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Abstract—Functional connectivity between the brain and body
kinematics has largely not been investigated due to the re-
quirement of motionlessness in neuroimaging techniques such
as functional magnetic resonance imaging (fMRI). However, this
connectivity is disrupted in many neurodegenerative disorders,
including Parkinson’s Disease (PD), a neurological progressive
disorder characterized by movement symptoms including slow-
ness of movement, stiffness, tremors at rest, and walking and
standing instability. In this study, brain activity is recorded
through functional near-infrared spectroscopy (fNIRS) and elec-
troencephalography (EEG), and body kinematics were captured
by a motion capture system (Mocap) based on an inertial mea-
surement unit (IMU) for gross movements (large movements such
as limb kinematics), and the WearUp glove for fine movements
(small range movements such as finger kinematics). PD and
neurotypical (NT) participants were recruited to perform 8
different movement tasks. The recorded data from each modality
have been analyzed individually, and the processed data has
been used for classification between the PD and NT groups.
The average changes in oxygenated hemoglobin (HbO2) from
fNIRS, EEG power spectral density in the Theta, Alpha, and
Beta bands, acceleration vector from Mocap, and normalized
WearUp flex sensor data were used for classification. 12 different
support vector machine (SVM) classifiers have been used on
different datasets such as only fNIRS data, only EEG data, hybrid
fNIRS/EEG data, and all the fused data for two classification
scenarios: classifying PD and NT based on individual activities,
and all activity data fused together. The PD and NT group
could be distinguished with more than 83% accuracy for each
individual activity. For all the fused data, the PD and NT
groups are classified with 81.23%, 92.79%, 92.27%, and 93.40%
accuracy for the fNIRS only, EEG only, hybrid fNIRS/EEG, and
all fused data, respectively. The results indicate that the overall
performance of classification in distinguishing PD and NT groups
improves when using both brain and body data.

Index Terms—Brain Body fusion, Sensor fusion, fNIRS, EEG,
Motion Capture.

I. INTRODUCTION

People suffering from movement disorders have benefited
from studies on neuroimaging and body motion capture
techniques individually [1]–[9]. While studies using a single
modality support understanding of neurological activities and
movement issues, functional connectivity between the two
is not yet understood. Some studies have investigated the
coupling between the brain and the body with a focus on a
few motor tasks of muscle contractions or small movements
such as finger flexion/extension. These combined studies [10]–
[17] utilized mostly electroencephalography (EEG) or magne-
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toencephalography (MEG) as the brain monitoring modality.
However, the high sensitivity of these systems to movement ar-
tifacts prevents their robust use in experiments involving larger
ranges of movement. In order to overcome this limitation in
this study, functional near-infrared spectroscopy (fNIRS), and
EEG have been integrated as synchronized brain monitoring
systems for larger range motor tasks. The fNIRS system cap-
tures hemodynamic responses in the brain and has been shown
to be less prone to motion artifacts, though low temporal
resolution and delays in hemodynamic responses are well-
known drawbacks of fNIRS. EEG, which provides a higher
temporal resolution (256 Hz compared to 10 Hz of fNIRS) and
faster electrical activity responses is synchronized with fNIRS
in this study to compensate for drawbacks of fNIRS. Body
kinematics are generally divided into two categories of gross
motor movements and fine motor movements. Gross move-
ments of both upper and lower limbs are recorded through
a non-optical motion capture system (Mocap). The Mocap
system captures gross or large range movements such as limb
movements like hand pronation/supination, arm movements,
and foot stomping. This system is not able to measure fine
motor movements such as finger tapping, one of the most
common tests in PD screening. The WearUp glove, which is
integrated with flexible sensors, is therefore used to measure
fine motor finger movements. This study thus records both
fine and gross motor tasks, respectively using the WearUp and
Mocap systems. Figure 1 shows an overview of this research
fusion system.

Fig. 1: Overview of the fusion system.

II. BACKGROUND

Parkinson’s Disease (PD) is the second most common
neurodegenerative motor disorder, affecting 4 million [18]
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people worldwide. Studies suggest that approximately 0.6% of
the total United States population and 0.8% of the European
and Canadian population will be affected by PD by 2050
[19]. PD patients have various movement-related symptoms
including resting tremor, muscle stiffness or rigidity, slowness
of movement, and gait and balance problems such as shuffling,
freezing or falling due to alterations in their brain-body
coupling. Neuromuscular pathways responsible for transfer-
ring motor commands from and to the brain are affected
in PD, which results in alterations in the coupling between
the brain and the body known as cortico-muscular coherence
(CMC) [20]. Coherence is the degree of time-locked corre-
lation between two signals as a function of frequency [21].
CMC usually refers to coherence between cortical activity
and muscle contractions measured by electromyogram (EMG).
The coherence between cortical activity and body kinematics,
cortico-kinematic coherence (CKC), uses movement sensors
such as accelerometers as the kinematic measurement unit.
Some abnormal CMC patterns have been reported in move-
ment disorders such as PD [22], [23]. Most studies of CMC
have utilized EEG or MEG as the brain monitoring technique
and EMG to record muscle contractions [11], [13]–[15], [24],
[25].

Recently, Sridharan et al. [10] measured the CMC between
the MEG and EMG from six PD patients undergoing deep
brain stimulation (DBS) ON and six medicated PD patients
(levodopa) along with ten age-matched healthy controls. The
experimental task was hand gripping. Sridharan et al. [10]
calculated CMC in the beta range (13-30 Hz). Medication
increased CMC values above control levels, but DBS results
in lower CMC values.

The effects of subthalamic nucleus (STN) DBS on the CMC
from PD patients is examined in a study from Airaksinen et al.
[26]. The authors used MEG and EMG simultaneously while
DBS was on and off and showed CMC peaks in the frequency
range of 13-25 Hz in 15 out of the 19 patients, with a variable
effect of DBS on CMC. Stronger CMC did not necessarily
indicate better functionality; however, tremor and rigidity may
have affected the results. The study concluded that DBS would
modify CMC in advanced PD patients, but with large inter-
individual variability.

