 0i )
�
@j@is(Cu) := I

(1)
uij + I

(2)
uij + I

(3)
uij : (41)

Taking into account the properties of the conditional expectation, we obtain

E(X 0
jX

0
i jBu�1) = E(XjXijBu�1)� E(XjjBu�1)E(XijBu�1):

Therefore ��� X
i;j2Iu

I
(2)
uij

��� � ��� X
i;j2Iu

�
E(XjXijBu�1)� E(XjXi)

�
@j@is(Cu)

���
+
��� X
i;j2Iu

E(XjjBu�1)E(XijBu�1)@j@is(Cu)
���

:= I1;u + I2;u : (42)

Let us handle the term I2;u. By Lemma 13,

I2;u �
4

n2v3

X
i2Iu

kE(XijBu�1)k22 ;

X
u�1

E(I2;u) �
4

n2v3

X
u�1

X
i2Iu

kE(XijBu�1)k22 : (43)
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Therefore, using the contractivity of conditional expectation, we get

q(q+1)=2X
u=1

E(I2;u)�
1

n2

�n
p

�2
p2 sup

i�j
EjE(Xij jFKij )j2 � sup

i�j
EjE(Xij jFKij )j2 :

Hence, by condition (6),

lim
K!1

lim sup
n!1

q(q+1)=2X
u=1

E(I2;u) = 0:

We handle now the term I1;u in (42). Using (60), we �rst write

E(I1;u)�
1

n2

X
i;j2Iu

kE(XjXijBu�1)� E(XjXi)k1:

By using the contractivity of conditional expectation, we then getX
u�1

E(I1;u)�
1

n2

X
u�1

X
i;j2Iu

EjE(XjXijBu�1)� E(XjXi)j (44)

� 1

n2

�n
p

�2
p4 sup

(i;j) 6=(a;b);i�j;a�b
EjE(XijXabjFKi^a;j^b)� E(XijXab)j

+
1

n2

�n
p

�2
p2 sup

i�j
EjE(X2

ij jFKij )� E(X2
ij)j

� p2 sup
(i;j) 6=(a;b);i�j;a�b

EjE(XijXabjFKi^a;j^b)� E(XijXab)j

+sup
i�j

EjE(X2
ij jFKij )� E(X2

ij)j:

The �rst term converges to 0 by (27) and the second term is convergent to 0 by (8). Hence,

lim
K!1

lim sup
n!1

X
u�1

E(I1;u) = 0:

Overall, starting from (42) and taking into account the above considerations, we getX
u�1

E
���X
i2Iu

X
j2Iu

I
(2)
uij

��� = 0:
We treat now the negligibility of the term

P
u�1

P
i;j2Iu I

(1)
uij in the following way. First we

truncate
�X 0
i = X

0
iI(jX 0

i j � 4n1=2) and ~X 0
i = X

0
iI(jX 0

i j > 4n1=2)
and write

X 0
jX

0
i � E(X 0

jX
0
i jBu�1) = X

0
j
�X 0
i � E(X 0

j
�X 0
i jBu�1) +X

0
j
~X 0
i � E(X 0

j
~X 0
i jBu�1) :

Therefore, by the triangle inequality, the Cauchy-Schwarz inequality, the Minkowski�s inequali-
ties and the properties of conditional expectation we easily obtain

E
���X
u�1

X
i;j2Iu

I
(1)
uij

���� 1

n2

X
u�1

X
i;j2Iu

kX 0
jk2k ~X 0

ik2

+


X
u�1

X
i;j2Iu

[X 0
j
�X 0
i � E(X 0

j
�X 0
i jBu�1)]@j@is(Cu)




2

:= An +


X
u�1

D0
u




2
:
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By the fact that that the terms D0
u are orthogonal, by (60), the level of truncation and condition

1, we have

E
���X
u�1

D0
u

���2 � 1

n4

X
u�1

E
� X
i;j2Iu

jX 0
j
�X 0
i � E(X 0

j
�X 0
i jBu�1)j

�2
� 1

n4

X
u�1

� X
i;j2Iu

kX 0
j
�X 0
ik2
�2
� p4

n4

X
u�1

X
i;j2Iu

kX 0
j
�X 0
ik22

� p6

n3

X
u�1

X
j2Iu

E(X2
j )�

p6

n
! 0 as n!1:

Also, by the Cauchy-Schwarz�s inequality and Condition 1,

An =
1

n2

X
u�1

X
i;j2Iu

kX 0
jk2k ~X 0

ik2 � p2
� 1
n2

X
u�1

X
j2Iu

kX 0
jk22
�1=2� 1

n2

X
u�1

X
i2Iu

k ~X 0
ik22
�1=2

� p2
� 1
n2

X
i2V 1n

E(X 02
i I(jX 0

i j > 4n1=2)
�1=2

:

Using (38), we derive that An � p2 L
1=2
n (1); which converges to 0 for any p �xed as n ! 1.

