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Abstract

In this paper we study the central limit theorem and its functional form for
random fields which are not started from their equilibrium, but rather under the
measure conditioned by the past sigma field. The initial class considered is that
of orthomartingales and then the result is extended to a more general class of
random fields by approximating them, in some sense, with an orthomartingale.
We construct an example which shows that there are orthomartingales which
satisfy the CLT but not its quenched form. This example also clarifies the
optimality of the moment conditions used for the validity of our results. Finally,
by using the so called orthomartingale-coboundary decomposition, we apply our
results to linear and nonlinear random fields.

1 Introduction and the quenched CLT

A very interesting type of convergence, with many practical applications, is the
almost sure conditional central limit theorem and its functional form. This
means that these theorems hold when the process is not started from its equi-
librium but it is rather started from a fixed past trajectory. In the Markovian
setting such a behavior is called a limit theorem started at a point. In gen-
eral these results are known under the name of quenched limit theorems, as
opposed to the annealed ones. A quenched CLT, for instance, is a stronger form



of convergence in distribution and implies the usual CLT. There are examples
in the literature showing that the annealed CLT does not necessarily implies
the quenched one. See for instance Ouchti and Volny (2008) and Volny and
Woodroofe (2010).

The limit theorems started at a point or from a fixed past trajectory are
often encountered in evolutions in random media and they are of considerable
importance in statistical mechanics. They are also useful for analyzing Markov
chain Monte Carlo algorithms.

In the context of random processes, this remarkable property is known for
a martingale which is stationary and ergodic, as shown in Ch. 4 in Borodin
and Ibragimov (1994) or on page 520 in Derriennic and Lin (2001). By using
martingale approximations, this result was extended to larger classes of random
variables by Cuny and Peligrad (2012), Volny and Woodroofe (2014), Cuny and
Merlevede (2014), among others (for a survey see Peligrad, 2015).

A random field consists of multi-indexed random variables (X,),cza. An
important class of random fields are orthomartingales which have been intro-
duced by Cairoli (1969) and further developed in Khoshnevisan (1982). They
have resurfaced in many recent works. New versions of the central limit theorem
for stationary orthomartingales can be found in Wang and Woodroofe (2013),
Volny (2015, 2019), which complement the results in Basu and Dorea (1979),
where a different definition of multiparameter martingale was used.

In order to exploit the richness of the martingale techniques several authors
provided interesting sufficient conditions for orthomartingale approximations,
such as Gordin (2009), Volny and Wang (2014), Cuny et al. (2015), El Machk-
ouri and Giraudo (2016), Peligrad and Zhang (2018 a), Giraudo (2018), Volny
(2018). Other recent results involve random fields which are functions of in-
dependent random variables as in El Machkouri et al. (2013) and Wang and
Woodroofe (2013). Peligrad and Zhang (2018 b) obtained necessary and suf-
ficient conditions for an orthomartingale approximation in the mean square.
These approximations make possible to obtain the central limit theorem (CLT)
for a large class of random fields. As in the case of a stochastic processes, a
natural and important question is to get a quenched version of these CLT’s.
Motivated by this question, we obtain first a quenched CLT for orthomartin-
gales. We show by examples that the situation is different for random fields.
An orthomartingale which satisfies the CLT may fail to satisfy the quenched
CLT. The example we constructed also throws light on the optimality of the
moment conditions we use in our main result. Finally, we extend the quenched
CLT to its functional form and to a larger class of random fields which can
be decomposed into a orthomartingale and a coboundary. We shall apply our
results to linear and nonlinear random fields, often encounters in economics.

For the sake of clarity, due to the complicated notation, we shall explain in
detail the case d = 2 and the proof of the quenched CLT. Then, in the subsequent
sections, we shall discuss the general index set Z% and other extensions of these
results.

Let (2, K, P) be a probability space, let T' and S be two commuting, invert-
ible, bimeasurable, measure preserving transformations from €2 to €2, and let



Fo,0 be a sub-sigma field of K. For all (4, j) € 72 define
Fij =TS (Fop), 1,5 € Z. (1)

Assume the filtration is increasing in ¢ for every j fixed and increasing in j
for every ¢ fixed (i.e. FooC Fo,1 and FooC F10). For all ¢ and j we also
define the following sigma algebras generated by the unions of sigma algebras:
Fioo = VmezFimy» Foo,j = VnezFn,j and Foo,oo = VnmezFnm- In addition
assume the filtration is commuting, in the sense that for any integrable variable
X, with notation E, X = E(X|F,), we have

Eu,an,bX = Ea/\u,b/\vX~ (2)

We introduce the stationary sequence as following. Define a function Xgq :
Q — R, which is Fy g—measurable, and the random field

X (W) = Xo,0(T"S7 (w)). (3)

’.

For the filtration (F; ;) defined by (1) we call the random field (X ;); jcz defined
by (3) orthomartingale difference field, if

E(X; j|Fuw) =0 if either u < ¢ or v < j. (4)

This definition implies that for any ¢ fixed (X; j);cz is a sequence of martingale
differences with respect to the filtration (Foo j)jez and also for any j fixed
(Xij)iez is a sequence of martingale differences with respect to the filtration

(Fi,o0)icz- Set
n—1 v—1
Snﬂ) = Zi=0 ijoXi7j‘

Below, = denotes convergence in distribution.
The results in this paper are motivated by the following annealed CLT in
Volny (2015), which was extended to a functional CLT in Cuny et al. (2015).

Theorem A Assume that (X; ;)i jcz is defined by (3) and satisfies (4).
Also assume that the filtration (F; ;)i jez is defined by (1) and satisfies (2).
Assume that S (or T) is ergodic and Xop is square integrable, E(X§ o) = 0.

Then,
1

WSW, = N(0,0?%) when n Av — oo.

Let us point out that if S (or T') is ergodic, then the Z? action generated
by S and T is necessarily ergodic. However the ergodicity is not enough for
Theorem A to hold. In Example 5.6 in Wang and Woodroofe (2013) and then
in more detail by Volny (2015), a simple example of ergodic random field which
does not satisfy the central limit theorem is analyzed. Starting with two se-
quences of i.i.d. random variables, centered with finite second moments, (X,)
and (Y},), the example is provided by the random field (Z; ;), with Z; ; = X;Y;
for all (4, 7).