Caviness et al. [21] observed an abnormal increase in the
CMC of PD patients with small amplitude cortical myoclonus.
The study involved PD patients with and without myoclonus
and controls. Coherence peaks were observed in the 12-30 Hz
band in PD patients with myoclonus, significantly greater than
those in PD patients without myoclonus and controls. Caviness
et al. [21] findings provide evidence that there are abnormal
rhythmic activities in cortical motor areas in PD patients with
myoclonus.

Marty et al. [12] measured CKC between MEG and a
3-axis accelerometer, while eleven healthy adults executed
or observed a goal-directed hand action performed by an
actor in front of them. Statistically significant coherence at
the movement frequency and its first harmonic was observed
in both conditions. This significant coherence is reported in
the visual cortices, right posterior superior temporal gyrus,
bilateral superior parietal lobule, and primary sensorimotor

cortex.
Bourguignon et al. [16] presented CKC as a promising

method for reliable and convenient functional mapping of the
human motor cortex. Coherence between MEG and a 3-axis
accelerometer on the right index finger showed peaks around
3-5 Hz and 6-10 Hz, corresponding to the self-paced flex-
ion/extension of the finger at 3 Hz. Coherence was significant
for all ten subjects in the contralateral hand area of the primary
motor cortex.

In another study by Bourguignon et al. [27], CKC between
MEG and a 3-axis accelerometer on the right index finger dur-
ing fast repetitive voluntary hand movements was measured for
ten healthy right-handed adults performing flexion/extension
movements with their right-hand finger with and without
thumb-finger touching. It was reported that the coherence val-
ues were significantly higher in the touch condition compared
to the no touch condition, with the main sources of coherent
activity in the left primary motor and sensory hand areas.

Another report by Bourguignon et al. [28] investigated
CKC between MEG recorded from a participant viewing
experimenter motion and the 3-axis accelerometer on the index
finger of the experimenter. A significant peak in the coherence
spectra at the flexion/extension frequency of 3 Hz and its first
harmonic is strongly observable in the visual areas, as well as
in the primary motor cortices of both hemispheres and in the
cerebellum. All these studies examine the coupling between
the brain and the body and how the correlation and coherence
between brain activity and body motion are changed in PD and
healthy groups. These studies do not differentiate between the
two groups. This study focuses on developing a multi-modal
brain-body fusion system and distinguishing PD participants
from healthy participants.

III. EXPERIMENT DESIGN

This section describes experiments on PD patients and
neurotypical (NT) participants to measure brain activity and
body movement. The fNIRS system used in this study is the
NIRScout system (NIRx Inc., New York, NY, USA) [29]. This
system utilizes 8 light sources and 8 light detectors. fNIRS
system uses NIR light at two wavelengths of 760 and 850
nm and the sampling rate of 7.81 Hz. The EEG system used
in this study is the g.USBAMP from g.tec [30] recording
brain activity with the sampling rate of 256 Hz. WearUp is
an active smart glove developed to record and detect patients
hand movements such as finger tapping [31]. WearUP consists
of two flexible sensors woven into a base fabric, an embedded
processor with Bluetooth low energy for wireless communi-
cation of sensor data, and a power management module. In
this study, a non-optical motion capture system called YEI 3-
Space Mocap (YEI Technology, Portsmouth, OH, USA) [32]
is used. This system consists of 17 IMU sensors that are able
to record the movements of different joints of the body.

fNIRS and Mocap data have been recorded through an
application protocol interface (API) that we have developed
specifically, for this purpose. The API is named brain body
monitoring API (BBM API). The Mocap and fNIRS systems
respectively have Mocap Studio and NIRStar as native soft-
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ware. However, to provide more control over the synchroniza-
tion of data collection from both systems, the BBM API was
developed. Two Python wrappers have been used to create the
API. The Mocap sensors wrapper, named Threespace, can be
found on GitHub [33]. This Python wrapper is open source
and compatible with YEI 3-space Mocap sensors. The fNIRS
wrapper comes as a software add-on to the NIRStar that allows
data to be streamed through an API called the Lab Streaming
Layer (LSL). The LSL API is also available on Github [34].
Figure 2 shows an overview of the BBM API. EEG data has
simultaneously been recorded through the system from g.tec
Inc. and the synchrony of the EEG and the API is provided
through a trigger output from the amplifier of the EEG system.
11 PD patients without deep brain stimulation (DBS) and 10
NT participants were recruited. PD recruitment criteria were
a diagnosis of PD and the lack of DBS implants. The criteria
for NT group recruitment was having no known neurological
disorders. All participants consented prior to the experiment
according to the institutional review board (IRB) requirements
and approval at the University of Rhode Island.

Fig. 2: Overview of the BBM application protocol interface.

Due to technical problems and some data loss, data from
subjects NT10, PD10, and PD11 have been excluded. There-
fore, the remaining of this article is based on the data from
9 PD and 9 NT participants. Table I shows the information
about the participants. The protocol of the experiment consists
of 8 different motor tasks related to the Unified Parkinson’s
Disease Rating Scale (UPDRS) motor examination. The tasks
are as follows and the experiment is conducted by performing
the tasks in the order mentioned here (please note the activity
indexes as they will be referred to in the results section):

• A1. Right hand finger tapping
• A2. Left hand finger tapping
• A3. Right hand flipping
• A4. Right arm movement
• A5. Left hand flipping
• A6. Left arm movement
• A7. Right foot stomping
• A8. Left foot stomping
Finger tapping kinematics were recorded by the WearUp

glove developed through this research and the other move-
ments were recorded by the Mocap system. fNIRS and EEG
neuroimaging optodes are placed over the motor cortex based

on the International 10-20 system to capture movement-related
neural activity. The placement of fNIRS optodes produces 18
channels of data.

TABLE I: Participant demographics.