Overall, it follows that

E
���X
u�1

X
i;j2Iu

I
(1)
uij

���! 0:

It remains only to treat the term containing the Gaussian random variables. With this aim, we
write I(3)uij = Auij +Buij ; where

Auij := (E(XjXi)� E(Y 0j Y 0i ))@j@is(Cu)

and
Buij := (E(Y 0j Y

0
i )� Y 0j Y 0i )@j@is(Cu):

We use the orthogonality of
P

i;j2Iu Buij and (60). This leads to

E
��X
u�1

X
i;j2Iu

Buij
��2 � 1

n4

X
u�1



 X
i;j2Iu

jE(Y 0j Y 0i )� Y 0j Y 0i j


2
2

� 1

n4

X
u�1

� X
i;j2Iu

kE(Y 0j Y 0i )� Y 0j Y 0i k2
�2
� 4

n4

X
u�1

� X
i;j2Iu

kY 0j k4kY 0i k4
�2

� 43

n4

X
u�1

� X
i;j2Iu

kYjk4kYik4
�2
� 43p6

n4

X
u�1

X
i2Iu

kYik44 :

Since the r.v.�s Yi are Gaussian, kYik44 = 3kYik42 = 3kXik42. Therefore, for any " > 0,

E
��X
u�1

X
i;j2Iu

Buij
��2 � p6

n4

X
u�1

X
i2Iu

kXik42

� p6"2

n3

X
u�1

X
i2Iu

kXik22 +
p6

n4

X
u�1

X
i2Iu

kX2
i I(jXij > "

p
n)k21

� p6"2

n3

X
(i;j)2Z1n

kXijk22 + p6
� 1
n2

X
(i;j)2V 1n

kX2
ijI(jXij j > "

p
n)k1

�2
:
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Letting n!1 and after "! 0, and taking into account condition 1, it follows that E
��P

u�1

P
i;j2Iu Buij

��2 !
0 as n!1. On the other hand, since

E(Y 0j Y
0
i ) = E(YjYi)� E

�
E(YjjHu�1)E(YijHu�1)

�
and E(YjYi) = E(XjXi), we get, by the same arguments as those leading to (43),

E
��X
u�1

X
i;j2Iu

Auij
�� � 4

n2v3

X
u�1

X
i2Iu

kE(YijHu�1)k22 :

Hence, by (33) and the contractivity of conditional expectation,

E
��X
u�1

X
i;j2Iu

Auij
�� � 4

n2v3

X
u�1

X
i2Iu

kE(XijBu�1)k22 � sup
i�j

kE(Xij jFKij )k22 ;

which converges to 0 by condition (6). This completes the proof of the theorem. �

5.2 Proof of Theorem 4

The proof follows the lines of the proof of Theorem 2 with Zij instead of Xij and with Wij

instead of Yij . We point here the di¤erences. The �ltrations Bu and Hu respectively de�ned in
(31) and (32) have to be de�ned as follows. If u = k(k� 1)=2+ ` with 1 � ` � k and 1 � k � q,
then

Bu = B0u _ B00u for u � 1 and B0 = f;;
g (45)

and
Hu = H0

u _H00
u for u � 1 and H0 = f;;
g; (46)

where
B0u = B0k;` = �

�
Xab ; (a; b) 2 [`j=1Ekj or (a; b) 2 [k�1

i=1 [
i
j=1 Eij

�
;

B00u = B00k;` = �
�
Xba ; (a; b) 2 [`j=1Ekj or (a; b) 2 [k�1

i=1 [
i
j=1 Eij

�
;

and H0
u and H00

u de�ned, respectively, as B00u and B00u with the Xab (resp. Xba) replaced by Yab
(resp. Yba). According to the proof of Theorem 2, the proof will be achieved if we can show
that if u = k(k � 1)=2 + ` with 1 � ` � k and 1 � k � q, then for any (i; j) and (a; b) in Ek;`

kE(Zij jBu�1)k2 � kE(Xij j eFKij )k2 + kE(Xjij eFKji )k2 (47)

and

kE(ZijZabjBu�1)� E(ZijZab)k1 � kE(XijXabj eFKij \ eFKab)� E(XijXab)k1
+ kE(XijXbaj eFKij \ eFKba)� E(XijXba)k1 + kE(XjiXabj eFKji \ eFKab)� E(XjiXab)k1