It should be noted that Theorem A has a different area of applications than
Theorem 1 in Basu and Dorea (1979). In this latter paper the filtration is not
supposed to be commuting. For a random field (X; ;); j>1 their filtration (K, ,,)
is generated by the variables {X,; : (j > 1,1 <i<n)U (i >1,1<j <m)}.
Suppose (&; ;) are ii.d., standard normal random variables. Then, Theorem
A can be applied, for instance, to the random field (X, ;), where X; ;(w) =
Xo,o(TiSj(w)) with X())O = 671’0507,1 and .7:0)0 = O'(fi’j,i <0,5 < 0) but the
result in Basu and Dorea (1979) cannot. On the other hand the random field
(}/’iyj)’ defined by }/’i,j = Y070(T1S'7 (w)) with Y070 = 21;“;1 ak(&g,o + §O7k) and
> ey lak| < oo, can be treated by the result in Basu and Dorea (1979) but not
by Theorem A.

It should also be noted that Theorem A allows to study the central limit
theorem for orthomartingales which are not defined by a Bernoulli Z2-action.

The aim of this paper is to establish a quenched version of Theorem A.

We denote by P“(-) = Fg'y(+) a version of the regular conditional probability
P(:|Fo,0)(w).

One of the results of this paper is the following theorem:

Theorem 1 Assume that (X; ;)i jez is defined by (3) and satisfies (4). Also
assume that the filtration (F; ;)i jez is defined by (1) and satisfies (2). Assume
that S (or T) is ergodic and Xo o is square integrable, E(X§ o) = 0. Then, for
P-almost all w € Q,

1
ﬁS’n,n = N(0,0%) under P“. (5)

In addition, if
E(X§log(1 + | Xo,0)) < oo, (6)

then for almost all all w € €2,

Spw = N(0,0%) under P* when n A v — oc. (7)

(nw)1/2

We would like to mention that, because by integration the quenched CLT
implies the annealed CLT, the conclusion in Theorem 1 implies the CLT in
Theorem A. However, when the summation on the rectangles is not restricted,
the integrability assumption (6) is stronger than in Theorem A. Later on, in
Theorem 5, we shall extend this result to a functional central limit theorem.
Let us also notice that the second part of Theorem 1 does not always hold under
the assumption E(X3,) < co. As a matter of fact we are going to provide an
example to support this claim.

Theorem 2 Under the setting used in Theorem 1, there is a stationary sequence
(Xn,m)n,mez satisfying (4), adapted to a commuting filtration (F; ;)i jez, with
B(X3In(1 +[Xo,0])) = 00, for any 0 < e < 1, B(XZoIn""*(1 + |[Xo,0])) < o0
and such that (Sp,m//NM)m.m)yez> does not satisfy the quenched CLT in (7).



We mention that, as a matter of fact, in our examples, both transformations
constructed for the definition of (X, m)n,mez and for the filtration (F; ;): jez,
are ergodic. Also, this example satisfies the quenched CLT in (5).

The detailed proofs of these two theorems are contained in Section 2. Various
extensions of Theorem 1 will be given in subsequent sections.

In Section 3 we formulate the functional form of the quenched CLT and we
indicate how to prove it, by adapting the arguments from the proof of Theorem
1 and some other proofs of several known results.

For the sake of applications, in Section 4, we extend the results beyond
orthomartingales, to a class of random fields which can be decomposed into an
orthomartingale and a generalized coboundary.

In Section 5 we show that Theorem 1 remains valid for random fields in-
dexed by Z? d > 2. The only difference is that we replace condition (6) by
B(X3 0 log (1 + [ Xool) < o0

In Section 6 we apply our results to linear and nonlinear random fields
with independent innovations. Several useful results for our proofs are given
in Section 7.

2 Proofs of Theorems 1 and 2

Proof of Theorem 1

To fix the ideas, let us suppose that the transformation S is ergodic. Let us
denote by T and S the operators on Lo, defined by Tf foT and Sf folS.
Everywhere in the paper, for z real, we shall denote by [z] the integer part of
x.

By using a truncation argument, we show first that, without restricting the
generality, we can prove the theorem under the additional assumption that the
variables are bounded. We shall introduce the following projection operators:

Pij(X) = Eij(X) = Eij1(X) = Ei—1;(X) + Ei—1j-1(X).

Let A be a positive integer. Denote Xg,j = X;;I(|X;;] < A) and X;j =
Xi;I(|X;,;] > A). Therefore, we can represent (X;;) as a sum of two or-
thomartingale differences adapted to the same filtration.

Xij="Pii(X; ;) + Pij(X] ). (8)
Note that,

Po,0(X0,0)| < | Xo,0l + E-1,0/Xo0,0] + Eo,

1,1|1Xo.0].
Whence, by the properties of conditional expectation, E(Xg)? < oo implies

E(Po,0(Xg,))* < 0 9)



and E(X§ log(1 + [Xo,])) < oo implies

E((Po,0(X0,0))?10g(1 + [(Po,0(Xg,0))) < 00 (10)
Set

n—1 v—1 ’ n—1
= Zi:() j=0 Pi’j (le and S Zl 0 Z “J
We shall show that, for P—almost all w,

Aleoo lim nAS;lBOO P (nv)1/2

S0l >€) =0.
By conditional Markov inequality, it is enough to show that

lim lim —EOO(S )2 =0 as. (11)

A—oo nAv—oo NU

By the orthogonality of the orthomartingale differences, we have that

S Bool(8,,) = o3 S Boa(Pa (X)) (12

Note that the conditional expectation introduces a family of operators defined
by
Ql(f) = EO,oo(Tf) ) QQ(f) = Eoo,O(Sf)

So, using (2), we can write
Eo,0(Pi (X7 ;))? = QiQ%(Poo(Xg0))*

Since @1 and )2 are integral preserving Dunford-Schwartz operators, by the
ergodic theorem (see Theorem 3.5 in Ch. 6 in Krengel, 1985), if we assume
finite second moment, by (9),

. 1 n—1 n—1 i » »
T}LH;O ?Zizo ijo QlQ%(PO,O(Xo,o))2 = E(PO,O(XO,O))2 a.s.
If we assume E(X§ ;log(1+4[Xo,0])) < oo then, by (10) and Theorem 1.1 in Ch.

6, Krengel (1985), we obtain

lim Z:L OIZ o Qz (Po O(XS,O))2 = E’(P(LO(X&O))2 a.s. (13)

nAv—oo NV

Clearly lim g4 o Po,o(Xo,o) = 0 a.s. So, by the dominated convergence theorem,
Jim E(Po,0(X0,))? =0,

and (11) is established. By Theorem 3.2 in Billingsley (1999), in order to es-
tablish conclusion (7) of Theorem 1, it is enough to show that for A fixed, for
almost all w € Q,

/

WSW] = N(0,0%) under P¥ as n Av — oo, and 0% — % as A — oc.