Group Gender Age Year of Group Gender Age
PD Diagnosis NT

PD1 F 72 2002 NT1 M 71
PD2 F 78 2017 NT2 M 70
PD3 F 73 2017 NT3 F 62
PD4 M 67 2013 NT4 F 81
PD5 F 76 2015 NT5 M 65
PD6 M 56 2015 NT6 F 62
PD7 M 80 2008 NT7 F 66
PD8 F 76 2005 NT8 F 56
PD9 F 79 2008 NT9 F 56
PD10 M 87 2017 NT10 F 72
PD11 M 76 2018

Unfortunately, one of the light sources (S7 as indicated in
Figure 3) experienced malfunction in the middle of the study.
Therefore, two channels of fNIRS data created by S7 (channels
of S7-D5, and S7-D7) were excluded from processing. 13
EEG electrodes have been used in the locations of FC3, FC4,
C1, Cz, C2, C3, C4, CP1, CP2, CP3, CP4, P3, and P4. The
placement of fNIRS optodes and EEG electrodes is shown in
Figure 3.

Fig. 3: The montage of fNIRS and EEG electrodes.

The participants were instructed about how to perform each
task prior to the experiment. Participants were given time to
practice and become familiar with the tasks, but no data was
collected during the practice time. 20 seconds no movement
recording time has been used as the baseline before the
protocol of the experiment starts. Participants were asked to
follow the visual cues on the screen to perform each task for
5 trials, each consisting of 10 seconds activity followed by
10 seconds rest. The participants were instructed to perform
each task at their own comfortable pace. A green circle on
the screen indicates participants should perform the task, and
a blank white screen commands to stop and rest. Figure 4
shows the protocol of the experiment.
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Fig. 4: Timings of the experiment protocol.

IV. METHODS

This section explains the process of preparing the data
from each modality for classification between the PD and NT
groups.

A. fNIRS Analysis

fNIRS system utilizes NIR light at two wavelengths of 760
and 850 nm. The oxygenated hemoglobin (HbO2) and deoxy-
genated hemoglobin (Hb) can be calculated based on the Beer-
Lambert law. Preprocessing includes removing environment
noise and physiological noises such as heartbeat, Mayor wave,
and respiration rate. A 4th order band-pass Butterworth filter is
first applied to the data with cutoff frequencies of 0.1-0.4 Hz
to remove these sources of noise [35], [36]. The extinction
coefficient of hemoglobin needs to be defined in order to
use the modified Beer-Lambert law to calculate HbO2 and
Hb concentrations. There are some small differences in the
extinction coefficients of hemoglobin reported in the literature
[37]–[43]. The reported values in [39] have been used in order
to calculate the HbO2 and Hb concentrations as suggested
by NIRx. Yet another parameter setting is DPF, which takes
into account the additional average distance light travels due
to scattering beyond the linear distance between a source
and receiver. Values representative of reports described in the
literature [44]–[46] have been chosen as follows:

• DPF for WL1: 7.25
• DPF for WL2: 6.37
It deserves noting that the true value will depend on head

shape, skull thickness, and properties of underlying tissues
which are beyond the scope of this study. After setting all the
parameters, the HbO2 and Hb concentrations were calculated.

B. EEG Analysis

EEG is collected using the BCI2000 software [47] at a
sampling rate of Fs= 256 Hz. The data analysis starts with
detrending the data, done on the normalized signal using
the z-score. The z-score is calculated as z = (X − µ)/σ ,
where z is the z-score, X is the value of the element, µ is
the population mean, and σ is the standard deviation. After
detrending the signal, a Finite Impulse Response (FIR) band-
pass filter with order 3 and cutoff frequencies of 1 and 99 Hz
have been applied to the data. Next, the power spectral density
(PSD) of the signal is calculated. PSD provides information

regarding the distribution of average power as a function of
frequency. It can be calculated as the Fourier transform of
the autocorrelation function. After calculating the PSD for the
EEG signal, the power in the frequency bands of Theta (4-7
Hz), Alpha (8-15 Hz), and Beta (16-30 Hz) [48] are calculated.
The power in these bands is used to classify the two groups
of participants.

C. Mocap Analysis

Mocap data has been recorded from 3 sensors with the
actual sampling rate of 50 Hz. The data is upsampled to 256
Hz to match the frequency of EEG recording. The locations
of the sensors are as follow based on the activity.

• Sensor 1: Around hand, or around foot
• Sensor 2: Lower arm (below elbow), or lower leg (below

the knee)
• Sensor 3: Upper arm, or upper leg

Each sensor provides three degrees of freedom for each of
acceleration, gyroscope, and magnetometer. The data has been
normalized and detrended and the acceleration vector has been
calculated to be used for classification.

D. WearUp Analysis

Flex data was collected from the glove at a variable sam-
pling rate of approximately 50 Hz. A resampling method to
match the 256 Hz sampling frequency of EEG has been used.
Standard preprocessing steps such as z-score normalization
and detrending were also performed on the data.

E. Classification

Support Vector Machine (SVM) is used as the classification
method to distinguish the PD and NT groups based on the
fused data. The general concept of the SVM is that the
system uses a training dataset which is labeled with different
categories. This training set may be part of the original dataset.
Then, after the system is trained, it will be tested on the
rest of the original dataset to predict the data labels. In this
study, several learning algorithms have been implemented as
the grid search in the support vector machines in order to find
which learning algorithm has better performance. By applying
the Lagrangian optimization theory to a linear support vector
machine and using the kernel functions, it is possible to
classify datasets which are not linearly separable. Table II
shows the learning algorithms used in this study with their
complexity index, which we will refer to in the results section.

The main goal of this study was to distinguish the PD and
NT groups using our brain-body fused data. To achieve this
goal, the data from all the devices have been fused together for
classification. As this dataset is big data and the classification
of this big data needs exceptional computing, the data size was
reduced by averaging all data in one-second intervals. That is,
all the data points in a one-second window are averaged and
treated as single data points. This averaging results in an HbO2
concentration for each of 16 fNIRS channels (16 features),
Theta, Alpha, and Beta frequency band EEG power on each of
13 EEG channels (13x3 = 39 features), and the activity-based

Authorized licensed use limited to: Kunal Mankodiya. Downloaded on May 18,2020 at 14:38:21 UTC from IEEE Xplore.  Restrictions apply. 