+ kE(XjiXbaj eFKji \ eFKba)� E(XjiXba)k1: (48)

To prove the inequalities above, we �x, all along the rest of the proof k and ` such that 1 � k � q
and 1 � ` � k and also a (i; j) in Ek`. We notice that if (u; v) belongs to [`�1

m=1Ekm then
j� v � K, and if (a; b) belongs to [k�1

r=1 [rm=1 Erm then i� a � K. So H0
u�1 � eFKij . In addition,

if (a; b) belongs to [`�1
m=1Ekm then i � b � p + 2K and if (a; b) belongs to [k�1

r=1 [rm=1 Erm then
i � b � 2K + p. Therefore the distance between (i; j) and all the points (v; u) such that (a; b)
belongs either to [`�1

m=1Ekm or to [k�1
r=1 [rm=1 Erm is larger than K. This shows that B00u�1 � eFKij .

The two latter inclusions prove that Bu�1 � eFKij . Let us prove now that Hu�1 � eFKji . If (a; b)
belongs to [`�1

m=1Ekm then a� j � K, and if (a; b) belongs to [k�1
r=1 [rm=1 Erm then i�b � 2K+p.

So H0
u�1 � eFKji . In addition, if (a; b) belongs to [`�1

m=1Ekm then j � b � K and if (a; b) belongs
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to [k�1
r=1 [rm=1 Erm then i�a � K. Therefore the distance between (j; i) and all the points (b; a)

such that (a; b) belongs to [`�1
m=1Ekm or to [k�1

r=1 [rm=1 Erm is larger than K. Hence B00u�1 � eFKji .
This ends the proof of Bu�1 � eFKji . Since Bu�1 � eFKji and Bu�1 � eFKji , (47) follows by
applying the tower lemma and using contraction. To prove (48), we use again the tower lemma
together with the contractivity of the norm for the conditional expectation and the fact that
the above inclusions imply that for any (i; j) and (a; b) belonging to Ek;`, Bu�1 � eFKij \ eFKab ,
Bu�1 � eFKij \ eFKba , Bu�1 � eFKji \ eFKab and Bu�1 � eFKji \ eFKba . �

5.3 Proof of Theorem 5

The proof is very similar to the proof of Theorem 9 from Merlevède and Peligrad (2016). We
give it here for completeness.

Let n = N + p and Xn the symmetric matrix of order n de�ned by

Xn =
1p
N

�
0N;N XN;p
X TN;p 0p;p

�
:

Notice that the eigenvalues of X2
n are the eigenvalues of N�1XN;pX TN;p together with the eigen-

values of N�1X TN;pXN;p. Assuming that N � p (otherwise exchange the role of XN;p and X TN;p
everywhere), the following relation holds: for any z 2 C+

SBN (z) = z�1=2 n

2N
SXn(z1=2) +

N � p
2Nz

: (49)

(See, for instance, page 549 in Rashidi Far et al. (2008) for additional arguments leading to the
relation above). Consider now a real-valued centered Gaussian random �eld (Yk`)(k;`)2Z2 with
covariance function given by:

E(Yk`Yij) = E(Xk`Xij) for any (k; `) and (i; j) in Z2 ; (50)

and de�ne the N � p matrix
�N;p =

�
Yij
�
1�i�N;1�j�p :

Let GN = 1
N �N;p�

T
N;p and Hn be the symmetric matrix of order n de�ned by

Hn =
1p
N

�
0N;N �N;p
�TN;p 0p;p

�
:

Assuming that N � p, the following relation holds: for any z 2 C+

SGN (z) = z�1=2 n

2N
SHn(z1=2) +

N � p
2Nz

: (51)

In view of relations (49) and (51), to prove that for any z 2 C+,��SBN (z)� SGN (z)��! 0 in probability (52)

it su¢ ces to prove that, for any z 2 C+,��SXn(z)� SHn(z)��! 0 in probability (53)

(since n=N ! 1+c). Clearly (53) follows from the proof of Theorem 2 by noticing the following
facts. The entries xi;j and gi;j of the matrices n1=2Xn and n1=2Hn respectively, satisfy

xi;j = �
(n)
i;j Xji , gi;j = �

(n)
i;j Yji if 1 � j � i � n and xi;j = xj;i , gi;j = gj;i if 1 � j � i � n ;

where (�(n)i;j ) is a sequence of positive numbers de�ned by: �(n)i;j =
n1=2

N1=21N+1�i�n11�j�N . Hence

E(gk;`gi;j) = �
(n)
k;`�

(n)
i;j E(Xk`Xij), max1�j�i�n �i;j =

n1=2

N1=2 := �(n) and limn!1 �(n) =
p
1 + c.