Above, 0% = E(’Poyo(X(/)’O))Q. Clearly, when A — oo, 0% — 2. Therefore the
result is established if we prove Theorem 1 for orthomartingale differences which
are additionally uniformly bounded.

So, in the rest of the proof, without restricting the generality, we shall assume
that the variables (X; ;)i jez are bounded by a positive constant C. Also,
proving the result for n > v — oo is equivalent to proving it for any subsequence
(n,vy,) with v, — 00 as n — oo. To ease the notation we shall denote v = v,.

Denote
zv: 1/223 0 i,j- (14)

We treat the double summation as a sum of a triangular array of martingale
differences (Fi,'u)iZO :

1 n— 1
(nv)1/2 S = 1/2Zl 0 Fio.

We shall apply Theorem 1 in Génssler and Héusler (1979), given for convenience
in Theorem 15 from Section 7, to D, ; = F; ,/v/n. We have to show that for
almost all w, both conditions of this theorem are satisfied. Namely we shall
verify that P—for almost all w € © and all rationals ¢ € [0, 1]

1)
lim E00| Z[(” ) (F?, — o) =0. (15)
and 1
—Fpo max F is bounded. (16)
n 0<i<n

We verify first (15). Note that, since the rationals are countable, it is enough
to show that for any ¢ rational

1 (n—1
lim E00|Z )Q] Fw—a2)|:0 P —as.

n—oo N

We verity it first with ¢ = 1 and use a blocking procedure.

Let m > 1 be a fixed integer and define consecutive blocks of indexes of size
m, Ij(m) = {(j —1)m,...,mj — 1}. In the set of integers from 0 to n —1 we have
u = un(m) = [n/m] such blocks of integers and a last one containing less than
m indexes. Practically, by the triangle inequality, we write

1 n—1
LS, ot <
1 u 1 n—1
IR S R
D SHIES ST S T) o o

Ly + 11, .

The task is now to show that

lim lim Eyo(lnm) =0 as. (17)

m— 00 NAV— 00



and
lim lim Eyo(Il,m) =0 as. (18)

m—0o0 NAV—00

Let us treat first the limit of Ey (I, m). Let Ny be a fixed integer and consider
n Av > Ny. By using the properties of the conditional expectations and (2) we
obtain the following bound for Ey o(I.m) :

Eoo(Lnm) = %Eo,o Z:Zl |% Zkelj(m) F,—0o’
= %Eo,o Z;;l E(jfl)m70|% Zkelj(m) Fl?,v - o
= Eo,o% Z::OI TimE0,0|% Z::Ol Fp, -0’
< Eo,o% Z::()l Tim(hm,No)a

where we have used the notation

m—1

1
2 2
him,n, = sup Ego|— E Fy, — o7
v>Np m k=0

Note that h,, n, is bounded. Indeed, by the martingale property and the uni-
form boundedness of the variables by C, it follows that

1 m—1
h <ol4— sup By o(F?
m,Ng = m Zk,:o U>JI\?0 070( k:,v)

1 m—1 1 v—1
_ 2 L 2\ o 2 2
0"+ — g o US;IJI\?OEO’O(U E u:oX’““) <o* 4+ C

By the ergodic theorem, (see Theorem 11.4 in Eisner et al., 2015 or Corollary
3.8 in Ch. 3, Krengel, 1985) for each m and Ny

. el nim
lim — Zi:o T hin Ny = Bl [T) = Ef(hm,y, ) a5,

where [ is the invariant sigma field for the operator T'. Furthermore, we also
have that

1 e—u—1 ..
=Y T b, < 0% 4 C.

So, by Theorem 34.2 (v) in Billingsley (1995) (see Theorem 16 in Section 7) we
derive that

: 1 u—l Him
ulLH;o EQOE Zi:o T hm,No = E070E1(hm,1v0) a.s.

Since the functions are bounded, by applying twice, consecutively, Theorem 16,
we obtain that

. . 1 u—1 . .
lim lim Epo— E T hym Ny = EooEr( lim hm,NO) a.s.
No—o00 u—00 u =0 No—oo



Clearly, because the variables are bounded, for every m fixed

. . 1 m—1
EO’OEI(N(I)LHOO him,n,) = Eo,0Er(lim Sup EO@'E Zk:o F,—o%)
. 1 m—1 9 9
< EyoE1Ep,o(lim blip E°°’0|E Zk:o Fy ., — o).
Now, by using again the fact that the variables are bounded and using Theorem
16, in order to show that
lim EooFEr( lim hy, ) =0 P-as.

m— o0 No—o0
it is enough to show that

N 1 m—1
mlgnoo lim sup EOOQ'E Zk:o F2,—0% =0 as. (19)
With this aim, we note first that by the ergodicity of S and the fact that the
variables are bounded, it follows that, for any k,

v—1
Jim BaoF?, = lim S Bao(Y X)) =0 (20)
Denote P o(-) = P(:|Fw,0). We also know that for any k, by the quenched
CLT for stationary martingale differences (see, for instance, Ch. 4 in Borodin
and Ibragimov (1994) or Derrienic and Lin (2001)), for almost all w, Fy,, = N
under Pg , where Ny is a centered normal random variable with variance o2.
Therefore, by the sufficiency part of the convergence of moments associated to
weak convergence, namely Theorem 3.6 in Billingsley (1999), we have that

(F,?)U)UE is uniformly integrable under P5  for almost all w. (21)

By the functional quenched CLT for martingales (see Ch. 4 in Borodin and
Ibragimov (1994)), for almost all w, we know that

(Fo,us F105 s Fm—10) = (No, N1y ooy Ny—1) under P as v — 00,

where (Ng, N1, ..., Npp—1) is a Gaussian vector of centered normal variables with
variance o2. But since (F},);jez are uncorrelated it follows by (21) that the vari-
ables in (IV;);>0 are also uncorrelated and therefore (N;);>o is an i.i.d. sequence.
By the continuous mapping theorem,

1

Lt 2 m=l o2 2 w
o Zk:O (Fip—07) = o Zk:o (Nj; — 07) under P  for almost all w.

By (21) it follows that ( an_ol(F,iv —0?)),y>1 is also uniformly integrable, so we

can apply the convergence of moments from Theorem 3.5 in Billingsley (1999).
Therefore, denoting by £ the expectation in rapport with the probability on the
space where the variables (Nj)'s are defined, we obtain

. 1 m—1 1 m—1
lim o Zk:g (F2,— o) = £l ZH (N2 —0?)| as.