1534-4320 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2020.2987888, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

JOURNAL OF IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING 5

TABLE II: Different methods of classification used in this
study.

Index Kernel Name Kernel Function Degree Cost Constant
1 Linear Kernel k(~x, ~y) = ~x · ~y – 1
2 Linear Kernel k(~x, ~y) = ~x · ~y – 10
3 Linear Kernel k(~x, ~y) = ~x · ~y – 100
4 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d 2 1
5 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d 2 10
6 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d 2 100
7 Polynomial kernel k(~x, ~y) = (~x · ~y + c)d 3 1
8 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d 3 10
9 Polynomial kernel k(~x, ~y) = (~x · ~y + c)d 3 100

10 Radial kernel k(~x, ~y) = e−(|~x−~y|2/2σ2) – 1
11 Radial kernel k(~x, ~y) = e−(|~x−~y|2/2σ2) – 10
12 Radial Kernel k(~x, ~y) = e−(|~x−~y|2/2σ2) – 100

Mocap acceleration or glove flex data (1 feature). Fusing all
the data provides a dataset with 16 + 39 + 1 = 56 features.
Participants were asked to perform each of the 8 activities for
5 trials. The first 3 trials of each activity create the training
dataset for the classifier, and the last 2 trials are left for testing
the performance of the classifier. The classification between
PD and NT group was performed in two different scenarios:
1. Classifying the two groups in each individual activity. This
means that the data from all of the modalities recorded from
all of the participants related to a specific task has been merged
together in order to create the training and testing datasets, and
all of the classifiers mentioned in Table II have been applied
on them. 2. Classifying the two groups for all the activities
combined. This means that all the data from all the participants
for all the activities have been merged together to create the
training and testing datasets. The classifiers in Table II have
again been applied to this data.

V. RESULTS AND DISCUSSION

All the data are analyzed based on the methods described in
the previous section and are fused together for classification
in order to distinguish between the PD and NT groups. Figure
5 shows the performance of the BBM API by plotting the
time series data of the Mocap and fNIRS before and after the
interpolation and upsampling. It can be seen that the data is
synchronized well without any changes on the time series.

Fig. 5: Performance of BBM API by showing the synchro-
nization method. 2 seconds of the MOCAP and fNIRS are
shown. Each 1 second window of the data is interpolated to
50 samples separately.

Figure 6 shows the synchronized fNIRS hemodynamic
response and the Mocap data for a cycle of 20 seconds no

movement (used as the baseline) followed by 10 seconds of
right foot stomping. It is clear from the time series data that
the hemodynamic response is in synchrony with the body
movement. Please note the delay in hemodynamic response
for getting to the peak after initiation of the movement.

Fig. 6: Accelerometer (Blue), and OxyHemoglobin (Red) data
for 20 seconds no movement followed by 10 seconds right leg
activity (foot stomping).

Figure 7 shows another time series data for a cycle of rest
period followed by finger tapping for a participant of the NT
group (top panel) and PD group (bottom panel).

Fig. 7: Flex sensor data of the smart glove for a cycle of rest
followed by finger tapping. Top panel shows the data from NT
group, bottom panel shows data from PD group.

12 different SVM classifiers have been used in this study,
and they are introduced in Table II. Classifiers will be referred
to by index. The classification has been performed in two
different scenarios. One is to distinguish PD and NT group
based on each of the 8 activities separately, and the second is
to distinguish PD and NT group based on all the data together.

A. Activity Based Classification

Table III reports the accuracy, sensitivity, and specificity of
the 12 classifiers to distinguish PD and NT group based on
the data from all of the modalities for each activity separately.

It can be seen that for each activity, the PD and NT group
can be distinguished with at least 83% accuracy. It is also
noteworthy to observe that by using a more complex classifier
(higher index), the sensitivity and specificity percentages get
closer, indicating an equal number of false positive (FP)
and false negative (FN) predictions. This reveals the optimal
performance of the classifier.
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TABLE III: Accuracy of all the 12 classifiers on the data from
all of the modalities for each activity.

SVM A1 A2 A3 A4 A5 A6 A7 A8
Index

1 76.80% 80.69% 79.86% 83.33% 82.08% 81.94% 77.36% 78.75%
2 76.80% 81.25% 79.72% 82.91% 82.22% 81.80% 77.50% 79.58%
3 76.66% 81.25% 79.86% 83.05% 81.66% 82.08% 76.94% 79.30%
4 83.19% 84.02% 80.27% 83.61% 85.69% 84.58% 81.66% 86.52%
5 86.94% 87.77% 87.50% 85.27% 88.61% 88.33% 85.13% 89.72%
6 85.69% 88.75% 87.77% 85% 88.61% 86.11% 85.27% 90.83%
7 79.44% 82.36% 78.61% 78.19% 76.80% 79.02% 79.30% 83.19%
8 74.72% 83.33% 84.58% 82.63% 82.50% 82.08% 80.55% 86.52%
9 73.75% 83.47% 80.97% 80.55% 81.94% 80.83% 77.91% 87.77%

10 85.13% 89.58% 87.22% 90.27% 88.19% 88.75% 88.47% 90.27%
11 85.55% 91.25% 88.75% 91.38% 90.83% 90.13% 90% 92.63%
12 83.61% 90.55% 87.77% 91.66% 90% 91.11% 88.61% 92.50%

B. All Data Classification

In this section, the data from all the 8 activities are merged
to determine if the PD and NT groups could be distinguished
based on the combined activity data. The classification has
been applied to four different datasets: 1. Dataset including
all the activities for only fNIRS. 2. Dataset including all the
activities for only EEG. 3. Dataset including all the activities
for hybrid fNIRS/EEG. 4. Dataset including all the activities
for all fused data (fNIRS/EEG/kinematics). Figure 8(A) shows
the performance of all the 12 classifiers on the dataset con-
taining only fNIRS data. It is clear that by using the most
complex classifier (radial kernel), the accuracy, sensitivity, and
specificity performance measures converge, indicating optimal
performance. The highest accuracy in distinguishing between
the PD and NT groups using only fNIRS data is 81.23% with
83.57% and 78.89% sensitivity and specificity, respectively,
using the SVM with index 12.