�
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5.4 Proof of Theorem 6

The proof of this theorem follows all the steps of the proof of Theorem 2 (with the same
notations) with the exception of the treatment of terms which appear in (44). By stationarity

1

n2

q(q+1)=2X
u=1

X
i;j2Iu

EjE(XjXijBu�1)� E(XjXi)j �
1

p2

X
i;j2Ep

EjE(XjXijFK0 )� E(XjXi)j ;

where above and below Ep = [1; p]2 \N2. For i �xed in Ep, we shall divide the last sum in three
parts according to j 2 Ep; with ji� jj � d or d � ji� jj � K or ji� jj > K; where d is a positive
integer less than K. Since for this case FK0 � FKi^j; by the properties of conditional expectations
and stationarity we haveX

j;ji�jj�d
EjE(XjXijFK0 )� E(XjXi)j �

X
j;ji�jj�d

EjE(XjXijFKi^j)� E(XjXi)j

=
X

j;ji�jj�d
EjE(X0Xj�ijFK(j�i)^0)� E(X0Xj�i)j :

Therefore

1

p2

X
i;j2Ep;ji�jj�d

EjE(XjXijFK0 )� E(XjXi)j �
X

u;juj�d
EjE(X0XujFKu^0)� E(X0Xu)j;

which converges to 0 for d �xed as K !1 by the regularity condition of the random �eld.
Now we treat the part of the sum where j 2 Ep; with d � ji � jj � K: For this case we

note that FK0 � F ji�jji and FK0 � F ji�jjj : By the properties of conditional expectation and
stationarity and some computations we infer thatX

j;d<ji�jj�K
EjE(XiXjjFK0 )� E(XjXi)j � 2

X
u2V0;juj>d

EjXuE(X0jF juj0 )j ;

where we recall that V0 = fu = (u1; u2) 2 Z2 : u1 � 0 or u2 � 0g. It follows that

1

p2

X
i;j2Ep;d<ji�jj�K

EjE(XiXjjFK0 )� E(XjXi)j � 2
X

u2V0;juj>d
EjXuE(X0jF juj0 )j ;

which converges to 0 as d!1 uniformly in p and K by (19).
Finally, for the third sum where i; j 2 Ep, ji � jj � K we either have �(Xi) � FKj or

�(Xj) � FKi : By the properties of conditional expectation, when �(Xi) � FKj we have

EjE(XiXjjFK0 )� E(XjXi)j � 2E(jE(XiXjjFKj )j) = 2E(jXi�jE(X0jFK0 )j) :

When �(Xj) � FKi , similarly, we have

EjE(XiXjjFK0 )� E(XjXi)j � 2E(jXj�iE(X0jFK0 )j) :

Therefore

1

p2

X
i;j2Ep;ji�jj�K

EjE(XiXjjFK0 )� E(XjXi)j � 2p2 sup
u2V0:juj>K

EjXuE(X0jFK0 )j :

Since we can take K close to p, the result follows by letting �rst p ! 1 followed by d ! 1:
�
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5.5 Proof of Proposition 10

The proof uses similar arguments as those given in the proof of Theorem 2.1 in Chakrabarty et
al. (2016).

For any integers k and ` de�ne

ck` =

Z
[0;1]2

e�2�i(kx+`y)
p
f(x; y)dxdy :

There are real numbers and satisfy
P
k;`2Z c

2
k` < 1. Let now (Uij)(i;j)2Z2 be i.i.d. real-valued

random variables with law N (0; 1). Then, without restricting the generality, we can write

Yij =
X
k;`2Z

ck`Ui�k;j�` : (54)

(See Fact 4.1 in Chakrabarty et al. (2016)).
The result will follow if we can prove that when N; p tend to in�nity such that p=N ! c,

then there exists a deterministic probability measure �f depending only on c and f , and such
that for any " > 0,

P
�
d(�GN ; �f ) > "

�
! 0 as N !1: (55)

Clearly the identity (54) holds in distribution, hence to prove (55), without loss of generality,
we may and do assume from now on, that Yij is given by (54). To prove (55), we shall use Fact
4.3 in Chakrabarty et al. (2016)) and �rst truncate the series (54). Hence we �x a positive
integer m and we de�ne

Y
(m)
ij =

mX
k=�m

mX
`=�m

ck`Ui�k;j�` :

Let �(m)
N;p =

�
Y

(m)
ij

�
1�i�N;1�j�p. De�ne also G

(m)
N = 1

N �
(m)
N;p(�

(m)
N;p)