V—00 m




By letting m — oo and using the law of large numbers for an i.i.d. sequence,

we obtain
m—1

ngnwsufzk , Vi =) =0.

Therefore (19) follows. As a consequence, we obtain (17).
In order to treat the term (18), we estimate

_ 1 n—1 2 2 m o IR N
Eoo(I1n,m) —Eoo*\z (Fp —07)| < P JrEo,OEZk:uka,v
m

n—1 9
g + Zk umvz EOOXkJS*(O— +C)

Whence, (18) follows, by passing to the limit first with n — oo followed by
m — 0.
Overall, we have shown that

lim 7E00| Z — o) =0as.

nAv—oo n

If we replace now n — 1 by [(n — 1)q], with ¢ a rational number, we easily see
that we also have convergence to go? and (15) follows.

It remains to verify the second condition of Theorem 15, namely to prove
(16). To show it, note that, by the martingale property,

1 n—1

< —Eoo(> . F?

=0 0,0( i=0 z,v)
1 n—1

= — < 2
nv( E i—o E EOO ) C”* a.s.

The proof of the theorem is now complete. [

1
7E0 0 max F2
n (O§i§n—1 “’)

Proof of Theorem 2

We start with an ii.d. random field (&, m)n,mez defined on a probability
space (€, K, P) with the distribution

P(&o,0=-1)=P(§o=1) =1/2. (22)

Without restricting the generality we shall define (£4)ucz2 in a canonical way
on the probability space ! = R? 2, endowed with the o—field B, generated by
cylinders. Then, if w = (zy)yez2, we define ¢, (w) = x,. We construct a
probability measure P’ on B such that for all B € B, any m and ug,...,u,, we
have

P'((Tuyy s Tu,,) € B) = P((€uys - Eu,,) € B).

The new sequence (£, )uez2 is distributed as (fu)uez2 and re-denoted by (§4)ucz2-
We shall also re-denote P’ as P. Now on RZ” we introduce the operators

Tu((Tv)vez?) = (Tviu)vez:-

10



Two of them will play an important role, namely when u =(1,0) and when
u =(0,1). By interpreting the indexes as notations for the lines and columns of
a matrix, we shall call

T((xu,v)(u,v)EZ2) = (xu+1,v)(u,fu)EZ2
the vertical shift and

S((Cﬁu,v)(u,v)ezz) = (fI;u,de)(u,v)eZ2

the horizontal shift. Introduce the filtration F,, ., = 0(& ;.7 < n,j < m)
and notice that this filtration is commuting. We assume K = F . The
transformations 7' and S are invertible, measure preserving, commuting and
ergodic. Furthermore T} j = T"S7.

For a measurable function f defined on R? * define

Xjk = f(TjSk(fmb)agmbgo)- (23)

We notice that the variables are adapted to the filtration (F, y)n,mez-

As an important step for constructing our example we shall establish the
following lemma:

Lemma 3 For every n and every e > 0 we can find a set F = F(n,e) which is
Fo,0 measurable and such that

P(F) =2 —(1-¢).

1
n?
Furthermore, for any 0 <i,j <n—1,0 < k, £ <n—1 with (i,7) # (k,{) we
have

P(T;}FNT, F)=0. (24)

Proof of Lemma 3.

Let n be an integer and let € > 0. By using Rokhlin lemma (see Theorem 17
in Section 7), construct B € IC with

e . 1

P(B)>(1-5) (25)

n2

and for 0 <4, <n—1, Ti’_le are disjoint for distinct pair of indexes. Since K
is generated by the field U, Jr,, we can find a set F in Uy Fy such that
€
P(BAFE — . 26
(BAE) < (26)
Since F belongs to UpFy, there is a m such that E € Fy,. So Ty (E) € Fo.
Denote G = Ty (E) and set

-1
F =G\ Ui enT;; G,

11



where D = {0<14,5 <n—1,(4,75) # (0,0)}. Note now that for all (4, ) € D,
P(FNT,}'F)=0,
which implies (24). Also, by stationarity,

P(F) = P(E) = P(EN (UapenTi B) 2 PE) =3 P(BNTE).

(i,5)€D
But for (i,5) € D,

P(ENT}E) <2P(E\ B) < —

~ 4nt’
Therefore, by the above considerations, (26) and (25) we obtain
€ € € 1-¢
P(F)>P(E)——>PB)—— —— > ——.
(F) 2 P(B) = 5 2 P(B) = s~ 3 >

Next, we obtain a lemma which is the main step in the construction of the
example. In the sequel, we use the notation a,, ~ b, for lim, . a,/b, = 1.

Lemma 4 There is a strictly stationary random field of integrable positive ran-
dom wvariables (U; ;)i jez, coordinatewise ergodic, such that for any 0 < e < 1,
E|Uoo|In'5(1 + [Up|) < 0o and such that for almost all w, (Up.u/10)n vez is
not tight under P¥.

Proof of Lemma 4.

By Lemma 3, for n > 2 and ¢ = 1/2, we can find sets F,, € F_,, _, such
that P(F,) = 1/2n? and such that for any 0 < i,j <n—1,0 <kl <n—1
with (7,7) # (k,¢) we have P(T{;Fn N T,;llF7L) =0.

Now, we consider independent copies of the probability space (2, KC, P), de-
noted by (Q0™), (™), P(m))mzl, and introduce the product space & = [[°_; Qem)
endowed with the sigma algebra generated by cylinders, K = [[°_; K We

also introduce on K the product probability P = H;;o:l pim) pm) — p_In
this space consider sets Fén)
n-th coordinate which is Fj,.
On €, define a random variable f,, by the following formula:

n

= —5—1 _(n 27
U In’n B 27

which are products of Q2 with the exception of the

Let A,, be the following event:
A, = {there are 4, j, Inn <i,j <n —1, such that f,, o T, ;/ij > 1}.

where T; j = (T3, T} j, ...). Since f,oT; ;is [[or_; ]—"éjg) measurable, for w € A,,,
there are 7, 7, Inn <1i,5 <n — 1, such that

PY(fnoTi /ij >1)=1. (28)

12



Note now that f,, o T;;/ij > 1 if and only if 1) o T;; > ij(Inn)?/n, if and
only if w € (Ti,j)fl(Fén)) and ij < n/(lnn)2.
Then, the probability of A, can be computed as:
P(A,) =P(J T (F") =P T} (F.),

D D

where the union and have indexes in the set D = {ij < (n —1)/(Inn)?;Inn <
i,j <n —1}. By Lemma 3, it follows that

nlnn 1
P(A,)=P(F,) Y > L~ S n)? ~ 2nlnn

Inn<j<n-—1 Inn<i<(n—1)/j(lnn)?