Figure 8(B) shows the performance of all the 12 classifiers
on the dataset containing only EEG data. The highest accuracy
in distinguishing between the PD and NT groups using only
EEG data is 92.79% with 93.12 and 92.46 sensitivity and
specificity, respectively.

Figure 8(C) shows the performance of all 12 classifiers on
the dataset containing hybrid of fNIRS and EEG data. The
highest accuracy in distinguishing between the PD and NT
groups using hybrid of fNIRS and EEG data is 92.27% with
91.35 % and 93.19% sensitivity and specificity, respectively.

Figure 8(D) shows the performance of all 12 classifiers on
the dataset containing all the recorded data. The highest accu-
racy in distinguishing between the PD and NT groups using
all the data is 93.40% with 93.78% and 93.02% sensitivity
and specificity, respectively.

It can be observed that classifying data with all the modal-
ities improves the accuracy of classification between the PD
and NT groups. This reveals the importance and critical role
of each modality used in this study.

VI. CONCLUSION

The objective of this study was to perform an experiment on
PD patients and NT group aiming to distinguish between PD
and NT based on the fused brain and body data. The brain
imaging systems used for this experiment were fNIRS and
EEG. Body kinematics were measured with a Mocap system
and the WearUp glove. 11 PD patients and 10 NT participants
were recruited to perform 8 motor tasks on upper and lower

limbs of both sides of the body. The data were recorded
through the developed API (BBM API) and synchronized
using the developed algorithms. HbO2 concentration from
fNIRS data and PSD in the frequency bands of Theta, Alpha,
and Beta were extracted from EEG data. The acceleration
vector was calculated based on the triaxial accelerometer
measures of the Mocap, and the flex sensor voltage was used
from the WearUp glove. The data from all these modalities
have been fused and averaged over a one-second-long moving
window. The final processed data were used for classification.
The goal of classification was to distinguish between the PD
and NT groups.

12 different SVM classifiers were trained on the first three
trials of the data, and the performance of the classifier was
tested on the last two trials. The classification was performed
in two different scenarios of single activity based classification,
and classification of the full combined data across all activities.

In single activity classification, the data from each activity
were used separately to train and test the classifiers, and the
results show that the PD and NT group can be distinguished
with at least 83% accuracy for each activity.

Full data classification has been performed on four different
scenarios: fNIRS only, EEG only, hybrid fNIRS and EEG, and
all the fused data. The optimal accuracy in distinguishing the
PD and NT groups is respectively 81.23%, 92.79%, 92.27%,
and 93.40% for the four scenarios.

The lower accuracy of the fNIRS only classification might
be due to the nature of this data. fNIRS measures changes
in HbO2 levels in the blood. This is a hydraulic system
with delays in hemodynamic flow. The delay of hemodynamic
responses based on changes in HbO2 levels can be seen in the
cross-correlation of the fNIRS data and Mocap data. Cross-
correlation measures the similarity of two series as a function
of the displacement of one relative to the other. Therefore,
the peak time in the cross-correlation of two series is the
hemodynamic signal delay.

Many studies have individually measured body kinematics
in people with movement disorders [7], [8], [49]–[52] mea-
sured brain activity in movement disorders, or discriminated
different activities based on brain activity [2], [3], [5], [53]–
[58]. This study merges these separate studies together to
provide clear insight about the synchrony between brain and
body. Some studies have measured brain-body synchrony,
but they usually utilize one modality of brain monitoring
such as EEG or MEG, and one modality of body kinematic
recording related to gross motor tasks or muscle contractions
by electromyogram (EMG) [10]–[16], [24]–[28].

This study is among few studies, if not the only and the
first study, to fuse brain and body data with two different
modalities of brain imaging and to measure both fine and gross
movements. The promising results show the feasibility of us-
ing all different recording modalities. Our future work includes
a more thorough data recording from a bigger population of
patients and neurotypical groups with a balance between male
and female participants. More rigorous signal processing and
analyzing of each individual modality data would be beneficial
to extract features to be used in classification and provide
better results. Different classification methods such as Linear
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Fig. 8: Performance of all 12 classifiers on the dataset containing (A)Only fNIRS data, (B)Only EEG data, (C)Hybrid
fNIRS/EEG data, and (D)All fNIRS, EEG, Motion data.

Discriminant Analysis, Neural Networks, and Deep Learning
will be applied to compare the performance of the classifiers.
Measuring the synchrony between brain and body as discussed
in the background is another main future objective of this
research.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant Numbers (#1652538 and
#1565962). The authors would like to thank Alyssa Zisk for
proofreading the document.

REFERENCES

[1] M. A. Sommer and R. H. Wurtz, Brain circuits for the internal moni-
toring of movements, Annu. Rev. Neurosci., vol. 31, pp. 317338, 2008.

[2] M. R. DeLong, Primate models of movement disorders of basal ganglia
origin, Trends in neurosciences, vol. 13, no. 7, pp. 281285, 1990.

[3] K. Leenders, A. Palmer, N. a. Quinn, J. Clark, G. Firnau, E. Garnett,
C. Nahmias, T. Jones, and C. Marsden, Brain dopamine metabolism
in patients with parkinsons disease measured with positron emission
tomography. Journal of Neurology, Neurosurgery & Psychiatry, vol. 49,
no. 8, pp. 853860, 1986.

[4] S. M. Rao, A. R. Mayer, and D. L. Harrington, The evolution of brain
activation during temporal processing, Nature neuroscience, vol. 4, no.
3, p. 317, 2001.