T . By Theorem 2.1 in Boutet
de Monvel et al. (1996), we have that for any positive integer m, there exists a deterministic
probability measure �m depending only on c and on the complex-valued function �(m) de�ned
on [0; 1]2 by �(m) =

P
k;`2Z E(Y

(m)
00 Y

(m)
k` )e�2�i(kx+`y), and such that for any " > 0,

P
�
d(�G(m)N

; �m) > "
�
! 0 as N !1: (56)

Notice that

E(Y (m)
00 Y

(m)
k` ) =

min(k+m;m)X
u=max(k�m;m)

min(`+m;m)X
v=max(`�m;m)

cuvck�u;`�v :

Since the ck`�s depend only on f , it follows that �(m) depends only on m and f . Therefore �m
can be rewritten as �m;f . Notice now that by Corollary A.42 in Bai and Silverstein (2010), for
any " > 0,

P
�
d(�GN ; �G(m)N

) > "
�
� 1

"2
E(d2(�GN ; �G(m)N

)

�
p
2

p
p
N"2



Tr1=2�G(m)
N +GN

�
Tr1=2

�
(�

(m)
N;p � �N;p)(�

(m)
N;p � �N;p)

T
�



1
:

Therefore by the Cauchy-Schwarz�s inequality and simple algebra,

P
�
d(�GN ; �G(m)N

) > "
�
�

p
2

p
p
N"2



Tr�G(m)
N +GN

�

1=2
1



Tr1=2�(�(m)
N;p � �N;p)(�

(m)
N;p � �N;p)

T
�

1=2

1

�
� X
k;`2Z : jkj_j`j>m

c2k`

�1=2
:
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This proves that, for any " > 0,

lim
m!1

lim sup
n!1

P
�
d(�GN ; �G(m)N

) > "
�
= 0 : (57)

Taking into account (56) and (57), Fact 4.3 in Chakrabarty et al. (2016) and the fact that the
space of probability measures on R is a complete metric space when equipped with the Lévy
distance, (55) follows. �

6 Useful technical lemmas

Below we give a Taylor expansion of a more convenient type for using Lindeberg�s method:

Lemma 12. Let f(�) be a function from R` to C, three times di¤erentiable, with continuous
third partial derivatives and such that

j@i@jf(x)j � L2 and j@i@j@kf(x)j � L3 for all i; j; k 2 f1; : : : ; `g and x 2 R` :

Then, for any a = (a1; : : : ; a`) and b = (b1; : : : ; b`) in R`,

f(a)� f(b) =
2X
k=1

1

k!
[(
X̀
j=1

aj@j)
k � (

X̀
j=1

bj@j)
k]f(0; : : : ; 0) +R3

where jR3j � R(a) +R(b), with

R(c) � 4`L2

X̀
j=1

c2jI(jaj j > A) + 2AL3`
2
�X̀
j=1

c2j

�
;

where c equals a or b.

This Lemma can be applied in conjunction with Stieltjes transform. Let A(x) be the matrix
de�ned by

(A(x))ij =

(
1p
n
xij i � j

1p
n
xji i < j

(58)

Let z 2 C+ and s := sz be the function de�ned from RN to C by

s(x) =
1

n
Tr(A(x)� zIn)�1 ; (59)

where In is the identity matrix of order n.
The function s, as de�ned above, admits partial derivatives of all orders. Next we give a

lemma concerning the derivatives of s(x) which is easily obtained by using the computations in
Chatterjee (2006) (see the proof of Lemma 12 in Merlevède and Peligrad (2016) for a complete
proof of its last inequality).

Lemma 13. Let z = u+ iv 2 C+ and let (aij)1�j�i�n and (bij)1�j�i�n be real numbers. There
exist universal positive constants c1; c2 and c3 depending only on the imaginary part of z such
that

j@usj �
c1

n3=2
; j@u@vsj �

c2
n2

and j@u@v@wsj �
c3

n5=2
: (60)

Furthermore there exists an universal positive constant c4 depending only on the imaginary part
of z such that for any subset In of f(i; j)g1�j�i�n and any x,��� X

u2In

X
v2In

aubv@u@vsn(x)
��� � c4

n2

� X
u2In

a2u
X
v2In

b2v

�1=2
:

23



The following lemma is Lemma 2.1 in Götze et al. (2012).

Lemma 14. Let An and Bn be two symmetric n� n matrices. Then, for any z 2 CnR,

jSAn(z)� SBn(z)j2 �
1

n2j Im(z)j4Tr
�
(An �Bn)2

�
;

where An = n�1=2An and Bn = n�1=2Bn.
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