Therefore

ZP(AH) - Z 2n}nn -

n>2 n>2

By the second Borel-Cantelli lemma, P(A,, i.0.) = 1. This means that almost
all w € © belong to an infinite number of A,,. Whence, taking into account
(28), for almost all w € Q2 and every positive B,

lim sup P¥(fp,oT;;/ij > B)=1. (29)
INJ— 00
Define now
Uoo=Y fn and Uij = fnoTi;. (30)
n>2 n>2

Let us estimate the Luxembourg norm of Uy in the Orlicz space generated by
the convex function g(z) = zIn' (14 z) for > 0, 0 < ¢ < 1. For each n € N

Ul = ffa: B =g 2y <1y

By the definition of f,, we have

fn — fn _ n
E(Tlnl 6(1+7)) :P(Fn)MHinnl “(1+ ann)
1 1— n
=———In""(1+ —).
2 nIn’n ( )\ln2n)

From this identity we see that, after some computations, that for n sufficiently

large
1
||fn||g S m

Clearly, we have

1Vo.0llg < D Ilfully < co. (31)

n>2

13



It remains to note that, by definition (30), U; ; > f, o T; ;. Therefore, by (29)
we also have for almost all w € 2 and every positive B,

lim sup P*(U;;/ij > B)=1

iAj—00
and the conclusion of this lemma follows by letting B — oco. [

End of proof of Theorem 2

On the space constructed in Lemma 4 define the independent random vari-
ables §;’j(w1,w2, ) = & j(w1) and the random variables X; ; = & ; 1'17/%,341,
where (U, ;)i jez and (& ;)i jez are as in Lemma 4. Note that (X, ;)i jez is

a sequence of orthomartingale differences with respect to anozl fi(?), where

fi(gl) are independent copies of F; ;. According to Lemma 4 for P—almost all

w €  we have

lim lim sup P“(|X;,|/\/ij > B)=1.

B—oo iNj—00
If we assume now that (Sy, . /v/1nm)n,m>1 satisfies the quenched limit theorem
(or it is "quenched" tight), because

1/2
U3 oo =151 S 18igl + [Sic gl + 18ij-1 + [Si—1j-1l,

then necessarily the field (| X, m|/v/7mM)n,m>1 should be tight under P*, for
almost all w, which leads to a contradiction. Note that, by (31), for any 0 < ¢ <
1 we have EX3, In'"%(14|Xo,0]) < co. For this example EXoIn(1+|Xo0|) =
00, since otherwise the quenched result follows by Theorem 1. O

3 Quenched functional CLT

In this section we formulate the functional CLT, which holds under the same
conditions as in Theorem 1. For (s,t) € [0,1]%, we introduce the stochastic
process
1
Whw t, = 7Sn vs].
wlt:8) = = Sini oo

We shall establish the following result. Denote by (W (t,s)),s)e[0,12 the stan-
dard 2-dimensional Brownian sheet.

Theorem 5 Under the setting of Theorem 1, if we assume that E(Xg’o) < o0
then, for P-almost all w, the sequence of processes (Wi, n (¢, 8))n>1 converges in
distribution in D(]0,1]?) endowed with the uniform topology to oW (t,s), under
P¥. If we assume now that (6) holds, then for P-almost all w, the sequence
(Whw(t,8))n,v>1 converges in distribution to oW (t,s), as n Av — oo under P¥.

14



Proof of Theorem 5

Let us first prove the second case, when n A v — co. As usual, the proof
of this theorem involves two steps, namely the proof of the convergence of the
finite dimensional distributions to the corresponding ones of the standard 2-
dimensional Brownian sheet and tightness.

For proving tightness we shall verify the moment condition given in relation
(3) in Bickel and Wichura (1971) and then the tightness follows from Theorem
3 in the same paper. To verify it is enough to compute the 4—th moment of an
increment of the process W, , (¢, s) on the rectangle A = [t1,t2) X [s1, $2). That
is E(A*(A)) where

[nta]— [vsa]— 1
A \/m) Zz [nt1] Z =[vs1] l’

By applying Burkholder’s inequality twice consecutively, and taking into ac-
count that the variables are bounded by C, for a positive constant K we obtain

E“(A*(A)) < KC*(ty — t1)*(s2 — 51)? = KC* 1% (A),

where p is the Lebesgue measure on [0,1]?. If B is a neighboring rectangle of
A, by the Cauchy-Schwatz inequality we have

E¥(A%(A)A%(B)) < KC*u(A)u(B).

Therefore the moment condition in relation (3) in Bickel and Wichura (1971) is
verified with v =4 and 8 = 2.

The proof of the convergence of finite dimensional distribution follows, up to
a point, the proof of the corresponding result in Cuny et al. (2015), which will be
combined with the method of proof in Theorem 1. As explained in Subsection
3.2 in Cuny et al. (2015), in order to establish the convergence of the finite
dimensional distributions, we have to show that for P—almost all w € 2, and
for any partitions 0 <t; < ...<txg <land 0 <s; <..<sg <1, we have

[ntr]— [vse]—1

\/ﬁ Zk 1 Zz g Okt Zz [ntg_1] Z =[vse_1] Xij = N(O,T) under P%,
(32)

where I' = o2 Ele Zf(:l a%l(tk —tr—1)(s¢ —s¢—1). Since we have proved tight-

ness in C([0, 1]2), we know that any subsequence contains one which is converges

in distribution to a continuous process. Therefore, without restricting the gen-

erality we can restrict ourselves to partitions with rational ends which form a

countable set.

In order to establish this weak convergence we follow step by step the proof of
Theorem 1. We shall just mention the differences. The first step is to decompose
X ; as in formula (8) and to show the negligibility of the term containing XZ jr
This is the only step where we need different moment conditions according to
whether indexes in the sum are restricted or not. By using simple algebraic
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manipulations, the triangle inequality along with Theorem 3.2 in Billingsley
(1999), we can easily see that this term is negligible P-a.s. for the convergence
in D(]0,1]?) endowed with the uniform topology, if, for every ¢ > 0

2 J ”
Jim tim sup Foo(mex max 1D, D, Prelidl > Vi) =0 as.
But by using Cairoli’s maximal inequality for orthomartinagles (see Theorem
2.3.1 in Khoshnevisan, 2002, p. 19) the proof is reduced to showing (11), which
was already established in proof of Theorem 1. Without loss of generality we
redenote P; j (X ;) by X; ; and assume that it is bounded by a positive constant
C. We continue the steps of the proof in Theorem 1 and we shall verify the
conditions of Theorem 15 with the exception that we replace F; , in definition

(14) by
[vse]—
Friv= Xij
e DN DA

where [ntp_1] < i < [ntg] —1; 1 < k < K. We also replace % by ni =
o? 25:1 az ¢(se — s¢-1) and hy, N, by

m—1
2 2 2
Pe,m, Ny = = sup Eo,ol Zi:o Fiiw =il
For instance, let us convince ourselves that (20) holds. Indeed by the ergodicity
of S and the fact that the variables are bounded

[UG@
UIEEOEOOOFklv_Uhm Eoo() Zz 1%@2 [sen] ’g ) = 7.