[5] U. Sabatini, K. Boulanouar, N. Fabre, F. Martin, C. Carel, C. Colonnese,
L. Bozzao, I. Berry, J. Montastruc, F. Chollet, et al., Cortical motor
reorganization in akinetic patients with parkinsons disease: a functional
mri study, Brain, vol. 123, no. 2, pp. 394403, 2000.

[6] B. J. French and K. R. Ferguson, System and method for tracking and
assessing movement skills in multidimensional space, Oct. 30 2001, uS
Patent 6,308,565.

[7] B. Galna, G. Barry, D. Jackson, D. Mhiripiri, P. Olivier, and L.
Rochester, Accuracy of the microsoft kinect sensor for measuring
movement in people with parkinsons disease, Gait & posture, vol. 39,
no. 4, pp. 10621068, 2014.

[8] P. E. OSuilleabhain and R. B. Dewey Jr, Validation for tremor quan-
tification of an electromagnetic tracking device, Movement disorders:
official journal of the Movement Disorder Society, vol. 16, no. 2, pp.
265271, 2001.

[9] M. B. Del Rosario, S. J. Redmond, and N. H. Lovell, Tracking the
evolution of smartphone sensing for monitoring human movement,
Sensors, vol. 15, no. 8, pp. 18 90118 933, 2015.

[10] K. S. Sridharan, A. Hjlund, E. L. Johnsen, N. Sunde, S. Beniczky, and
K. stergaard, Corticomuscular coherence during hand gripping with dbs
and medication in pd patients, in Neuroscience day 2016, 2016.

[11] R. Kristeva, L. Patino, and W. Omlor, Beta-range cortical motor spectral
power and corticomuscular coherence as a mechanism for effective
corticospinal interaction during steady-state motor output, Neuroimage,
vol. 36, no. 3, pp. 785792, 2007.

[12] B. Marty, M. Bourguignon, V. Jousmki, V. Wens, M. O. de Beeck, P.
Van Bogaert, S. Goldman, R. Hari, and X. De Tige, Cortical kinematic
processing of executed and observed goal-directed hand actions, Neu-
roimage, vol. 119, pp. 221228, 2015.

[13] Y. Zheng, L. Gao, G. Wang, Y. Wang, Z. Yang, X. Wang, T. Li, C. Dang,
R. Zhu, and J. Wang, The influence of unilateral contraction of hand
muscles on the contralateral corticomuscular coherence during bimanual
motor tasks, Neuropsychologia, vol. 85, pp. 199207, 2016.

[14] Y. Xu, V. M. McClelland, Z. Cvetkovic, and K. R. Mills, Corticomuscu-
lar coherence with time lag with application to delay estimation, IEEE
Transactions on Biomedical Engineering, vol. 64, no. 3, pp. 588600,
2017.

[15] T. Yoshida, K. Masani, K. Zabjek, R. Chen, and M. R. Popovic, Dynamic
cortical participation during bilateral, cyclical ankle movements: effects
of aging, Scientific reports, vol. 7, p. 44658, 2017.

[16] M. Bourguignon, X. De Tige, M. O. de Beeck, B. Pirotte, P. Van
Bogaert, S. Goldman, R. Hari, and V. Jousmki, Functional motor-cortex
mapping using corti-cokinematic coherence, Neuroimage, vol. 55, no.
4, pp. 14751479, 2011.

Authorized licensed use limited to: Kunal Mankodiya. Downloaded on May 18,2020 at 14:38:21 UTC from IEEE Xplore.  Restrictions apply. 



1534-4320 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2020.2987888, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

JOURNAL OF IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING 8

[17] D. Borthakur, Quantifying the effects of motor tasks on corticokinematic
coherence in parkinsons disease, 2018.

[18] E. Dorsey, R. Constantinescu, J. Thompson, K. Biglan, R. Holloway,
K. Kieburtz, F. Marshall, B. Ravina, G. Schifitto, A. Siderowf, et al.,
Projected number of people with parkinson disease in the most populous
nations, 2005 through 2030, Neurology, vol. 68, no. 5, pp. 384386, 2007.

[19] J.-P. Bach, U. Ziegler, G. Deuschl, R. Dodel, and G. Doblhammer-Reiter,
Projected numbers of people with movement disorders in the years 2030
and 2050, Movement Disorders, vol. 26, no. 12, pp. 22862290, 2011.

[20] A. Schnitzler and J. Gross, Normal and pathological oscillatory com-
munication in the brain, Nature reviews neuroscience, vol. 6, no. 4, p.
285, 2005.

[21] J. N. Caviness, C. H. Adler, M. N. Sabbagh, D. J. Connor, J. L.
Hernandez, and T. D. Lagerlund, Abnormal corticomuscular coherence
is associated with the small amplitude cortical myoclonus in parkinsons
disease, Movement Disorders, vol. 18, no. 10, pp. 11571162, 2003.

[22] P. Brown, S. Farmer, D. Halliday, J. Marsden, and J. Rosenberg,
Coherent cortical and muscle discharge in cortical myoclonus, Brain,
vol. 122, no. 3, pp. 461472, 1999.

[23] P. Brown, Muscle sounds in parkinsons disease, The lancet, vol. 349,
no. 9051, pp. 533535, 1997.

[24] T. Yoshida, K. Masani, K. Zabjek, R. Chen, and M. R. Popovic, Dynamic
increase in corticomuscular coherence during bilateral, cyclical ankle
movements, Frontiers in human neuroscience, vol. 11, p. 155, 2017.

[25] M. A. Perez, D. S. Soteropoulos, and S. N. Baker, Corticomuscular
coherence during bilateral isometric arm voluntary activity in healthy
humans, Journal of neurophysiology, vol. 107, no. 8, pp. 21542162,
2012.