After we verify the conditions of Theorem 15 for the triangular array of
martingale differences (Fiiv)nt,_1]<i<[nts]—1; 1<k<Kk > We obtain the result in
(32) by applying the CLT in Theorem 15. O

4 Quenched functional CLT via coboundary de-
composition

Now we indicate a larger class than the orthomartingale, which satisfies a
quenched functional CLT. A fruitful approach is to approximate S,,, by an
orthomartingale M, ,,, in a norm that makes possible to transport the quenched
functional CLT given in Theorem 5. Such an approximation is of the form: for
every € > 0,

. w _

hmn/\sq}li)ooP (1<k<nrll X, |Sk,e — Mg | > ev/nv) =0 as. (33)

The random fields we consider can be decomposed into an orthomartin-

gale and a generalized coboundary and therefore satisfy (33). This type of or-
thomartingale approximation, so called martingale-coboundary decomposition,
was introduced for random fields by Gordin (2009) and studied by El Machkouri
and Giraudo (2016), Giraudo (2018) and Volny (2018).
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Definition 6 We say that a random field (X; ;)i jez, defined by (3), adapted
to the commuting filtration (F; ;)i jcz, defined by (1), admits a martingale-
coboundary decomposition if

X070 = m070 + (1 — T)m670 + (1 — S)m&o + (1 — T)(l — S)}/Qo, (34)

with mo o an orthomartingale difference (satisfying (4)), mg o a martingale dif-
ference in the second coordinate and m’(’m a martingale difference in the first
coordinate. All these functions are Foo—measurable.

We shall obtain the following generalization of Theorem 5:

Theorem 7 Let us assume that the decomposition (34) holds with all the vari-
ables square integrable and S (or T') is ergodic. Then for almost all w € ,

1

ESW]’[M] = |c|W (¢, s) under P¥ when n — oo, (35)

where (W (t,5))t,5)e[0,1]2 18 the standard 2-dimensional Brownian sheet and ¢ =
E(m§ ). If we assume that all the variables involved in the decomposition (34)
satisfy (6) then, for almost all w € Q,

1

WSWHM] = |c|W(t,s) under P when n A v — oo. (36)
It should be noted that Giraudo (2018) have shown that if
SUPO E((EO,O(Sn,v))Q) < 00, (37)

then the decomposition (34) holds and all the variables are in Ly. As a matter
of fact this is also a necessary condition for (34). The only condition specific
to Ly needed for his proof is the reflexivity of L,. Since the Orlicz space L,
generated by the function

p(x) = 2 log(1+ ) : [0,00) — [0,00)

is reflexive (see Theorem 8 in Milnes (1957)), the proof of Theorem 2.1 in Gi-
raudo is also valid in this context. It follows that if

sup E(¢(|Eoo(Sn))) < 00, (38)

n,v>0

then the decomposition in (34) holds all the functions are in L. The reciprocal
is also true.

As a matter of fact, by combining Theorem 7 with this result we deduce the
following corollary:

Corollary 8 Let us assume that the random field (X, ;)i jez, defined by (3),
adapted to the commuting filtration (F; ;)i jcz, defined by (1), satisfies (37).
Then limp, ny— oo (n0) T E(S7 ) = 2. If in addition we assume that S (or T) is
ergodic, then for P—almost all w € Q, (35) holds. Also, if condition (38) is
satisfied, then for P—almost all w € ), (36) holds.
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Proof of Theorem 7

Consider first that the indexes n and m are varying independently. Denote
bym”—moooTLjandeg—Z ZJ omm

We shall establish (33). A simple computatlon shows that (Sk,¢— My ¢)//nv
is the sum of the following three terms:

=0 j
1 k—1¢—1 1
— T°S9(I —T)(I — 8)Yo = (I = SH(I —T*)Yo0 = Rs(k, ().
M;JZO 0,0 \/ﬁ 0,0 3

In order to treat the last term, note that

1<k<n 1<e< |3 (k, )] < vnu olgfgn 0@?§U|Y,J|

Let A be a positive integer. By truncation at the level A we obtain the following
bound

1

- < A7 1
N0 02420 0220 Yisl + LX;JZO I(Yi ;] > A).

Because of the stationarity and the fact that in the second part of Theorem 7
we imposed condition (6), by the ergodic theorem for stationary random fields
(see Theorem 1.1 in Ch.6, Krengel (1985)) it follows that for every A,

lim — o ZZ I([Yi ;] > A) = E(Y7I(|Yo,0 > A)).
=0 j=0
Therefore limg_,o0 limpay—oo |[R3(n,v)] = 0 P—a.s. By Fubini’s theorem, it

follows that the limit is 0 also under P“, for almost all w.
The terms Ry (k, ¢) and Ry(k,{) are treated similarly, with small differences.

Let us treat the first one only. It is convenient to truncate at a positive number
A. Let

;‘k* ka(\m3k|<A) Ej .- 1mgk1(|m3k|<A)
7kl(|m] k:‘ > A) 77k 1m7 kl(‘m] k:‘ > A)
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We shall use the following bound:

-1
Eoo (oA Ri(k,0) < 2Eg lgkgﬂrlflléegv(z m;,k)Q <
-1 =
8A%v + 2Ep,0 1Sk§n71:11x§f§1}(j2_:0 3 kI(|mJ Kl > A) = Jik— 1mJ kI(|mJ Kl > A))
-1
< 8A% +QZE00 rgaj( Zm] WL | > A) = By ( I(Im | > A))2.

k=1

Now, by the Doob’s maximal inequality

1 2
ﬂEO’O 1gkgr?ff(§egu Ri(k,0)
n v—1
2
S %ZZEOO JkI |mak|>A) Ej k- 1m]k1(|m]k|>"4))
k=1 ;=0
4 n v—1
< HZZEO,O ) ()| > A))?
k=1 35=0
4 n wv—1
7+*ZZQJ1 5[(mp,0)*I(Jmp ol > A)].
k=1 5=0

We let n A v — oo and we use Theorem 1.1 in Ch. 6 of Krengel (1985). It
follows that, for every A

1
lim —FEgo max  Ri(k,() = E(mg)*I(Img el > A).

nAv—oo NU 1<k<n,1<t<v

Then, we let A — co. This completes the proof of (33). The result follows by
using the second part of Theorem 5 along with Theorem 3.2 in Billingsley (1999).
Now for the situation n = m — oo, the proof is similar with the difference that
we use Theorem 3.5 in Ch. 6 in Krengel (1985) instead of Theorem 1.1 in the
same chapter together with the first part of Theorem 5. [J

Remark 9 If we take Yy 0, in the martingale-coboundary decomposition (84),
to be the function Ug,/(f found in the proof of Lemma 4, then for almost all w,

n—1lv—1

Rs(n :—ZZTzSJI T)(I - 8)Yo,0

20]0

does not converge to 0 in probability P¥ when n Av — oo. Therefore if only the
existence of the second moment is assumed or even if EYZ,In'~*(14[Yy|) < oo
for some 0 < e < 1, this coboundary could spoil the quenched weak convergence.
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This is in sharp contrast with the dimension 1. Recall that in dimension 1, when
we have a martingale-coboundary decomposition Xg = Do+ Gy —TGO with Doy a
martingale difference and Gog € Lo, then the coboundary Gy —TGy does not spoil
the quenched invariance principle (see Theorem 8.1 in Borodin and Ibragimov
(1994), which is due to Gordin and Lifshits). In higher dimension, in general,
we need stronger moment conditions not only for martingale differences but also
for the cobounding function Yy .

5 The case of d-indexed random field

In this section we formulate our results and indicate their proofs for random
fields indexed by Z? with d > 2. The proofs are based on induction arguments.
When we add on unrestricted d-dimensional rectangles the moment conditions
will depend on d. By u=(uj,us,...,uq) we denote elements of Z%. Let us
suppose that T = (T})i1<i<q are d commuting, invertible, measure preserv-
ing transformations from 2 to 2 and let Fo be a sub-sigma field of K. For
all u € 74 define Fy = T %(Fp), where T~% is the following composition
of operators: T™" = [["_, 7, “*. Assume the filtration is coordinatewise in-
creasing and commuting, in the sense that for any integrable variable we have
EuFE.X = E,puX, where a A u means coordinatewice minimum and we used
the notation FyX = F(X|F,). We introduce the stationary field by starting
with a Fg—measurable function Xg :  — R and then define the random field
Xi(w) = Xo(T¥(w)) = Xo(TF* o ... o TH*). The operator T is defined on Lo
as T(f) =f o T. For the filtration (Fu)uez¢, defined as above, we call the ran-
dom field (Xy)yeze orthomartingale difference if E(X,|F;) = 0 when at least
one coordinate of i is strictly smaller that the corresponding coordinate of u.

We also use the notation i < u, where the inequality is coordinatewise and
[n| = ny - ... ng. Finally denote S, = Zogign—1Xi' In this context we have:

Theorem 10 Assume that there is an integer i, 1 < ¢ < d such that T; is
ergodic and Xq is square integrable, E(X3) = o2. Then, for P—almost all
w € Q,

,,,,, ny = oW (ty, ..., tq) under P when n — oo .

dl2
In addition, if E[X2log? (1 + |Xo|)] < oo, then for almost all w € Q,
1

—S = oW (t1,...,tq) under P* when min n; — oo.
|1’l|1/2 (n1,n2,...,nq) ( PRXED) ) 1<i<d i

Remark 11 Both Theorems 5 and 7 as well as Corollary 8 also hold for the
multi-indexed random field (Xu)ueza defined above.
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We shall indicate how to prove these results by induction. We shall follow
step by step the proof of Theorem 1 with the following differences. Without
restricting the generality, let us assume that the operator T; is ergodic for an i,
2 <4 < d. We define now the d-dimensional projection operators. By using the
commutative property of the filtrations it is convenient to define:

Pu(X) =Py, 0Py, 0... 0 Py, (X),

where
Pu,;(Y) = E(Y|Fu) — E(Y|Fy,).

Above we used the notation u; for a vector which has the same coordinates
as u with the exception of the j-th coordinate, which is u; — 1. For instance
when d = 3, Pu,(Y) = EY|Fuyusus) — EY | Fuyug—1,us)- We can easily see
that, by using the commutativity property of the filtration, this definition is
a generalization of the case d = 2. We note that, by using this definition of
Pu(X), the truncation argument in Theorem 1 remains unchanged if we replace
the index set Z2 with Z¢. We point out the following two differences in the proof
of Theorem 10. One difference is that, for the validity of the limit in (13) when
minj<j<qn; — 00, in order to apply the ergodic theorem for Dunford-Schwartz
operators, conform to Ch. 6 Theorem 2.8 and Theorem 1.1 in Krengel (1985),
we have to assume that E[X3 log™ (1 + | Xo,0])] < oo. After we reduce the
problem to the case of bounded random variables, we proceed with the proof of
the CLT by induction. More precisely, we write the sum in the form

1 ni—1

1
1/2 S(nlqnz,»--,nd) Y E : Fklf(”ZvnS«u-vnd) )
n| n
1 k1=0

with

1
Fk: N2,M3,-Md) 7 N1/9 Xk ;
1,(n2,n3,...,n4) (n2'~-~'nd)1/2é
where the sum is taken on the set B = {(0,...,0) < (k2...kq) < (ng — 1,...,n4 —
1)}. Because one operator is ergodic, according to the induction hypothesis,
Fiy (nang,...na) = N(0, 02) under P“ for almost all w, and we can replace (20)
by

lim

Exo..0 E X{ = 0% a.s. when min(na, ..., ng) — o0o.

Ng... Ny I

6 Examples
We shall give examples providing new results for linear and Volterra random

fields with i.i.d. innovations. Let d be an integer d > 1. Denote by t = (1, t2, ..., tq)
and let W (t) be the standard d-dimensional Brownian sheet.
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Example 12 Let ({n)neze be a random field of independent, identically dis-
tributed random variables, which are centered and have ﬁm'te second moment.
Let (an)neze be a sequence of real numbers such that ZJ>0 < 00. Define

Xk = Zajfk_j.

j=0
Assume that
sup Zb < 00, where by; = Z Axii- (39)
n>11 o<k<n—1
Then, if n = (n,n,...,n), for P—almost all w
WS[(n—l)-t] = |c|W(t) under P* when n — oo. (40)

If we assume now that E(€31log® (1 + |€o])) < oo, then for P—almost all w

1

[z Simn-1)t) = |c|[W(t) under P* when min(ny,...,ng) — 00, (41)

where n = (ny,...,nq).
Proof of Example 12.