[26] K. Airaksinen, J. P. Mkel, J. Nurminen, J. Luoma, S. Taulu, A. Ahonen,
and E. Pekkonen, Cortico-muscular coherence in advanced parkinsons
disease with deep brain stimulation, Clinical Neurophysiology, vol. 126,
no. 4, pp. 748755, 2015.

[27] M. Bourguignon, V. Jousmki, M. O. de Beeck, P. Van Bogaert, S.
Goldman, and X. De Tige, Neuronal network coherent with hand
kinematics during fast repetitive hand movements, Neuroimage, vol. 59,
no. 2, pp. 16841691, 2012.

[28] M. Bourguignon, X. De Tige, M. O. de Beeck, P. Van Bogaert, S. Gold-
man, V. Jousmki, and R. Hari, Primary motor cortex and cerebellum are
coupled with the kinematics of observed hand movements, Neuroimage,
vol. 66, pp. 500507, 2013.

[29] Nirscout system, nirx inc.:, https://nirx.net/.
[30] ”g.USBAMP system, g.tec:,” https://www.gtec.at/product/g-usbamp-

research/.
[31] M. Abtahi, N. Constant, J. V. Gyllinsky, B. Paesang, S. E. DAn-

drea, U. Akbar, and K. Mankodiya, Wearup: Wearable e-textiles for
telemedicine intervention of movement disorders, in Wearable Technol-
ogy in Medicine and Healthcare. Elsevier, 2018, pp. 173192.

[32] Yei 3-space mocap sensors:, https://yostlabs.com/product/3-space-
mocap-starter-bundle/.

[33] Mocap sensors wrapper, threespace, https://github.com/Knio/threespace.
[34] Lab streaming layer for nirstar15,

https://github.com/sccn/labstreaminglayer.
[35] N. Naseer and K.-S. Hong, fnirs-based brain-computer interfaces: a

review, Frontiers in human neuroscience, vol. 9, p. 3, 2015.
[36] S. D. Power, A. Kushki, and T. Chau, Towards a system-paced near-

infrared spectroscopy braincomputer interface: differentiating prefrontal
activity due to mental arithmetic and mental singing from the no-control
state, Journal of neural engineering, vol. 8, no. 6, p. 066004, 2011.

[37] J. Schmitt, Optical measurement of blood oxygenation by implantable
telemetry, Technical Report G55815, Stanford., 1986.

[38] S. Takatani and M. D. Graham, Theoretical analysis of diffuse re-
flectance from a two-layer tissue model, IEEE Transactions on Biomed-
ical Engineering, no. 12, pp. 656664, 1979.

[39] N. Kollias and W. Gratzer, Tabulated molar extinction coefficient for
hemoglobin in water, Wellman Laboratories, Harvard Medical School,
Boston, vol. 5, pp. 150161, 1999.

[40] M. K. Moaveni, A multiple scattering field theory applied to whole
blood. 1971.

[41] M. Cope, The application of near infrared spectroscopy to non invasive
monitoring of cerebral oxygenation in the newborn infant, Department
of Medical Physics and Bioengineering, vol. 342, 1991.

[42] W. Zijlstra, A. Buursma, and W. Meeuwsen-Van der Roest, Absorption
spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin,
carboxyhemoglobin, and methemoglobin. Clinical chemistry, vol. 37,
no. 9, pp. 16331638, 1991.

[43] S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. R. Reynolds,
Characterization of the near infrared absorption spectra of cytochrome
aa3 and haemoglobin for the non-invasive monitoring of cerebral oxy-
genation, Biochimica et Biophysica Acta (BBA)-Bioenergetics, vol. 933,
no. 1, pp. 184192, 1988.

[44] M. Essenpreis, C. Elwell, M. Cope, P. Van der Zee, S. Arridge, and
D. Delpy, Spectral dependence of temporal point spread functions in
human tissues, Applied optics, vol. 32, no. 4, pp. 418425, 1993.

[45] M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig,
and A. Villringer, Determination of the wavelength dependence of the
differential pathlength factor from near-infrared pulse signals, Physics
in Medicine & Biology, vol. 43, no. 6, p. 1771, 1998.

[46] H. Zhao, Y. Tanikawa, F. Gao, Y. Onodera, A. Sassaroli, K. Tanaka,
and Y. Yamada, Maps of optical differential pathlength factor of human
adult forehead, somatosensory motor and occipital regions at multi-
wavelengths in nir, Physics in Medicine & Biology, vol. 47, no. 12,
p. 2075, 2002.

[47] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J.
R. Wolpaw, Bci2000: a general-purpose brain-computer interface (bci)
system, IEEE Transactions on biomedical engineering, vol. 51, no. 6,
pp. 10341043, 2004.

[48] G. Deuschl, ”Recommendations for the practice of clinical neurophys-
iology,” Guidelines of the International Federation of Clinical Neuro-
physiology, 1999.

[49] J. Hermsdrfer, N. Mai, J. Spatt, C. Marquardt, R. Veltkamp, and G.
Goldenberg, Kinematic analysis of movement imitation in apraxia,
Brain, vol. 119, no. 5, pp. 15751586, 1996.

[50] R. Agostino, A. Curr, M. Giovannelli, N. Modugno, M. Manfredi, and
A. Berardelli, Impairment of individual finger movements in parkinsons
disease, Movement disorders, vol. 18, no. 5, pp. 560565, 2003.

[51] L. Rnnqvist and B. Rsblad, Kinematic analysis of unimanual reaching
and grasping movements in children with hemiplegic cerebral palsy,
Clinical Biomechanics, vol. 22, no. 2, pp. 165175, 2007.

[52] N. J. Rinehart, M. A. Bellgrove, B. J. Tonge, A. V. Brereton, D. Howells-
Rankin, and J. L. Bradshaw, An examination of movement kinematics
in young people with high-functioning autism and aspergers disorder:
further evidence for a motor planning deficit, Journal of autism and
developmental disorders, vol. 36, no. 6, pp. 757767, 2006.