For this case we take Fp = 0(&u, u < n). Let us note first that the variables
are square integrable and well defined. We also have

E(SalFo) = > Y axs&
0<k<n-1j<0
and therefore
B(E*(SalF0)) =) (> axi)’E(&).
i>0 0<k<n-1

The result follows for Sy, by applying the first part of Corollary 8.

On the other hand, by the Rosenthal inequality for independent random
variables (see relation 21.5 in Burkholder (1973)), applied with the function
o(x) = 22log? (1 + |z|), there is a positive constant C' such that

1/2
E((|E(SalFo)l) < Co | | D bniB(&1) +C > E(@(|bniol))

i>0 i>0

which is bounded under condition (39). Indeed, condition (39) implies that
SUPp>1 SUP;j>q |bni| < oo, and then, after simple algebraic manipulations we
can find a positive constant K such that

E(p(|bnibol)) < Kby 5 (E(#(l60l)) + E(&))-
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It remains to apply the second part from Corollary 8 and Remark 11 in order
to obtain the second part of the example. [

Another class of nonlinear random fields are the Volterra processes, which
play an important role in the nonlinear system theory.

Example 13 Let (§n)neze be a random field of independent random variables,
identically distributed, centered and with finite second moment. Define

Xy = Z au,vgk—ugk—V7

(u,v)=(0,0)

. . _ 2
where ay .y are real coefficients with ayy = 0 and vazo Uy < 00. Denote

cuv(ij) = Z Ak+uk+v-

0<k<j—1

Assume that
s S L) < oo, (12)
j=1 u>0,v>0,u#v

Then the quenched functional CLT in (40) holds. If in addition we assume that
E(€21og? 1 (1+|€0])) < oo, then the quenched functional CLT in (41) holds for
sums of variables in a general d-dimensional rectangle.

Proof of Example 13.

For this case we consider the sigma algebras as in Example 12. We start
from the following estimate

E(Sj|Fo) = Y > arurivuby = Y cuv() by
(u,v)>(0,0) 0<k<j—1 (u,v)>(0,0)
Since by our conditions ¢y, = 0, by Tonelli theorem we obtain

B(E*(SilFo) = > (()+ cav(evu()E(uéy)

u>0,v>0,u#v

<2 Y () + ) Bt

)
u>0,v>0,u#v

<4 ) qLEE)”

u>0,v>0,u#v

The first result of this theorem follows by applying the first part of Corollary 8
via Remark 11.

On the other hand, by a moment inequality for U-statistics based on the
decoupling procedures, (see Relation 3.1.3. in Giné et al., 2000), we obtain for
p(x) = 2 log (1 + Ja|),

E(p(|E(S|F)) <CEp | > cuv(i)é-uéy |

(u,v)=(0,0)
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where (€] )peze in an independent copy of (£n)neze and C is a positive constant.
Now, we apply Rosenthal inequality, given in relation 21.5 in Burkholder (1973),
and we find a constant C’ > 0 such that

1/2

E(e(|E(S51F0)]) < C'e Y GavDEE)

u>0,v>0,u#v

+O’ Z EQD (|Cu,v(j)§—u§/_v|) :

(u,v)=(0,0)

Note that, by (42), we have sup, y>0 j>1 [cuv(j)| < 0o. Also, because {_, and
&', are independent and identically distributed, by the properties of ¢, we can
find positive constants such that

Ey (‘CU,V(j)ffugl—vD
< K ()E(p(&))E(E) + (E(€))%] < K'cl o (§)-

It remains to note that condition (42) implies condition (38) and then to apply
the second part of Corollary 8 and Remark 11.

Remark 14 In FExamples 12 and 13 the innovations are i.i.d. fields. However,
the property (2) for the filtration is not restricted to filtrations generated by
independent random wvariables. For example, we can take as innovations the
random field (&nm)n.mez having as columns independent copies of a stationary
and ergodic martingale differences sequence. In this case the filtration generated
(&n,m)n,mez s also commuting. As a matter of fact a commuting filtration could
be generated by o stationary random field (§n,m)n,mez where the columns are
independent, i.e. T = (§n,m)nez are independent.

7 Auxiliary results

The following is a variant of Theorem 1 in Génssler and Héusler (1979) (see also
Génssler and Héusler, 1986, pages 315-317).

Theorem 15 Assume that (Dyk)i<k<n 5 @ triangular array of martingale
differences adapted to an increasing filtration (Fpp)k. Assume that for all
q rational numbers in [0, 1],

[nq]

Di,k - a% (43)
k=1

and maxi<p<n|Dnk| is uniformly integrable. Then Spy = oW (t), where

Stni) = E:;t]l D, and W(t) is a standard Brownian measure. In particular
S, = N(0,0?%).
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As a matter of fact, condition (43) in Theorem 1 in Génssler and H&usler
(1979) is formulated for all reals ¢ € [0, 1]. We notice however that if (43) holds
for any ¢ rational number in [0, 1] then it also holds for any ¢ € [0, 1]. To see it
fix t, t € [0,1] and let ¢; and g2 be two rational numbers such that ¢; <t < go.
Then, by using monotonicity, note that

ZZfi] n, — g2 g < Z[nt o2 < Z nq2] ql

and therefore

(1] 2 [nail o 2 2
|Z nk*at|<fn?1”§|zk:0Dn,k*0Qi\Jr(QZ*th)U
By using the hypothesis (43), and the fact that the rational numbers are dense
in R it follows that (43) holds for any ¢ € [0,1].

We mention now Theorem 34.2 (v) in Billingsley (1995). Further reaching
results including comments of the sharpness of the result below can be found in
Argiris and Rosenblatt (2006).

Theorem 16 Assume that the sequence of random variables (X,,),>0 converges
a.s. to X and there is an integrable and positive random variable Y such that
| Xn| <Y as. foralln > 0. Let F be a sigma algebra. Then the sequence
(E(Xy|F))n>0 converges a.s. to E(X|F).

The following is a result in Katznelson and Weiss (1972) known under the
name of Rokhlin lemma for amenable actions.

Theorem 17 Let (Q, K, P) be a nonatomic probability space and let T be a
measure preserving action of Z2 into §

T:72x0—Q

that is ergodic. Then, for all € > O and n € N, there is a set B = B(n,e) € K
such that for 0 <4,7 <n—1, T, 'B are disjoint for distinct indexes (i, j) and

1
P(B) = —(1-¢).
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