[53] V. Kaiser, G. Bauernfeind, A. Kreilinger, T. Kaufmann, A. Kbler, C.
Neuper, and G. R. Mller-Putz, Cortical effects of user training in a
motor imagery based braincomputer interface measured by fnirs and
eeg, Neuroimage, vol. 85, pp. 432444, 2014.

[54] M. Abtahi, A. Amiri, D. Byrd, and K. Mankodiya, ”Hand Motion
Detection in fNIRS Neuroimaging Data,” Healthcare, vol. 5, no. 2, p.
20. Multidisciplinary Digital Publishing Institute, 2017.

[55] K.-S. Hong, N. Naseer, and Y.-H. Kim, Classification of prefrontal and
motor cortex signals for three-class fnirsbci, Neuroscience letters, vol.
587, pp. 8792, 2015.

[56] J. A. Pineda, B. Allison, and A. Vankov, The effects of self-movement,
observation, and imagination on/spl mu/rhythms and readiness potentials
(rps): toward a brain-computer interface (bci), IEEE Transactions on
Rehabilitation Engineering, vol. 8, no. 2, pp. 219222, 2000.

[57] C. Guger, W. Harkam, C. Hertnaes, and G. Pfurtscheller, Prosthetic
control by an eeg-based brain-computer interface (bci), in Proc. aaate
5th european conference for the advancement of assistive technology.
Citeseer, 1999, pp. 36.

[58] M. J. Khan, M. J. Hong, and K.-S. Hong, Decoding of four movement
directions using hybrid NIRS-EEG brain-computer interface, Frontiers
in Human Neuroscience, vol. 244, article no. 8, 2014.

Mohammadreza Abtahi received his B.Sc. in Elec-
trical Engineering from Sharif University of Tech-
nology, Iran, in 2012, M.Sc. and Ph.D. in Electrical
Engineering from the University of Rhode Island,
RI, USA, in 2014 and 2018, respectively. He has
received a certificate in Neuroscience from the In-
terdisciplinary Neuroscience Program, University of
Rhode Island in 2018.
He is currently serving as a Research and Devel-
opment Scientist in medical device industry. His
research interests include brain imaging, neural en-

gineering, Brain-Computer Interface, biosignal processing, machine learning,
wearable sensors, and medical device development.

Authorized licensed use limited to: Kunal Mankodiya. Downloaded on May 18,2020 at 14:38:21 UTC from IEEE Xplore.  Restrictions apply. 



1534-4320 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2020.2987888, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

JOURNAL OF IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING 9

Seyed Bahram Borgheai received his B.Sc. in
Electrical Engineering from Sharif University of
Technology, Iran, in 1999, M.Sc. in Biomedical
Engineering from Tehran University, Iran, in 2002,
M.Sc. and Ph.D. in Philosophy of Science from
Sharif University of Technology, Iran, in 2008 and
2017, respectively.
He is currently working toward the second Ph.D.
with the Department of Electrical, Computer, and
Biomedical Engineering, University of Rhode Is-
land, RI, USA. His main research interests are

evaluating cognitive markers to facilitate applications of BCI systems.

Roohollah Jafari received his B.Sc. degree in
Electrical and Communication Engineering from the
Isfahan University of Technology, Iran, in 2012, and
M.Sc. degree in Bioelectrics from Tehran University,
Iran, in 2015. He is currently working toward the
Ph.D. degree with the Department of Electrical,
Computer, and Biomedical Engineering, University
of Rhode Island, RI, USA. His research interests in-
clude Biomedical Signal Processing, Biological Sys-
tems Modeling, Computational Neuroscience, Brain
Computer Interface (BCI) and Brain Mapping.

Nicholas Constant (S13) received his B.Sc. (2015)
and M.Sc. (2017) in Electrical Engineering from the
University of Rhode Island. He is currently working
toward the Ph.D. degree with the Department of
Electrical, Computer, and Biomedical Engineering,
University of Rhode Island, RI, USA. His research
focus is on understanding the materials and systems
capable of monitoring fine-grain motor movements
remotely.

Rassoul Diouf received his B.Sc. degree in Elec-
trical Engineering from the University of Rhode
Island, RI, USA, in 2017. He is currently working
toward the M.Sc. degree with the Department of
Electrical, Computer, and Biomedical Engineering,
University of Rhode Island. His research interests
include Digital Signal Processing and Biomedical
Analytics.

Yalda Shahriari received her B.Sc. in Electrical
Engineering from Ferdowsi University, Iran, M.Sc.
in Biomedical Engineering from Iran University of
Science and Technology, and Ph.D. in Biomedical
Engineering from the Old Dominion University of
Virginia. She accomplished her postdoctoral studies
at University of California, San Francisco (UCSF).
She is currently an Assistant Professor of Biomed-
ical Engineering and the Director of NeuralPC Lab
in the Department of Electrical, Computer, and
Biomedical Engineering, University of Rhode Is-

land, RI, USA. Her research interests are biomedical signal processing, brain-
computer interface (BCI) for assistive technology, statistical analysis and
modeling, machine learning algorithms, healthcare units and biomedical data
analysis.

Kunal Mankodiya (S’08-M’14) received his B.E.
degree in Biomedical Engineering from the Saurash-
tra University, India, in 2003, M.S. degree in
Biomedical Engineering, and the Ph.D. degree in
Computer Science from the University of Luebek,
Germany in 2007 and 2010, respectively. From 2011
to 2014, he was a postdoctoral researcher at Intel
Science and Technology Center (ISTC) affiliated
with Carnegie Mellon University (CMU), Pittsburgh,
PA, USA.
He is currently an Associate Professor of Biomedical

Engineering and the Director of Wearable Biosensing Lab in the Department
of Electrical, Computer, and Biomedical Engineering, University of Rhode
Island, RI, USA. He enjoys his research on wearable systems, smart textiles,
Internet-of-Things, and neural engineering.

Authorized licensed use limited to: Kunal Mankodiya. Downloaded on May 18,2020 at 14:38:21 UTC from IEEE Xplore.  Restrictions apply. 


